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Instantons and Gribov Copies inthe Maximally Abelian GaugeF. Brukmann, T. Heinzl�, A. WipfFriedrih-Shiller-Universit�at JenaTheoretish-Physikalishes InstitutMax-Wien-Platz 1, D-07743 JenaT. Tok�Universit�at T�ubingenInstitut f�ur Theoretishe PhysikAuf der Morgenstelle 14, D-72076 T�ubingenAbstratWe alulate the Faddeev-Popov operator orresponding to the max-imally Abelian gauge for gauge group SU(N). Speializing to SU(2) welook for expliit zero modes of this operator. Within an illuminating toymodel (Yang-Mills mehanis) the problem an be ompletely solved andunderstood. In the �eld theory ase we are able to �nd an analyti expres-sion for a normalizable zero mode in the bakground of a single `t Hooftinstanton. Aordingly, suh an instanton orresponds to a horizon on-�guration in the maximally Abelian gauge. Possible physial impliationsare disussed.
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1 IntrodutionThe on�guration spae A of gauge theories is a \bigger-than-real-life-spae" [1℄.This is due to the fat that the ation of the gauge group G relates physiallyequivalent on�gurations along the gauge orbits. Therefore, this ation has to bedivided out. In priniple, this division leads to the physial on�guration spae,Aphys = A=G. In pratie, however, this division is not easily performed. Themost eÆient method to do so is gauge �xing, where a subset of A is identi�edwith Aphys. This subset is haraterized by hoosing some ondition on the gaugepotentials A of the form �[A℄ = 0. Prominent examples are the ovariant gauge,�ov = ��A�, or the axial gauge, �ax = n � A. One hopes that this onditionsatis�es both the requirements of existene and uniqueness. Existene meansthat the hypersurfae � : � = 0 intersets every orbit, while uniqueness requiresthat it does so one and only one. It has �rst been shown by Gribov thatthe latter requirement annot be satis�ed for non-Abelian gauge theories in theovariant and Coulomb gauge [2℄. Shortly afterwards, Gribov's observation hasbeen proven for a large lass of ontinuous gauge �xings [3℄. In the physisommunity, the lak of uniqueness has beome known as the Gribov problem.This just paraphrases the diÆulty in onstruting the physial on�gurationspae whih, by de�nition, is void of any (residual) gauge (or Gribov) opies.In order to analyse this issue it has turned out useful to desribe the gauge�xing not simply by a ondition � = 0. Instead, in order to study the globalaspets of the problem, one formulates the gauge �xing proedure in terms ofa variational priniple [4, 5, 6, 7, 8℄. To this end one tries to de�ne an `ation'funtional F in suh a way that the assoiated `lassial trajetories' are nowhereparallel to the orbits so that their union de�nes a gauge �xing hypersurfae.By this onstrution one ompletely suppresses utuations in gauge diretionswhih in the un�xed formulation do not ost energy (or ation) and thus makethe path integral ill{de�ned. Of ourse, by onservation of diÆulties, one annotavoid the Gribov problem this way.The variational approah to gauge �xing has mainly been studied for bak-ground type gauges like the Coulomb gauge, where one an indeed onstrut afuntional F [A;U ℄ with the following generi properties: the ritial points ofF along the orbits generated by U are the potentials A satisfying the Coulombgauge ondition, �iAi = 0. The Hessian of F at these points is the Faddeev-Popov operator FP. The Gribov region 
0 is de�ned as the set of transversegauge �elds for whih det FP is positive. This is the set of relative minima of F .Its boundary �
0 is the Gribov horizon, where, aordingly, det FP = 0 beausethe lowest eigenvalue of FP hanges sign. It has been shown that 
0 � A is on-vex [7, 9, 10℄. This is basially due to the linearity of FP in A [11℄. Contrary toearly expetations the Gribov region still ontains Gribov opies [7, 12, 13℄. Onlyif one restrits to the set � of absolute minima and performs ertain boundaryidenti�ations, one ends up with the physial on�guration spae (also alled the2



fundamental modular domain) [11℄.As stated above, the appearane of horizon on�gurations A 2 �
0 impliesthat the gauge is not uniquely �xed; in other words, there are gauge �xing de-generaies. Somewhat symbolially, this an be shown as follows. Let A 2 �have the in�nitesimal gauge variation ÆA = D[A℄ Æ�, D denoting the ovariantderivative. To hek whether the gauge transform A+ ÆA also satis�es the gaugeondition, one alulates�[A + ÆA℄ = �[A℄ + Æ�ÆA ÆAÆ� Æ� � N [A℄ �D[A℄ Æ� : (1.1)Here we have used that �[A℄ = 0 and de�ned the normal N to the gauge �xinghypersurfae �. Now, if A+ ÆA is also in � we see that the FP operator,FP[A℄ � N [A℄ �D[A℄ ; (1.2)must have a zero mode given by the in�nitesimal gauge transformation Æ�. Inthis ase, there are two gauge equivalent �elds A and A + ÆA on � and A is ahorizon on�guration. From (1.2) one infers that there are two generi reasons forthis to happen. First, Æ� an be a zero mode already of D[A℄. As the latter anbe viewed as the `veloity' of a �titious motion along the