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We investigate the Laplacian Abelian gauge on the sphere S* in the back-
ground of a single ‘t Hooft instanton. To this end we solve the eigenvalue
problem of the covariant Laplace operator in the adjoint representation. The
ground state wave function serves as an auxiliary Higgs field. We find that
the ground state is always degenerate and has nodes. Upon diagonalisation,
these zeros induce toplogical defects in the gauge potentials. The nature
of the defects crucially depends on the order of the zeros. For first-order
zeros one obtains magnetic monopoles. The generic defects, however, arise
from zeros of second order and are pointlike. Their topological invariant is
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the Laplacian gauge in the fundamental representation where similar defects
occur. Possible implications for the confinement scenario are discussed.
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1. Introduction

Although not derived from first principles, the dual superconductor scenario [1, 2, 3]
is widely believed to explain color confinement in QCD. To realise this idea, ‘t Hooft
suggested to use Abelian projections [4] which allow for a straightforward identification
of magnetic monopoles in pure Yang Mills theories. In this approach one fixes the gauge
group up to its maximal Abelian subgroup. This partial gauge fixing can be characterised
by a Higgs field ¢ in the adjoint representation, which becomes diagonal in the Abelian
gauge (AG)'. Magnetic monopoles arise as gauge fixing defects whenever ¢ vanishes. At
these points, the gauge transformation diagonalising ¢ becomes ambiguous. In the low
temperature phase of QCD these defects should condense and play the role of Cooper
pairs.

This picture is strongly supported by lattice calculations (for recent reviews, see
[5, 6]). In the continuum, however, Abelian gauges are not that well understood. Con-
siderable progress has only been made for the Polyakov Abelian gauge (PAG) [7, 8, 9,
10, 11, 12]. The defects occuring in the PAG are characterised by a winding number
S? — S2% of the (normalised) Higgs field, n = ¢/|¢|, or equivalently by the magnetic
charge ¢ of the Abelian gauge field. A relation between monopole charge ¢ and instan-
ton number v[A] has been established which enforces the presence of monopoles in any
non-trivial instanton sector (v # 0).

For the maximally Abelian gauge (MAG) [4, 13, 14], there are only few analytical
results. It is known that configurations with monopole lines [15] and monopole loops [16]
are in this gauge. They are, however, strongly suppressed by the gauge fixing functional,
at least in the backgound of single instantons. Recently, it has been explicitly shown
that the continuum MAG suffers from a Gribov problem [17] as expected from Singer’s
theorem [18]: the ‘t Hooft instanton in the singular gauge is located on the Gribov
horizon of the MAG [19].

In order to circumvent the Gribov (‘spin glass’) problem of the MAG on the lattice,
the Laplacian Abelian gauge (LAG) has been proposed as a superior alternative [20,
21, 22]|. Some first applications of this idea in the context of lattice gauge theory have
appeared only recently [23, 24]. Analytically, however, it seems that only one result has
been obtained so far: by comparing the behaviour of the gauge fixing functionals one
finds [20] that in the LAG magnetic degrees of freedom are less suppressed than in the
MAG. Some deeper understanding of this Abelian gauge is obviously desirable.

This paper presents our first investigation of the continuum Laplacian Abelian gauge.
In order to have a large amount of symmetry, we consider (the orbit of) a single 't Hooft
instanton. As we shall see, the LAG is somewhat ill-defined on infinite-volume manifolds,
and thus we compactify space to a sphere S*. For a special choice of the compactification
radius, the symmetry is enhanced to SO(5) so that the (gauge fixing) problem can be
exactly solved. For other radii, symmetry arguments still provide some insights. Going
back to infinite volume, we find that the singular gauge instanton and global SU(2)

'In the following we will distinguish between the Abelian gauge, which is a partial gauge fixing, and
the Abelian projections, where one neglects the off-diagonal part of the gauge field after gauge fixing.



rotations thereof lie in the LAG. Accordingly, the instanton in the singular gauge is a
horizon configuration, as was the case for the MAG.

Of particular interest is the question how the submanifolds of vanishing Higgs field
look like. It has been argued that, generically, these are loops, i.e. closed monopole
worldlines, having codimension three?. The instanton number can be recovered from
these loops for general Higgs fields [25, 26]. Tt is related to the winding number S? — S2.
While the same is true for the LAG, we find that the Higgs field associated with a single
't Hooft instanton in addition induces pointlike defects, i.e. events localised in space-time.
The corresponding topological invariant is the Hopf index S* — S2.

This paper is organised as follows: First, in Section 2, we define the LAG and discuss
its properties. Single 't Hooft instantons on S* are introduced in Section 3. In Section 4
we diagonalize the covariant Laplacian in the adjoint representation. A classification
of its ground state wave functions, which serve as auxiliary Higgs fields, is given in
Section 5. A brief discussion of the Laplacian gauge (corresponding to the fundamental
representation) is added in Section 6. Finally, we conclude with some remarks on the
physical implications of our findings.

