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We investigate the Laplaian Abelian gauge on the sphere S4 in the bak-ground of a single `t Hooft instanton. To this end we solve the eigenvalueproblem of the ovariant Laplae operator in the adjoint representation. Theground state wave funtion serves as an auxiliary Higgs �eld. We �nd thatthe ground state is always degenerate and has nodes. Upon diagonalisation,these zeros indue toplogial defets in the gauge potentials. The natureof the defets ruially depends on the order of the zeros. For �rst-orderzeros one obtains magneti monopoles. The generi defets, however, arisefrom zeros of seond order and are pointlike. Their topologial invariant isthe Hopf index S3 ! S2. These �ndings are orroborated by an analysis ofthe Laplaian gauge in the fundamental representation where similar defetsour. Possible impliations for the on�nement senario are disussed.� Supported by DFG.y on leave from Department of Physis, Tbilisi State University, Charhavadze Avenue 3, 380028Tbilisi, Georgia; address after July 15th: Institut f�ur Theoretishe Physik, Universit�at Hannover,Appelstra�e 2, D-30167 Hannover.



1. IntrodutionAlthough not derived from �rst priniples, the dual superondutor senario [1, 2, 3℄is widely believed to explain olor on�nement in QCD. To realise this idea, `t Hooftsuggested to use Abelian projetions [4℄ whih allow for a straightforward identi�ationof magneti monopoles in pure Yang Mills theories. In this approah one �xes the gaugegroup up to its maximal Abelian subgroup. This partial gauge �xing an be haraterisedby a Higgs �eld � in the adjoint representation, whih beomes diagonal in the Abeliangauge (AG)1. Magneti monopoles arise as gauge �xing defets whenever � vanishes. Atthese points, the gauge transformation diagonalising � beomes ambiguous. In the lowtemperature phase of QCD these defets should ondense and play the role of Cooperpairs.This piture is strongly supported by lattie alulations (for reent reviews, see[5, 6℄). In the ontinuum, however, Abelian gauges are not that well understood. Con-siderable progress has only been made for the Polyakov Abelian gauge (PAG) [7, 8, 9,10, 11, 12℄. The defets ouring in the PAG are haraterised by a winding numberS2 ! S2 of the (normalised) Higgs �eld, n � �=j�j, or equivalently by the magnetiharge q of the Abelian gauge �eld. A relation between monopole harge q and instan-ton number �[A℄ has been established whih enfores the presene of monopoles in anynon-trivial instanton setor (� 6= 0).For the maximally Abelian gauge (MAG) [4, 13, 14℄, there are only few analytialresults. It is known that on�gurations with monopole lines [15℄ and monopole loops [16℄are in this gauge. They are, however, strongly suppressed by the gauge �xing funtional,at least in the bakgound of single instantons. Reently, it has been expliitly shownthat the ontinuum MAG su�ers from a Gribov problem [17℄ as expeted from Singer'stheorem [18℄: the `t Hooft instanton in the singular gauge is loated on the Gribovhorizon of the MAG [19℄.In order to irumvent the Gribov (`spin glass') problem of the MAG on the lattie,the Laplaian Abelian gauge (LAG) has been proposed as a superior alternative [20,21, 22℄. Some �rst appliations of this idea in the ontext of lattie gauge theory haveappeared only reently [23, 24℄. Analytially, however, it seems that only one result hasbeen obtained so far: by omparing the behaviour of the gauge �xing funtionals one�nds [20℄ that in the LAG magneti degrees of freedom are less suppressed than in theMAG. Some deeper understanding of this Abelian gauge is obviously desirable.This paper presents our �rst investigation of the ontinuum Laplaian Abelian gauge.In order to have a large amount of symmetry, we onsider (the orbit of) a single 't Hooftinstanton. As we shall see, the LAG is somewhat ill-de�ned on in�nite-volume manifolds,and thus we ompatify spae to a sphere S4. For a speial hoie of the ompati�ationradius, the symmetry is enhaned to SO(5) so that the (gauge �xing) problem an beexatly solved. For other radii, symmetry arguments still provide some insights. Goingbak to in�nite volume, we �nd that the singular gauge instanton and global SU(2)1In the following we will distinguish between the Abelian gauge, whih is a partial gauge �xing, andthe Abelian projetions, where one neglets the o�-diagonal part of the gauge �eld after gauge �xing.