orbits, its vanishing(on Æ�) orresponds to a �xed point under the ation of the gauge group. Inthis ase, the on�guration A is alled reduible [3, 14℄. Obviously, these arealways horizon on�gurations. One might speulate whether there is a gauge�xing suh that reduible on�gurations are the only horizon on�gurations [15℄.The seond possibility for det FP to vanish is that `orbit veloity' D and normalN are orthogonal, whih means that a partiular orbit is tangent to �. This iswhat usually happens for bakground type gauges like the Coulomb gauge whereN is onstant, i.e. independent of A.In general, it is very hard to expliitly �nd horizon on�gurations. For thisreason, one has to onentrate on rather simple and/or symmetri gauge poten-tials. Again, the ase best studied is the Coulomb gauge. It is known that thereare Gribov opies of the lassial vauum A = 0 [11, 16, 17℄. An even simpler ex-ample of Gribov opies is provided by onstant Abelian gauge �elds on the torus(the torons) [11, 18℄. Con�gurations with a radial symmetry have been disussedin the original work of Gribov [2℄. An expliit example with axial symmetry hasbeen given by Henyey [11, 19℄.On the lattie, the detetion of Gribov opies has been reported for the �rsttime in [20℄. It turns out that some of these opies are lattie artifats while otherssurvive in the ontinuum limit [21℄. In a sense, therefore, the Gribov problembeomes even more pronouned upon gauge �xing on the lattie. This is ofpartiular relevane for the lattie studies of the dual superondutor hypothesisof on�nement [22, 23, 24℄, where one mainly uses (a lattie version [25℄) of`t Hooft's maximally Abelian gauge (MAG) [6℄. In order to extrat physial3



results within this approah one learly has to ontrol the inuene of Gribovopies. Finding the ritial points of the lattie gauge �xing funtional is similarto a spin glass problem due to the high degree of degeneray. The diÆulties innumerially determining the absolute maximum1 of the lattie funtional lead toan inauray in observables of the order of 10 % [26, 27℄.The Gribov problem for the MAG so far has not been disussed in the on-tinuum. The purpose of this paper is to (at least partly) �ll this gap. The MAGand its de�ning funtional will be reviewed in Setion 2. The Hessian of thisfuntional is the FP operator whih is alulated for gauge group SU(N). InSetion 3 we speialize to SU(2) and give general arguments showing the exis-tene of a Gribov horizon. To provide some intuition, Setion 4 introdues asimple toy model for whih the FP operator and determinant an be alulatedexatly. The presene of Gribov opies is shown expliitly. Finally, in Setion 5,we return to �eld theory and alulate the FP operator in the bakground of asingle instanton (in the singular gauge). Again, we �nd an analyti expressionfor a normalizable zero mode whih shows that the single instanton is a horizonon�guration in the MAG. Some tehnial issues are disussed in Appendies Ato D.2 The Maximally Abelian GaugeAs explained in Appendix A, we deompose the gauge potential A into diagonal(Ak 2 Hk) and o�-diagonal (A? 2 H?) omponents, A = Ak +A?. The MAG isthen de�ned by minimizing the following funtionalF [A;U ℄ � k(UA)?k2 : (2.1)F is thus a funtional of both the gauge �eld A and the gauge transformationU 2 SU(N). Via the parametrizationU(�) = exp(�i�) = exp(�i�aT a) ; � 2 su(N) ; (2.2)F equivalently an be viewed as depending on the argument � of U . The ationof U on A is UA� = U�1A�U + iU�1��U : (2.3)With F of (2.1) we are thus minimizing the `harged' omponent A? along itsorbit, whih, roughly speaking, amounts to maximizing the Abelian or `neutral'omponent Ak. Hene the name `maximally Abelian gauge'.The Yang-Mills norm in (2.1) is the same as in the Yang-Mills ation andindued by the salar produt (A.6),kAk2 � hA;Ai � Z ddx trA2 : (2.4)1The maximization of the lattie funtional orresponds to a minimization of the ontinuumfuntional. 4



Note that our onventions are suh that this norm is positive for hermitian gauge�elds A with values in su(N). The norm (2.4) an be viewed as the distane(squared) between A and the zero on�guration A = 0. As the spae A of gaugepotentials is aÆne, the norm is gauge invariant in the following sense,kA� Bk = kUA� UBk (2.5)If the on�gurationB is kept �xed, however, the norm eases to be gauge invariantand expliitly depends on U or �. The same is thus true for F whih aordinglyhanges along the orbit of A unless there is some (residual) invariane. For thefuntional (2.1) suh an invariane an indeed be found. Let V = exp(�i�k) bean Abelian gauge transformation and onsiderF [A;V ℄ = k(VA)?k2 = k(V �1AkV + V �1A?V + iV �1dV )?k2 : (2.6)As V is Abelian, the �rst and last terms on the r.h.s. of (2.6) vanish due to theprojetion on H?, and we are left withF [A;V ℄ = k(V �1A?V )?k2 : (2.7)At this point it is ruial to note that V �1A?V is in H?,tr(HiV �1A?V ) = tr(V HiV �1A?) = tr(HiA?) = 0 : (2.8)Therefore, we an write for (2.6),F [A;V ℄ = kV �1A?V k2 = kA?k2 = F [A; 1℄ : (2.9)This immediately leads to the following Abelian invariane of F ,F [A;V U ℄ = F [UA;V ℄ = F [UA; 1℄ = F [A;U ℄ : (2.10)Note that our notation is suh that U ats prior to V , i.e.V UA = (UV )�1AUV + i(UV )�1d(UV ) : (2.11)Roughly speaking, the Abelian invariane implies that F an be thought of assome kind of `mexian hat' with the residual symmetry orresponding to (Abeliangauge) rotations around its symmetry axis. Aordingly, the Hessian of F willhave trivial zero modes asssoiated with the onstant diretions of F .We are interested in the behaviour of F [A;U ℄ around the point U = 1, i.e. � =0, on the orbit of A. To this end we Taylor expand F asF [A;U ℄ � F [A;�℄ = F [A; 0℄ + hF 0[A; 0℄; �i+ 12h�; F 00[A; 0℄�i+O(�3) (2.12)5



