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We perform a lattice study of the (2+1)-dimensional Gross-Neveu model in a background magnetic
field B and at non-zero chemical potential µ. The complex-action problem arising in our simulations
using overlap fermions is under control. For B = 0 we observe a first-order phase transition in µ even
at non-vanishing temperatures. Our main finding, however, is that the rich phase structure found in
the limit of infinite flavor number Nf is washed out by the fluctuations present at Nf = 1. We find no
evidence for inverse magnetic catalysis, i.e., the decrease of the order parameter of chiral symmetry
breaking with B for µ close to the chiral phase transition. Instead, the magnetic field tends to
enhance the breakdown of chiral symmetry for all values of µ below the transition. Moreover, we
find no trace of spatial inhomogeneities in the order parameter. We briefly comment on the potential
relevance of our results for QCD.

I. INTRODUCTION

The study of Quantum Chromodynamics (QCD) at
finite baryon density is a highly non-trivial endeavor due
to the complex-action problem, which prevents the use
of lattice simulations based on importance sampling [1],
the most reliable ab-initio tool for the non-perturbative
study of strongly-interacting matter. With lattice QCD
no longer at one’s disposal in a parameter regime that is,
e.g., relevant for the physics of compact stellar objects
like neutron stars, an alternative is much needed. While
considerable effort is put into finding methods that cir-
cumvent the complex-action problem, another approach
entirely is the study of low-energy effective theories, which
reproduce QCD phenomenology within their range of va-
lidity.

Prominent examples of such effective field theories are
those based on chiral perturbation theory [2] and the four-
Fermi theories (4FTs). The latter arise in the low-energy
limit of QCD [3] and are capable of capturing a number of
essential features of QCD, in particular chiral symmetry
and its spontaneous breakdown. There are examples of
4FTs that are amenable to lattice studies at finite density
since they do not suffer from a complex-action problem
due to their rather simple structure – see, e.g., [4]. In fact,
a great part of our current understanding of finite-density
QCD stems from the investigation of 4FTs [5–7].

One particularly interesting question is how the struc-
ture of strongly-interacting matter changes under the
influence of background magnetic fields [8–10]. This is
due to the fact that magnetic fields of the order of the
QCD scale are generated in non-central heavy-ion col-
lisions [11], are present in the cores of magnetars [12]
and were likely produced during the electroweak phase
transition [13]. However, because of the aforementioned
limitations of lattice simulations, magnetized systems at
finite baryon density are still quite elusive.
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To this end, we perform in this work a lattice study of
the Gross-Neveu (GN) model [14], the simplest 4FT, in
(2 + 1) space-time dimensions. Extending our previous
work [15], which was concerned with the magnetized GN
model at zero density but finite temperature, we here
work at low temperature but non-zero chemical potential.
In [15] it became clear that this simple model fails to
correctly describe the phenomenology of magnetized QCD
[16, 17] both in and beyond the mean-field limit. However,
we also emphasized its role as a starting point for the
description of QCD in background magnetic fields by
means of beyond-mean-field effective models.

It shall be one of our goals to shed light on the question
of how much of the rich phase structure the model ex-
hibits in the mean-field limit [18] persists when quantum
fluctuations are taken into account. Work in this direction
has already been done using the optimized perturbation
theory (OPT) technique [19], but, to the best of our knowl-
edge, there exist no ab initio lattice simulations in the
literature that are concerned with that question. Further-
more, we investigate whether the magnetic field induces
spatial inhomogeneities at finite density as it likely does
at very strong fields in 3 + 1 dimensions [20–23]. Lastly,
as a long-term goal we aim at understanding properly to
what extent our findings are of relevance for QCD.

We will provide access to our simulation data online
under [24] in order to ensure the reproducibility of our
results in accordance with the FAIR1 Guiding Principles
[26]. Moreover, we will publish our data analysis scripts
under [27].

The outline of this work is as follows. In Sec. II we
introduce the GN model and discuss how chiral sym-
metry and its spontaneous breakdown are affected by a
chemical potential and an external magnetic field in the
mean-field limit. In particular, we discuss the compli-
cated phase structure arising due to fermionic Landau
levels. Sec. III outlines our lattice formalism using overlap

1 For a recent update on the status of Open Science within the
lattice community, see[25].
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fermions, putting a particular emphasis on the complex
action problem present in our simulations and how it is
avoided. We then present our simulation results obtained
at finite density and magnetic field in Sec. IV before
discussing their relevance in Sec. V. A large part of our
formalism and notation was introduced in [15], and we
shall refer to that work on various occasions for brevity.

II. ANALYTICAL RESULTS

The GN model at finite density (determined by the
chemical potential µ) and magnetic field (described by
the vector potential Aµ) in the chiral limit is defined by
the Lagrangian

Lσ = iψ̄
(
/∂ + ie /A+ σ + µγ0

)
ψ +

Nf

2g2
σ2 , (1)

where e is the elementary electric charge, Nf denotes
the number of fermion flavors (the sum over flavors is
implicit in (1)) and g2 denotes the four-Fermi coupling
constant. To arrive at Eq. (1) we have performed the
usual Hubbard-Stratonovich transformation introducing
the auxiliary scalar field σ in exchange for the (ψ̄ψ)2 term.

