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tWe 
al
ulate the Faddeev-Popov operator 
orresponding to the max-imally Abelian gauge for gauge group SU(N). Spe
ializing to SU(2) welook for expli
it zero modes of this operator. Within an illuminating toymodel (Yang-Mills me
hani
s) the problem 
an be 
ompletely solved andunderstood. In the �eld theory 
ase we are able to �nd an analyti
 expres-sion for a normalizable zero mode in the ba
kground of a single `t Hooftinstanton. A

ordingly, su
h an instanton 
orresponds to a horizon 
on-�guration in the maximally Abelian gauge. Possible physi
al impli
ationsare dis
ussed.
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1 Introdu
tionThe 
on�guration spa
e A of gauge theories is a \bigger-than-real-life-spa
e" [1℄.This is due to the fa
t that the a
tion of the gauge group G relates physi
allyequivalent 
on�gurations along the gauge orbits. Therefore, this a
tion has to bedivided out. In prin
iple, this division leads to the physi
al 
on�guration spa
e,Aphys = A=G. In pra
ti
e, however, this division is not easily performed. Themost eÆ
ient method to do so is gauge �xing, where a subset of A is identi�edwith Aphys. This subset is 
hara
terized by 
hoosing some 
ondition on the gaugepotentials A of the form �[A℄ = 0. Prominent examples are the 
ovariant gauge,�
ov = ��A�, or the axial gauge, �ax = n � A. One hopes that this 
onditionsatis�es both the requirements of existen
e and uniqueness. Existen
e meansthat the hypersurfa
e � : � = 0 interse
ts every orbit, while uniqueness requiresthat it does so on
e and only on
e. It has �rst been shown by Gribov thatthe latter requirement 
annot be satis�ed for non-Abelian gauge theories in the
ovariant and Coulomb gauge [2℄. Shortly afterwards, Gribov's observation hasbeen proven for a large 
lass of 
ontinuous gauge �xings [3℄. In the physi
s
ommunity, the la
k of uniqueness has be
ome known as the Gribov problem.This just paraphrases the diÆ
ulty in 
onstru
ting the physi
al 
on�gurationspa
e whi
h, by de�nition, is void of any (residual) gauge (or Gribov) 
opies.In order to analyse this issue it has turned out useful to des
ribe the gauge�xing not simply by a 
ondition � = 0. Instead, in order to study the globalaspe
ts of the problem, one formulates the gauge �xing pro
edure in terms ofa variational prin
iple [4, 5, 6, 7, 8℄. To this end one tries to de�ne an `a
tion'fun
tional F in su
h a way that the asso
iated `
lassi
al traje
tories' are nowhereparallel to the orbits so that their union de�nes a gauge �xing hypersurfa
e.By this 
onstru
tion one 
ompletely suppresses 
u
tuations in gauge dire
tionswhi
h in the un�xed formulation do not 
ost energy (or a
tion) and thus makethe path integral ill{de�ned. Of 
ourse, by 
onservation of diÆ
ulties, one 
annotavoid the Gribov problem this way.The variational approa
h to gauge �xing has mainly been studied for ba
k-ground type gauges like the Coulomb gauge, where one 
an indeed 
onstru
t afun
tional F [A;U ℄ with the following generi
 properties: the 
riti
al points ofF along the orbits generated by U are the potentials A satisfying the Coulombgauge 
ondition, �iAi = 0. The Hessian of F at these points is the Faddeev-Popov operator FP. The Gribov region 
0 is de�ned as the set of transversegauge �elds for whi
h det FP is positive. This is the set of relative minima of F .Its boundary �
0 is the Gribov horizon, where, a

ordingly, det FP = 0 be
ausethe lowest eigenvalue of FP 
hanges sign. It has been shown that 
0 � A is 
on-vex [7, 9, 10℄. This is basi
ally due to the linearity of FP in A [11℄. Contrary toearly expe
tations the Gribov region still 
ontains Gribov 
opies [7, 12, 13℄. Onlyif one restri
ts to the set � of absolute minima and performs 
ertain boundaryidenti�
ations, one ends up with the physi
al 
on�guration spa
e (also 
alled the2



fundamental modular domain) [11℄.As stated above, the appearan
e of horizon 
on�gurations A 2 �
0 impliesthat the gauge is not uniquely �xed; in other words, there are gauge �xing de-genera
ies. Somewhat symboli
ally, this 
an be shown as follows. Let A 2 �have the in�nitesimal gauge variation ÆA = D[A℄ Æ�, D denoting the 
ovariantderivative. To 
he
k whether the gauge transform A+ ÆA also satis�es the gauge
ondition, one 
al
ulates�[A + ÆA℄ = �[A℄ + Æ�ÆA ÆAÆ� Æ� � N [A℄ �D[A℄ Æ� : (1.1)Here we have used that �[A℄ = 0 and de�ned the normal N to the gauge �xinghypersurfa
e �. Now, if A+ ÆA is also in � we see that the FP operator,FP[A℄ � N [A℄ �D[A℄ ; (1.2)must have a zero mode given by the in�nitesimal gauge transformation Æ�. Inthis 
ase, there are two gauge equivalent �elds A and A + ÆA on � and A is ahorizon 
on�guration. From (1.2) one infers that there are two generi
 reasons forthis to happen. First, Æ� 
an be a zero mode already of D[A℄. As the latter 
anbe viewed as the `velo
ity' of a �
titious motion along the orbits, its vanishing(on Æ�) 
orresponds to a �xed point under the a
tion of the gauge group. Inthis 
ase, the 
on�guration A is 
alled redu
ible [3, 14℄. Obviously, these arealways horizon 
on�gurations. One might spe
ulate whether there is a gauge�xing su
h that redu
ible 
on�gurations are the only horizon 
on�gurations [15℄.The se
ond possibility for det FP to vanish is that `orbit velo
ity' D and normalN are orthogonal, whi
h means that a parti
ular orbit is tangent to �. This iswhat usually happens for ba
kground type gauges like the Coulomb gauge whereN is 
onstant, i.e. independent of A.In general, it is very hard to expli
itly �nd horizon 
on�gurations. For thisreason, one has to 
on
entrate on rather simple and/or symmetri
 gauge poten-tials. Again, the 
ase best studied is the Coulomb gauge. It is known that thereare Gribov 
opies of the 
lassi
al va
uum A = 0 [11, 16, 17℄. An even simpler ex-ample of Gribov 
opies is provided by 
onstant Abelian gauge �elds on the torus(the torons) [11, 18℄. Con�gurations with a radial symmetry have been dis
ussedin the original work of Gribov [2℄. An expli
it example with axial symmetry hasbeen given by Henyey [11, 19℄.On the latti
e, the dete
tion of Gribov 
opies has been reported for the �rsttime in [20℄. It turns out that some of these 
opies are latti
e artifa
ts while otherssurvive in the 
ontinuum limit [21℄. In a sense, therefore, the Gribov problembe
omes even more pronoun
ed upon gauge �xing on the latti
e. This is ofparti
ular relevan
e for the latti
e studies of the dual super
ondu
tor hypothesisof 
on�nement [22, 23, 24℄, where one mainly uses (a latti
e version [25℄) of`t Hooft's maximally Abelian gauge (MAG) [6℄. In order to extra
t physi
al3