In order to do so we need the gauge transform UA as a power series in �. Theformer an easily be found from (B.1) and (B.2) with the resultUA� = A� + exp(i ad�)� 1i ad� (D��)= A� +D��+ i2[�;D��℄ + i23!h�; [�;D��℄i+ : : : : (2.13)Not surprisingly, the ovariant derivative D� = �� � i ad(A�) with ad(A)B �[A;B℄ appears at this stage. Inserting (2.13) into (2.1) we obtainF [A;�℄ = kA?� k2+2 hA?� ; (D��)?i+ h(D��)?; (D��)?i+ i hA?� ; [�;D��℄?i+ : : : :(2.14)In the following we are going to evaluate this expression term by term. Thisrequires some preparations. We will need the ommutator identity,hA; [B;C℄i = hB; [C;A℄i = hC; [A;B℄i ; (2.15)whih follows straightforwardly from the de�nition of the salar produt. Thelatter equation shows that both the operator ad(A) and the ovariant derivativeD[A℄ are anti-hermitean,h�; ad(A) i = �h ad(A)�;  i ; (2.16)h�;D[A℄ i = �hD[A℄�;  i : (2.17)The last two identities allow for an evaluation of the �rst derivative F 0,hA?� ; (D��)?i = hA?� ; D��i = �hDk�A?� ; �i = �hDk�A?� ; �?i ; (2.18)with Dk� � �� � i adAk�. We thus have, to �rst order in �,F [A;�℄ = kA?� k2 � 2 hDk�A?� ; �?i+O(�2) : (2.19)Note that to this order, F does not depend on the Cartan omponent �k. Weimmediately read o� the ritial points de�ning the MAG,Dk�A?� � D�A?� = 0 : (2.20)The seond derivative requires onsiderably more e�orts. We relegate the expliitalulations to Appendix C, where we obtain for the Taylor expansion of F [A;�℄,F [A;�℄ = kA?� k2 � 2hDk�A?� ; �?i+ ih�?; ad(D�A?� )�ki� h�?; hDk�Dk� + ad2A?� � i( adA?� )QD� � i ad(Dk�A?� )i�?i+ O(�3) : (2.21)6



Here we have de�ned a projetion Q onto the omplement H? of the Cartansubalgebra suh that Q� = �?. The term in (2.21) depending on �k may seemsomewhat strange but is atually neessary to guarantee the Abelian invariane(2.10). It vanishes on the gauge �xing hypersurfae � de�ned by (2.20).From (2.21) we an easily read o� the Faddeev-Popov operator whih is theHessian of F evaluated on � (i.e. at the ritial points),FP = �Q �Dk�Dk� + ad2A?� � i( adA?� )QD��Q : (2.22)In e�et we have performed a saddle point approximation to the funtionalF [A;�℄. The `equation of motion' is the gauge �xing ondition, and the u-tuation operator is the FP operator. In this approximation the funtional on �reads F [A;�℄ = kA?� k2 + h�;FP�i+O(�3) : (2.23)As stated in the introdution, it is in general rather diÆult (in a ontinuumformulation) to �nd expliit examples of Gribov opies. The MAG is no ex-eption from this rule. The nontrivial task is to �nd normalizable zero modesof FP given by (2.22) whih is a ompliated partial di�erential operator. Weare, however, enouraged by lattie alulations, in whih suh opies have beendeteted numerially, for the �rst time in [28℄ and with re�ned tehniques in[26, 27℄. One should keep in mind, though, that some (if not all) of these opiesan be lattie artifats whih do not survive in the ontinuum limit. To studythe possible appearane of Gribov opies in the ontinuum we have to performseveral simpli�ations. The �rst one will be to onsider the ase of gauge groupSU(2).3 The FP Operator for SU(2) | General Con-siderationsFor SU(2), the gauge �xing ondition (2.20) of the MAG an be rewritten interms of the gauge �eld omponents A3� 2 Hk and A�� 2 H?,(�� � iA3�)A�� = 0 ; A�� � A1� � iA2� : (3.1)The fat that these are only two requirements already implies (by ounting ofdegrees of freedom) that there remains a residual gauge freedom orrespondingto a one-dimensional subgroup whih an only be U(1). Super�ially, the gauge�xing looks like a bakground gauge whih would atually be true if the neutralomponent A3� were independent of the harged one, A?� . As these, however, aretwo omponents of one and the same on�guration they are not independent,and the gauge �xing ondition is quadrati, i.e. nonlinear in A�. This makeslife somewhat ompliated (although it does not spoil the renormalizability of7