2. The Laplacian Abelian gauge

The Laplacian Abelian gauge on R* is defined by minimising the Higgs kinetic energy
[21, 22],

FinclA, 6] = % / (D, ¢°D, ¢* — E¢*¢") d'z, Dy =, —i[A,,.. ], (1)

with respect to the auxiliary Higgs field ¢ in the adjoint representation. The energy
variable F is a Lagrange multiplier demanding that ¢ is square integrable, f prprdis <
00. The field configuration ¢ minimising Fy g can be viewed as the ground state of the
covariant Laplacian,

—Dj[Alp = E ¢, (2)

where E is the ground state energy. Obviously, (2) represents a four dimensional
Schrodinger problem with a potential essentially given by AZ.
The gauge transformation €2 diagonalising ¢ puts the gauge field A into the LAG,

Apac = A4, where %= Q719 Q ~ o3. (3)

(2 may be ambiguous for two reasons. First, if ¢ has zeros and second, if the groundstate
is degenerate. One can use node and uniqueness theorems to analyse these issues [27].
On a space-time with infinite volume, the LAG is not straightforwardly defined for
the following reasons. Since —DZ[A] is a non-negative operator we have £ > 0. More-
over, whenever the gauge field A tends to zero at infinity, there are scattering states

2as one has to solve three equations on a four-dimensional manifold



and the continuous spectrum always starts from zero. Scattering states, however, are
not normalisable. Thus, for a generic background (including the instantons to be stud-
ied), one does not expect that the covariant Laplacian —DZ[A] will have a normalisable
ground state. The situation is quite analogous to the quantum mechanics of the ordinary
‘Laplacian’ d? /dz?* on the real line. We avoid this problem by considering gauge fields on
the four-sphere S* which leads to a purely discrete spectrum of the associated covariant
Laplacian.

3. Single instanton on the sphere

In the following we consider the single 't Hooft instanton (in singular and regular gauge)
on a sphere S* of radius R. On Euclidean R* the configurations read,

2
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Azg — ’I]uyaj'ymo—a, Aﬂeg = nuyaj‘ymga, rT = .Tua?u y (4)
using the conventions of [28]. The configurations (4) are related by the gauge transfor-
mation

h = 2415 + i%40,, T, =x,/T, (5)

which also relates the solutions ¢ of (2) in these two backgrounds, ¢™& = h ¢ hl.

We benefit from the facts that classical Yang-Mills theories are conformally invari-
ant and that the sphere S* is conformally equivalent to compactified Euclidean space
R*. If we use conformal coordinates x, on the sphere, which are simply the Cartesian
coordinates of the point stereographically projected onto R*, the metric is conformally
flat,

R -

() = €0 = s O

Field configurations minimising the Yang Mills action on R* are also minimising con-
figurations on the sphere, if the Cartesian coordinates are substituted by conformal
coordinates. Thus, we can simply use expressions (4) for the instantons on the sphere.

What about the symmetry of these configurations? It is known [29] that on R*
they are invariant under SO(4) rotations and a combination of translations and special
conformal transformations,

0z, = W’ +2c-xx,/p—cu(z®+ p*)/p, (7)

up to a compensating gauge transformation, 04, = D,0, with

a 1 v, .a a v
0 = iw“ N — 2¢'n5,@ (reg. gauge). (8)



Together these transformations form (a non-linear representation of) the group SO(5).
This symmetry is preserved on S* when the radius R of S* coincides with the instanton
size p [30]. To illustrate this point, we note that the gauge invariant Lagrangian density,

Vo a e 12[)4 (T2 + R2)4
L~ g”pg FuquU = Rs (T2 + p2)4 ) (9)

is constant on S* (and thus SO(5)-invariant) only if R = p. For R # p the explicit
appearance of r, which is only SO(4)-invariant, breaks SO(5) down to SO(4).

Since compensating gauge transformations do not spoil equation (2), the eigenfunc-
tions ¢ furnish representations of SO(5) and SO(4), respectively.

4. Solutions of the covariant Laplacian

Generalising equations (1) and (2) to curvilinear coordinates, we define the LAG on the
sphere S* via the functional

1
Fucld ol = 5 [ (Du'D,atg - Bo'o) Vd'a, (10)

where g = exp(2ap) denotes the determinant of the metric (6). The equation of motion
is given in terms of the (gauge covariant) Laplace-Beltrami operator,

1
——D "D, = Eo¢. 11

To proceed we make use of the symmetry and separate into angular and radial equa-
tions. The angular part is expressed in terms of angular momenta derived from the
decomposition so(4) = su(2) @ su(2),

’I:_a — Z a \7
M, = —Enwxuay, M?* = m(m+1), N,= —Enuylﬂuau; N? = nn+1).  (12)

In this representation, the two Casimirs coincide, M? = N2. Their eigenvalues are

half-integer, m = n € {0, 1/2, 1, 3/2,...}. The generators for isospin ¢ = 1 are
(Ta)bc = 1€pge, f2 — t(t + 1) =2. (13)

The radial equations on the sphere differ from those in Euclidean space by a metric
factor, exp(—ag), and a dilatation term, r0,,