In this work we consider a three-dimensional Euclidean
space-time and work with four-component spinors, which
allows for the definition of a matrix γ5, anti-commuting
with all other gamma matrices. The model then has a Z2

chiral symmetry, 2 being invariant under the simultaneous
transformations

ψ → γ5ψ , ψ̄ → −ψ̄γ5 , σ → −σ . (2)

This chiral symmetry may be spontaneously broken by
the formation of a chiral condensate 〈ψ̄ψ〉, which can
be shown to be related to the expectation value of σ by
means of a Dyson-Schwinger equation,

〈ψ̄ψ〉 =
iNf

g2
〈σ〉 . (3)

In [15] we presented a computation of the effective po-
tential Veff of the GN model in 2 + 1 dimensions in the
limit Nf → ∞, where the mean-field approximation be-
comes exact. Assuming translational invariance in space
and time, σ(x) = σ = const., and that the magnetic field
lies perpendicular to the spatial plane and has a magni-
tude B such that, without loss of generality, eB > 0, one
finds (see also [28])

Veff(σ) = −σ
2

2π
σ0 −

√
2

π
(eB)3/2ζH

(
−1

2
,
σ2

2eB

)
+
|σ|eB

2π

− eB

2πβ

∞∑
l=0

dl

[
ln
(

1 + e−β(
√
σ2+2eBl+µ)

)
+ (µ↔ −µ)

]
,

(4)

2 Strictly speaking there is no chiral symmetry in odd dimenions.
Here it refers to the symmetry in the reducible representation
inherited from chiral symmetry in 4 dimensions.

where L2 is the spatial volume, ζH denotes the Hurwitz
zeta function and β = 1/T is the inverse temperature.
The sum runs over the fermionic Landau levels, labeled
by the index l, and dl = 2− δl0 takes into account that
the degeneracy of the lowest Landau level (LLL) is only
half of that of the higher ones.

Due to (3) the chiral condensate in the large -Nf limit
is proportional to the position of the global minimum of
Veff(σ), i.e., to the solution 〈σ〉 of the gap equation

V ′eff(σ)
∣∣
σ=〈σ〉 = 0 . (5)

In the following we denote by σ0 the value of 〈σ〉 at zero
temperature, chemical potential, and magnetic field. We
are interested in the phase structure of the model at finite
chemical potential and vanishing to low temperature. To
this end, we have performed a minimization of Veff in the
(B,µ) plane and we show the T = 0 phase diagram in
Fig. 1a.

A striking feature of the (B,µ) phase structure at zero
temperature is the cascade of first-order3 phase transitions
in µ for small eB. The physical origin of these multiple
phase transitions lies in the discreteness of Landau levels.
As long as B is small, the Landau levels are closely spaced,
such that for increasing chemical potential the Fermi en-
ergy crosses them successively, resulting in the possibility
for the order parameter to jump discontinuously for every
such crossing. When the magnetic field is strong enough,
however, the energy difference between Landau levels
grows too large and only the LLL remains occupied, such
that only the chiral phase transition (i.e., the transition
from 〈σ〉 6= 0 to 〈σ〉 = 0), but no intermediate transition,
is seen.

As can be seen in Fig. 1b, thermal fluctuations present
at T 6= 0 wash out the pattern of multiple phase transi-
tions. This can be understood by recalling that at finite
temperature the underlying Fermi-Dirac distribution is
no longer a step function but becomes smoother, which,
in turn, results in a smoother behavior of the order pa-
rameter as the Landau levels are crossed. Still, even at
T/σ0 = 0.1 an intermediate phase can be found for small
eB and large µ. We also mention that the critical chem-
ical potential µc of the chiral phase transition shows a
non-monotonic behavior in B as long as the latter is not
too strong, while it grows monotonically for larger eB.

Moreover, one observes that generically the phase dia-
gram is roughly divided into two regions: the large mag-
netic catalysis region, where the order parameter increases
with the magnetic field and the smaller inverse magnetic
catalysis region, where it decreases with B. We emphasize
the stark contrast to the situation at zero density studied
in [15], where only magnetic catalysis is present for all
magnetic field strengths and temperatures.

3 We remark that for B = 0 the (single) phase transition is of
second order everywhere but at the point (T = 0, µ = σ0), where
it becomes degenerate.
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(a) T = 0 . (b) T = 0.1σ0 .

FIG. 1. (B,µ) phase diagram of the (2 + 1)-dimensional GN model in the mean-field limit. The insets show zoomed-in regions
where multiple phase transitions occur.