the gauge [29℄). A BRST approah, for example, neessitates the introdutionof four-ghost terms. In a path integral formulation, these ghost interations`regularize' the usual bilinear FP ghost term in the presene of zero modes [30℄.The FP operator for SU(2) simpli�es onsiderably as the last term in (2.22)vanishes. One is thus left with the following sum of two operators,FP = �Q�Dk�Dk� + ad2(A?� )�Q : (3.2)Using the notation (A.8), FP an be viewed as a 3 � 3 matrix in olor spae. Theoperator Q projets onto the two diretions perpendiular to the z-axis so thatthe third row and olumn of FP vanish identially. The assoiated trivial zeromode orresponds to the residual U(1) gauge freedom whih remains un�xed bythe MAG. Expliitly, one has for the nonvanishing entries of FP,(Dk�Dk�)�a�b = Æ�a�b(2� A3�A3�)� ��a�b(��A3� + 2A3���) ; (3.3)( ad2(A?� ))�a�b = Æ�a�bA��A�� � A�a�A�b� : (3.4)Summing these two terms leads to the representation of FP given in equation(12) of [31℄2.Being (the negative of) a Laplaian, the operator �Dk�Dk� is nonnegative. Thesame is true for ad(A?� ) ad(A?� ) as will be shown in what follows. We de�ne thehermitean matrix C via [A?� ; �?℄ � iC ; (3.5)and alulate, using (2.16),h�;Q ad(A?� ) ad(A?� )Q�i = �h adA?��?; adA?��?i (3.6)= �hiC; iCi = hC;Ci � 0 : (3.7)One an as well use the representations (3.3), (3.4) and the Cauhy{Shwarzinequality to end up with the same result. The SU(2) FP operator from (3.2) isthus the di�erene of two positive semide�nite operators whih we abbreviate forthe time being as FP = A� B ; A;B � 0 : (3.8)The inequality denotes the fat that A and B have nonnegative spetrum. Theidentity (3.8) already suggests that if B is `suÆiently large', FP will develop avanishing eigenvalue. Let us make this statement slightly more rigorous. To thisend we modify an argument used in [14, 32℄ for bakground type gauges.First of all we note that together with the on�guration (Ak; A?) also thesaled on�guration (Ak; �A?), with � some (positive real) parameter, will be inthe MAG. The assoiated FP operator isFP[Ak; �A?℄ � FP(�) = A� �2B : (3.9)2Note, however, that in this referene the gauge potentials are de�ned as being anti-hermitean. 8
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λhFigure 1: Qualitative behavior of the lowest eigenvalue of FP as a funtion of the`ow parameter' �. The parameter value �h orresponds to a horizon on�gura-tion.Let us denote the lowest eigenvalue and the assoiated eigenfuntion of FP(�) byE0(�) and �0(�), respetively,FP(�)�0(�) = E0(�)�0(�) : (3.10)From (3.8) one must have E0(0) � 0. If we turn on �, a straightforward applia-tion of the Hellmann{Feynman theorem leads to���E0(�) = �2� h�0(�); B �0(�)i � 0 ; (3.11)whene the funtion E0(�) has negative slope. In addition, it has to be onave[33℄3 so that, for � suÆiently large, there will be a zero-mode at some value,say �h (see Fig. 1). In a way we have thus determined a `path' within the MAG�xing hypersurfae that leads us from the interior of the Gribov region (� = 0)to its boundary (� = �h).As a result we an state that generially there have to be Gribov opies withinthe MAG if the non-diagonal omponents A? of the gauge �elds beome suÆ-iently large.4 A Toy ModelIn order to have an illustration of the somewhat abstrat notions of the pre-eding setions we will analyse an example with a �nite number of degrees of3It is exatly for this reason that the seond order perturbation theory orretion to anygroundstate is always negative. 9
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Figure 2: An isospae (gauge) rotation (by an angle �) in the toy model, trans-forming the on�guration (x1; x2)! (x01; x02). The lengths of the vetors and theangle � inbetween them are invariant.freedom [34℄. To this end we employ a Hamiltonian formulation in d = 2 + 1and onsider only gauge potentials A� whih are spatially onstant. RenamingAai = xai , i = 1; 2, a = 1; 2; 3, the Lagrangian beomesL = 12(Dab0 xbi)2 � 12( _xai � �abA0xbi)2 : (4.1)One way of arriving at this Lagrangian is by gauging a free partile LagrangianL0 = _xai _xai =2 via minimal substitution, i.e. by replaing the ordinary time deriva-tive �0 with the ovariant derivative Dab0 . To keep things as simple as possible,we have not introdued any (Yang-Mills type) interation; we are anyhow onlyinterested in the kinematis of the problem.De�ning the anonial momenta pai = Dab0 xbi , the Lagrangian (4.1) an bereast in �rst order form L = pai _xai � 12pai pai + Aa0Ga ; (4.2)where we have introdued the operator Ga leading to Gauss's lawGa � �abxbipi � Dabi pbi = 0 : (4.3)Obviously, Ga is the total angular momentum of two point partiles in R3 (=olor isospae) with position vetors x1 and x2. Gauge transformations are thusSO(3) rotations of these vetors whih do not hange their relative orientation(i.e. the angle � inbetween them). This is illustrated in Fig. 2.10