3. AM?  4pA(J2—M?)  4T?p? 4r
—ar() |_g2 _ g _ 0, | ¢ = B¢ (14
‘ [ roFo T r2(r2 + p?) (r2 + p?)? MRS ¢ ¢ (14)
3. AN?  4(J2—N?) 4T Ay
,aR(r) —82 . —8 o a reg — E reg 15
‘ [ r ot T (r2 4 p?) (r2+p2)2+r2+R2r ¢ ¢ (15)




In the above, we have introduced the conserved angular momentum J (‘spin from
isospin’, [31, 32, 33]),

where L denotes M or N , respectively. Replacing angular momenta by their eigenvalues
and exchanging j — n, m — j, equation (14) turns into (15). This amounts exactly to
the action of the gauge transformations h from (5).

The symmetry considerations above suggest the following form of the ground state,

¢(x) = Yi(@)e(r) , (17)

where the Y’s denote the spherical harmonics on S? (see Appendix A). Note that there
are two competing angular momentum terms in (14) and (15), so that it is not obvious
in which angular momentum sector the groundstate will be. By simply looking at the
radial potentials in the different sectors, we can only state the following bound on the
energy in an arbitrary sector,

Egy > min{Eqqy, Ea/21/2), Eae} - (18)

The quantum numbers of the ground state candidates on the r.h.s. correspond to the
representations (0,1), (1/2, 1/2) and (1,0) of su(2); @ su(2), and thus have degeneracies
3, 4 and 3, respectively. Note that the singlet (0, 0) is excluded by the selection rules for
t =1, see (16). Accordingly, for any of the possible choices in (18), the groundstate will
be degenerate. The spherical harmonics for the three cases are listed in Appendix A.

At this point two further remarks are in order: First, the radial part ¢ shows power
law behaviour in r, both for small and large r, independent of R and p,

©8(r — 0) = r¥ | OB (r — 00) = r ™ (19)
O (r — 0) — ™", ©"8(r — 00) = 7Y, (20)

Second, upon substituting ¢ = (r? + R?) - x and A = ER? + 2, one can absorb the
dilatation term,

3 AM?  4p?(J% — M? 4T2 p? ANR?
—? - 20, + p ) _ rF__ XE=0,  (21)
r T2 T2(T2 + pZ) (T2 + p2)2 (7"2 _|_ RZ)Z
3 AN?  4(J? — N? 4T2 p? ANR?
L 3g A A ) — X®=0. (22
ooy r2 (rz2 4+ p?) (r24p?)2  (r?2+ R?)?

Setting R = p, the differential equation (21) coincides with the one considered by ’t Hooft
in his analysis of the fluctuations around instantons [34]. The eigenvalues are \; =
(k+j+1+1—t)(k+j+1+1t+2). The lowest energy corresponds to k& = 0 and
j + 1 =1, consistent with the three possible groundstates of (18). Together they form
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Figure 1: Energy of the lowest-lying states in the relevant angular momentum sectors
as functions of the compactification radius R (singular gauge). At the point
R = p the two triplets and the quadruplet meet, while for R — oo the triplet
(1,0) has lowest energy. For symmetry reasons we expect the dashed line to
stay inbetween the other two for R # p.

the 10-dimensional adjoint representation® of SO(5) [35]. The value of the ground state
energy is £ = 2/R%.
The radial eigenfunctions are rational,

r/R)% r/R)>%

o) = R\ sty = g U (23)
and obey the asymptotics (19) and (20), respectively. In accordance with the node
theorem for the one-dimensional radial equation, the lowest-lying states have no zeros
apart from r = 0 and r = oo.

For the cases R > p and R < p we cannot solve the radial equation analytically.
However, we are able to prove the following statements:

For the singular gauge and R > p, the triplet (1,0) has lower energy than the
triplet (0,1). For R < p, the situation is vice versa with the triplet (0,1) having lower
energy. Analogous statements hold for the regular gauge (see Fig. 1). These results are
a straightforward consequence of the Feynman-Hellmann theorem (cf. Appendix B).

For the quadruplet (1/2, 1/2), the situation is somewhat more complicated. Using
perturbation theory in § = p? — R? (see Appendix B), one finds that these states have
energy inbetween the two disjoint triplet states. For symmetry reasons we do not expect
the spectral flow E(;/2,1/2)(R) to intersect the others for some R # p (see Fig. 1).

Finally, the node theorem again guarantees that ¢ vanishes only at = 0 and r = o0,
in accordance with the asymptotics (19,20).

3Using the conventions of [35], this representation is labelled by the integers {ni,ns} = {0,2} which
are the coefficients of the highest weight when expanded in terms of the fundamental weights.
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Figure 2: In the bundle picture on S* there are two gauge and Higgs fields, which are
smoothly defined on their domains (hemispheres). In the transition region,
they are related by the gauge transformation (transition function) h. Note
that the four-dimensional radius can be expressed in terms of the azimuthal

angle 6, r = Rcot(6/2).

