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1. Introdu
tionAlthough not derived from �rst prin
iples, the dual super
ondu
tor s
enario [1, 2, 3℄is widely believed to explain 
olor 
on�nement in QCD. To realise this idea, `t Hooftsuggested to use Abelian proje
tions [4℄ whi
h allow for a straightforward identi�
ationof magneti
 monopoles in pure Yang Mills theories. In this approa
h one �xes the gaugegroup up to its maximal Abelian subgroup. This partial gauge �xing 
an be 
hara
terisedby a Higgs �eld � in the adjoint representation, whi
h be
omes diagonal in the Abeliangauge (AG)1. Magneti
 monopoles arise as gauge �xing defe
ts whenever � vanishes. Atthese points, the gauge transformation diagonalising � be
omes ambiguous. In the lowtemperature phase of QCD these defe
ts should 
ondense and play the role of Cooperpairs.This pi
ture is strongly supported by latti
e 
al
ulations (for re
ent reviews, see[5, 6℄). In the 
ontinuum, however, Abelian gauges are not that well understood. Con-siderable progress has only been made for the Polyakov Abelian gauge (PAG) [7, 8, 9,10, 11, 12℄. The defe
ts o

uring in the PAG are 
hara
terised by a winding numberS2 ! S2 of the (normalised) Higgs �eld, n � �=j�j, or equivalently by the magneti

harge q of the Abelian gauge �eld. A relation between monopole 
harge q and instan-ton number �[A℄ has been established whi
h enfor
es the presen
e of monopoles in anynon-trivial instanton se
tor (� 6= 0).For the maximally Abelian gauge (MAG) [4, 13, 14℄, there are only few analyti
alresults. It is known that 
on�gurations with monopole lines [15℄ and monopole loops [16℄are in this gauge. They are, however, strongly suppressed by the gauge �xing fun
tional,at least in the ba
kgound of single instantons. Re
ently, it has been expli
itly shownthat the 
ontinuum MAG su�ers from a Gribov problem [17℄ as expe
ted from Singer'stheorem [18℄: the `t Hooft instanton in the singular gauge is lo
ated on the Gribovhorizon of the MAG [19℄.In order to 
ir
umvent the Gribov (`spin glass') problem of the MAG on the latti
e,the Lapla
ian Abelian gauge (LAG) has been proposed as a superior alternative [20,21, 22℄. Some �rst appli
ations of this idea in the 
ontext of latti
e gauge theory haveappeared only re
ently [23, 24℄. Analyti
ally, however, it seems that only one result hasbeen obtained so far: by 
omparing the behaviour of the gauge �xing fun
tionals one�nds [20℄ that in the LAG magneti
 degrees of freedom are less suppressed than in theMAG. Some deeper understanding of this Abelian gauge is obviously desirable.This paper presents our �rst investigation of the 
ontinuum Lapla
ian Abelian gauge.In order to have a large amount of symmetry, we 
onsider (the orbit of) a single 't Hooftinstanton. As we shall see, the LAG is somewhat ill-de�ned on in�nite-volume manifolds,and thus we 
ompa
tify spa
e to a sphere S4. For a spe
ial 
hoi
e of the 
ompa
ti�
ationradius, the symmetry is enhan
ed to SO(5) so that the (gauge �xing) problem 
an beexa
tly solved. For other radii, symmetry arguments still provide some insights. Goingba
k to in�nite volume, we �nd that the singular gauge instanton and global SU(2)1In the following we will distinguish between the Abelian gauge, whi
h is a partial gauge �xing, andthe Abelian proje
tions, where one negle
ts the o�-diagonal part of the gauge �eld after gauge �xing.
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rotations thereof lie in the LAG. A