results within this approa
h one 
learly has to 
ontrol the in
uen
e of Gribov
opies. Finding the 
riti
al points of the latti
e gauge �xing fun
tional is similarto a spin glass problem due to the high degree of degenera
y. The diÆ
ulties innumeri
ally determining the absolute maximum1 of the latti
e fun
tional lead toan ina

ura
y in observables of the order of 10 % [26, 27℄.The Gribov problem for the MAG so far has not been dis
ussed in the 
on-tinuum. The purpose of this paper is to (at least partly) �ll this gap. The MAGand its de�ning fun
tional will be reviewed in Se
tion 2. The Hessian of thisfun
tional is the FP operator whi
h is 
al
ulated for gauge group SU(N). InSe
tion 3 we spe
ialize to SU(2) and give general arguments showing the exis-ten
e of a Gribov horizon. To provide some intuition, Se
tion 4 introdu
es asimple toy model for whi
h the FP operator and determinant 
an be 
al
ulatedexa
tly. The presen
e of Gribov 
opies is shown expli
itly. Finally, in Se
tion 5,we return to �eld theory and 
al
ulate the FP operator in the ba
kground of asingle instanton (in the singular gauge). Again, we �nd an analyti
 expressionfor a normalizable zero mode whi
h shows that the single instanton is a horizon
on�guration in the MAG. Some te
hni
al issues are dis
ussed in Appendi
es Ato D.2 The Maximally Abelian GaugeAs explained in Appendix A, we de
ompose the gauge potential A into diagonal(Ak 2 Hk) and o�-diagonal (A? 2 H?) 
omponents, A = Ak +A?. The MAG isthen de�ned by minimizing the following fun
tionalF [A;U ℄ � k(UA)?k2 : (2.1)F is thus a fun
tional of both the gauge �eld A and the gauge transformationU 2 SU(N). Via the parametrizationU(�) = exp(�i�) = exp(�i�aT a) ; � 2 su(N) ; (2.2)F equivalently 
an be viewed as depending on the argument � of U . The a
tionof U on A is UA� = U�1A�U + iU�1��U : (2.3)With F of (2.1) we are thus minimizing the `
harged' 
omponent A? along itsorbit, whi
h, roughly speaking, amounts to maximizing the Abelian or `neutral'
omponent Ak. Hen
e the name `maximally Abelian gauge'.The Yang-Mills norm in (2.1) is the same as in the Yang-Mills a
tion andindu
ed by the s
alar produ
t (A.6),kAk2 � hA;Ai � Z ddx trA2 : (2.4)1The maximization of the latti
e fun
tional 
orresponds to a minimization of the 
ontinuumfun
tional. 4



Note that our 
onventions are su
h that this norm is positive for hermitian gauge�elds A with values in su(N). The norm (2.4) 
an be viewed as the distan
e(squared) between A and the zero 
on�guration A = 0. As the spa
e A of gaugepotentials is aÆne, the norm is gauge invariant in the following sense,kA� Bk = kUA� UBk (2.5)If the 
on�gurationB is kept �xed, however, the norm 
eases to be gauge invariantand expli
itly depends on U or �. The same is thus true for F whi
h a

ordingly
hanges along the orbit of A unless there is some (residual) invarian
e. For thefun
tional (2.1) su
h an invarian
e 
an indeed be found. Let V = exp(�i�k) bean Abelian gauge transformation and 
onsiderF [A;V ℄ = k(VA)?k2 = k(V �1AkV + V �1A?V + iV �1dV )?k2 : (2.6)As V is Abelian, the �rst and last terms on the r.h.s. of (2.6) vanish due to theproje
tion on H?, and we are left withF [A;V ℄ = k(V �1A?V )?k2 : (2.7)At this point it is 
ru
ial to note that V �1A?V is in H?,tr(HiV �1A?V ) = tr(V HiV �1A?) = tr(HiA?) = 0 : (2.8)Therefore, we 
an write for (2.6),F [A;V ℄ = kV �1A?V k2 = kA?k2 = F [A; 1℄ : (2.9)This immediately leads to the following Abelian invarian
e of F ,F [A;V U ℄ = F [UA;V ℄ = F [UA; 1℄ = F [A;U ℄ : (2.10)Note that our notation is su
h that U a
ts prior to V , i.e.V UA = (UV )�1AUV + i(UV )�1d(UV ) : (2.11)Roughly speaking, the Abelian invarian
e implies that F 
an be thought of assome kind of `mexi
an hat' with the residual symmetry 
orresponding to (Abeliangauge) rotations around its symmetry axis. A

ordingly, the Hessian of F willhave trivial zero modes assso
iated with the 
onstant dire
tions of F .We are interested in the behaviour of F [A;U ℄ around the point U = 1, i.e. � =0, on the orbit of A. To this end we Taylor expand F asF [A;U ℄ � F [A;�℄ = F [A; 0℄ + hF 0[A; 0℄; �i+ 12h�; F 00[A; 0℄�i+O(�3) (2.12)5



In order to do so we need the gauge transform UA as a power series in �. Theformer 
an easily be found from (B.1) and (B.2) with the resultUA� = A� + exp(i ad�)� 1i ad� (D��)= A� +D��+ i2[�;D��℄ + i23!h�; [�;D��℄i+ : : : : (2.13)Not surprisingly, the 
ovariant derivative D� = �� � i ad(A�) with ad(A)B �[A;B℄ appears at this stage. Inserting (2.13) into (2.1) we obtainF [A;�℄ = kA?� k2+2 hA?� ; (D��)?i+ h(D��)?; (D��)?i+ i hA?� ; [�;D��℄?i+ : : : :(2.14)In the following we are going to evaluate this expression term by term. Thisrequires some preparations. We will need the 
ommutator identity,hA; [B;C℄i = hB; [C;A℄i = hC; [A;B℄i ; (2.15)whi
h follows straightforwardly from the de�nition of the s
alar produ
t. Thelatter equation shows that both the operator ad(A) and the 
ovariant derivativeD[A℄ are anti-hermitean,h�; ad(A) i = �h ad(A)�;  i ; (2.16)h�;D[A℄ i = �hD[A℄�;  i : (2.17)The last two identities allow for an evaluation of the �rst derivative F 0,hA?� ; (D��)?i = hA?� ; D��i = �hDk�A?� ; �i = �hDk�A?� ; �?i ; (2.18)with Dk� � �� � i adAk�. We thus have, to �rst order in �,F [A;�℄ = kA?� k2 � 2 hDk�A?� ; �?i+O(�2) : (2.19)Note that to this order, F does not depend on the Cartan 
omponent �k. Weimmediately read o� the 
riti
al points de�ning the MAG,Dk�A?� � D�A?� = 0 : (2.20)The se
ond derivative requires 
onsiderably more e�orts. We relegate the expli
it
al
ulations to Appendix C, where we obtain for the Taylor expansion of F [A;�℄,F [A;�℄ = kA?� k2 � 2hDk�A?� ; �?i+ ih�?; ad(D�A?� )�ki� h�?; hDk�Dk� + ad2A?� � i( adA?� )QD� � i ad(Dk�A?� )i�?i+ O(�3) : (2.21)6