5. Properties of the solutions

Before characterising the zeros of the solutions ¢, let us point out the following subtlety:
Near the origin, the (0,1) wave functions (Higgs fields) in the singular gauge are bilinear
in 2, and thus discontinuous there. They inherit this singularity from the instanton
field*. Nevertheless, the wave functions are square integrable on S* due to the measure
factor 7. The same, of course, is true for the regular gauge states near infinity. In
order to work with smooth Higgs fields, it is appropriate to use the principal fibre bundle
picture. This can be viewed as a non-Abelian S*-analogue of the Wu-Yang construction
for the Dirac monopole on S? [36]. The A-field in the regular gauge represents the
connection smoothly® on the southern hemisphere (the chart containing the origin), while
the A-field in the singular gauge does the same on the northern hemisphere (the chart
containing infinity). In the transition region formed by the equatorial strip displayed in
Fig. 2, the gauge transformation h from (5) interpolates between the two. For simplicity
we will retract the transition region to a single three-sphere S? of fixed four-dimensional
radius r (fixed azimuthal angle ).

The Higgs field is a section in an associated fibre bundle: on each of the two charts
there is a Higgs field. In the transition region, the same transition function h relates
the two (see Fig. 2). Our results obtained so far can immediately be carried over to the
bundle picture, since, for every solution in the singular gauge, there is a corresponding
gauge transformed ‘mirror’ solution in the regular gauge with the same energy (and
vice versa). Moreover, the angular momenta are interchanged by A in such a way that

Ywhich results in the asymptotics ¢(r) ~ r°, see (19).
5to be precise: The A-fields are the pullbacks of the connection under smooth sections of the bundle.



the radial wavefunctions (23) are smooothly defined on the whole of S*. The complete
eigenfunctions ¢ are continuous in their respective charts but ‘jump’ (in their isospin
direction) due to the action of the transition function A in the transition region.

Along these lines, let us discuss the ground state in the (1/2,1/2) sector, which has
zeros localised on loops. To simplify the discussion, we choose the fourth of the spherical
harmonics in (37) or (38), for which

% (x) = ? L = "8 (x 24
) = | e | =), (24)
T3

since h from (5) commutes with ¢*. This Higgs field ¢ is of hedgehog type. Thus,
its diagonalisation induces a Dirac monopole at £ = 0 and a Dirac string along the
negative 3-axis. The world-line of the monopole is the great circle in 4-direction (which
degenerates to the 4-axis in the infinite-volume limit). For the other three states in the
multiplet the same holds true upon permutation of the coordinates.

It is well-known [37] that the monopole charge is characterised by the winding number
of the normalised Higgs field n = ¢/|¢|, explicitly given by

n¢(x) = | zo | /|Z| =n"8(z). (25)

The n-field is singular at £ = 0, where ¢ vanishes. This singularity has the following
topological characterisation. Consider the two-sphere, S?: ¥ = const., surrounding the
singularity. There, the n-field provides a smooth mapping, S* — S? = SU(2)/U(1),
labelled by an integer, the winding number, which in our case is just one.

The LAG Higgs field also serves as an illustration of the relation between instanton
number and monopole charge recently proposed in [26]. We note that in the (1/2, 1/2)
sector the two Higgs fields n®® and n™® coincide on the whole of S*, their singularities
being located at two points p; = (6, —r), pg = (6, r) in the retracted transition region
S3 (see Fig. 3). Consider the submanifold S? \ {pi, po} = S? X I;5. In terms of
the polar angle ¥ € (0,7) on the three-sphere, the intervall I}, is parametrised by
xy =rcos? € (—r,r), while the two-spheres are given by |Z| = rsin 9.

We already know that the magnetic charge measured on the two-sphere is ¢ = 1. If
we express the transition function A in terms of n and v,

h = exp(idno,) , (26)

the flux® @ = [, d(29) is easily computed as

@:2/ di = 2 (27)
0

Snotice the difference o, vs. 0,/2 as compared to [26]
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Figure 3: Submanifolds of S* on which the ground state wave function vanishes so that
the normalised Higgs field becomes singular. The sector (1/2,1/2) gives rise to
monopole loops C, while the generic sectors (0,1) and (1,0) lead to pointlike
singularities with Hopf index as topological invariant.

We thus recover the instanton number,

)
Al=qg—=1. 28
A =g (28)
Note that for linear combinations of states from different multiplets the monopole loops

become tilted. As an example, take a combination of the sectors (1,0) and (1/2, 1/2),

1 1

)= | )

re 1 re: re
P = —= (¢(fo> — D121/

T3

This Higgs field vanishes for z, = (0,0, R, z4), a set of zeros which is still a great circle
but does no longer include the poles.