As usual we will work in the Weyl gauge, A0 = 0, so that Gauss's law has to beimposed `by hand', and, after quantization, holds upon ating on physial states.One the Weyl gauge has been hosen, there still is the freedom of performingtime independent gauge transformations. This will be (partially) �xed using theMAG. For the ase at hand, there are several equivalent ways of formulating thelatter.To avoid writing too many indies we denote x1 � x = (x; y; z), x2 � X =(X; Y; Z). An arbitrary vetor A will be deomposed aording toAk � Azez ; (4.4)A? � Axex + Ayey ; (4.5)whih represents the deomposition into Cartan (= z) omponent and its om-plement. The MAG ondition then reads expliitly�a � Dabi (xik)xi? = �abxbikxi? = 0 ; (4.6)or, in omponents, �1 = �yz � Y Z = 0 ;�2 = xz +XZ = 0 ; (4.7)�3 = 0 :The last ondition is just an empty tautology so that there are in fat onlytwo gauge onditions4. Of ourse, this just orresponds to the fat that thegauge rotations generated by G3 (the rotations around the z{axis) remain un�xed(f. the remark after (3.1)).The MAG onditions (4.7) an be easily visualized. The projetions x? andX? have to be ollinear with their magnitudes being related throughjzj x? = jZjX? : (4.8)The MAG is thus obtained by rotating the on�guration (x;X) in suh a waythat both vetors are as lose to the z-axis as possible. This is ahieved as shownin Fig. 3. x and X are the diagonals of two retangles with sides jzj, x? andjZj, X?, respetively. If the areas a and A of the retangles oinide, a = A,the on�guration is in the MAG. Algebraially, the notion of being `lose to thez{axis' is measured by the funtionF (x;X) � x2? +X2? : (4.9)One an easily show that the onditions (4.6) or (4.7) minimize F and thus makethe `nondiagonal' omponents of x and X as small as possible. We mention4In Dira's terminology [35℄, �3 is strongly zero and thus does not ontribute in the alu-lation of any Poisson braket. 11
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the Gribov horizon and reet some non-trivial residual gauge freedom di�erentfrom the U(1) above. A partiular (in some sense trivial) lass of horizon on�g-urations onsists in the reduible on�gurations as disussed in the introdution.These have a higher symmetry than generi on�gurations (a nontrivial stabi-lizer or isotropy group). In other words, they are �xed points under the ationof (a subgroup of) the gauge group. Tehnially, they show up by induing zeromodes of the Laplaian �ab = Dai Dbi (see Appendix D). Within our example,the reduible on�gurations are readily identi�ed [34, 36℄ by simple symmetryonsiderations. The origin is invariant under the whole ation of SO(3) whileon�gurations with x and X ollinear are invariant under rotations around theirommon diretion whih learly orresponds to a U(1). This is niely reetedin the spetrum of FP. At the origin, both E� vanish, while a ollinear on�g-uration an always be rotated in the z{axis so that its stabilizer oinides withthe standard residual U(1) orresponding to E3 = 0. This U(1) stabilizer is thus`hidden' in the residual U(1). Fixing the latter by demanding e.g. x = X = 0,does, however, not a�et on�gurations ollinear along the z{axis so that thesewill indue zero modes of FP even after residual gauge �xing [34℄.There is a remaining possibility for a vanishing eigenvalue. While E+ is alwayspositive, E� vanishes if z2 + Z2 = x2? + X2?. This happens for on�gurationswhere x andX are of the same length and orthogonal to eah other. Elementarytrigonometry implies that in this ase the two areas a and A are always the same,irrespetive of the loation of the on�guration relative to the z{axis. Thus, thereis an additional residual U(1) gauge freedom for suh exeptional on�gurations.This an be niely illustrated in terms of a `spetral ow' as a funtion of x2?+X2?(see Fig. 4). We thus have found an expliit realization of the general results ofSetion 3, in partiular of Fig. 1.5 The FP Operator in an Instanton BakgroundThe natural question arising at this point is the following: is there a way ofextending the results of the toy model to the realisti �eld theory ase? Theanswer given in this setion will be aÆrmative.Our motivation stems from the observation made by Brower et al. [37℄ thatthe single `t Hooft instanton both in the singular and regular gauge satis�es theMAG ondition (2.20). For the instanton in the singular gauge5 (or `singularinstanton', for short) given byAsing� (x) = 2 ��a�� �2x2 x�x2 + �2 �a=2 ; (5.1)with � denoting the instanton size, the MAG �xing funtional F is �nite, while5We use the onventions of [38℄. 13
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Figure 4: Behavior of the eigenvalues of FP in the toy model as a funtion of themagnitude x2? +X2? of the `nondiagonal' omponents. A zero mode arises whenx2? +X2? = z2 + Z2.for the instanton in the regular gauge,Areg� (x) = 2 �a�� x�x2 + �2 �a=2 ; (5.2)it diverges. The two on�gurations Asing� and Areg� are related through the gaugetransformation g(x) = x̂4 + i x̂a�a ; (5.3)where x̂� = x�=r, r = (x2)1=2 denoting the modulus of the Eulidean position x.If we adopt the point of view that we have to take the minima of F to de�ne theGribov region 
0 of the MAG then Asing� is loated in 
0 while Areg� is not. Thisis orroborated by the quoted work of Brower et al. [37℄ whih, when translatedinto our language, amounts to the following. One numerially onstruts a `path'(R) 2 � onneting Asing� with Areg� . Along this path6 (beginning at the singularinstanton) the MAG funtional F is monotonially rising. The on�gurationsA�(R) along the path are determined by applying a (singular) gauge transforma-tion 
 whih takes the singular instanton to A�(R), i.e. A�(R) = 