Here we have de�ned a proje
tion Q onto the 
omplement H? of the Cartansubalgebra su
h that Q� = �?. The term in (2.21) depending on �k may seemsomewhat strange but is a
tually ne
essary to guarantee the Abelian invarian
e(2.10). It vanishes on the gauge �xing hypersurfa
e � de�ned by (2.20).From (2.21) we 
an easily read o� the Faddeev-Popov operator whi
h is theHessian of F evaluated on � (i.e. at the 
riti
al points),FP = �Q �Dk�Dk� + ad2A?� � i( adA?� )QD��Q : (2.22)In e�e
t we have performed a saddle point approximation to the fun
tionalF [A;�℄. The `equation of motion' is the gauge �xing 
ondition, and the 
u
-tuation operator is the FP operator. In this approximation the fun
tional on �reads F [A;�℄ = kA?� k2 + h�;FP�i+O(�3) : (2.23)As stated in the introdu
tion, it is in general rather diÆ
ult (in a 
ontinuumformulation) to �nd expli
it examples of Gribov 
opies. The MAG is no ex-
eption from this rule. The nontrivial task is to �nd normalizable zero modesof FP given by (2.22) whi
h is a 
ompli
ated partial di�erential operator. Weare, however, en
ouraged by latti
e 
al
ulations, in whi
h su
h 
opies have beendete
ted numeri
ally, for the �rst time in [28℄ and with re�ned te
hniques in[26, 27℄. One should keep in mind, though, that some (if not all) of these 
opies
an be latti
e artifa
ts whi
h do not survive in the 
ontinuum limit. To studythe possible appearan
e of Gribov 
opies in the 
ontinuum we have to performseveral simpli�
ations. The �rst one will be to 
onsider the 
ase of gauge groupSU(2).3 The FP Operator for SU(2) | General Con-siderationsFor SU(2), the gauge �xing 
ondition (2.20) of the MAG 
an be rewritten interms of the gauge �eld 
omponents A3� 2 Hk and A�� 2 H?,(�� � iA3�)A�� = 0 ; A�� � A1� � iA2� : (3.1)The fa
t that these are only two requirements already implies (by 
ounting ofdegrees of freedom) that there remains a residual gauge freedom 
orrespondingto a one-dimensional subgroup whi
h 
an only be U(1). Super�
ially, the gauge�xing looks like a ba
kground gauge whi
h would a
tually be true if the neutral
omponent A3� were independent of the 
harged one, A?� . As these, however, aretwo 
omponents of one and the same 
on�guration they are not independent,and the gauge �xing 
ondition is quadrati
, i.e. nonlinear in A�. This makeslife somewhat 
ompli
ated (although it does not spoil the renormalizability of7



the gauge [29℄). A BRST approa
h, for example, ne
essitates the introdu
tionof four-ghost terms. In a path integral formulation, these ghost intera
tions`regularize' the usual bilinear FP ghost term in the presen
e of zero modes [30℄.The FP operator for SU(2) simpli�es 
onsiderably as the last term in (2.22)vanishes. One is thus left with the following sum of two operators,FP = �Q�Dk�Dk� + ad2(A?� )�Q : (3.2)Using the notation (A.8), FP 
an be viewed as a 3 � 3 matrix in 
olor spa
e. Theoperator Q proje
ts onto the two dire
tions perpendi
ular to the z-axis so thatthe third row and 
olumn of FP vanish identi
ally. The asso
iated trivial zeromode 
orresponds to the residual U(1) gauge freedom whi
h remains un�xed bythe MAG. Expli
itly, one has for the nonvanishing entries of FP,(Dk�Dk�)�a�b = Æ�a�b(2� A3�A3�)� ��a�b(��A3� + 2A3���) ; (3.3)( ad2(A?� ))�a�b = Æ�a�bA�
�A�
� � A�a�A�b� : (3.4)Summing these two terms leads to the representation of FP given in equation(12) of [31℄2.Being (the negative of) a Lapla
ian, the operator �Dk�Dk� is nonnegative. Thesame is true for ad(A?� ) ad(A?� ) as will be shown in what follows. We de�ne thehermitean matrix C via [A?� ; �?℄ � iC ; (3.5)and 
al
ulate, using (2.16),h�;Q ad(A?� ) ad(A?� )Q�i = �h adA?��?; adA?��?i (3.6)= �hiC; iCi = hC;Ci � 0 : (3.7)One 
an as well use the representations (3.3), (3.4) and the Cau
hy{S
hwarzinequality to end up with the same result. The SU(2) FP operator from (3.2) isthus the di�eren
e of two positive semide�nite operators whi
h we abbreviate forthe time being as FP = A� B ; A;B � 0 : (3.8)The inequality denotes the fa
t that A and B have nonnegative spe
trum. Theidentity (3.8) already suggests that if B is `suÆ
iently large', FP will develop avanishing eigenvalue. Let us make this statement slightly more rigorous. To thisend we modify an argument used in [14, 32℄ for ba
kground type gauges.First of all we note that together with the 
on�guration (Ak; A?) also thes
aled 
on�guration (Ak; �A?), with � some (positive real) parameter, will be inthe MAG. The asso
iated FP operator isFP[Ak; �A?℄ � FP(�) = A� �2B : (3.9)2Note, however, that in this referen
e the gauge potentials are de�ned as being anti-hermitean. 8



( )E0 λ

λ
λhFigure 1: Qualitative behavior of the lowest eigenvalue of FP as a fun
tion of the`
ow parameter' �. The parameter value �h 
orresponds to a horizon 
on�gura-tion.Let us denote the lowest eigenvalue and the asso
iated eigenfun
tion of FP(�) byE0(�) and �0(�), respe
tively,FP(�)�0(�) = E0(�)�0(�) : (3.10)From (3.8) one must have E0(0) � 0. If we turn on �, a straightforward appli
a-tion of the Hellmann{Feynman theorem leads to���E0(�) = �2� h�0(�); B �0(�)i � 0 ; (3.11)when
e the fun
tion E0(�) has negative slope. In addition, it has to be 
on
ave[33℄3 so that, for � suÆ
iently large, there will be a zero-mode at some value,say �h (see Fig. 1). In a way we have thus determined a `path' within the MAG�xing hypersurfa
e that leads us from the interior of the Gribov region (� = 0)to its boundary (� = �h).As a result we 
an state that generi
ally there have to be Gribov 
opies withinthe MAG if the non-diagonal 
omponents A? of the gauge �elds be
ome suÆ-
iently large.4 A Toy ModelIn order to have an illustration of the somewhat abstra
t notions of the pre-
eding se
tions we will analyse an example with a �nite number of degrees of3It is exa
tly for this reason that the se
ond order perturbation theory 
orre
tion to anygroundstate is always negative. 9
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Figure 2: An isospa
e (gauge) rotation (by an angle �) in the toy model, trans-forming the 
on�guration (x1; x2)! (x01; x02). The lengths of the ve
tors and theangle � inbetween them are invariant.freedom [34℄. To this end we employ a Hamiltonian formulation in d = 2 + 1and 
onsider only gauge potentials A� whi
h are spatially 
onstant. RenamingAai = xai , i = 1; 2, a = 1; 2; 3, the Lagrangian be
omesL = 12(Dab0 xbi)2 � 12( _xai � �ab
A
0xbi)2 : (4.1)One way of arriving at this Lagrangian is by gauging a free parti
le LagrangianL0 = _xai _xai =2 via minimal substitution, i.e. by repla
ing the ordinary time deriva-tive �0 with the 
ovariant derivative Dab0 . To keep things as simple as possible,we have not introdu
ed any (Yang-Mills type) intera
tion; we are anyhow onlyinterested in the kinemati
s of the problem.De�ning the 
anoni
al momenta pai = Dab0 xbi , the Lagrangian (4.1) 
an bere
ast in �rst order form L = pai _xai � 12pai pai + Aa0Ga ; (4.2)where we have introdu
ed the operator Ga leading to Gauss's lawGa � �ab
xbip
i � Dabi pbi = 0 : (4.3)Obviously, Ga is the total angular momentum of two point parti
les in R3 (=
olor isospa
e) with position ve
tors x1 and x2. Gauge transformations are thusSO(3) rotations of these ve
tors whi
h do not 
hange their relative orientation(i.e. the angle � inbetween them). This is illustrated in Fig. 2.10