ordingly, the instanton in the singular gauge is ahorizon 
on�guration, as was the 
ase for the MAG.Of parti
ular interest is the question how the submanifolds of vanishing Higgs �eldlook like. It has been argued that, generi
ally, these are loops, i.e. 
losed monopoleworldlines, having 
odimension three2. The instanton number 
an be re
overed fromthese loops for general Higgs �elds [25, 26℄. It is related to the winding number S2 ! S2.While the same is true for the LAG, we �nd that the Higgs �eld asso
iated with a single't Hooft instanton in addition indu
es pointlike defe
ts, i.e. events lo
alised in spa
e-time.The 
orresponding topologi
al invariant is the Hopf index S3 ! S2.This paper is organised as follows: First, in Se
tion 2, we de�ne the LAG and dis
ussits properties. Single 't Hooft instantons on S4 are introdu
ed in Se
tion 3. In Se
tion 4we diagonalize the 
ovariant Lapla
ian in the adjoint representation. A 
lassi�
ationof its ground state wave fun
tions, whi
h serve as auxiliary Higgs �elds, is given inSe
tion 5. A brief dis
ussion of the Lapla
ian gauge (
orresponding to the fundamentalrepresentation) is added in Se
tion 6. Finally, we 
on
lude with some remarks on thephysi
al impli
ations of our �ndings.2. The Lapla
ian Abelian gaugeThe Lapla
ian Abelian gauge on R4 is de�ned by minimising the Higgs kineti
 energy[21, 22℄,FLAG[A; �℄ = 12 Z (D� �aD� �a � E�a�a) d4x; D� = �� � i[A�; : : :℄ ; (1)with respe
t to the auxiliary Higgs �eld � in the adjoint representation. The energyvariable E is a Lagrange multiplier demanding that � is square integrable, R �a�a d4x <1. The �eld 
on�guration � minimising FLAG 
an be viewed as the ground state of the
ovariant Lapla
ian, �D2�[A℄� = E �; (2)where E is the ground state energy. Obviously, (2) represents a four dimensionalS
hr�odinger problem with a potential essentially given by A2.The gauge transformation 
 diagonalising � puts the gauge �eld A into the LAG,ALAG � 
A; where 
� � 
�1�
 � �3: (3)
 may be ambiguous for two reasons. First, if � has zeros and se
ond, if the groundstateis degenerate. One 
an use node and uniqueness theorems to analyse these issues [27℄.On a spa
e-time with in�nite volume, the LAG is not straightforwardly de�ned forthe following reasons. Sin
e �D2�[A℄ is a non-negative operator we have E � 0. More-over, whenever the gauge �eld A tends to zero at in�nity, there are s
attering states2as one has to solve three equations on a four-dimensional manifold3