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rotations thereof lie in the LAG. Aordingly, the instanton in the singular gauge is ahorizon on�guration, as was the ase for the MAG.Of partiular interest is the question how the submanifolds of vanishing Higgs �eldlook like. It has been argued that, generially, these are loops, i.e. losed monopoleworldlines, having odimension three2. The instanton number an be reovered fromthese loops for general Higgs �elds [25, 26℄. It is related to the winding number S2 ! S2.While the same is true for the LAG, we �nd that the Higgs �eld assoiated with a single't Hooft instanton in addition indues pointlike defets, i.e. events loalised in spae-time.The orresponding topologial invariant is the Hopf index S3 ! S2.This paper is organised as follows: First, in Setion 2, we de�ne the LAG and disussits properties. Single 't Hooft instantons on S4 are introdued in Setion 3. In Setion 4we diagonalize the ovariant Laplaian in the adjoint representation. A lassi�ationof its ground state wave funtions, whih serve as auxiliary Higgs �elds, is given inSetion 5. A brief disussion of the Laplaian gauge (orresponding to the fundamentalrepresentation) is added in Setion 6. Finally, we onlude with some remarks on thephysial impliations of our �ndings.2. The Laplaian Abelian gaugeThe Laplaian Abelian gauge on R4 is de�ned by minimising the Higgs kineti energy[21, 22℄,FLAG[A; �℄ = 12 Z (D� �aD� �a � E�a�a) d4x; D� = �� � i[A�; : : :℄ ; (1)with respet to the auxiliary Higgs �eld � in the adjoint representation. The energyvariable E is a Lagrange multiplier demanding that � is square integrable, R �a�a d4x <1. The �eld on�guration � minimising FLAG an be viewed as the ground state of theovariant Laplaian, �D2�[A℄� = E �; (2)where E is the ground state energy. Obviously, (2) represents a four dimensionalShr�odinger problem with a potential essentially given by A2.The gauge transformation 
 diagonalising � puts the gauge �eld A into the LAG,ALAG � 
A; where 
� � 
�1�
 � �3: (3)
 may be ambiguous for two reasons. First, if � has zeros and seond, if the groundstateis degenerate. One an use node and uniqueness theorems to analyse these issues [27℄.On a spae-time with in�nite volume, the LAG is not straightforwardly de�ned forthe following reasons. Sine �D2�[A℄ is a non-negative operator we have E � 0. More-over, whenever the gauge �eld A tends to zero at in�nity, there are sattering states2as one has to solve three equations on a four-dimensional manifold3



and the ontinuous spetrum always starts from zero. Sattering states, however, arenot normalisable. Thus, for a generi bakground (inluding the instantons to be stud-ied), one does not expet that the ovariant Laplaian �D2�[A℄ will have a normalisableground state. The situation is quite analogous to the quantum mehanis of the ordinary`Laplaian' d2=dx2 on the real line. We avoid this problem by onsidering gauge �elds onthe four-sphere S4 whih leads to a purely disrete spetrum of the assoiated ovariantLaplaian.3. Single instanton on the sphereIn the following we onsider the single 't Hooft instanton (in singular and regular gauge)on a sphere S4 of radius R. On Eulidean R4 the on�gurations read,Asg� = ��a��x� �2r2(r2 + �2)�a; Areg� = �a��x� 1(r2 + �2)�a; r2 = x�x� ; (4)using the onventions of [28℄. The on�gurations (4) are related by the gauge transfor-mation h = x̂412 + ix̂a�a; x̂� � x�=r ; (5)whih also relates the solutions � of (2) in these two bakgrounds, �reg = h�sg hy.We bene�t from the fats that lassial Yang-Mills theories are onformally invari-ant and that the sphere S4 is onformally equivalent to ompati�ed Eulidean spae_R4. If we use onformal oordinates x� on the sphere, whih are simply the Cartesianoordinates of the point stereographially projeted onto R4, the metri is onformallyat, g��(x) = e�R(r)Æ�� � 4R4(r2 +R2)2 Æ�� : (6)Field on�gurations minimising the Yang Mills ation on R4 are also minimising on-�gurations on the sphere, if the Cartesian oordinates are substituted by onformaloordinates. Thus, we an simply use expressions (4) for the instantons on the sphere.What about the symmetry of these on�gurations? It is known [29℄ that on R4they are invariant under SO(4) rotations and a ombination of translations and speialonformal transformations,Æx� = !��x� + 2  � x x�=�� �(x2 + �2)=� ; (7)up to a ompensating gauge transformation, ÆA� = D��, with�a = 12!���a�� � 2��a��x� (reg. gauge). (8)