A physical explanation for magnetic catalysis is pro-
vided in [29] by the effective reduction of the number of
space-time dimensions due to the presence of the mag-
netic field, which causes infrared divergences to which
the system responds via the formation of a mass gap.
The inverse magnetic catalysis found at weak magnetic
fields and large chemical potentials, on the other hand,
was explained in [30, 31] to be caused by a competition
between the energy gain due to the formation of a chiral
condensate (which increases with B) and the energy cost
of overcoming the imbalance between fermions and anti-
fermions at finite µ (which increases with both B and
µ).

Note that in the context of finite-temperature QCD the
expression “inverse magnetic catalysis” commonly refers
to the decrease of the chiral cross-over temperature with
B, accompanied by a non-monotonic B-dependence of
the chiral condensate [16, 17]. One should, however, be
careful when comparing the situation in QCD to the one

considered here, since their physical origins appear to be
quite different.

Finally, we mention that the lattice study [32] provided
evidence for the existence of a tri-critical point in the
(T, µ) plane at B = 0, accompanied by a first-order transi-
tion line for non-vanishing temperatures, in contradiction
to the known mean-field results. While in analytical
beyond-large -Nf studies such as the OPT calculations
[33, 34] a similar result was found, we argue that one may
encounter first-order transitions at the mean field level
as well, provided that one studies the theory on a finite
spatial volume. The reasoning is as follows: on a finite
volume the allowed momenta and thus the one-particle
energies are discrete, which can give rise to discontinuous
phase transitions in the same way as the Landau quanti-
zation. In a way, the B = 0 theory in a finite volume is
thus reminiscent of the B 6= 0 theory.

More concretely, the GN effective potential for vanish-
ing magnetic field on a finite spatial volume L2, such that
the space-time volume reads V = βL2, is given by

Veff(σ)
∣∣∣
B=0

= −σ
2

2π
σ0 +

|σ|3

3π
+

σ

πL2

∑
n

′
e−Lσ|n|

1

n2

(
1 +

1

Lσ|n|

)
− 2

V

∑
p

[
ln
(

1 + e−β(
√
σ2+p2+µ)

)
+ (µ↔ −µ)

]
,

(6)

where n = (n1, n2) ∈ Z2 and the prime on the first sum
indicates omission of the summand where n1 = n2 = 0,
while the second sum runs over spatial momenta p = 2π

L n.
The derivation is similar as in the B 6= 0 case, with the
sum over Landau levels being replaced by momentum
sums, see e.g. [35].

The first sum in (6) represents the finite-size corrections

to Veff , while the last term is the analog of the last term
in (4) on a finite volume and for vanishing magnetic field,
and thus – notice their similarity – may also give rise to
discontinuities at low temperatures. We remark that σ0

in (6) refers to the value of the condensate for vanishing
B, T , and µ in the infinite-volume limit, as above, and
not its finite-volume counterpart.
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FIG. 2. Veff as a function of σ for T/σ0 = 0.1 at the chiral
phase transition, µ = µc(T ), and for different L.

We show in Fig. 2 a comparison between the effective
potential at the chiral phase transition for both finite and
infinite L (always assumed equal in both directions) at a
low non-vanishing temperature. We see that on the finite
volumes Veff exhibits three degenerate global minima, one
at σ = 0 and two at non-trivial values of σ related to
one another via a chiral transformation. The minima are
separated by potential barriers, which is indicative of a
first-order phase transition since it implies the coexistence
of two phases. For L = ∞, on the other hand, the non-
trivial minima turn into the trivial one in a smooth way
when increasing µ, which rather hints at a second-order
transition. A more detailed analysis on finite-volume
effects will be the subject of a forthcoming publication.

Since our lattice simulations are all performed on finite
volumes, they could conceivably reveal a first-order tran-
sition as well, leading us to investigate this question in
more detail below. We remark, however, that a weak non-
vanishing magnetic field on finite volumes and at non-zero
temperatures might, in fact, drive the system back to a
second-order phase transition, which then becomes first
order again only for strong enough B. Also, there are
examples where first-order phase transitions found under
the assumption of homogeneity were later understood to
be of second order after lifting the latter constraint [36].
In [37], we developed the technology to investigate this
on the lattice.

Finally, we emphasize the non-monotonic behavior of
the critical chemical potential with L in Fig. 2, which is
reminiscent of the B-dependence of µc for a sufficiently
weak magnetic field. From these observations one clearly
realizes that the interplay between non-zero magnetic
field, temperature, and chemical potential has a highly
non-trivial influence on the order parameter even in the
infinite-volume limit, and becomes even more involved
once L <∞ enters as an additional control parameter.

III. NUMERICAL SETUP

A. Simulations with overlap fermions

We perform lattice simulations of the (2 + 1)-
dimensional GN model using one reducible 4-component
flavor, Nf = 1, of Neuberger’s overlap fermions [38]. We
couple the chemical potential µ in a way suggested by
Gavai and Sharma [39], such that our full lattice Dirac
operator reads

D = (σ + µγ0)
(
1− a

2
Dov

)
+Dov , (7)

where Dov is the massless overlap operator,

Dov =
1

a

(
1+DW (−1)/

√
D†W (−1)DW (−1)

)
, (8)

a denotes the lattice constant and DW (am) is the stan-
dard Wilson operator with mass m. DW also contains
the U(1) link variables encoding the magnetic field. For
more details on the discretization, including a thorough
discussion on how the magnetic field is implemented in
our simulations as well as a number of numerical tests,
we refer to [15].