As we have already argued, the quadruplet states (1/2, 1/2) will occur as ground
states only for R = p. In the general case, R # p, the ground states will be the triplet
states (0,1) and (1,0), which have isolated, pointlike zeros. Let us specialise to the
physical region R > p which includes the infinite-volume limit, R — oo. (For R < p one
has to perform the appropriate ‘mirror’ transformation.) We know that for the southern
hemisphere (regular gauge) and for the northern hemisphere (singular gauge) we have
to take (4,1) = (0,1) and (j,[) = (1, 0), respectively, since these multiplets consist of the
lowest-lying states. If we choose the third of the spherical harmonics in (36) and (40),
the normalised Higgs field is given by

2(2123 — ToTy)
n'8(x) = 2(ZoZ3 + T124) southern hem. 3 0,
_i.2 _ i.2 _|_ ~2 + ~2
TL(ZL') — O 1 2 3 4 (30)
n¢(x)=1| 0 northern hem. 3 oo .
1
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n'8 is singular at the origin r = 0 and closely resembles the standard Hopf map [38, 39].
For any finite radius r # 0, it provides a smooth mapping S? . ., — S? = SU(2)/U(1)
with Hopf index one [40].

As a result, we have obtained the simplest realisation of the connection between
instanton number and Hopf indices derived in [25]: The (signed) sum of all Hopf indices
of n around its singularities equals the instanton number v. This statement is analogous
to results from residue calculus where the singularities of n (the zeros of ¢) are replaced
by the poles of a meromorphic function: The (signed) sum of all residues equals the
residue at infinity. Like the magnetic monopoles in the PAG, n must possess singularities
in any non-trivial instanton sector (v # 0). In addition, pairs of singularities may occur
which do not contribute to the instanton number.

Coming back to the LAG, the remaining task is to diagonalise the ground-state Higgs
field ¢(x). On the northern hemisphere, where ¢ is already diagonal, there is nothing to
be done. No gauge transformation is needed and the gauge field remains in the singular
gauge. On the southern hemisphere, we basically have to diagonalise the standard Hopf
map. This is achieved by the gauge transformation h, which transforms the gauge field
A from regular to singular gauge. Independent of where we choose the transition region,
the LAG-fized configuration on the orbit of the single t Hooft instanton s in the singular
gauge (for R > p). Notice that the gauge fixed configuration inherits a singularity only
at the point where n is singular; there are no further ‘Dirac strings’.

If we choose an arbitrary linear combination of the triplet spherical harmonics, the di-
agonalising gauge transformation includes an additional global SU(2) rotation. Together
with A%, all its global rotations are located on the gauge fixing hypersurface defined by
the LAG. We thus find a whole S? of gauge-equivalent configurations (Gribov copies).

6. The Laplacian gauge

The importance of pointlike defects (as compared to loops) is corroborated by their
occurence in a closely related gauge, the Laplacian gauge (LG)”. The Laplacian gauge
[41, 42, 43, 44] is defined via a Higgs field ¢ in the fundamental representation, being
the ground state of the covariant Laplacian,

~D2[Alq=Eq, D,=0,—iA,. (31)

It is a complete gauge fixing (up to defects) if the two-component complex vector ¢ is
rotated into a fixed isospin direction and made real,

Y= 1l¢= <|g|> , Aq = 4. (32)

Our formalism is easily adapted to this gauge by choosing the isospin ¢ = 1/2 representa-
tion in terms of the Pauli matrices T, = 0,/2. For R = p one again has to minimise j+1,
whence (j,1) = (0,1/2) or (j,1) = (1/2,0). As before, these states form an irreducible

"The authors thank P. de Forcrand for drawing their attention to this issue.
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representation® of SO(5). For R > p and the singular gauge, the state (1/2,0) has lowest
energy (by the same Feynman-Hellmann argument) so that the singular gauge instanton
again satisfies the gauge condition. The relevant spherical harmonics are

re 1 0

Yojan = {(0)(1)} .
1 Ty + ik 0 Ty + i

reg B . 4 3 _ 2 E

Yorp = {h<0>_<—:%2+i:%1)’h(1>_<i"4—73553>}’ (34

which are nonzero throughout S*. In analogy with (20), we have the following behaviour
near the origin, ¢(r) ~ r** = r for (j, n) = (0, 1/2). Thus, the modulus of the Higgs field
is proportional to the four-dimensional distance r from the origin (where the topological
charge of the instanton is concentrated). This perfectly agrees with latest results from
lattice simulations [45].

Again, a topological description is possible. On a three-sphere surrounding the origin,
one can define n = ¢/|q| : S* — S* with integer winding number. In the case above,
the n-field simply reduces to the identity map,

nEYz( T4t il ) (35)

—Tg + 12

the winding number £ of which coincides with the instanton number, k£ = v = 1.

7. Conclusions

We have investigated the Laplacian Abelian gauge on the sphere S* in the background
of a single 't Hooft instanton. This amounts to solving the eigenvalue problem for
the covariant Laplacian in the adjoint representation. For any sphere radius R we
have determined the angular dependence and isospin structure of the ground state wave
functions (Higgs fields). Diagonalisation of the latter shows that the instanton in the
singular gauge is in the LAG if R is larger than the instanton size p; for the regular
gauge the same is true for R < p. The gauge fixing procedure thus selects one of the
two instanton configurations, although, in a bundle picture, they represent the same
connection.