As usual we will work in the Weyl gauge, A0 = 0, so that Gauss's law has to beimposed `by hand', and, after quantization, holds upon a
ting on physi
al states.On
e the Weyl gauge has been 
hosen, there still is the freedom of performingtime independent gauge transformations. This will be (partially) �xed using theMAG. For the 
ase at hand, there are several equivalent ways of formulating thelatter.To avoid writing too many indi
es we denote x1 � x = (x; y; z), x2 � X =(X; Y; Z). An arbitrary ve
tor A will be de
omposed a

ording toAk � Azez ; (4.4)A? � Axex + Ayey ; (4.5)whi
h represents the de
omposition into Cartan (= z) 
omponent and its 
om-plement. The MAG 
ondition then reads expli
itly�a � Dabi (xik)xi? = �ab
xbikx
i? = 0 ; (4.6)or, in 
omponents, �1 = �yz � Y Z = 0 ;�2 = xz +XZ = 0 ; (4.7)�3 = 0 :The last 
ondition is just an empty tautology so that there are in fa
t onlytwo gauge 
onditions4. Of 
ourse, this just 
orresponds to the fa
t that thegauge rotations generated by G3 (the rotations around the z{axis) remain un�xed(
f. the remark after (3.1)).The MAG 
onditions (4.7) 
an be easily visualized. The proje
tions x? andX? have to be 
ollinear with their magnitudes being related throughjzj x? = jZjX? : (4.8)The MAG is thus obtained by rotating the 
on�guration (x;X) in su
h a waythat both ve
tors are as 
lose to the z-axis as possible. This is a
hieved as shownin Fig. 3. x and X are the diagonals of two re
tangles with sides jzj, x? andjZj, X?, respe
tively. If the areas a and A of the re
tangles 
oin
ide, a = A,the 
on�guration is in the MAG. Algebrai
ally, the notion of being `
lose to thez{axis' is measured by the fun
tionF (x;X) � x2? +X2? : (4.9)One 
an easily show that the 
onditions (4.6) or (4.7) minimize F and thus makethe `nondiagonal' 
omponents of x and X as small as possible. We mention4In Dira
's terminology [35℄, �3 is strongly zero and thus does not 
ontribute in the 
al
u-lation of any Poisson bra
ket. 11
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xFigure 3: The MAG 
ondition in the toy model. The areas A and a have tobe the same. We have arbitrarily 
hosen x and X to lie in the yz{plane. Theresidual U(1) gauge freedom 
orrresponds to rotations around the z{axis.in passing that the trivial solution of (4.7) given by z = Z = 0 
orrrespondsto a maximum of F so that we 
an always assume z or Z 6= 0 (ex
ept for thezero{
on�guration representing the origin).It is obvious from Fig. 3 that rotations around the z{axis leave both F and theMAG 
ondition invariant and thus 
orrespond to a residual U(1) gauge freedom.As expe
ted, this situation is re
e
ted in the FP operator,FP = ��a ; Gb	���=0 ; (4.10)whi
h, in matrix notation, 
an be written asFP = 0� z2 + Z2 � y2 � Y 2 xy +XY 0xy +XY z2 + Z2 � x2 �X2 00 0 0 1A : (4.11)The zero entries in the third row and 
olumn are a trivial 
onsequen
e of theresidual U(1) and 
orrespond to the a
tion of the Q{proje
tion in (2.22). Theeigenvalues of FP are found to beE3 = 0 ; (4.12)E+ = z2 + Z2 ; (4.13)E� = z2 + Z2 � x2? �X2? : (4.14)Let us 
on
entrate on the eigenvalues E� whi
h are not related to the residualAbelian gauge freedom. Con�gurations where one of these vanishes are lo
ated on12



the Gribov horizon and re
e
t some non-trivial residual gauge freedom di�erentfrom the U(1) above. A parti
ular (in some sense trivial) 
lass of horizon 
on�g-urations 
onsists in the redu
ible 
on�gurations as dis
ussed in the introdu
tion.These have a higher symmetry than generi
 
on�gurations (a nontrivial stabi-lizer or isotropy group). In other words, they are �xed points under the a
tionof (a subgroup of) the gauge group. Te
hni
ally, they show up by indu
ing zeromodes of the Lapla
ian �ab = Da
i D
bi (see Appendix D). Within our example,the redu
ible 
on�gurations are readily identi�ed [34, 36℄ by simple symmetry
onsiderations. The origin is invariant under the whole a
tion of SO(3) while
on�gurations with x and X 
ollinear are invariant under rotations around their
ommon dire
tion whi
h 
learly 
orresponds to a U(1). This is ni
ely re
e
tedin the spe
trum of FP. At the origin, both E� vanish, while a 
ollinear 
on�g-uration 
an always be rotated in the z{axis so that its stabilizer 
oin
ides withthe standard residual U(1) 
orresponding to E3 = 0. This U(1) stabilizer is thus`hidden' in the residual U(1). Fixing the latter by demanding e.g. x = X = 0,does, however, not a�e
t 
on�gurations 
ollinear along the z{axis so that thesewill indu
e zero modes of FP even after residual gauge �xing [34℄.There is a remaining possibility for a vanishing eigenvalue. While E+ is alwayspositive, E� vanishes if z2 + Z2 = x2? + X2?. This happens for 
on�gurationswhere x andX are of the same length and orthogonal to ea
h other. Elementarytrigonometry implies that in this 
ase the two areas a and A are always the same,irrespe
tive of the lo
ation of the 
on�guration relative to the z{axis. Thus, thereis an additional residual U(1) gauge freedom for su
h ex
eptional 
on�gurations.This 
an be ni
ely illustrated in terms of a `spe
tral 
ow' as a fun
tion of x2?+X2?(see Fig. 4). We thus have found an expli
it realization of the general results ofSe
tion 3, in parti
ular of Fig. 1.5 The FP Operator in an Instanton Ba
kgroundThe natural question arising at this point is the following: is there a way ofextending the results of the toy model to the realisti
 �eld theory 
ase? Theanswer given in this se
tion will be aÆrmative.Our motivation stems from the observation made by Brower et al. [37℄ thatthe single `t Hooft instanton both in the singular and regular gauge satis�es theMAG 
ondition (2.20). For the instanton in the singular gauge5 (or `singularinstanton', for short) given byAsing� (x) = 2 ��a�� �2x2 x�x2 + �2 �a=2 ; (5.1)with � denoting the instanton size, the MAG �xing fun
tional F is �nite, while5We use the 
onventions of [38℄. 13
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Figure 4: Behavior of the eigenvalues of FP in the toy model as a fun
tion of themagnitude x2? +X2? of the `nondiagonal' 
omponents. A zero mode arises whenx2? +X2? = z2 + Z2.for the instanton in the regular gauge,Areg� (x) = 2 �a�� x�x2 + �2 �a=2 ; (5.2)it diverges. The two 
on�gurations Asing� and Areg� are related through the gaugetransformation g(x) = x̂4 + i x̂a�a ; (5.3)where x̂� = x�=r, r = (x2)1=2 denoting the modulus of the Eu
lidean position x.If we adopt the point of view that we have to take the minima of F to de�ne theGribov region 
0 of the MAG then Asing� is lo
ated in 
0 while Areg� is not. Thisis 
orroborated by the quoted work of Brower et al. [37℄ whi
h, when translatedinto our language, amounts to the following. One numeri
ally 
onstru
ts a `path'
(R) 2 � 
onne
ting Asing� with Areg� . Along this path6 (beginning at the singularinstanton) the MAG fun
tional F is monotoni
ally rising. The 
on�gurationsA�(R) along the path are determined by applying a (singular) gauge transforma-tion 
 whi
h takes the singular instanton to A�(R), i.e. A�(R) = 
Asing� . Hen
e
(R) is a path both within � and the single instanton orbit. A