There, we also argue that the lattice chiral condensate
[40] is related to the expectation value of σ via〈

ψ̄
(
1− a

2
Dov

)
ψ
〉

= −Nf

g2
〈σ〉 , (9)

in analogy to the continuum expression (3). As in [15], we
use the observable 〈|σ̄|〉, where σ̄ denotes the space-time
average of σ, as an order parameter for chiral symmetry
breaking and we perform the scale-setting at µ = B = 0
and at low temperatures. A detailed list of the parameter
values used in our simulations can be found in App. B

B. The complex-action problem

In [15], we showed that our lattice action is real for
arbitrary B at vanishing µ and the same holds true in
the case B = 0 and µ 6= 0. In this work we are, how-
ever, concerned with B and µ both being non-zero, such
that we have to expect a complex-action problem in gen-
eral. However, we found numerically that the ensuing
complex-action problem is, in fact, mild – in particular
with respect to the estimation of the chiral condensate.
The fluctuating phase then only gives rise to a systematic
uncertainty, which we estimate on exemplary ensembles.
Most importantly we demonstrate in the following that it
is negligible compared to the statistical uncertainties.

For the expectation value of an observable O, the stan-
dard re-weighting approach,

〈O〉 =

∫
Dσe−SR−iSIO∫
Dσe−SR−iSI

=
〈e−iSIO〉R
〈e−iSI 〉R

, (10)
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FIG. 3. Order parameter 〈|σ̄|〉 as a function of µ for different magnetic field strengths in an infinite-volume extrapolation at
fixed lattice spacing. We only consider cubic lattices where Ns = Nt .

provides an exact representation with stochastic interpre-
tation in the presence of a complex action S = SR + iSI
with SR, SI ∈ R. Here, 〈 · 〉R denotes the expectation
value with respect to the probability distribution e−SR/ZR
for an appropriate normalization ZR. As is well known,
this expression does not solve the complex-action problem
because the numerical determination of the quotient on
the right-hand side of (10) in general requires an expo-
nential amount of computational resources in the ther-
modynamic limit [41]. However, this statement is only
concerned with the asymptotic behavior and, depend-
ing on the observable in question, the desired parameter
regime might still be reachable at a reasonable numerical
cost.

More precisely, if the covariance between O and eiSI is
negligible compared to the average phase 〈e−iSI 〉R, the
latter approximately drops out of the expectation value:

〈O〉 = 〈O〉R +
covR

(
e−iSI ,O

)
〈e−iSI 〉R

≈ 〈O〉R , (11)

where the covariance between two random variables X
and Y is defined as

covR (X,Y ) = 〈(X − 〈X〉R)(Y − 〈Y 〉R)〉R . (12)

In this work we are predominantly concerned with the
computation of the chiral condensate, O = |σ̄|. In App. A
we show exemplary data that we used to estimate the
systematic uncertainties arising from the second term in
(11). In summary, we found that

covR
(
e−iSI , |σ̄|

)
∼ O

(
10−4 . . . 10−2

)
, (13)

while ∣∣1− 〈e−iSI 〉R
∣∣ ∼ O (10−3 . . . 10−1

)
, (14)

such that overall we expect systematic uncertainties of
O
(
10−3

)
from negligence of the complex-action prob-

lem, while our statistical uncertainties are typically of
O
(
10−2

)
. We conclude that we may safely neglect the

complex-action problem on our small and medium-sized
lattices. Future research on larger lattices might have to
review this position, however.

IV. RESULTS

In the following we present our lattice results for the
chiral condensate in the parameter space spanned by the
chemical potential µ and the magnetic field B at a low
temperature T . In particular, we aim at answering the
question of what remains of the large -Nf phase structure
shown in Fig. 1 and Fig. 2 when considering Nf = 1.
Hence, we look for traces of inverse magnetic catalysis,
multiple phase transitions in µ at B 6= 0 and a first-order
transition at B = 0. Throughout, Ns and Nt denote the
number of lattice points in each spatial and the temporal
direction, respectively. Moreover, we employ periodic
boundary conditions in space and anti-periodic ones in
time for fermions, while the scalar field σ is periodic in
all directions.

We begin by showing in Fig. 3 an infinite-volume ex-
trapolation at fixed lattice spacing of 〈|σ̄|〉(µ) for various
values of B. In what follows, we shall discuss these results
in more detail.