Asing� . Hene(R) is a path both within � and the single instanton orbit. Aordingly, theremust be an in�nitesimal gauge transformation of the singular instanton that doesnot leave � and thus must be a zero mode of FP [Asing℄. In what follows we willtry to expliitly determine this zero mode.The �rst step of this program onsists in the alulation of the FP operator inthe bakground of a singular instanton. Plugging (5.1) into (3.3) and (3.4) one6In [37℄ the parameter R is the radius of a monopole loop assoiated with the on�gurationA�(R) loated on  somewhere inbetween Asing� = A�(R = 0) and Areg� = A�(R =1).14



obtains the resultFP�a�b = �Æ�a�b2 + 2 ��a�b a(r)(x2�1 � x1�2 + x3�4 � x4�3) : (5.4)We have disarded the vanishing third row and olumn (resulting from the ationof Q) and introdued the (singular) instanton pro�le funtion,a(r) = 2 �2=r2r2 + �2 = 2� 1r2 � 1r2 + �2� : (5.5)We are looking for normalizable zero modes � of the FP operator,FP� = 0 ; h�; �i <1 ; (5.6)where �(x) now is a two-omponent vetor (�eld) living in the omplement ofthe Cartan subalgebra. Solving the equation (5.6) for the zero mode is basiallyan exerise in group theory as will beome lear in a moment. If we de�ne thegenerators of four-dimensional Eulidean rotations asL�� = �i(x��� � x���) ; �; � = 1; : : : ; 4 ; (5.7)the FP operator an be written in 2 � 2 matrix notation asFP = � �2 �2i a(r)(L12 � L34)2i a(r)(L12 � L34) �2 � (5.8)It is straightforward to hek that the L�� indeed satisfy the Lie algebra of SO(4).In analogy with the Lorentz group one introdues the angular momentum and`boost' generators Li � 12�ijkLjk (5.9)Ki � Li4 ; (5.10)and their linear ombinations,Mi � 12(Li �Ki) = � i2 ��i�� x��� ; (5.11)Ni � 12(Li +Ki) = � i2 �i�� x��� : (5.12)These an be viewed as the self-dual and anti-self-dual parts of L�� , if `duality'is understood as the exhange of L and K. The operators Mi and Ni generatetwo independent SU(2) subgroups with Casimirs M2 and N2 having eigenvaluesM(M + 1) and N(N + 1), respetively [39℄. It is important to note that M andN will in general be half-integer,M;N 2 f0; 1=2; 1; : : :g : (5.13)15



This fat is well known from the algebrai treatment of the hydrogen atom whihhas a hidden dynamial O(4) symmetry (see e.g. [40℄). In addition, as FP is a2�2 matrix, it an be expanded in terms of Pauli matries, so that altogether we�nd the rather ompat result,FP = �21 + 4a(r)M3 �2 : (5.14)Plugging this into (5.6) results in a four-dimensional Shr�odinger equation withspin having a high degree of symmetry. A omplete set of ommuting observablesis given by the Casimirs M2 and N2, their projetions M3 and N3 (with eigen-values m and n) and the Pauli matrix �2 (eigenvalues s = �1). Replaing �2 byits eigenvalue and rewriting the Laplaian in terms of the radial oordinate r weare left with FP(s) � ��2r � 3r�r + 2r2 (M2 +N2) + 4a(r)M3 s (5.15)This is indeed a 4d radially symmetri Hamiltonian. Upon loser inspetion, theCasimir term turns out to beome even simpler. Using the representations (5.7),(5.9) and (5.10) one �nds thatN2 �M2 = L �K = 0 ; (5.16)so that FP �nally beomesFP(s) = ��2r � 3r�r + 4r2M2 + 4a(r)M3 s : (5.17)The eigenfuntions of FP will therefore depend on the quantum numbers M 2f0; 1=2; 1; : : :g, m;n 2 f�M;�M + 1; : : : ;Mg and s = �1. Chosing the oordi-nates x = r (os � os'12; os � sin'12; sin � os'34; sin � sin'34) ; (5.18)with 0 � � � �=2, 0 � '12; '34 � 2�, the eigenfuntions an be written asfollows, � = fMm(r) hMmn(�) ymn('12) zmn('34)�s : (5.19)The �s are the eigenspinors of �2,�� = 1p2 � 1�i � : (5.20)The Shr�odinger equation fatorizes aordingly. Introduing the dimensionlessvariable R = r=� and de�ning a funtion g(R) viaf(R) � g(R)=R3=2 ; (5.21)16
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Expliitly, one �nds ymn('12) = ei(m+n)'12 ; (5.31)zmn('34) = e�i(m�n)'34 : (5.32)The funtion hMmn(�) satis�es the di�erential equation� 1sin 2� ��� sin 2� ��� + 4M(M + 1)� (m+ n)2os2 � � (m� n)2sin2 � �hMmn(�) = 0 :(5.33)For M = 1/2, we an irumvent solving this equation by onsidering only thetwo extremal states in a multiplet with m = �M , whih obeyM�jM;�M;ni = 0 : (5.34)The assoiated di�erential equation is muh simpler than (5.33) and straightfor-wardly solved in terms of the funtionshM;�M;n(�) = osM�n � sinM+n � ;hM;M;n(�) = sinM�n � osM+n � : (5.35)Diret appliation to m = �1=2 �nally yields the four degenerate zero modes forM = 1/2 (using the notation �mns),��1=2;�1=2;+(x) = f(r) os � e�i'12�+ � �1 ;��1=2;1=2;+(x) = f(r) sin � ei'34�+ � �4 ;�1=2;1=2;�(x) = f(r) os � ei'12�� � �2 ;�1=2;�1=2;�(x) = f(r) sin � e�i'34�� � �3 ; (5.36)where  denotes a normalization onstant whih will be determined in a moment.To this end we rewrite the measured4x = r3dr os � sin � d� d'12 d'34 ; (5.37)and alulate the integral (� denoting any of the basi zero modes)Z d4x ��(x) � �(x) = 2�4 �26 �1 + �23 � != 1 : (5.38)This determines the normalization . Any zero mode � of FP satisfying (5.6)must be a linear ombination of the four basis modes (5.36). For the followingonsiderations it is onvenient to introdue the real basis,	1 � 12i(�3 � �4) = p2 f(r)r h�x4�x3 i ;	2 � 12(�3 + �4) = p2 f(r)r h x3�x4 i ;	3 � 12i(�1 � �2) = p2 f(r)r h�x2x1 i ;	4 � 12(�1 + �2) = p2 f(r)r hx1x2 i ; (5.39)