ordingly, theremust be an in�nitesimal gauge transformation of the singular instanton that doesnot leave � and thus must be a zero mode of FP [Asing℄. In what follows we willtry to expli
itly determine this zero mode.The �rst step of this program 
onsists in the 
al
ulation of the FP operator inthe ba
kground of a singular instanton. Plugging (5.1) into (3.3) and (3.4) one6In [37℄ the parameter R is the radius of a monopole loop asso
iated with the 
on�gurationA�(R) lo
ated on 
 somewhere inbetween Asing� = A�(R = 0) and Areg� = A�(R =1).14



obtains the resultFP�a�b = �Æ�a�b2 + 2 ��a�b a(r)(x2�1 � x1�2 + x3�4 � x4�3) : (5.4)We have dis
arded the vanishing third row and 
olumn (resulting from the a
tionof Q) and introdu
ed the (singular) instanton pro�le fun
tion,a(r) = 2 �2=r2r2 + �2 = 2� 1r2 � 1r2 + �2� : (5.5)We are looking for normalizable zero modes � of the FP operator,FP� = 0 ; h�; �i <1 ; (5.6)where �(x) now is a two-
omponent ve
tor (�eld) living in the 
omplement ofthe Cartan subalgebra. Solving the equation (5.6) for the zero mode is basi
allyan exer
ise in group theory as will be
ome 
lear in a moment. If we de�ne thegenerators of four-dimensional Eu
lidean rotations asL�� = �i(x��� � x���) ; �; � = 1; : : : ; 4 ; (5.7)the FP operator 
an be written in 2 � 2 matrix notation asFP = � �2 �2i a(r)(L12 � L34)2i a(r)(L12 � L34) �2 � (5.8)It is straightforward to 
he
k that the L�� indeed satisfy the Lie algebra of SO(4).In analogy with the Lorentz group one introdu
es the angular momentum and`boost' generators Li � 12�ijkLjk (5.9)Ki � Li4 ; (5.10)and their linear 
ombinations,Mi � 12(Li �Ki) = � i2 ��i�� x��� ; (5.11)Ni � 12(Li +Ki) = � i2 �i�� x��� : (5.12)These 
an be viewed as the self-dual and anti-self-dual parts of L�� , if `duality'is understood as the ex
hange of L and K. The operators Mi and Ni generatetwo independent SU(2) subgroups with Casimirs M2 and N2 having eigenvaluesM(M + 1) and N(N + 1), respe
tively [39℄. It is important to note that M andN will in general be half-integer,M;N 2 f0; 1=2; 1; : : :g : (5.13)15



This fa
t is well known from the algebrai
 treatment of the hydrogen atom whi
hhas a hidden dynami
al O(4) symmetry (see e.g. [40℄). In addition, as FP is a2�2 matrix, it 
an be expanded in terms of Pauli matri
es, so that altogether we�nd the rather 
ompa
t result,FP = �21 + 4a(r)M3 �2 : (5.14)Plugging this into (5.6) results in a four-dimensional S
hr�odinger equation withspin having a high degree of symmetry. A 
omplete set of 
ommuting observablesis given by the Casimirs M2 and N2, their proje
tions M3 and N3 (with eigen-values m and n) and the Pauli matrix �2 (eigenvalues s = �1). Repla
ing �2 byits eigenvalue and rewriting the Lapla
ian in terms of the radial 
oordinate r weare left with FP(s) � ��2r � 3r�r + 2r2 (M2 +N2) + 4a(r)M3 s (5.15)This is indeed a 4d radially symmetri
 Hamiltonian. Upon 
loser inspe
tion, theCasimir term turns out to be
ome even simpler. Using the representations (5.7),(5.9) and (5.10) one �nds thatN2 �M2 = L �K = 0 ; (5.16)so that FP �nally be
omesFP(s) = ��2r � 3r�r + 4r2M2 + 4a(r)M3 s : (5.17)The eigenfun
tions of FP will therefore depend on the quantum numbers M 2f0; 1=2; 1; : : :g, m;n 2 f�M;�M + 1; : : : ;Mg and s = �1. Chosing the 
oordi-nates x = r (
os � 
os'12; 
os � sin'12; sin � 
os'34; sin � sin'34) ; (5.18)with 0 � � � �=2, 0 � '12; '34 � 2�, the eigenfun
tions 
an be written asfollows, � = fMm(r) hMmn(�) ymn('12) zmn('34)�s : (5.19)The �s are the eigenspinors of �2,�� = 1p2 � 1�i � : (5.20)The S
hr�odinger equation fa
torizes a

ordingly. Introdu
ing the dimensionlessvariable R = r=� and de�ning a fun
tion g(R) viaf(R) � g(R)=R3=2 ; (5.21)16
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Figure 5: The numerator of the potential term V1 as a fun
tion of the quantumnumber M . The only (half-)integer leading to attra
tion (negative V1) is M =1/2.(we omit the subs
ripts of f) the radial equation for the zero mode be
omes���2R + 4M(M + 1) + 3=4R2 + 8msR2(1 +R2)� g(R) = 0 : (5.22)We are looking for a normalizable zero mode, or, in other words, a bound statewith vanishing energy. For this we need an attra
tive potential. We thus musthave ms < 0, and we 
hoose s = �1, m > 0 in what follows. The bound stateequation (5.22) thus be
omes���2R + 4M(M + 1)� 8m+ 3=4R2 + 8m1 +R2� g(R) = 0 : (5.23)This equation has already been obtained by Brower et al. [37℄ in the stabilityanalysis of their monopole solutions. These authors, however, have overlookedthe fa
t that M is half-integer whi
h is 
ru
ial for obtaining the 
orre
t solution(see below). In addition they approximated the pro�le fun
tion a(r) by 1=r2 (inthe limit of small monopole loops). We will instead solve (5.23) exa
tly. Thelatter is an e�e
tive one{dimensional S
hr�odinger equation with a HamiltonianHR � ��2R + V1(R) + V2(R) : (5.24)17
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Figure 6: The bound-state potential V1 + V2 as a fun
tion of R = r=� for theattra
tive 
ase (quantum numbers M = m = 1=2).The se
ond potential term, V2, is always positive (for m > 0). Only the �rstterm, V1 has a 
han
e of be
oming negative leading to attra
tion. Te
hni
ally,this is due to the relative minus sign in the pro�le fun
tion (5.5) of the singularinstanton. In the regular gauge, this is absent so that both V1 and V2 are positiveand there are no normalizable zero modes. As m is bounded by M , the CasimirtermM(M+1) in (5.23) will always win for largeM . We thus should makeM assmall and m as large as possible. We thus take m = M and plot the numeratorof V1 as a fun
tion of M (see Fig. 5). Obviously, there is exa
tly one solution forM whi
h makes V1 negative, namely M = 1=2 = m. We have expli
itly 
he
kedthat for M > 1=2 there is no bound state solution7. The asso
iated potentialV1 + V2 is plotted in Fig. 6. For M = 1=2, the normalizable solution of (5.23) isgiven by g(R) = pR �1� (1 +R2) ln�1 + 1R2�� : (5.25)Close to the origin, f(R) = g(R)=R3=2 behaves asf(R) = 1R(1 + 2 lnR)�R(1� 2 lnR) +O(R2) ; (5.26)while asymptoti
ally it drops as 1=R3. Both types of behavior are suÆ
ient tomake f (or �) normalizable. The radial wave fun
tion f(R) and the asso
iated7The 
laim of Brower et al. [37℄, that attra
tion o