and the 
ontinuous spe
trum always starts from zero. S
attering states, however, arenot normalisable. Thus, for a generi
 ba
kground (in
luding the instantons to be stud-ied), one does not expe
t that the 
ovariant Lapla
ian �D2�[A℄ will have a normalisableground state. The situation is quite analogous to the quantum me
hani
s of the ordinary`Lapla
ian' d2=dx2 on the real line. We avoid this problem by 
onsidering gauge �elds onthe four-sphere S4 whi
h leads to a purely dis
rete spe
trum of the asso
iated 
ovariantLapla
ian.3. Single instanton on the sphereIn the following we 
onsider the single 't Hooft instanton (in singular and regular gauge)on a sphere S4 of radius R. On Eu
lidean R4 the 
on�gurations read,Asg� = ��a��x� �2r2(r2 + �2)�a; Areg� = �a��x� 1(r2 + �2)�a; r2 = x�x� ; (4)using the 
onventions of [28℄. The 
on�gurations (4) are related by the gauge transfor-mation h = x̂412 + ix̂a�a; x̂� � x�=r ; (5)whi
h also relates the solutions � of (2) in these two ba
kgrounds, �reg = h�sg hy.We bene�t from the fa
ts that 
lassi
al Yang-Mills theories are 
onformally invari-ant and that the sphere S4 is 
onformally equivalent to 
ompa
ti�ed Eu
lidean spa
e_R4. If we use 
onformal 
oordinates x� on the sphere, whi
h are simply the Cartesian
oordinates of the point stereographi
ally proje
ted onto R4, the metri
 is 
onformally
at, g��(x) = e�R(r)Æ�� � 4R4(r2 +R2)2 Æ�� : (6)Field 
on�gurations minimising the Yang Mills a
tion on R4 are also minimising 
on-�gurations on the sphere, if the Cartesian 
oordinates are substituted by 
onformal
oordinates. Thus, we 
an simply use expressions (4) for the instantons on the sphere.What about the symmetry of these 
on�gurations? It is known [29℄ that on R4they are invariant under SO(4) rotations and a 
ombination of translations and spe
ial
onformal transformations,Æx� = !��x� + 2 
 � x x�=�� 
�(x2 + �2)=� ; (7)up to a 
ompensating gauge transformation, ÆA� = D��, with�a = 12!���a�� � 2
��a��x� (reg. gauge). (8)
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Together these transformations form (a non-linear representation of) the group SO(5).This symmetry is preserved on S4 when the radius R of S4 
oin
ides with the instantonsize � [30℄. To illustrate this point, we note that the gauge invariant Lagrangian density,L � g��g�� F a��F a�� = 12�4R8 (r2 +R2)4(r2 + �2)4 ; (9)is 
onstant on S4 (and thus SO(5)-invariant) only if R = �. For R 6= � the expli
itappearan
e of r, whi
h is only SO(4)-invariant, breaks SO(5) down to SO(4).Sin
e 
ompensating gauge transformations do not spoil equation (2), the eigenfun
-tions � furnish representations of SO(5) and SO(4), respe
tively.4. Solutions of the 
ovariant Lapla
ianGeneralising equations (1) and (2) to 
urvilinear 
oordinates, we de�ne the LAG on thesphere S4 via the fun
tionalFLAG[A; �℄ = 12 ZS4 (D��aD��ag�� � E�a�a)pg d4x ; (10)where g = exp(2�R) denotes the determinant of the metri
 (6). The equation of motionis given in terms of the (gauge 
ovariant) Lapla
e-Beltrami operator,� 1pgD�pgg��D�� = E�: (11)To pro
eed we make use of the symmetry and separate into angular and radial equa-tions. The angular part is expressed in terms of angular momenta derived from thede
omposition so(4) �= su(2)� su(2),Ma = � i2 ��a��x��� ; ~M2 ! m(m + 1); Na = � i2�a��x��� ; ~N2 ! n(n + 1) : (12)In this representation, the two Casimirs 
oin
ide, ~M2 = ~N2. Their eigenvalues arehalf-integer, m = n 2 f0; 1=2; 1; 3=2; : : :g. The generators for isospin t = 1 are(Ta)b
 = i�ba
; ~T 2 ! t(t + 1) = 2 : (13)The radial equations on the sphere di�er from those in Eu
lidean spa
e by a metri
fa
tor, exp(��R), and a dilatation term, r�r,e��R(r) "��2r � 3r�r + 4 ~M2r2 + 4�2( ~J2 � ~M2)r2(r2 + �2) � 4~T 2�2(r2 + �2)2 + 4rr2 +R2�r#�sg = E�sg (14)e��R(r) "��2r � 3r�r + 4 ~N2r2 + 4( ~J2 � ~N2)(r2 + �2) � 4~T 2�2(r2 + �2)2 + 4rr2 +R2�r#�reg = E�reg (15)5



In the above, we have introdu
ed the 
onserved angular momentum ~J (`spin fromisospin', [31, 32, 33℄),~J � ~L + ~T ; ~J 2 ! j(j + 1); j 2 fl � 1; l; l + 1g ; (16)where ~L denotes ~M or ~N , respe
tively. Repla
ing angular momenta by their eigenvaluesand ex
hanging j ! n; m! j, equation (14) turns into (15). This amounts exa
tly tothe a
tion of the gauge transformations h from (5).The symmetry 
onsiderations above suggest the following form of the ground state,�(x) = Y(j;l)(x̂)'(r) ; (17)where the Y 's denote the spheri
al harmoni
s on S3 (see Appendix A). Note that thereare two 
ompeting angular momentum terms in (14) and (15), so that it is not obviousin whi
h angular momentum se
tor the groundstate will be. By simply looking at theradial potentials in the di�erent se
tors, we 
an only state the following bound on theenergy in an arbitrary se
tor,E(j;l) � minfE(0;1); E(1=2;1=2); E(1;0)g : (18)The quantum numbers of the ground state 
andidates on the r.h.s. 
orrespond to therepresentations (0,1), (1/2, 1/2) and (1,0) of su(2)j � su(2)l and thus have degenera
ies3, 4 and 3, respe
tively. Note that the singlet (0; 0) is ex
luded by the sele
tion rules fort = 1, see (16). A