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Together these transformations form (a non-linear representation of) the group SO(5).This symmetry is preserved on S4 when the radius R of S4 oinides with the instantonsize � [30℄. To illustrate this point, we note that the gauge invariant Lagrangian density,L � g��g�� F a��F a�� = 12�4R8 (r2 +R2)4(r2 + �2)4 ; (9)is onstant on S4 (and thus SO(5)-invariant) only if R = �. For R 6= � the expliitappearane of r, whih is only SO(4)-invariant, breaks SO(5) down to SO(4).Sine ompensating gauge transformations do not spoil equation (2), the eigenfun-tions � furnish representations of SO(5) and SO(4), respetively.4. Solutions of the ovariant LaplaianGeneralising equations (1) and (2) to urvilinear oordinates, we de�ne the LAG on thesphere S4 via the funtionalFLAG[A; �℄ = 12 ZS4 (D��aD��ag�� � E�a�a)pg d4x ; (10)where g = exp(2�R) denotes the determinant of the metri (6). The equation of motionis given in terms of the (gauge ovariant) Laplae-Beltrami operator,� 1pgD�pgg��D�� = E�: (11)To proeed we make use of the symmetry and separate into angular and radial equa-tions. The angular part is expressed in terms of angular momenta derived from thedeomposition so(4) �= su(2)� su(2),Ma = � i2 ��a��x��� ; ~M2 ! m(m + 1); Na = � i2�a��x��� ; ~N2 ! n(n + 1) : (12)In this representation, the two Casimirs oinide, ~M2 = ~N2. Their eigenvalues arehalf-integer, m = n 2 f0; 1=2; 1; 3=2; : : :g. The generators for isospin t = 1 are(Ta)b = i�ba; ~T 2 ! t(t + 1) = 2 : (13)The radial equations on the sphere di�er from those in Eulidean spae by a metrifator, exp(��R), and a dilatation term, r�r,e��R(r) "��2r � 3r�r + 4 ~M2r2 + 4�2( ~J2 � ~M2)r2(r2 + �2) � 4~T 2�2(r2 + �2)2 + 4rr2 +R2�r#�sg = E�sg (14)e��R(r) "��2r � 3r�r + 4 ~N2r2 + 4( ~J2 � ~N2)(r2 + �2) � 4~T 2�2(r2 + �2)2 + 4rr2 +R2�r#�reg = E�reg (15)5



In the above, we have introdued the onserved angular momentum ~J (`spin fromisospin', [31, 32, 33℄),~J � ~L + ~T ; ~J 2 ! j(j + 1); j 2 fl � 1; l; l + 1g ; (16)where ~L denotes ~M or ~N , respetively. Replaing angular momenta by their eigenvaluesand exhanging j ! n; m! j, equation (14) turns into (15). This amounts exatly tothe ation of the gauge transformations h from (5).The symmetry onsiderations above suggest the following form of the ground state,�(x) = Y(j;l)(x̂)'(r) ; (17)where the Y 's denote the spherial harmonis on S3 (see Appendix A). Note that thereare two ompeting angular momentum terms in (14) and (15), so that it is not obviousin whih angular momentum setor the groundstate will be. By simply looking at theradial potentials in the di�erent setors, we an only state the following bound on theenergy in an arbitrary setor,E(j;l) � minfE(0;1); E(1=2;1=2); E(1;0)g : (18)The quantum numbers of the ground state andidates on the r.h.s. orrespond to therepresentations (0,1), (1/2, 1/2) and (1,0) of su(2)j � su(2)l and thus have degeneraies3, 4 and 3, respetively. Note that the singlet (0; 0) is exluded by the seletion rules fort = 1, see (16). Aordingly, for any of the possible hoies in (18), the groundstate willbe degenerate. The spherial harmonis for the three ases are listed in Appendix A.At this point two further remarks are in order: First, the radial part ' shows powerlaw behaviour in r, both for small and large r, independent of R and �,'sg(r ! 0)! r2j ; 'sg(r !1)! r�2m ; (19)'reg(r ! 0)! r2n ; 'reg(r !1)! r�2j : (20)Seond, upon substituting ' � (r2 + R2) � � and � � ER2 + 2, one an absorb thedilatation term,"��2r � 3r�r + 4 ~M2r2 + 4�2( ~J2 � ~M2)r2(r2 + �2) � 4~T 2�2(r2 + �2)2 � 4�R2(r2 +R2)2#�sg = 0 ; (21)"��2r � 3r�r + 4 ~N2r2 + 4( ~J2 � ~N2)(r2 + �2) � 4~T 2�2(r2 + �2)2 � 4�R2(r2 +R2)2#�reg = 0 : (22)SettingR = �, the di�erential equation (21) oinides with the one onsidered by 't Hooftin his analysis of the utuations around instantons [34℄. The eigenvalues are �k =(k + j + l + 1 � t)(k + j + l + t + 2). The lowest energy orresponds to k = 0 andj + l = 1, onsistent with the three possible groundstates of (18). Together they form