urs for m = 1 with the ground statehaving M = 1, thus 
annot be substantiated. 18
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Figure 7: The radial wave fun
tion �f(R) of the zero mode and the asso
iatedprobability distribution p(R). While f diverges at the origin, p vanishes due tothe radial measure fa
tor R3.probability distribution p(R) = R3f 2(R) are shown in Fig. 7. From this �gure itis obvious that f has no nodes and therefore 
orresponds to the ground state inthe se
tor with M = 1=2 (
f. the analogous reasoning in [11℄).The degenera
y of the solution is found as follows. FP does not depend onN3, therefore n 
an arbitrarily be 
hosen as an half{integer from f�M;�M +1; : : : ;Mg, i.e. for M = 1/2, one has n = � 1/2. Furthermore, FP is invariantunder (m; s) ! (�m;�s), so that, altogether, there is a four{fold degenera
y.In terms of abstra
t states jM;m; n; si the zero modes are linear 
ombinations ofthe four degenerate basis states j1=2; 1=2;�1=2;�i and j1=2;�1=2;�1=2;+i.To expli
itly determine the zero mode, we still have to �nd the fun
tions hMmn,ymn and zmn for M = 1/2. ymn and zmn are eigenfun
tions of the operators L3and K3 so that their produ
t be
omes an eigenfun
tion of the two operatorsM3 = 12(L3 �K3) = � i2 � ��'12 � ��'34� ; (5.27)N3 = 12(L3 +K3) = � i2 � ��'12 + ��'34� ; (5.28)a

ording to M3 ymn zmn = mymn zmn ; (5.29)N3 ymn zmn = n ymn zmn : (5.30)19



Expli
itly, one �nds ymn('12) = ei(m+n)'12 ; (5.31)zmn('34) = e�i(m�n)'34 : (5.32)The fun
tion hMmn(�) satis�es the di�erential equation� 1sin 2� ��� sin 2� ��� + 4M(M + 1)� (m+ n)2
os2 � � (m� n)2sin2 � �hMmn(�) = 0 :(5.33)For M = 1/2, we 
an 
ir
umvent solving this equation by 
onsidering only thetwo extremal states in a multiplet with m = �M , whi
h obeyM�jM;�M;ni = 0 : (5.34)The asso
iated di�erential equation is mu
h simpler than (5.33) and straightfor-wardly solved in terms of the fun
tionshM;�M;n(�) = 
osM�n � sinM+n � ;hM;M;n(�) = sinM�n � 
osM+n � : (5.35)Dire
t appli
ation to m = �1=2 �nally yields the four degenerate zero modes forM = 1/2 (using the notation �mns),��1=2;�1=2;+(x) = 
f(r) 
os � e�i'12�+ � �1 ;��1=2;1=2;+(x) = 
f(r) sin � ei'34�+ � �4 ;�1=2;1=2;�(x) = 
f(r) 
os � ei'12�� � �2 ;�1=2;�1=2;�(x) = 
f(r) sin � e�i'34�� � �3 ; (5.36)where 
 denotes a normalization 
onstant whi
h will be determined in a moment.To this end we rewrite the measured4x = r3dr 
os � sin � d� d'12 d'34 ; (5.37)and 
al
ulate the integral (� denoting any of the basi
 zero modes)Z d4x ��(x) � �(x) = 
2�4 �26 �1 + �23 � != 1 : (5.38)This determines the normalization 
. Any zero mode � of FP satisfying (5.6)must be a linear 
ombination of the four basis modes (5.36). For the following
onsiderations it is 
onvenient to introdu
e the real basis,	1 � 12i(�3 � �4) = 
p2 f(r)r h�x4�x3 i ;	2 � 12(�3 + �4) = 
p2 f(r)r h x3�x4 i ;	3 � 12i(�1 � �2) = 
p2 f(r)r h�x2x1 i ;	4 � 12(�1 + �2) = 
p2 f(r)r hx1x2 i ; (5.39)
20