ordingly, for any of the possible 
hoi
es in (18), the groundstate willbe degenerate. The spheri
al harmoni
s for the three 
ases are listed in Appendix A.At this point two further remarks are in order: First, the radial part ' shows powerlaw behaviour in r, both for small and large r, independent of R and �,'sg(r ! 0)! r2j ; 'sg(r !1)! r�2m ; (19)'reg(r ! 0)! r2n ; 'reg(r !1)! r�2j : (20)Se
ond, upon substituting ' � (r2 + R2) � � and � � ER2 + 2, one 
an absorb thedilatation term,"��2r � 3r�r + 4 ~M2r2 + 4�2( ~J2 � ~M2)r2(r2 + �2) � 4~T 2�2(r2 + �2)2 � 4�R2(r2 +R2)2#�sg = 0 ; (21)"��2r � 3r�r + 4 ~N2r2 + 4( ~J2 � ~N2)(r2 + �2) � 4~T 2�2(r2 + �2)2 � 4�R2(r2 +R2)2#�reg = 0 : (22)SettingR = �, the di�erential equation (21) 
oin
ides with the one 
onsidered by 't Hooftin his analysis of the 
u
tuations around instantons [34℄. The eigenvalues are �k =(k + j + l + 1 � t)(k + j + l + t + 2). The lowest energy 
orresponds to k = 0 andj + l = 1, 
onsistent with the three possible groundstates of (18). Together they form
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Figure 1: Energy of the lowest-lying states in the relevant angular momentum se
torsas fun
tions of the 
ompa
ti�
ation radius R (singular gauge). At the pointR = � the two triplets and the quadruplet meet, while for R!1 the triplet(1; 0) has lowest energy. For symmetry reasons we expe
t the dashed line tostay inbetween the other two for R 6= �.the 10-dimensional adjoint representation3 of SO(5) [35℄. The value of the ground stateenergy is E = 2=R2.The radial eigenfun
tions are rational,'sg(r) = R (r=R)2jr2 +R2 ; 'reg(r) = R (r=R)2�2jr2 +R2 ; (23)and obey the asymptoti
s (19) and (20), respe
tively. In a

ordan
e with the nodetheorem for the one-dimensional radial equation, the lowest-lying states have no zerosapart from r = 0 and r =1.For the 
ases R > � and R < � we 
annot solve the radial equation analyti
ally.However, we are able to prove the following statements:For the singular gauge and R > �, the triplet (1; 0) has lower energy than thetriplet (0; 1). For R < �, the situation is vi
e versa with the triplet (0; 1) having lowerenergy. Analogous statements hold for the regular gauge (see Fig. 1). These results area straightforward 
onsequen
e of the Feynman-Hellmann theorem (
f. Appendix B).For the quadruplet (1/2, 1/2), the situation is somewhat more 
ompli
ated. Usingperturbation theory in Æ = �2 � R2 (see Appendix B), one �nds that these states haveenergy inbetween the two disjoint triplet states. For symmetry reasons we do not expe
tthe spe
tral 
ow E(1=2;1=2)(R) to interse
t the others for some R 6= � (see Fig. 1).Finally, the node theorem again guarantees that � vanishes only at r = 0 and r =1,in a