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Figure 1: Energy of the lowest-lying states in the relevant angular momentum setorsas funtions of the ompati�ation radius R (singular gauge). At the pointR = � the two triplets and the quadruplet meet, while for R!1 the triplet(1; 0) has lowest energy. For symmetry reasons we expet the dashed line tostay inbetween the other two for R 6= �.the 10-dimensional adjoint representation3 of SO(5) [35℄. The value of the ground stateenergy is E = 2=R2.The radial eigenfuntions are rational,'sg(r) = R (r=R)2jr2 +R2 ; 'reg(r) = R (r=R)2�2jr2 +R2 ; (23)and obey the asymptotis (19) and (20), respetively. In aordane with the nodetheorem for the one-dimensional radial equation, the lowest-lying states have no zerosapart from r = 0 and r =1.For the ases R > � and R < � we annot solve the radial equation analytially.However, we are able to prove the following statements:For the singular gauge and R > �, the triplet (1; 0) has lower energy than thetriplet (0; 1). For R < �, the situation is vie versa with the triplet (0; 1) having lowerenergy. Analogous statements hold for the regular gauge (see Fig. 1). These results area straightforward onsequene of the Feynman-Hellmann theorem (f. Appendix B).For the quadruplet (1/2, 1/2), the situation is somewhat more ompliated. Usingperturbation theory in Æ = �2 � R2 (see Appendix B), one �nds that these states haveenergy inbetween the two disjoint triplet states. For symmetry reasons we do not expetthe spetral ow E(1=2;1=2)(R) to interset the others for some R 6= � (see Fig. 1).Finally, the node theorem again guarantees that � vanishes only at r = 0 and r =1,in aordane with the asymptotis (19,20).3Using the onventions of [35℄, this representation is labelled by the integers fn1; n2g = f0; 2g whihare the oeÆients of the highest weight when expanded in terms of the fundamental weights.
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Figure 2: In the bundle piture on S4 there are two gauge and Higgs �elds, whih aresmoothly de�ned on their domains (hemispheres). In the transition region,they are related by the gauge transformation (transition funtion) h. Notethat the four-dimensional radius an be expressed in terms of the azimuthalangle �, r = R ot(�=2).5. Properties of the solutionsBefore haraterising the zeros of the solutions �, let us point out the following subtlety:Near the origin, the (0,1) wave funtions (Higgs �elds) in the singular gauge are bilinearin x̂� and thus disontinuous there. They inherit this singularity from the instanton�eld4. Nevertheless, the wave funtions are square integrable on S4 due to the measurefator r3. The same, of ourse, is true for the regular gauge states near in�nity. Inorder to work with smooth Higgs �elds, it is appropriate to use the prinipal �bre bundlepiture. This an be viewed as a non-Abelian S4-analogue of the Wu-Yang onstrutionfor the Dira monopole on S2 [36℄. The A-�eld in the regular gauge represents theonnetion smoothly5 on the southern hemisphere (the hart ontaining the origin), whilethe A-�eld in the singular gauge does the same on the northern hemisphere (the hartontaining in�nity). In the transition region formed by the equatorial strip displayed inFig. 2, the gauge transformation h from (5) interpolates between the two. For simpliitywe will retrat the transition region to a single three-sphere S3r of �xed four-dimensionalradius r (�xed azimuthal angle �).The Higgs �eld is a setion in an assoiated �bre bundle: on eah of the two hartsthere is a Higgs �eld. In the transition region, the same transition funtion h relatesthe two (see Fig. 2). Our results obtained so far an immediately be arried over to thebundle piture, sine, for every solution in the singular gauge, there is a orrespondinggauge transformed `mirror' solution in the regular gauge with the same energy (andvie versa). Moreover, the angular momenta are interhanged by h in suh a way that4whih results in the asymptotis '(r) � r0, see (19).5to be preise: The A-�elds are the pullbaks of the onnetion under smooth setions of the bundle.