whi
h, upon using the properties of `t Hooft's � symbols [38℄ 
an be 
ompa
tlywritten as 	�a�(x) = 
p2 f(r) ���a�� x̂� : (5.40)A general linear 
ombination thus assumes the form��a(x) � p2
 n�	�a� = n� ���a�� x̂� f(r) � m�af(r)=r ; (5.41)where n� is a 
onstant four ve
tor. The latter is parti
ularly suited for obtainingthe �nite transformation,
 = exp i��a��a=2 = 1 
os'=2 + iN �a��a sin'=2 ; (5.42)with ' = (��a��a)1=2 and N �a = ��a='. Using (5.41) one �nds the expli
it represen-tation ' = f(r)r pm�am�a ; (5.43)N �a = m�apm�am�a : (5.44)Applying the gauge transformation 
 from (5.42) to the singular instanton leadsto a 
on�guration that is no longer in the MAG. This is at varian
e with thesolution 
R found by Brower et al. [37℄ whi
h yields a monopole 
on�gurationwithin the MAG. To illustrate this di�eren
e we plot the modulus ' (denoted �in [37℄) for the 
hoi
e � = 	4 or, 
orrespondingly, n = (0; 0; 0; 1), m = (x1; x2)T .The result is shown in Fig. 8 whi
h 
learly di�ers from the analogous Fig. 2 in[37℄. The presen
e of a zero mode as given by (5.41) shows that the instanton inthe singular gauge is lo
ated on the Gribov horizon of the MAG. For (
ovariant)ba
kground type gauges, an analogous result has been obtained in [41℄.6 Dis
ussionAmong the di�erent Abelian gauges used for the latti
e study of the dual super-
ondu
tor hypothesis, the MAG is the one that has been analysed in greatestdetail. In this paper we have tried to supplement these a
hievements by analyti
investigations. As the gauge �xing is nonlinear, this requires some e�ort. Wehave 
al
ulated the FP operator for general gauge group SU(N). The result isfairly 
ompli
ated; 
onsiderable simpli�
ations only seem to arise for gauge groupSU(2). For this parti
ular 
ase we were able to show by quite general reasoningthat there must be Gribov 
opies. This �nding was 
on�rmed both for a simpletoy model and the full �eld theory. In the latter 
ase it turns out that the singularinstanton is a horizon 
on�guration in the MAG. The asso
iated zero modes ofthe FP operator have expli
itly been 
onstru
ted.21
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tionof u � R 
os � and v � R sin �. The dashed lines 
orrespond to ' = �=2, 3�=2,5�=2, ..., the full ones to ' = �, 2�, 3�, ..., with ' in
reasing from the outermost
urve towards the origin.Let us �nally dis
uss some possible physi
al 
onsequen
es of our �ndings. Thetwo pronoun
ed manifestations of the QCD va
uum are 
on�nement and spon-taneous breakdown of 
hiral symmetry. As stated above, the MAG is well suitedfor studying the former by 
he
king dual super
ondu
tivity whi
h is believedto be due to monopole 
ondensation [22, 23, 24℄. On the latti
e, 
ondensationof monopoles has been 
on�rmed for various Abelian gauges [42, 43, 44, 45℄.The monopole va
uum, however, does not provide a straightforward explanationof 
hiral symmetry breaking whi
h is due to instantons rather than monopoles[46, 47, 38℄. It is thus of 
on
eptual importan
e to relate these two 
omplemen-tary pi
tures of the va
uum to ea
h other. In 
omputer `experiments' 
orrelationsbetween instantons and monopoles have indeed been dete
ted [48, 49, 50, 51, 37,52, 53, 54, 55℄. The dynami
al origin of these 
orrelations, however, remains un-
lear, despite 
onsiderable e�orts to investigate this problem analyti
ally, in theMAG [56, 37, 57, 55℄, the Polyakov gauge [58, 59, 60, 61, 62℄ and other Abeliangauges [63, 64℄. For the MAG, the situation is as follows. There are basi
allythree known solutions whi
h represent �nite transformations from the singularinstanton Asing into another MAG 
on�guration. These are (i) the transforma-tion (5.3) to the regular gauge instanton Areg, (ii) the `hedgehog' transformationof Chernodub and Gubarev [56℄, and (iii) the family of solutions fA(R)g givenby Brower et al. [37℄, interpolating between Asing and Areg. Of these solutionsonly (ii) and (iii) indu
e magneti
 monopoles. Solution (ii) leads to an in�niteDira
 string, solution (iii) to a monopole loop of radius R. The asso
iated MAGfun
tional F diverges in 
ases (i) and (ii). In 
ase (iii) it is �nite, however su
hthat F [A(R)℄ > F [A(0)℄ � F [Asing℄. As a result one 
on
ludes that the instanton22



in the singular gauge de�nes the global minimum of F along the single instantonorbit. In other words, the MAG fun
tional does not support monopoles asso
i-ated with single instantons as these 
on�gurations give rise to a larger value ofF . This is a
tually 
onsistent with latti
e results. In [28, 26, 27℄ it was observedthat the number of monopoles de
reases the better the MAG is �xed, i.e. the
loser one approa
hes the absolute maximum of the latti
e MAG fun
tional. Dueto monopole dominan
e, the string tension also be
omes smaller. This e�e
tmight well be due to the suppression of monopole loops asso
iated with singleinstantons.In favor of the instanton{monopole 
orrelation, Brower et al. argue that apossible zero mode of FP 
an be interpreted as a kinemati
al instability of thesingular instanton against monopole formation. In the limit of small monopoleloops, R � �, their solution (eq. (31) in [37℄) indeed is a zero mode of FP. Itgoes like sin 2� � sin � 
os �, and thus, upon 
omparing with (5.35), is seen to
orrespond to M = 1. Therefore, from our general analysis in the pre
edingse
tion, it is not normalizable and thus should be dis
arded from the stabilityanalysis. It is probably not too surprising that singular gauge transformationslike the ones found in [37℄ lead to zero modes with diverging norm.The physi
al interpretation of the normalizable M = 1=2 zero mode given in(5.41) is not 
ompletely 
lear. We have 
he
ked that it is not due to any of theknown spa
e-time symmetries of the instanton. Contrary to our expe
tations, italso has nothing to do with the solution of Brower et al. In parti
ular, it doesnot indu
e monopole singularities. Furthermore, as stated in the last se
tion,the �nite transformation (5.42) even leads out of the MAG. All this 
on�rms theresult that in the MAG single instantons are not 
orrelated with monopoles. Oneis thus left with a possible 
orrelation between multi -instanton 
on�gurationsand monopoles. Numeri
ally, this has been observed [48, 49, 50, 51, 37, 52℄.In parti
ular, the instanton-anti-instanton (IA) system seems to be physi
allyinteresting. In this 
ase one �nds that both I and A are surrounded by a singlemonopole loop if the IA distan
e is large. Below a 
riti
al distan
e, however,the two loops merge into a single one [37℄ whi
h 
an be viewed as a `kinemati
alpre
ursor' to monopole per
olation. Of 
ourse, an analyti
 treatment of multi-instanton systems is quite involved, but maybe not hopeless. In this respe
tlet us just mention Rossi's old 
onstru
tion of the BPS monopole in terms of anin�nite number of instantons aligned along the time axis [65℄. We have performedsome preliminary investigations of the IA system whi
h show that the simple sumansatz, AIA = AI + AA is not in the MAG. The ansatz suggested by Yung [66℄,however, does ful�ll the di�erential MAG 
onditions (3.1), though the MAGfun
tional probably diverges. Further work in this dire
tion is surely ne
essary.
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s inJena.A Notations and ConventionsThe generators of SU(N) are hermitean matri
es denoted by T a with normal-ization tr(T aT b) = Æab=2. Any gauge �eld A = AaT a is de
omposed into a
omponent Ak in the Cartan subalgebra Hk � su(N) and a 
omponent A? inthe 
omplement, H?, su
h that su(N) = Hk �H? andA = Ak + A? = AiHi + A�E� : (A.1)The di�erent generators obey the 
ommutation relations [67℄[Hi; Hj℄ = 0 ; i = 1; : : : ; r ; (A.2)[Hi; E�℄ = �iE� ; (A.3)[E�; E�℄ = N��E�+� ; � + � 6= 0 ; (A.4)[E�; E��℄ = �iHi : (A.5)The rank of the Lie algebra is denoted by r, the �i are the roots, and N�� isa normalization the value of whi
h is not important for us. For SU(2), whi
hhas only two roots ��, the third 
ommutator (A.4) be
omes obsolete, and thesituation simpli�es 
onsiderably.The de
omposition (A.1) is orthogonal with respe
t to the s
alar produ
thA;Bi � Z ddx trAB ; (A.6)where A and B denote some arbitrary Lie algebra valued L2 fun
tions. Thus wehave hA?; Bki = 0 : (A.7)We will also use an alternative notation [31℄ where we simply divide the N2 � 1generators T a into 'neutral' and `
harged' ones by means of their supers
ripts,namely T a = (T a0 ; T �a) with T a0 2 Hk and T �a 2 H?. A gauge �eld thus isde
omposed as A� = Aa� T a = Aa0� T a0 + A�a� T �a : (A.8)The supers
ripts a0 and �a take on r and N2 � 1 � r values, respe
tively. ForSU(2), for example, we have a0 = 3 and �a 2 f1; 2g, while for SU(3), a0 2 f3; 8get
. 24