It is interesting to note that the situation for the MAG on the sphere is similar:
Singular and regular gauge instantons both satisfy the differential MAG condition, but
the MAG functional Fyjag picks out one of them in the very same way as Fyag: for R > p
(R < p) the singular (regular) gauge instanton minimizes Fyjac (see Appendix C). It is,
however, a highly nontrivial task to check whether a given configuration, say the ‘t Hooft
instanton, really corresponds to the absolute minimum along its orbit. In general, one
can never be sure that there is no other gauge equivalent configuration that lowers the
functional even further.

8the four-dimensional spinor representation labelled by {ni,ns} = {0,1} in [35].
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The LAG, on the other hand, has the big advantage that the ground state (and thus
the absolute minimum of Fjag) can be found explicitly. We have done so for R = p and
have given qualitative arguments concerning the angular and radial dependence for the
case R # p. Apart from the degeneracies and the zeros (which we have under control),
there are no further ambiguities.

We have found a whole S? of gauge equivalent configurations (obtained by global
SU(2) rotations of A% similar to what has been observed in [46]) located on the gauge
fixing hypersurface. These are Gribov copies of each other, generated by both finite and
infinitesimal gauge transformations. The latter give rise to three flat directions in the
configuration space along which the gauge fixing functional does not change. Only one
of these directions is covered by the residual U(1) freedom. The other two are related
to zero modes of the (coset part of the) Faddeev-Popov operator. We do see no reason
why these Gribov ambiguities should not be present on the lattice. In contrast to the
MAG (and related gauges), however, where gauge fixing is a “numerical problem of non-
polynomial complexity” [42], there are no additional lattice Gribov copies beyond the
denumerable ones we have encountered in the continuum. This clearly makes the LAG
a superior gauge.

Once a ground states is chosen for diagonalisation, additional obstructions occur in
terms of gauge fixing defects caused by the nodes of the possible ground states. These are
the well-known source for magnetic monopoles in Abelian gauges. We have shown that
these defects must be present whenever the LAG background is in a non-trivial instanton
sector. Monopoles, however, only arise for a particular sphere radius R = p and for a
particular choice of ground states. The generic defects are localised in space-time (with
codimension 4). Their topological invariant is the Hopf index S* — S?. Contrary to
monopoles they have finite action even in the infinite volume limit. One may speculate
that these defects condense in the low temperature phase of QCD, possibly giving rise
to a new confinement mechanism. In view of the results presented in [26], they may
as well be related to the solitonic excitations observed in recent effective theories for
confinement [47, 48, 49, 50].

As we have calculated the LAG Higgs field only for a highly symmetric background,
the question arises which features are generic also for other backgrounds. The degeneracy
of the ground state is mainly due to the matrix structure of the ‘Hamiltonian’. For a
single instanton background, this was induced by nonvanishing angular momentum (like
in quantum mechanical problems with spin). This should be contrasted with the case of
a trivial background. For the vacuum, A = 0, the ground state obviously has a threefold
degeneracy given by the canonical dreibein é* in isospace. The associated constant wave
functions do not have any zeros. We therefore conjecture that Singer’s obstruction [18]
against complete gauge fixing is reflected in the nodes rather than in the degeneracy of
the ground state. To completely settle this issue, a full topological classification of Higgs
field zeros would clearly be helpful.

A natural next step will be to analyse higher instanton sectors and instanton-anti-
instanton pairs. The existence of fermionic zero modes in the background of Hopf defects
is currently being investigated (for related work see [51] and references therein). Such
zero modes may in the end lead to a relation between confinement and chiral symmetry

13



breaking. Finally, the dynamical role of Hopf defects in QCD has to be analysed.
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A. Spherical harmonics

In the following we list the eigenfunctions of J?% and L? for the three cases of interest
(suppressing the two magnetic quantum numbers labelling the vectors in each multiplet).

(i) For (j,1) = (1,0) the spherical harmonics are given by the canonical dreibein é* of
constant unit vectors,

1 0 0
vy == o o) o) (30
0 0 1

(ii) For (j,1) = (1/2,1/2) there are four eigenfunctions, all linear in &,

T4 —Z3 —Zy T
sg _ A A~ ~ A~
)/(1/271/2) - T3 ) Ty ) I ) o) ) (37)
Ty —I —Z4 T3
—T4 —I3 —Z9 T
reg o A A ~ ~
}/7(1/2’1/2) = T3 y —XT4 y T y T . (38)
Ty —I T4 T3

The following remarks are in order. Obviously, Y is obtained from Y*® upon exchang-
ing &, — —1y. Tjhis is a.ch.ieved via conjugation Wi.th h, Yg?'g:1/2,m:1/2) ~ hf Y(;'e:g1/2,n:1_/2) h.
Note that the ‘intertwining’ gauge transformation h is only defined up to rotations
around the direction of the Higgs field ¢ in isospace. It is convenient to combine the
members of each (1/2, 1/2) quadruplet into a ‘four-vector’ Y,. Introducing the basis
matrices o, = (ioc?, 1), one finds the relation Y;* = 0, Y8 O'L forany p=1,...,4. Any
component Y, (%) vanishes, if #, = £é,, the ¢, denoting the canonical basis of R*. This
means that the zeros of the quadruplet eigenfunctions are given by two points located
on a three-sphere with fixed radius r (see Fig. 3).