20



whih, upon using the properties of `t Hooft's � symbols [38℄ an be ompatlywritten as 	�a�(x) = p2 f(r) ���a�� x̂� : (5.40)A general linear ombination thus assumes the form��a(x) � p2 n�	�a� = n� ���a�� x̂� f(r) � m�af(r)=r ; (5.41)where n� is a onstant four vetor. The latter is partiularly suited for obtainingthe �nite transformation,
 = exp i��a��a=2 = 1 os'=2 + iN �a��a sin'=2 ; (5.42)with ' = (��a��a)1=2 and N �a = ��a='. Using (5.41) one �nds the expliit represen-tation ' = f(r)r pm�am�a ; (5.43)N �a = m�apm�am�a : (5.44)Applying the gauge transformation 
 from (5.42) to the singular instanton leadsto a on�guration that is no longer in the MAG. This is at variane with thesolution 
R found by Brower et al. [37℄ whih yields a monopole on�gurationwithin the MAG. To illustrate this di�erene we plot the modulus ' (denoted �in [37℄) for the hoie � = 	4 or, orrespondingly, n = (0; 0; 0; 1), m = (x1; x2)T .The result is shown in Fig. 8 whih learly di�ers from the analogous Fig. 2 in[37℄. The presene of a zero mode as given by (5.41) shows that the instanton inthe singular gauge is loated on the Gribov horizon of the MAG. For (ovariant)bakground type gauges, an analogous result has been obtained in [41℄.6 DisussionAmong the di�erent Abelian gauges used for the lattie study of the dual super-ondutor hypothesis, the MAG is the one that has been analysed in greatestdetail. In this paper we have tried to supplement these ahievements by analytiinvestigations. As the gauge �xing is nonlinear, this requires some e�ort. Wehave alulated the FP operator for general gauge group SU(N). The result isfairly ompliated; onsiderable simpli�ations only seem to arise for gauge groupSU(2). For this partiular ase we were able to show by quite general reasoningthat there must be Gribov opies. This �nding was on�rmed both for a simpletoy model and the full �eld theory. In the latter ase it turns out that the singularinstanton is a horizon on�guration in the MAG. The assoiated zero modes ofthe FP operator have expliitly been onstruted.21
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in the singular gauge de�nes the global minimum of F along the single instantonorbit. In other words, the MAG funtional does not support monopoles assoi-ated with single instantons as these on�gurations give rise to a larger value ofF . This is atually onsistent with lattie results. In [28, 26, 27℄ it was observedthat the number of monopoles dereases the better the MAG is �xed, i.e. theloser one approahes the absolute maximum of the lattie MAG funtional. Dueto monopole dominane, the string tension also beomes smaller. This e�etmight well be due to the suppression of monopole loops assoiated with singleinstantons.In favor of the instanton{monopole orrelation, Brower et al. argue that apossible zero mode of FP an be interpreted as a kinematial instability of thesingular instanton against monopole formation. In the limit of small monopoleloops, R � �, their solution (eq. (31) in [37℄) indeed is a zero mode of FP. Itgoes like sin 2� � sin � os �, and thus, upon omparing with (5.35), is seen toorrespond to M = 1. Therefore, from our general analysis in the preedingsetion, it is not normalizable and thus should be disarded from the stabilityanalysis. It is probably not too surprising that singular gauge transformationslike the ones found in [37℄ lead to zero modes with diverging norm.The physial interpretation of the normalizable M = 1=2 zero mode given in(5.41) is not ompletely lear. We have heked that it is not due to any of theknown spae-time symmetries of the instanton. Contrary to our expetations, italso has nothing to do with the solution of Brower et al. In partiular, it doesnot indue monopole singularities. Furthermore, as stated in the last setion,the �nite transformation (5.42) even leads out of the MAG. All this on�rms theresult that in the MAG single instantons are not orrelated with monopoles. Oneis thus left with a possible orrelation between multi -instanton on�gurationsand monopoles. Numerially, this has been observed [48, 49, 50, 51, 37, 52℄.In partiular, the instanton-anti-instanton (IA) system seems to be physiallyinteresting. In this ase one �nds that both I and A are surrounded by a singlemonopole loop if the IA distane is large. Below a ritial distane, however,the two loops merge into a single one [37℄ whih an be viewed as a `kinematialpreursor' to monopole perolation. Of ourse, an analyti treatment of multi-instanton systems is quite involved, but maybe not hopeless. In this respetlet us just mention Rossi's old onstrution of the BPS monopole in terms of anin�nite number of instantons aligned along the time axis [65℄. We have performedsome preliminary investigations of the IA system whih show that the simple sumansatz, AIA = AI + AA is not in the MAG. The ansatz suggested by Yung [66℄,however, does ful�ll the di�erential MAG onditions (3.1), though the MAGfuntional probably diverges. Further work in this diretion is surely neessary.