B Group-Theoreti
al IdentitiesIn this appendix we prove the two useful identities,U�1A�U = exp(i ad�)A� ; (B.1)iU�1��U = exp(i ad�)� 1i ad� ��� ; (B.2)whi
h hold for an arbitrary gauge transformation U = exp(�i�). In the above,we have denoted ad(A)B � [A;B℄.(B.1) is simply the de�nition of the adjoint representation of a Lie groupexpressed in terms of the adjoint representation of the Lie algebra [68℄,exp(i�)X exp(�i�) � Ad� exp(i�)�X = exp(i ad�)X ; (B.3)where X is an arbitrary Lie algebra element. Equation (B.2) is obtained fromthe identity i exp(is�)�� exp(�is�) = exp(is ad�)� 1i ad� ��� ; (B.4)for s = 1. To show (B.4) we �rst note that it is obviously true for s = 0.Di�erentiating with respe
t to s, we �nd��s l.h.s. = exp(is�)(���) exp(�is�) ;��sr.h.s. = exp(is ad�)��� = exp(is�)(���) exp(�is�) ; (B.5)where in the last step we have used (B.3). Upon inspe
tion we note that bothsides of (B.4) obey the same �rst order di�erential equation in s and initial
ondition at s = 0. Thus (B.4) is true for all s.C The Se
ond Derivative of the MAG Fun
-tionalIn this appendix we 
al
ulate the se
ond derivative of the MAG fun
tional givenby the last two terms in (2.14). First we evaluate (D��)?,(D��)? = ���? � i[Ak�; �?℄� i[A?� ; �?℄? � i[A?� ; �k℄= (D��?)? � i[A?� ; �k℄ : (C.1)This yields for the square term in (2.14),k(D��)?k2 = k(D��?)? � i [A?� ; �k℄k2= hD��?; (D��?)?i � 2i hD��?; [A?� ; �k℄i � h[A?� ; �k℄; [A?� ; �k℄i= �h�?; D�QD��?i+ 2i h�?; [A?� ; D��k℄i+ h�k; [A?� ; [A?� ; �k℄℄i+ 2i h�?; [D�A?� ; �k℄i : (C.2)25



In the last equality, we have made use of the `Leibniz rule',D�[B;C℄ = [D�B;C℄ + [B;D�C℄ ; (C.3)and de�ned a proje
tion Q onto the Cartan 
omplement, QA = A?. Note thatthe last term in (C.2) vanishes at the 
riti
al points (2.20). The se
ond term oforder �2 in (2.14) isihA?� ; [�;D��℄?i = �ih�; [A?� ; D��℄i= �ih�?; [A?� ; D��?℄i � ih�?; [A?� ; D��k℄i�ih�k; [A?� ; D��?℄i � ih�k; [A?� ; D��k℄i : (C.4)The third term 
an be reshu�ed and evaluated with the rule (C.3) yielding�ih�k; [A?� ; D��?℄i = �ih�?; [D�A?� ; �k℄i � ih�?; [A?� ; D��k℄i : (C.5)Plugging this into (C.4) and adding (C.2) we see that the terms whi
h mix �?and D��k 
an
el. The O(�2) term in F thus be
omesF (2)[A;�℄ � �h�?; D�QD��?i � i h�?; [A?� ; D��?℄i+ ih�?; [D�A?� ; �k℄i+h�k; [A?� ; [A?� ; �k℄℄i � i h�k; [A?� ; D��k℄i : (C.6)The two terms bilinear in �k add up to zero a

ording to�ih�k; [A?� ; (D� + i adA?� )(�k)℄i = �ih�k; [A?� ; Dk��k℄i = �ih�k; [A?� ; ���k℄i = 0 ;(C.7)where the last identity holds be
ause the 
ommutator is in the Cartan 
omple-ment H?. Expression (C.6) thus simpli�es toF (2)[A;�℄ = �h�?; D�QD��? � i[A?� ; D��?℄i+ ih�?; [D�A?� ; �k℄i� F (2)[A;�?℄ + ih�?; [D�A?� ; �k℄i : (C.8)Introdu
ing P = 1� Q, the terms quadrati
 in �? assume the following form,F (2)[A;�?℄ � �h�?; (D�Q+ i adA?� )(D��?)i= �h�?; (D�Q+ i adA?� )(P+ Q)(D��?)i= �h�?; Dk�QD��? + i adA?� PD��?i : (C.9)We thus need the proje
tionsPD��? = �iP[A?� ; �?℄ ; (C.10)QD��? = Dk��? � iQ[A?� ; �?℄ : (C.11)26



Using this and the identity h�?;QDk�Ai = h�?; Dk�Ai, (C.9) be
omesF (2)[A;�?℄ == �h�?; Dk�Dk��? � iDk�Q[A?� ; �?℄ + [A?� ;P[A?� ; �?℄℄i= �h�?; Dk�Dk��? � i[Dk�A?� ; �?℄� i[A?� ; Dk��? + iP[A?� ; �?℄℄i= �h�?; Dk�Dk��? � i[Dk�A?� ; �?℄� i[A?� ; Dk��? � iQ[A?� ; �?℄ + i[A?� ; �?℄℄i= �h�?; Dk�Dk��? � i[Dk�A?� ; �?℄� i[A?� ;QD��?℄ + [A?� ; [A?� ; �?℄℄i : (C.12)This is the result used in (2.21).D The Lapla
ian of the Toy ModelUsing matrix notation, the Lapla
ian �ab = Da
i D
bi of the toy model is given by� = 0BBBBB� �y2 � z2 � Y 2 � Z2 xy +XY xz +XZyx+ Y X �x2 � z2 �X2 � Z2 yz + Y Zzx + ZX zy + ZY �x2 � y2 �X2 � Y 2
1CCCCCA :(D.1)Denoting r � jxj and R � jXj, the determinant of the Lapla
ian be
omesdet� = �(r2 +R2) (x�X)2 � �(r2 +R2) d2 � 0 : (D.2)As is appropriate for a Lapla
ian, � is a negative-semide�nite operator. It haszero modes for redu
ible 
on�gurations only [14℄, whi
h for the 
ase at hand aregiven by the zero 
on�guration, x = X = 0 (with the full group SO(3) as itsstabilizer), and the 
ollinear 
on�gurations, x = �X, with U(1) stabilizer.The eigenvalues of �� are given byE0 = r2 +R2 ; (D.3)E� = 12(r2 +R2)� 12p(r2 � R2)2 + 4(x �X)2 : (D.4)It is reassuring to note that the eigenvalues and, a

ordingly, the determinant onlydepend on the gauge invariant s
alar produ
ts r2, R2 and x �X. At the origin,whi
h has the largest stabilizer, all eigenvalues vanish. For 
ollinear 
on�gura-tions with x �X = �rR, the eigenvalues are E� = 0 and E0 = E+ = r2 +R2, sothat there is a zero mode and the �rst `ex
ited' state is degenerate. For the hori-zon 
on�gurations of the MAG, having x �X = 0, r = R � �, one �nds E� = �2and E0 = 2�2. Thus, the groundstate be
omes degenerate. The latter fa
t 
or-responds to the gauge �xing degenera
ies of the Lapla
ian gauge [69, 70, 71℄ as27



parti
ularly dis
ussed in [70℄. As the MAG and the Lapla
ian gauge 
oin
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