(iii) For the case (j,1) = (0, 1) one has three basic eigenfunctions, now bilinear in z,,

12— 32 — 22+ 22 2(2129 — T374) 2(21Z3 + T90y)
Y, = Uiy + a32y) || a2+ 22— a2+ 22 |, 2(dods — 214y) (39)
2(%183 — Bo7y) 2(&oZs + &144) —i7 — @34+ 13+ 25
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Zi‘% — ZL‘% - .'173 + ZL‘4 2(.’2‘1.’2‘2 + 12'3.'1?4) 2(:2‘1.'2‘3 — .'2‘211?4)
Yor = (8189 — T32y) |, | -2+ 23— 22+ 122 ], 2(Zoly + &144) (40)
2(21T3 + T90y) 2(Z9T3 — &104) —? — &3+ 2% + 23

Again, the two sets of eigenfunctions are related via &, — —24 and can most easily be
obtained from case (i) by conjugation with h,

Sg Ty reg reg sg
Y(J =0,m= 1)_hY(J Ln= O)h’ Y(j=0,n=1)_hY(J 1, m=0)

A, (41)

which, in particular, implies that they never vanish.

B. Feynman-Hellmann theorem and perturbation
theory

In order to obtain information when R # p, we keep R fixed and vary p. We restrict
ourselves to the singular gauge. The p-dependent part of (14) contains two terms,

\(r) = ge—or(m) |2 - : (42)

p(j,m

The p?-dependence of the ground state energy is determined by the Feynman-Hellmann
theorem,

0

0 avp
a7 _a—p?<¢|H|¢> <| |¢> (pl5519). (43)

For the three angular momentum sectors of interest (¢t = 1) we have,

OV, oy (1) _ (r* + R?)*>  —4r? -0
8,2 RY (124 p2)° ’
BVS E o, 1/2)( r) - (r2 + R?)22(p? — r?) (44
Op? B RY  (r2 4 p?)3
OV G0y (1) _ (r? + R%)?  4p* -0
8,2 RY (124 p2)? :

According to (43), these functions have to be integrated with the positive factor |¢|*\/g.
Therefore, the ground state energies in the first and the third sector are monotonic in
p?, their slopes satisfying

0 0

As the energies meet at R = p (‘level crossing’) we conclude,

E(Sgyl) < E(Slg,o) for R < p, E(Sgyl) > E(Slg,o) for R> p. (46)
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This explains the behaviour of the full lines in Fig. 1.

For the sector (1/2,1/2) there is no such simple argument. Still, we can compute
the slope of E(p*) at the point p = R by simply inserting the known function ¢. This
amounts to ordinary perturbation theory in § = p? — R?,

OH
H(p*)=H(=0)+0 o7 + O(6%) = Hy + Hpers, - (47)
0=0

In this way we find a vanishing slope for the sector (1/2,1/2),

0 © (1-1?)
sg 51,
op? Bl g1/ . ~ /0 EEE r°dr =0. (48)

The lowest-lying state of this sector is thus pinched between the other two, at least for
R = p (cf. Fig. 1).

C. The MAG on the sphere

In [16] it has been shown that, due to their particular Lorentz and isospin structure,
both A% and A™8 are in the MAG when defined on R*. This still holds true on S,
where the gauge fixing functional has the values,

2
Fuacld] = / > ATAT g™ /g d'e
a=1

_ 16m?RYR* — 2R*p* In(R?/p*) — p'] e for A%
- p2 (RZ _ p2)3 RZ/pZ for Ares

Obviously, Fyag[A™] = (R?/p*) Fuacl[A®™], so that for R > p (R < p) the singular
(regular) gauge is singled out.

(49)

References

[1] G. ‘t Hooft, in: High Energy Physics, Proceedings of the EPS International Con-
ference, Palermo 1975, A. Zichichi, ed., Editrice Compositori, Bologna 1976.

2] S. Mandelstam, Phys. Rep. 23, 245 (1976).
[3] G. Parisi, Phys. Rev. D11, 970 (1975).
[4] G. ‘t Hooft, Nucl. Phys. B190, 455 (1981).

[5] M. N. Chernodub and M. 1. Polikarpov, in ‘Confinement, Duality, and Nonpertur-
bative Aspects of QCD’, P. van Baal, ed., NATO ASI Series, Plenum Press, New
York, 1998.

16



6] R. W. Haymaker, Phys. Rept. 315, 153 (1999), hep-lat/9809004.

[7] N. Weiss, Phys. Rev. D24, 475 (1981).

8] H. Reinhardt, Nucl. Phys. B503, 505 (1997), hep-th/9702049.

9] O. Jahn and F. Lenz, Phys. Rev. D58, 085006 (1998), hep-th/9803177.