23
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B Group-Theoretial IdentitiesIn this appendix we prove the two useful identities,U�1A�U = exp(i ad�)A� ; (B.1)iU�1��U = exp(i ad�)� 1i ad� ��� ; (B.2)whih hold for an arbitrary gauge transformation U = exp(�i�). In the above,we have denoted ad(A)B � [A;B℄.(B.1) is simply the de�nition of the adjoint representation of a Lie groupexpressed in terms of the adjoint representation of the Lie algebra [68℄,exp(i�)X exp(�i�) � Ad� exp(i�)�X = exp(i ad�)X ; (B.3)where X is an arbitrary Lie algebra element. Equation (B.2) is obtained fromthe identity i exp(is�)�� exp(�is�) = exp(is ad�)� 1i ad� ��� ; (B.4)for s = 1. To show (B.4) we �rst note that it is obviously true for s = 0.Di�erentiating with respet to s, we �nd��s l.h.s. = exp(is�)(���) exp(�is�) ;��sr.h.s. = exp(is ad�)��� = exp(is�)(���) exp(�is�) ; (B.5)where in the last step we have used (B.3). Upon inspetion we note that bothsides of (B.4) obey the same �rst order di�erential equation in s and initialondition at s = 0. Thus (B.4) is true for all s.C The Seond Derivative of the MAG Fun-tionalIn this appendix we alulate the seond derivative of the MAG funtional givenby the last two terms in (2.14). First we evaluate (D��)?,(D��)? = ���? � i[Ak�; �?℄� i[A?� ; �?℄? � i[A?� ; �k℄= (D��?)? � i[A?� ; �k℄ : (C.1)This yields for the square term in (2.14),k(D��)?k2 = k(D��?)? � i [A?� ; �k℄k2= hD��?; (D��?)?i � 2i hD��?; [A?� ; �k℄i � h[A?� ; �k℄; [A?� ; �k℄i= �h�?; D�QD��?i+ 2i h�?; [A?� ; D��k℄i+ h�k; [A?� ; [A?� ; �k℄℄i+ 2i h�?; [D�A?� ; �k℄i : (C.2)25



In the last equality, we have made use of the `Leibniz rule',D�[B;C℄ = [D�B;C℄ + [B;D�C℄ ; (C.3)and de�ned a projetion Q onto the Cartan omplement, QA = A?. Note thatthe last term in (C.2) vanishes at the ritial points (2.20). The seond term oforder �2 in (2.14) isihA?� ; [�;D��℄?i = �ih�; [A?� ; D��℄i= �ih�?; [A?� ; D��?℄i � ih�?; [A?� ; D��k℄i�ih�k; [A?� ; D��?℄i � ih�k; [A?� ; D��k℄i : (C.4)The third term an be reshu�ed and evaluated with the rule (C.3) yielding�ih�k; [A?� ; D��?℄i = �ih�?; [D�A?� ; �k℄i � ih�?; [A?� ; D��k℄i : (C.5)Plugging this into (C.4) and adding (C.2) we see that the terms whih mix �?and D��k anel. The O(�2) term in F thus beomesF (2)[A;�℄ � �h�?; D�QD��?i � i h�?; [A?� ; D��?℄i+ ih�?; [D�A?� ; �k℄i+h�k; [A?� ; [A?� ; �k℄℄i � i h�k; [A?� ; D��k℄i : (C.6)The two terms bilinear in �k add up to zero aording to�ih�k; [A?� ; (D� + i adA?� )(�k)℄i = �ih�k; [A?� ; Dk��k℄i = �ih�k; [A?� ; ���k℄i = 0 ;(C.7)where the last identity holds beause the ommutator is in the Cartan omple-ment H?. Expression (C.6) thus simpli�es toF (2)[A;�℄ = �h�?; D�QD��? � i[A?� ; D��?℄i+ ih�?; [D�A?� ; �k℄i� F (2)[A;�?℄ + ih�?; [D�A?� ; �k℄i : (C.8)Introduing P = 1� Q, the terms quadrati in �? assume the following form,F (2)[A;�?℄ � �h�?; (D�Q+ i adA?� )(D��?)i= �h�?; (D�Q+ i adA?� )(P+ Q)(D��?)i= �h�?; Dk�QD��? + i adA?� PD��?i : (C.9)We thus need the projetionsPD��? = �iP[A?� ; �?℄ ; (C.10)QD��? = Dk��? � iQ[A?� ; �?℄ : (C.11)26



Using this and the identity h�?;QDk�Ai = h�?; Dk�Ai, (C.9) beomesF (2)[A;�?℄ == �h�?; Dk�Dk��? � iDk�Q[A?� ; �?℄ + [A?� ;P[A?� ; �?℄℄i= �h�?; Dk�Dk��? � i[Dk�A?� ; �?℄� i[A?� ; Dk��? + iP[A?� ; �?℄℄i= �h�?; Dk�Dk��? � i[Dk�A?� ; �?℄� i[A?� ; Dk��? � iQ[A?� ; �?℄ + i[A?� ; �?℄℄i= �h�?; Dk�Dk��? � i[Dk�A?� ; �?℄� i[A?� ;QD��?℄ + [A?� ; [A?� ; �?℄℄i : (C.12)This is the result used in (2.21).D The Laplaian of the Toy ModelUsing matrix notation, the Laplaian �ab = Dai Dbi of the toy model is given by� = 0BBBBB� �y2 � z2 � Y 2 � Z2 xy +XY xz +XZyx+ Y X �x2 � z2 �X2 � Z2 yz + Y Zzx + ZX zy + ZY �x2 � y2 �X2 � Y 2
1CCCCCA :(D.1)Denoting r � jxj and R � jXj, the determinant of the Laplaian beomesdet� = �(r2 +R2) (x�X)2 � �(r2 +R2) d2 � 0 : (D.2)As is appropriate for a Laplaian, � is a negative-semide�nite operator. It haszero modes for reduible on�gurations only [14℄, whih for the ase at hand aregiven by the zero on�guration, x = X = 0 (with the full group SO(3) as itsstabilizer), and the ollinear on�gurations, x = �X, with U(1) stabilizer.The eigenvalues of �� are given byE0 = r2 +R2 ; (D.3)E� = 12(r2 +R2)� 12p(r2 � R2)2 + 4(x �X)2 : (D.4)It is reassuring to note that the eigenvalues and, aordingly, the determinant onlydepend on the gauge invariant salar produts r2, R2 and x �X. At the origin,whih has the largest stabilizer, all eigenvalues vanish. For ollinear on�gura-tions with x �X = �rR, the eigenvalues are E� = 0 and E0 = E+ = r2 +R2, sothat there is a zero mode and the �rst `exited' state is degenerate. For the hori-zon on�gurations of the MAG, having x �X = 0, r = R � �, one �nds E� = �2and E0 = 2�2. Thus, the groundstate beomes degenerate. The latter fat or-responds to the gauge �xing degeneraies of the Laplaian gauge [69, 70, 71℄ as27
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