ordan
e with the asymptoti
s (19,20).3Using the 
onventions of [35℄, this representation is labelled by the integers fn1; n2g = f0; 2g whi
hare the 
oeÆ
ients of the highest weight when expanded in terms of the fundamental weights.
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Figure 2: In the bundle pi
ture on S4 there are two gauge and Higgs �elds, whi
h aresmoothly de�ned on their domains (hemispheres). In the transition region,they are related by the gauge transformation (transition fun
tion) h. Notethat the four-dimensional radius 
an be expressed in terms of the azimuthalangle �, r = R 
ot(�=2).5. Properties of the solutionsBefore 
hara
terising the zeros of the solutions �, let us point out the following subtlety:Near the origin, the (0,1) wave fun
tions (Higgs �elds) in the singular gauge are bilinearin x̂� and thus dis
ontinuous there. They inherit this singularity from the instanton�eld4. Nevertheless, the wave fun
tions are square integrable on S4 due to the measurefa
tor r3. The same, of 
ourse, is true for the regular gauge states near in�nity. Inorder to work with smooth Higgs �elds, it is appropriate to use the prin
ipal �bre bundlepi
ture. This 
an be viewed as a non-Abelian S4-analogue of the Wu-Yang 
onstru
tionfor the Dira
 monopole on S2 [36℄. The A-�eld in the regular gauge represents the
onne
tion smoothly5 on the southern hemisphere (the 
hart 
ontaining the origin), whilethe A-�eld in the singular gauge does the same on the northern hemisphere (the 
hart
ontaining in�nity). In the transition region formed by the equatorial strip displayed inFig. 2, the gauge transformation h from (5) interpolates between the two. For simpli
itywe will retra
t the transition region to a single three-sphere S3r of �xed four-dimensionalradius r (�xed azimuthal angle �).The Higgs �eld is a se
tion in an asso
iated �bre bundle: on ea
h of the two 
hartsthere is a Higgs �eld. In the transition region, the same transition fun
tion h relatesthe two (see Fig. 2). Our results obtained so far 
an immediately be 
arried over to thebundle pi
ture, sin
e, for every solution in the singular gauge, there is a 
orrespondinggauge transformed `mirror' solution in the regular gauge with the same energy (andvi
e versa). Moreover, the angular momenta are inter
hanged by h in su
h a way that4whi
h results in the asymptoti
s '(r) � r0, see (19).5to be pre
ise: The A-�elds are the pullba
ks of the 
onne
tion under smooth se
tions of the bundle.
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the radial wavefun
tions (23) are smooothly de�ned on the whole of S4. The 
ompleteeigenfun
tions � are 
ontinuous in their respe
tive 
harts but `jump' (in their isospindire
tion) due to the a
tion of the transition fun
tion h in the transition region.Along these lines, let us dis
uss the ground state in the (1=2; 1=2) se
tor, whi
h haszeros lo
alised on loops. To simplify the dis
ussion, we 
hoose the fourth of the spheri
alharmoni
s in (37) or (38), for whi
h�sg(x) = 0� x1x2x3 1A 1r2 +R2 = �reg(x); (24)sin
e h from (5) 
ommutes with �sg. This Higgs �eld � is of hedgehog type. Thus,its diagonalisation indu
es a Dira
 monopole at ~x = 0 and a Dira
 string along thenegative 3-axis. The world-line of the monopole is the great 
ir
le in 4-dire
tion (whi
hdegenerates to the 4-axis in the in�nite-volume limit). For the other three states in themultiplet the same holds true upon permutation of the 
oordinates.It is well-known [37℄ that the monopole 
harge is 
hara
terised by the winding numberof the normalised Higgs �eld n = �=j�j, expli
itly given bynsg(x) = 0� x1x2x3 1A =j~xj = nreg(x) : (25)The n-�eld is singular at ~x = 0, where � vanishes. This singularity has the followingtopologi
al 
hara
terisation. Consider the two-sphere, S2: ~x = 
onst:, surrounding thesingularity. There, the n-�eld provides a smooth mapping, S2 ! S2 �= SU(2)=U(1),labelled by an integer, the winding number, whi
h in our 
ase is just one.The LAG Higgs �eld also serves as an illustration of the relation between instantonnumber and monopole 
harge re
ently proposed in [26℄. We note that in the (1/2, 1/2)se
tor the two Higgs �elds nsg and nreg 
oin
ide on the whole of S4, their singularitiesbeing lo
ated at two points p1 = (~0;�r); p2 = (~0; r) in the retra
ted transition regionS3r (see Fig. 3). Consider the submanifold S3r n fp1; p2g �= S2 � I12. In terms ofthe polar angle # 2 (0; �) on the three-sphere, the intervall I12 is parametrised byx4 = r 
os # 2 (�r; r), while the two-spheres are given by j~xj = r sin#.We already know that the magneti
 