[10] C. Ford, U. G. Mitreuter, T. Tok, A. Wipf, and J. M. Pawlowski, Ann. Phys. (N.Y".)
269, 26 (1998), hep-th/9802191.

[11] C. Ford, T. Tok, and A. Wipf, Nucl. Phys. B548, 585 (1999), hep-th/9809209.
[12] C. Ford, T. Tok, and A. Wipf, Phys. Lett. B456, 155 (1999), hep-th/9811248.

[13] A. S. Kronfeld, M. L. Laursen, G. Schierholz, and U.-J. Wiese, Phys. Lett B198,
516 (1987).

[14] A. S. Kronfeld, G. Schierholz, and U.-J. Wiese, Nucl. Phys. B293, 461 (1987).
[15] M. N. Chernodub and F. V. Gubarev, JETP Lett. 62, 100 (1995), hep-th/9506026.

[16] R. C. Brower, K. N. Orginos, and C.-I. Tan, Phys. Rev. D55, 6313 (1997), hep-
th/9610101.

[17] V. Gribov, Nucl. Phys. B139, 1 (1978).
[18] I. M. Singer, Commun. Math. Phys. 60, 7 (1978).

[19] F. Bruckmann, T. Heinzl, T. Tok, and A. Wipf, Nucl. Phys. B (2000), in press,
hep-th/0001175.

[20] A. J. van der Sijs, Nucl. Phys. (Proc. Suppl.) 53, 535 (1997), hep-lat/9608041.
[21] A. J. van der Sijs, Prog. Theor. Phys. Suppl. 131, 149 (1998), hep-lat/9803001.
[22] A. J. van der Sijs, Nucl. Phys. (Proc. Suppl.) 73, 548 (1999), hep-lat/9809126.

[23] C. Alexandrou, M. D’Elia, and P. de Forcrand, The Relevance of Center Vortices,
hep-lat/9907028.

[24] C. Alexandrou, P. de Forcrand, and M. D’Elia, The Role of Center Vortices in
QCD, hep-lat/9909005.

[25] O. Jahn, J. Phys. A33, 2997 (2000), hep-th/9909004.

[26] T. Tsurumaru, I. Tsutsui, and A. Fujii, Instantons, Monopoles and the Flux Quan-
tization in the Faddeev-Niemi Decomposition, hep-th/0005064.

[27] M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. 4, Analysis
of Operators (Academic Press, Boston, 1978).

17



28]
[29]
[30]
[31]
[32]
33]
[34]
[35]
[36]
[37]
[38]
[39]
[40]
[41]
[42]
[43]
[44]
[45]
[46]

[47]
[48]
[49]
[50]
[51]

T. Schifer and E. V. Shuryak, Rev. Mod. Phys. 70, 323 (1998), hep-ph/9610451.
R. Jackiw, Acta Phys. Austr. Suppl. 22, 383 (1980).

R. Jackiw and C. Rebbi, Phys. Rev. D14, 517 (1976).

R. Jackiw and C. Rebbi, Phys. Rev. Lett. 36, 1116 (1976).

P. Hasenfratz and G. 't Hooft, Phys. Rev. Lett. 36, 1119 (1976).

A. Goldhaber, Phys. Rev. Lett. 36, 1122 (1976).

G. ‘t Hooft, Phys. Rev. D14, 3432 (1976).

J.F. Cornwell, Group Theory in Physics, Vol. 2 (Academic Press, London, 1984).
T.T. Wu and C.N. Yang, Phys. Rev. 12, 3854 (1975).

J. Arafune, P.G.O. Freund, and C.J. Goebel, J. Math. Phys. 16, 433 (1975).

H. Hopf, Math. Ann. 104, 637 (1931).

M. Nakahara, Geometry, Topology and Physics (Adam Hilger, Bristol, 1990).

L. H. Ryder, J. Phys. A13, 437 (1980).

G. Schierholz, J. Seixas, and M. Teper, Phys. Lett. B157, 209 (1985).

J. C. Vink and U.-J. Wiese, Phys. Lett. B289, 122 (1992), hep-lat/9206006.

J. C. Vink, Phys. Rev. D51, 1292 (1995), hep-lat/9407007.

P. van Baal, Nucl. Phys. Proc. Suppl. 42, 843 (1995), hep-lat/9411047.

P. de Forcrand, private communication.

L. Baulieu, A. Rozenberg, and M. Schaden, Phys. Rev. D54, 7825 (1996), hep-
th/9607147.

Y.M. Cho, H. Lee, D.G. Pak, Effective Theory of QCD, hep-th/9905127.

L. Faddeev and A. Niemi, Nature 387, 58 (1997).

L. Faddeev and A. Niemi, Phys. Rev. Lett. 82, 1624 (1998), hep-th/9807069.
S. V. Shabanov, Phys. Lett. B458, 322 (1999), hep-th/9903223.

C. Adam, B. Muratori, and C. Nash, Particle Creation via Relaxing Hypermagnetic
Knots, hep-th/0006230.

18