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the radial wavefuntions (23) are smooothly de�ned on the whole of S4. The ompleteeigenfuntions � are ontinuous in their respetive harts but `jump' (in their isospindiretion) due to the ation of the transition funtion h in the transition region.Along these lines, let us disuss the ground state in the (1=2; 1=2) setor, whih haszeros loalised on loops. To simplify the disussion, we hoose the fourth of the spherialharmonis in (37) or (38), for whih�sg(x) = 0� x1x2x3 1A 1r2 +R2 = �reg(x); (24)sine h from (5) ommutes with �sg. This Higgs �eld � is of hedgehog type. Thus,its diagonalisation indues a Dira monopole at ~x = 0 and a Dira string along thenegative 3-axis. The world-line of the monopole is the great irle in 4-diretion (whihdegenerates to the 4-axis in the in�nite-volume limit). For the other three states in themultiplet the same holds true upon permutation of the oordinates.It is well-known [37℄ that the monopole harge is haraterised by the winding numberof the normalised Higgs �eld n = �=j�j, expliitly given bynsg(x) = 0� x1x2x3 1A =j~xj = nreg(x) : (25)The n-�eld is singular at ~x = 0, where � vanishes. This singularity has the followingtopologial haraterisation. Consider the two-sphere, S2: ~x = onst:, surrounding thesingularity. There, the n-�eld provides a smooth mapping, S2 ! S2 �= SU(2)=U(1),labelled by an integer, the winding number, whih in our ase is just one.The LAG Higgs �eld also serves as an illustration of the relation between instantonnumber and monopole harge reently proposed in [26℄. We note that in the (1/2, 1/2)setor the two Higgs �elds nsg and nreg oinide on the whole of S4, their singularitiesbeing loated at two points p1 = (~0;�r); p2 = (~0; r) in the retrated transition regionS3r (see Fig. 3). Consider the submanifold S3r n fp1; p2g �= S2 � I12. In terms ofthe polar angle # 2 (0; �) on the three-sphere, the intervall I12 is parametrised byx4 = r os # 2 (�r; r), while the two-spheres are given by j~xj = r sin#.We already know that the magneti harge measured on the two-sphere is q = 1. Ifwe express the transition funtion h in terms of n and #,h = exp(i# na�a) ; (26)the ux6 � = RI12 d(2#) is easily omputed as� = 2 Z �0 d# = 2� : (27)6notie the di�erene �a vs. �a=2 as ompared to [26℄9
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n(x) = 8>>>>>><>>>>>>: nreg(x) = 0� 2(x̂1x̂3 � x̂2x̂4)2(x̂2x̂3 + x̂1x̂4)�x̂21 � x̂22 + x̂23 + x̂24 1A southern hem. 3 0 ;nsg(x) = 0� 001 1A northern hem. 3 1 : (30)
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nreg is singular at the origin r = 0 and losely resembles the standard Hopf map [38, 39℄.For any �nite radius r 6= 0, it provides a smooth mapping S3r=�xed ! S2 �= SU(2)=U(1)with Hopf index one [40℄.As a result, we have obtained the simplest realisation of the onnetion betweeninstanton number and Hopf indies derived in [25℄: The (signed) sum of all Hopf indiesof n around its singularities equals the instanton number �. This statement is analogousto results from residue alulus where the singularities of n (the zeros of �) are replaedby the poles of a meromorphi funtion: The (signed) sum of all residues equals theresidue at in�nity. Like the magneti monopoles in the PAG, n must possess singularitiesin any non-trivial instanton setor (� 6= 0). In addition, pairs of singularities may ourwhih do not ontribute to the instanton number.Coming bak to the LAG, the remaining task is to diagonalise the ground-state Higgs�eld �(x). On the northern hemisphere, where � is already diagonal, there is nothing tobe done. No gauge transformation is needed and the gauge �eld remains in the singulargauge. On the southern hemisphere, we basially have to diagonalise the standard Hopfmap. This is ahieved by the gauge transformation h, whih transforms the gauge �eldA from regular to singular gauge. Independent of where we hoose the transition region,the LAG-�xed on�guration on the orbit of the single 't Hooft instanton is in the singulargauge (for R > �). Notie that the gauge �xed on�guration inherits a singularity onlyat the point where n is singular; there are no further `Dira strings'.If we hoose an arbitrary linear ombination of the triplet spherial harmonis, the di-agonalising gauge transformation inludes an additional global SU(2) rotation. Togetherwith Asg, all its global rotations are loated on the gauge �xing hypersurfae de�ned bythe LAG. We thus �nd a whole S3 of gauge-equivalent on�gurations (Gribov opies).6. The Laplaian gaugeThe importane of pointlike defets (as ompared to loops) is orroborated by theirourene in a losely related gauge, the Laplaian gauge (LG)7. The Laplaian gauge[41, 42, 43, 44℄ is de�ned via a Higgs �eld q in the fundamental representation, beingthe ground state of the ovariant Laplaian,�D2�[A℄q = E q ; D� = �� � iA� : (31)It is a omplete gauge �xing (up to defets) if the two-omponent omplex vetor q isrotated into a �xed isospin diretion and made real,
q � 
�1q = �jqj0 � ; ALG � 
A : (32)Our formalism is easily adapted to this gauge by hoosing the isospin t = 1=2 representa-tion in terms of the Pauli matries Ta = �a=2. For R = � one again has to minimise j+ l,whene (j; l) = (0; 1=2) or (j; l) = (1=2; 0). As before, these states form an irreduible7The authors thank P. de Forrand for drawing their attention to this issue.11



representation8 of SO(5). For R > � and the singular gauge, the state (1=2; 0) has lowestenergy (by the same Feynman-Hellmann argument) so that the singular gauge instantonagain satis�es the gauge ondition. The relevant spherial harmonis areY reg(1=2;0) = �� 10 � ; � 01 �� ; (33)Y reg(0;1=2) = �h� 10 � = � x̂4 + ix̂3�x̂2 + ix̂1 � ; h� 01 � = � x̂2 + ix̂1x̂4 � ix̂3 �� ; (34)whih are nonzero throughout S4. In analogy with (20), we have the following behaviournear the origin, q(r) � r2n = r for (j, n) = (0, 1/2). Thus, the modulus of the Higgs �eldis proportional to the four-dimensional distane r from the origin (where the topologialharge of the instanton is onentrated). This perfetly agrees with latest results fromlattie simulations [45℄.Again, a topologial desription is possible. On a three-sphere surrounding the origin,one an de�ne n � q=jqj : S3 ! S3 with integer winding number. In the ase above,the n-�eld simply redues to the identity map,n � Y = � x̂4 + ix̂3�x̂2 + ix̂1 � ; (35)the winding number k of whih oinides with the instanton number, k = � = 1.7. ConlusionsWe have investigated the Laplaian Abelian gauge on the sphere S4 in the bakgroundof a single 't Hooft instanton. This amounts to solving the eigenvalue problem forthe ovariant Laplaian in the adjoint representation. For any sphere radius R wehave determined the angular dependene and isospin struture of the ground state wavefuntions (Higgs �elds). Diagonalisation of the latter shows that the instanton in thesingular gauge is in the LAG if R is larger than the instanton size �; for the regulargauge the same is true for R < �. The gauge �xing proedure thus selets one of thetwo instanton on�gurations, although, in a bundle piture, they represent the sameonnetion.It is interesting to note that the situation for the MAG on the sphere is similar:Singular and regular gauge instantons both satisfy the di�erential MAG ondition, butthe MAG funtional FMAG piks out one of them in the very same way as FLAG: for R > �(R < �) the singular (regular) gauge instanton minimizes FMAG (see Appendix C). It is,however, a highly nontrivial task to hek whether a given on�guration, say the `t Hooftinstanton, really orresponds to the absolute minimum along its orbit. In general, onean never be sure that there is no other gauge equivalent on�guration that lowers thefuntional even further.8the four-dimensional spinor representation labelled by fn1; n2g = f0; 1g in [35℄.
12