A. Vanishing magnetic field

Focusing on B = 0 first, one observes that, as antici-
pated, chiral symmetry is spontaneously broken at µ = 0,
indicated by 〈|σ̄|〉 6= 0, and that the order parameter
decreases with increasing µ (to a non-zero value due to
our definition of 〈|σ̄|〉). This behavior becomes sharper
on larger volumes, which is the expected behavior for a
phase transition. In order to determine the order of this
transition it is instructive to study histograms of σ̄, as
they allow one to reproduce the probability distribution
e−SR/ZR. We show the effective potential determined
from this distribution in the vicinity of the phase transi-
tion on our smallest lattice in Fig. 4. The corresponding
temperature amounts to T/σ0 ≈ 0.118, i.e., it is signifi-
cantly different from zero.

One observes that for µ/σ0 ≈ 0.282 the potential has
two degenerate minima at σ̄/σ0 ≈ ±1, while for µ/σ0 ≈



6

0

1 1e 3

/ 0 0.282

0

1

3 0V
ef

f / 0 0.301

1.5 1.0 0.5 0.0 0.5 1.0 1.5
/ 0

0.0

2.5 / 0 0.376

FIG. 4. Constraint effective potential [42] for B = 0, deter-
mined as the logarithm of the probability distribution of σ̄ and
normalized to zero at σ̄ = 0; Ns = Nt = 8 and aσ0 ≈ 1.063 .

0.301 a third minimum emerges at σ̄ = 0. Finally, at
µ/σ0 ≈ 0.376 only this trivial minimum is left. This
gives clear evidence for a first-order phase transition at
µ = µc ≈ 0.301σ0. That this is the case even on a lattice
volume as small as 82 does not really come as a surprise
in light of the discussion regarding Fig. 2 in Sec. II. We
notice that the critical chemical potential µc is roughly
three times smaller than in the large -Nf limit. This
reduction is less than the factor of around 4 or 5 found
for the zero-density critical temperature in [15].

We also remark that on small lattices the first-order
transition is not visible from the µ-dependence of 〈|σ̄|〉
alone. However, as can be seen in Fig. 3 the transition
becomes sharper for larger volumes and approaches the
behavior one would expect from a first-order transition.
This is due to the minima of Seff deepening, making
tunneling between them less probable. While a detailed
analysis of the effective potential on our larger lattices was
not possible due to limited statistics, we believe that the
transition is of first order for all lattice sizes considered
here.

Let us now compare our results at B = 0 with the exist-
ing literature. Previous works using staggered fermions,
[4] (Nf = 12) and [32] (Nf = 4), report that the phase
transition is of first order at T ≈ 0 (simulations at exactly
vanishing temperature are, of course, impossible) and of
second order for relatively high temperatures. They also
claim that their findings are consistent with the existence
of a first-order critical line at low temperatures, ending in
a tri-critical point at some non-zero value of T , despite be-
ing unable to precisely locate this tri-critical point. These
results were also confirmed by the OPT studies [33, 34].

Lastly, we mention that our estimate of µc, which is
approximately 0.3σ0 for all lattice sizes considered, is
significantly lower than the one quoted in [4], where it is
comparable to the mean-field value, µc/σ0 = 1. However,

this is expected since quantum fluctuations tend to destroy
long-range order and thus shrink the region of broken
chiral symmetry.

B. Finite magnetic field

Now turning to the case of B 6= 0, we see from Fig. 3
that for small µ the magnetic field has an overall tendency
to increase the chiral condensate, corresponding to the
magnetic catalysis scenario outlined in Sec. II. Notice,
however, that on smaller lattices there are finite-volume
effects that lead to a non-monotonic B-dependence of the
chiral condensate: 〈|σ̄|〉 first decreases for the weakest
allowed non-vanishing magnetic field before increasing
monotonically with B for all stronger fields. This effect
was also observed in our previous study [15] and can even
be seen at the mean-field level, but ceases to play a role
for larger volumes. While this non-monotonicity could
potentially be relevant for applications of the GN model
in solid-state physics [43], we do not discuss it further here
as our work rather takes its motivation from high-energy
physics, where one typically assumes infinite volumes.

Investigating larger chemical potentials next, the sit-
uation appears very much unchanged in that – within
the error margins – the magnetic field increases the order
parameter for all µ below the phase transition apart from
possible finite-size effects. The transition itself remains
a (weak) first-order one even for B 6= 0. Far beyond
the phase transition, the magnetic field ceases to have
a noticeable effect on 〈|σ̄|〉, a behavior also observed in
the finite -T study [15]. We furthermore observe that
the critical chemical potential of the transition slightly
increases with B within errors.