harge measured on the two-sphere is q = 1. Ifwe express the transition fun
tion h in terms of n and #,h = exp(i# na�a) ; (26)the 
ux6 � = RI12 d(2#) is easily 
omputed as� = 2 Z �0 d# = 2� : (27)6noti
e the di�eren
e �a vs. �a=2 as 
ompared to [26℄9
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C
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singularity of n

σ3 (1,0)

(0,1)

originFigure 3: Submanifolds of S4 on whi
h the ground state wave fun
tion vanishes so thatthe normalised Higgs �eld be
omes singular. The se
tor (1/2,1/2) gives rise tomonopole loops C, while the generi
 se
tors (0,1) and (1,0) lead to pointlikesingularities with Hopf index as topologi
al invariant.We thus re
over the instanton number,�[A℄ = q �2� = 1 : (28)Note that for linear 
ombinations of states from di�erent multiplets the monopole loopsbe
ome tilted. As an example, take a 
ombination of the se
tors (1,0) and (1/2, 1/2),�reg = 1p2 ��reg(1;0) � �reg(1=2;1=2)� = 1p2(r2 +R2)0� x1x2R� x3 1A : (29)This Higgs �eld vanishes for x� = (0; 0; R; x4), a set of zeros whi
h is still a great 
ir
lebut does no longer in
lude the poles.As we have already argued, the quadruplet states (1/2, 1/2) will o

ur as groundstates only for R = �. In the general 
ase, R 6= �, the ground states will be the tripletstates (0; 1) and (1; 0), whi
h have isolated, pointlike zeros. Let us spe
ialise to thephysi
al region R > � whi
h in
ludes the in�nite-volume limit, R!1. (For R < � onehas to perform the appropriate `mirror' transformation.) We know that for the southernhemisphere (regular gauge) and for the northern hemisphere (singular gauge) we haveto take (j; l) = (0; 1) and (j; l) = (1; 0), respe
tively, sin
e these multiplets 
onsist of thelowest-lying states. If we 
hoose the third of the spheri
al harmoni
s in (36) and (40),the normalised Higgs �eld is given by
n(x) = 8>>>>>><>>>>>>: nreg(x) = 0� 2(x̂1x̂3 � x̂2x̂4)2(x̂2x̂3 + x̂1x̂4)�x̂21 � x̂22 + x̂23 + x̂24 1A southern hem. 3 0 ;nsg(x) = 0� 001 1A northern hem. 3 1 : (30)
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nreg is singular at the origin r = 0 and 
losely resembles the standard Hopf map [38, 39℄.For any �nite radius r 6= 0, it provides a smooth mapping S3r=�xed ! S2 �= SU(2)=U(1)with Hopf index one [40℄.As a result, we have obtained the simplest realisation of the 
onne
tion betweeninstanton number and Hopf indi
es derived in [25℄: The (signed) sum of all Hopf indi
esof n around its singularities equals the instanton number �. This statement is analogousto results from residue 
al
ulus where the singularities of n (the zeros of �) are repla
edby the poles of a meromorphi
 fun
tion: The (signed) sum of all residues equals theresidue at in�nity. Like the magneti
 monopoles in the PAG, n must possess singularitiesin any non-trivial instanton se
tor (� 6= 0). In addition, pairs of singularities may o