The LAG, on the other hand, has the big advantage that the ground state (and thusthe absolute minimum of FLAG) an be found expliitly. We have done so for R = � andhave given qualitative arguments onerning the angular and radial dependene for thease R 6= �. Apart from the degeneraies and the zeros (whih we have under ontrol),there are no further ambiguities.We have found a whole S3 of gauge equivalent on�gurations (obtained by globalSU(2) rotations of Asg similar to what has been observed in [46℄) loated on the gauge�xing hypersurfae. These are Gribov opies of eah other, generated by both �nite andin�nitesimal gauge transformations. The latter give rise to three at diretions in theon�guration spae along whih the gauge �xing funtional does not hange. Only oneof these diretions is overed by the residual U(1) freedom. The other two are relatedto zero modes of the (oset part of the) Faddeev-Popov operator. We do see no reasonwhy these Gribov ambiguities should not be present on the lattie. In ontrast to theMAG (and related gauges), however, where gauge �xing is a \numerial problem of non-polynomial omplexity" [42℄, there are no additional lattie Gribov opies beyond thedenumerable ones we have enountered in the ontinuum. This learly makes the LAGa superior gauge.One a ground states is hosen for diagonalisation, additional obstrutions our interms of gauge �xing defets aused by the nodes of the possible ground states. These arethe well-known soure for magneti monopoles in Abelian gauges. We have shown thatthese defets must be present whenever the LAG bakground is in a non-trivial instantonsetor. Monopoles, however, only arise for a partiular sphere radius R = � and for apartiular hoie of ground states. The generi defets are loalised in spae-time (withodimension 4). Their topologial invariant is the Hopf index S3 ! S2. Contrary tomonopoles they have �nite ation even in the in�nite volume limit. One may speulatethat these defets ondense in the low temperature phase of QCD, possibly giving riseto a new on�nement mehanism. In view of the results presented in [26℄, they mayas well be related to the solitoni exitations observed in reent e�etive theories foron�nement [47, 48, 49, 50℄.As we have alulated the LAG Higgs �eld only for a highly symmetri bakground,the question arises whih features are generi also for other bakgrounds. The degenerayof the ground state is mainly due to the matrix struture of the `Hamiltonian'. For asingle instanton bakground, this was indued by nonvanishing angular momentum (likein quantum mehanial problems with spin). This should be ontrasted with the ase ofa trivial bakground. For the vauum, A = 0, the ground state obviously has a threefolddegeneray given by the anonial dreibein êa in isospae. The assoiated onstant wavefuntions do not have any zeros. We therefore onjeture that Singer's obstrution [18℄against omplete gauge �xing is reeted in the nodes rather than in the degeneray ofthe ground state. To ompletely settle this issue, a full topologial lassi�ation of Higgs�eld zeros would learly be helpful.A natural next step will be to analyse higher instanton setors and instanton-anti-instanton pairs. The existene of fermioni zero modes in the bakground of Hopf defetsis urrently being investigated (for related work see [51℄ and referenes therein). Suhzero modes may in the end lead to a relation between on�nement and hiral symmetry13



breaking. Finally, the dynamial role of Hopf defets in QCD has to be analysed.AknowledgementsThe authors thank S. Shabanov and T. Strobl for enlightening disussions, P. de Forrandfor making his lattie results available prior to publiation, and D. Hansen for a arefulreading of the manusript. T.V. gratefully aknowledges the hospitality at the TPI,University of Jena, where this work was performed. T.H. thanks C. Alexandrou andG. Burgio for disussions on Laplaian gauges and aknowledges support under DFGgrant WI-777/5-1.A. Spherial harmonisIn the following we list the eigenfuntions of ~J 2 and ~L2 for the three ases of interest(suppressing the two magneti quantum numbers labelling the vetors in eah multiplet).