These observations are in contradiction with the mean-
field scenario of inverse magnetic catalysis discussed in
Sec. II, as well as with the OPT study [19], where inverse
magnetic catalysis was predicted to persist even beyond
the large -Nf limit. Furthermore, we find no evidence for
multiple phase transitions in µ at finite B, whereas they
were claimed in [19] to exist even for Nf = 2. While the
situation could, in principle, be qualitatively different be-
tween Nf = 2 and Nf = 1, we consider this rather unlikely
and are inclined to look for alternative explanations for
this discrepancy.4

It is important to stress that the missing features of
inverse catalysis and cascades of phase transitions are
expected to happen in a very small parameter region. In
lack of a better guiding principle, one could assume that
the reduction of the critical chemical potential as a scale
roughly carries over to other features of the phase dia-
gram. Even in the mean-field approximation they occur

4 There are ongoing discussions about a critical flavor numbers in
related 2+1D Thirring models, see, e.g., [44–46], but these are
of a very different nature and we see no indication for similar
phenomena to arise in this context.
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FIG. 5. Order parameter 〈|σ̄|〉 as a function of µ for different magnetic field strengths in a continuum extrapolation at fixed
physical volume. We only consider cubic lattices where Ns = Nt .

only within ±10 . . . 20% of the critical chemical potential –
being themselves only a few percent –, see Fig. 1. Scaling
that down leads us to expect filigree features of the size
of µ/σ0 ∼ O(0.006) in a very small parameter regime
of O(0.06) – this is a scale that we cannot resolve with
the current method assuming a reasonable amount of
resources. Even stronger physical constraints on the sam-
pling rate apply to the magnetic field’s discretization due
to the finite volume. As the multiple phase transitions
quickly oscillate in that direction of the phase diagram,
resolving, e.g., one of the spikes in the critical chemical
potential seems quite unlikely.

Nevertheless, we would have expected at least some
kind of footprint and the lack of any evidence begs an
explanation. The main differences between [19] and the
present work are that the former was performed in the
continuum, in an infinite volume and under the assump-
tion that σ is homogeneous, while we consider the theory
on a lattice of finite extent and allow for arbitrary modu-
lations of σ. It is the latter difference in particular that
could be responsible for the absence of multiple phase
transitions, as strong fluctuations in σ could likely wash
out the discrete Landau level structure, which is the ori-
gin of the cascade of transitions in the first place. While
we investigate the potential existence of inhomogeneities
in σ below, we mention that the precise reason for the
absence of inverse magnetic catalysis and multiple phase
transitions is still not entirely clear to us. Additional
work in that direction, however, is ongoing and intended
to be part of a forthcoming publication. It might also be
enlightning to investigate whether the OPT’s prediction
is stable with respect to the inclusion of higher orders in
1/Nf given the very small flavor numbers we are discussing
here.

In order to study stronger magnetic fields (in units of
σ0), we also approach the continuum limit for fixed phys-
ical volume and show the results for the µ-dependence
of the order parameter in Fig. 5. The observations are,
however, in close analogy to the infinite-volume extrapo-
lation discussed above: We find magnetic catalysis below

the phase transition, a slight increase of µc with B, and
no evidence for multiple phase transitions.

C. Inhomogeneous phases

Lastly, as in [15] we study the possibility of spatial inho-
mogeneities in σ induced by the magnetic field. While the
zero-density study [15] did not observe any evidence of
such inhomogeneous structures, this is hardly surprising
as even in the (four-dimensional) mean-field calculations
[21–23] inhomogenities would only arise at µ 6= 0. Concep-
tionally speaking, the magnetic field is capable of inducing
inhomogeneities due to the effective reduction of the num-
ber of space-time dimensions for strong enough B. This is
because in low dimensions four-Fermi theories (at B = 0)
are known to develop inhomogeneous structures at finite
density and low temperatures, as was first found in mean-
field studies [36, 47] and has recently been confirmed by
lattice simulations at finite Nf [37, 48, 49].

In order to address this question, we follow [15, 37] in
computing the spatial correlation function

C(x1,x2) =

1

N2
s Nt

∑
x′

〈σ(x′0, x1, x2)σ(x′0, x1 + x′1, x2 + x′2)〉 , (15)

where the xi denote the spatial components of a lattice
point and the sum over x′ runs over the entire lattice.
Any spatial inhomogeneities present in σ should also be
visible in C, but the latter has the advantage that it does
not suffer from cancellations as the expectation value of
σ itself would [37]. However, as can be seen exemplarily
in Fig. 6 for a relatively strong magnetic field at a low
temperature and a chemical potential close to the phase
transition we do not find any evidence for inhomogeneities
even in our simulations at µ 6= 0. We have verified that
the same is true for all of our other data points as well.
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FIG. 6. Spatial correlator C from (15) along the coordinate
axes (either x1 = 0 or x2 = 0) as well as the diagonal (x1 =
x2) for Ns = Nt = 12, eB/σ2

0 ≈ 0.346, µ/σ0 ≈ 0.349 and
aσ0 ≈ 1.004 . The full line corresponds to a cosh fit to the
data points, starting from x ≥ a, and is included in order to
guide the eye and showcase rotational invariance.

V. DISCUSSION

In this work we have presented the results of exten-
sive lattice simulations of the Gross-Neveu model (1) in
2 + 1 dimensions at finite chemical potential and mag-
netic field, considering Nf = 1 flavor of four-component
overlap fermions. We argue that the arising complex-
action problem is under control. The µ 6= 0 simulations
at T ≈ 0 discussed here complement our previous results
[15] obtained at µ = 0 and T 6= 0.

It was the main goal of [15] and the present work to
understand to what extent the rich phase structure in
(B, T, µ) space the model exhibits in the mean-field limit
(Nf →∞) persists when considering a finite flavor num-
ber. While at µ = 0 the generic features of the large -Nf

model, i.e., magnetic catalysis for all temperatures below
the phase transition and an increase of the critical tem-
perature with B were found to be exist also for Nf = 1
[15], the situation at µ 6= 0 appears to be different. There,
the mean-field approximation predicts a cascade of first-
order phase transitions and a region of inverse magnetic
catalysis, i.e., a decrease of the order parameter with B.
However, we find no evidence of either of these effects
in our simulations. On the contrary, we find magnetic
catalyis below and in the vicinity of the phase transition
and an increase of the critical chemical potential with
B. While – to the best of our knowledge – no previous
lattice results exist addressing this question, our find-
ings are in contradiction with analytical results using the
OPT method to study the two-flavor theory, where the
aforementioned features were found to persist [19].

We have already mentioned the most substantial dif-
ferences between [19] and the present work in that the
former works in the continuum, in an infinite volume and
assumes translational invariance, σ(x) = σ, while we work

on a lattice of finite extent and allow for σ to vary in space
and time. We believe that the latter difference could be
responsible for the discrepancy, even though we find no
trace of inhomogeneities at the level of Monte-Carlo av-
erages. Still, random fluctuations in σ could conceivably
be strong enough to completely smear out the discretized
energy levels induced by the Landau quantization causing
the multiple-transition pattern. Moreover, the argument
explaining the origin of inverse magnetic catalysis in [31]
was also given under the assumption that the order pa-
rameter is constant, which could potentially invalidate it
in the context of our lattice studies.

Another, perhaps less interesting, explanation is that
the OPT method might plainly be not reliable for such
small flavor numbers anymore. A follow-up study dealing
with this discrepancy with more rigor, also considering
larger Nf , is currently ongoing. We mention in passing
that our simulations were performed within the strong-
coupling regime, where there is spontaneous symmetry
breaking for T = 0 and µ = 0 even at vanishing magnetic
field. However, our observation that inverse magnetic
catalysis and the cascade of phase transitions are both
absent rather resembles the situation in the weak-coupling
regime, where chiral symmetry is intact when T , µ and B
all vanish and is only broken for non-zero magnetic field
[19].

We found that the phase transition in µ for all mag-
netic fields is of weak first order even at relatively high
temperatures, T/σ0 ≈ 0.1, which in the mean-field limit
only happens for non-vanishing B. Our results are, how-
ever, in agreement with the previous B = 0 lattice [4, 32]
and OPT [33, 34] studies, the latter of which claim that
this first-order phase transition is a consequence of 1/Nf

corrections. However, we argue that on a finite volume a
first-order transition at B = 0 and T 6= 0 can emerge in
the large -Nf limit as well.

Lastly, we briefly comment on the potential relevance
of our results for QCD. The results of [15], predicting
magnetic catalysis for every temperature below the phase
transition, are in disagreement with the inverse magnetic
catalysis scenario taking place around the chiral crossover
in QCD [16, 17]. This discrepancy can be understood
by the fact that around the crossover the “sea quark”
contribution, encoding the back-reaction of the (charged)
quarks onto the (neutral) gluonic distribution, dominates
over the “valence quark” contribution, which causes an
enhancement of chiral symmetry breaking [50]. This
dominance of the sea quark effect then causes the chiral
condensate to decrease. On the other hand, the purely
fermionic GN model is, without modifications (see, e.g.,
[51–53]), obviously incapable of reproducing this gluon-
induced phenomenology.

For temperatures far above and below the QCD
crossover, however, the valence contribution dominates.
If this were true at finite density as well, one could spec-
ulate that gluonic effects might be less relevant for the
low-temperature regime at finite chemical potential we
studied in this work. This would imply that our results
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might be of relevance for the finite-density regime of QCD,
at least on a qualitative level. However, further research
in that direction is certainly necessary in order to make
any definite statements, since our (2 + 1)-dimensional
model at Nf = 1 is clearly still quite different from QCD.
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Appendix A: Complex action problem

In the main text we hinted that, while there is a non-
negligible complex-action problem of up to 10%, the com-
plex phase of the action is almost uncorrelated with the
chiral condensate 〈|σ̄|〉, the observable of predominant
interest in this paper. In this scenario it would be justifi-
able to neglect the complex action problem for estimation
of this particular observable and we shall establish in this
appendix that this is indeed the case.
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FIG. 7. Average phase (squares) and covariance between
chiral condensate and complex phase of the action (circles)
for different lattices over the chemical potential. Points are
horizontally shifted for better visibility.

Due to the significant computational cost, we have esti-
mated the complex phase for a given ensemble only on a
randomly drawn subset of configurations. We have always
made sure that the number of randomly drawn configura-
tions is significantly smaller than the effective number of
statistically independent configurations while being large
enough for reliable statistical estimates. For details of
this procedure, we refer the reader to the corresponding
code publication [27]. In the following, all analysis is done
with respect to such sub-ensembles.