(i) For (j; l) = (1; 0) the spherial harmonis are given by the anonial dreibein êa ofonstant unit vetors,Y sg(1;0) = Y reg(1;0) = 8<:0� 100 1A ; 0� 010 1A ; 0� 001 1A9=; : (36)(ii) For (j; l) = (1=2; 1=2) there are four eigenfuntions, all linear in x̂�,Y sg(1=2;1=2) = 8<:0� x̂4x̂3x̂2 1A ; 0� �x̂3x̂4�x̂1 1A ; 0� �x̂2x̂1�x̂4 1A ; 0� x̂1x̂2x̂3 1A9=; ; (37)Y reg(1=2;1=2) = 8<:0� �x̂4x̂3x̂2 1A ; 0� �x̂3�x̂4�x̂1 1A ; 0� �x̂2x̂1x̂4 1A ; 0� x̂1x̂2x̂3 1A9=; : (38)The following remarks are in order. Obviously, Y reg is obtained from Y sg upon exhang-ing x̂4 ! �x̂4. This is ahieved via onjugation with h, Y sg(j=1=2;m=1=2) � hy Y reg(j=1=2; n=1=2) h.Note that the `intertwining' gauge transformation h is only de�ned up to rotationsaround the diretion of the Higgs �eld � in isospae. It is onvenient to ombine themembers of eah (1/2, 1/2) quadruplet into a `four-vetor' Y�. Introduing the basismatries �� � (i�a; 1), one �nds the relation Y reg� = ��Y sg� �y� for any � = 1; : : : ; 4. Anyomponent Y�(x̂) vanishes, if x̂� = �ê�, the ê� denoting the anonial basis of R4. Thismeans that the zeros of the quadruplet eigenfuntions are given by two points loatedon a three-sphere with �xed radius r (see Fig. 3).(iii) For the ase (j; l) = (0; 1) one has three basi eigenfuntions, now bilinear in x̂�,Y sg(0;1) = 8<:0� x̂21 � x̂22 � x̂23 + x̂242(x̂1x̂2 + x̂3x̂4)2(x̂1x̂3 � x̂2x̂4) 1A;0� 2(x̂1x̂2 � x̂3x̂4)�x̂21 + x̂22 � x̂23 + x̂242(x̂2x̂3 + x̂1x̂4) 1A;0� 2(x̂1x̂3 + x̂2x̂4)2(x̂2x̂3 � x̂1x̂4)�x̂21 � x̂22 + x̂23 + x̂24 1A9=;(39)
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Y reg(0;1) = 8<:0� x̂21 � x̂22 � x̂23 + x̂242(x̂1x̂2 � x̂3x̂4)2(x̂1x̂3 + x̂2x̂4) 1A;0� 2(x̂1x̂2 + x̂3x̂4)�x̂21 + x̂22 � x̂23 + x̂242(x̂2x̂3 � x̂1x̂4) 1A;0� 2(x̂1x̂3 � x̂2x̂4)2(x̂2x̂3 + x̂1x̂4)�x̂21 � x̂22 + x̂23 + x̂24 1A9=;(40)Again, the two sets of eigenfuntions are related via x̂4 ! �x̂4 and an most easily beobtained from ase (i) by onjugation with h,Y sg(j=0;m=1) = hy Y reg(j=1; n=0) h; Y reg(j=0; n=1) = h Y sg(j=1;m=0) hy; (41)whih, in partiular, implies that they never vanish.B. Feynman-Hellmann theorem and perturbationtheoryIn order to obtain information when R 6= �, we keep R �xed and vary �. We restritourselves to the singular gauge. The �-dependent part of (14) ontains two terms,V sg� (j;m)(r) � 4e��R(r) "�2( ~J2 � ~M2)r2(r2 + �2) � ~T 2�2(r2 + �2)2# : (42)The �2-dependene of the ground state energy is determined by the Feynman-Hellmanntheorem, ���2E = ���2 h�jHj�i = h�j�H��2 j�i � h�j�V���2 j�i: (43)For the three angular momentum setors of interest (t = 1) we have,�V sg� (0;1)(r)��2 = (r2 +R2)2R4 �4r2(r2 + �2)3 < 0 ;�V sg� (1=2;1=2)(r)��2 = (r2 +R2)2R4 2(�2 � r2)(r2 + �2)3 ; (44)�V sg� (1;0)(r)��2 = (r2 +R2)2R4 4�2(r2 + �2)3 > 0:Aording to (43), these funtions have to be integrated with the positive fator j�j2pg.Therefore, the ground state energies in the �rst and the third setor are monotoni in�2, their slopes satisfying ���2Esg(0;1) < 0 ; ���2Esg(1;0) > 0 : (45)As the energies meet at R = � (`level rossing') we onlude,Esg(0;1) < Esg(1;0) for R < � ; Esg(0;1) > Esg(1;0) for R > � : (46)15



This explains the behaviour of the full lines in Fig. 1.For the setor (1=2; 1=2) there is no suh simple argument. Still, we an omputethe slope of E(�2) at the point � = R by simply inserting the known funtion �. Thisamounts to ordinary perturbation theory in Æ � �2 � R2,H(�2) = H(Æ = 0) + Æ �H��2 ����Æ=0 +O(Æ2) = H0 +Hpert : (47)In this way we �nd a vanishing slope for the setor (1=2; 1=2),���2Esg(1=2;1=2)�����2=R2 � Z 10 (1� r2)(r2 + 1)7 r5dr = 0 : (48)The lowest-lying state of this setor is thus pinhed between the other two, at least forR � � (f. Fig. 1).C. The MAG on the sphereIn [16℄ it has been shown that, due to their partiular Lorentz and isospin struture,both Asg and Areg are in the MAG when de�ned on R4. This still holds true on S4,where the gauge �xing funtional has the values,FMAG[A℄ = Z 2X�a=1 A�a�A�a� g��pg d4x= 16�2R4[R4 � 2R2�2 ln(R2=�2)� �4℄�2(R2 � �2)3 � � 1 for AsgR2=�2 for Areg : (49)Obviously, FMAG[Areg℄ = (R2=�2)FMAG[Asg℄, so that for R > � (R < �) the singular(regular) gauge is singled out.Referenes[1℄ G. `t Hooft, in: High Energy Physis, Proeedings of the EPS International Con-ferene, Palermo 1975, A. Zihihi, ed., Editrie Compositori, Bologna 1976.[2℄ S. Mandelstam, Phys. Rep. 23, 245 (1976).[3℄ G. Parisi, Phys. Rev. D11, 970 (1975).[4℄ G. `t Hooft, Nul. Phys. B190, 455 (1981).[5℄ M. N. Chernodub and M. I. Polikarpov, in `Con�nement, Duality, and Nonpertur-bative Aspets of QCD', P. van Baal, ed., NATO ASI Series, Plenum Press, NewYork, 1998. 16
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