Fig. 7 shows the average phase and the covariance (12)
between |σ̄| and the complex phase of the action. The
four panels show different lattices. Due to the excessive
numerical cost, we could only provide a single data point
for Ns = 16 for consistency checks. One should note that
we have taken the absolute value here in order to capture
the maximal possible effect in a single (real) number.
Both quantities are complex-valued in general.

The data show the expected trend: The average phase
becomes smaller (i.e., the complex-action problem be-
comes more severe) with growing µ and/or B. The maxi-
mal deviation of the average phase from unity is roughly
0.1 for the largest µ and B considered.

The covariance consistently is about an order of magni-
tude smaller on average and often even compatible with 0.
One could conjecture that there is an analytical argument
for the independence of the average phase and 〈|σ̄|〉 but
we have not found one yet. Moreover, the errors of both
quantities are well under control although the sample size
for Ns = 16 is very small due to the excessive cost of
computing the full determinant.
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Appendix B: Parameters

In Tab. I we list the parameters used in our simulations.
The magnetic flux quantum number b appears in the
quantization condition of the magnetic field on the lattice,

eB =
2π

L2
b , (B1)

with L2 denoting the area of the spatial plane. For further
details on the simulations and the way we perform our
error analysis we refer to [15].
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[4] S. J. Hands, A. Kocić, and J. B. Kogut, Nucl. Phys. B
390, 355 (1993), arXiv:hep-lat/9206024.

[5] U. Vogl and W. Weise, Prog. Part. Nucl. Phys. 27, 195
(1991).

[6] S. P. Klevansky, Rev. Mod. Phys. 64, 649 (1992).
[7] C. G. Strouthos, Eur. Phys. J. A 18, 211 (2003),

arXiv:hep-lat/0209143.
[8] I. A. Shovkovy, Lect. Notes Phys. 871, 13 (2013),

arXiv:1207.5081 [hep-ph].
[9] V. A. Miransky and I. A. Shovkovy, Phys. Rep. 576, 1

(2015), arXiv:1503.00732 [hep-ph].
[10] J. O. Andersen, W. R. Naylor, and A. Tranberg, Rev.

Mod. Phys. 88, 025001 (2016), arXiv:1411.7176 [hep-ph].
[11] K. Tuchin, Adv. High Energy Phys. 2013, 490495 (2013),

arXiv:1301.0099 [hep-ph].
[12] E. J. Ferrer, V. de la Incera, J. P. Keith, I. Portillo,

and P. L. Springsteen, Phys. Rev. C 82, 065802 (2010),
arXiv:1009.3521 [hep-ph].

[13] T. Vachaspati, Phys. Lett. B 265, 258 (1991).
[14] D. J. Gross and A. Neveu, Phys. Rev. D 10, 3235 (1974).
[15] J. J. Lenz, M. Mandl, and A. Wipf, (2023),

arXiv:2302.05279 [hep-lat].
[16] G. S. Bali, F. Bruckmann, G. Endrődi, Z. Fodor, S. D.
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44 (2012), arXiv:1111.4956 [hep-lat].

[17] G. S. Bali, F. Bruckmann, G. Endrődi, Z. Fodor, S. D.
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2013, 112 (2013), arXiv:1303.3972 [hep-lat].

[51] A. Ayala, L. A. Hernández, M. Loewe, and C. Villavi-
cencio, Eur. Phys. J. A 57, 234 (2021), arXiv:2104.05854

[hep-ph].
[52] J. O. Andersen, Eur. Phys. J. A 57, 189 (2021),

arXiv:2102.13165 [hep-ph].
[53] A. Bandyopadhyay and R. L. S. Farias, Eur. Phys. J. Spec.

Top. 230, 719 (2021), arXiv:2003.11054 [hep-ph].

http://dx.doi.org/10.1007/JHEP04(2013)112
http://dx.doi.org/10.1007/JHEP04(2013)112
http://arxiv.org/abs/1303.3972
http://dx.doi.org/10.1140/epja/s10050-021-00534-4
http://arxiv.org/abs/2104.05854
http://arxiv.org/abs/2104.05854
http://dx.doi.org/10.1140/epja/s10050-021-00491-y
http://arxiv.org/abs/2102.13165
http://dx.doi.org/10.1140/epjs/s11734-021-00023-1
http://dx.doi.org/10.1140/epjs/s11734-021-00023-1
http://arxiv.org/abs/2003.11054

	The magnetized (2+1)-dimensional Gross-Neveu model at finite density
	Abstract
	Introduction
	Analytical results
	Numerical setup
	Simulations with overlap fermions
	The complex-action problem

	Results
	Vanishing magnetic field
	Finite magnetic field
	Inhomogeneous phases

	Discussion
	Acknowledgments
	Open Access Statement
	Data Availability Statement
	Complex action problem
	Parameters
	References