urwhi
h do not 
ontribute to the instanton number.Coming ba
k to the LAG, the remaining task is to diagonalise the ground-state Higgs�eld �(x). On the northern hemisphere, where � is already diagonal, there is nothing tobe done. No gauge transformation is needed and the gauge �eld remains in the singulargauge. On the southern hemisphere, we basi
ally have to diagonalise the standard Hopfmap. This is a
hieved by the gauge transformation h, whi
h transforms the gauge �eldA from regular to singular gauge. Independent of where we 
hoose the transition region,the LAG-�xed 
on�guration on the orbit of the single 't Hooft instanton is in the singulargauge (for R > �). Noti
e that the gauge �xed 
on�guration inherits a singularity onlyat the point where n is singular; there are no further `Dira
 strings'.If we 
hoose an arbitrary linear 
ombination of the triplet spheri
al harmoni
s, the di-agonalising gauge transformation in
ludes an additional global SU(2) rotation. Togetherwith Asg, all its global rotations are lo
ated on the gauge �xing hypersurfa
e de�ned bythe LAG. We thus �nd a whole S3 of gauge-equivalent 
on�gurations (Gribov 
opies).6. The Lapla
ian gaugeThe importan
e of pointlike defe
ts (as 
ompared to loops) is 
orroborated by theiro

uren
e in a 
losely related gauge, the Lapla
ian gauge (LG)7. The Lapla
ian gauge[41, 42, 43, 44℄ is de�ned via a Higgs �eld q in the fundamental representation, beingthe ground state of the 
ovariant Lapla
ian,�D2�[A℄q = E q ; D� = �� � iA� : (31)It is a 
omplete gauge �xing (up to defe
ts) if the two-
omponent 
omplex ve
tor q isrotated into a �xed isospin dire
tion and made real,
q � 
�1q = �jqj0 � ; ALG � 
A : (32)Our formalism is easily adapted to this gauge by 
hoosing the isospin t = 1=2 representa-tion in terms of the Pauli matri
es Ta = �a=2. For R = � one again has to minimise j+ l,when
e (j; l) = (0; 1=2) or (j; l) = (1=2; 0). As before, these states form an irredu
ible7The authors thank P. de For
rand for drawing their attention to this issue.11



representation8 of SO(5). For R > � and the singular gauge, the state (1=2; 0) has lowestenergy (by the same Feynman-Hellmann argument) so that the singular gauge instantonagain satis�es the gauge 
ondition. The relevant spheri
al harmoni
s areY reg(1=2;0) = �� 10 � ; � 01 �� ; (33)Y reg(0;1=2) = �h� 10 � = � x̂4 + ix̂3�x̂2 + ix̂1 � ; h� 01 � = � x̂2 + ix̂1x̂4 � ix̂3 �� ; (34)whi
h are nonzero throughout S4. In analogy with (20), we have the following behaviournear the origin, q(r) � r2n = r for (j, n) = (0, 1/2). Thus, the modulus of the Higgs �eldis proportional to the four-dimensional distan
e r from the origin (where the topologi
al
harge of the instanton is 
on
entrated). This perfe
tly agrees with latest results fromlatti
e simulations [45℄.Again, a topologi
al des
ription is possible. On a three-sphere surrounding the origin,one 
an de�ne n � q=jqj : S3 ! S3 with integer winding number. In the 
ase above,the n-�eld simply redu
es to the identity map,n � Y = � x̂4 + ix̂3�x̂2 + ix̂1 � ; (35)the winding number k of whi
h 
oin
ides with the instanton number, k = � = 1.7. Con
lusionsWe have investigated the Lapla
ian Abelian gauge on the sphere S4 in the ba
kgroundof a single 't Hooft instanton. This amounts to solving the eigenvalue problem forthe 
ovariant Lapla
ian in the adjoint representation. For any sphere radius R wehave determined the angular dependen
e and isospin stru
ture of the ground state wavefun
tions (Higgs �elds). Diagonalisation of the latter shows that the instanton in thesingular gauge is in the LAG if R is larger than the instanton size �; for the regulargauge the same is true for R < �. The gauge �xing pro
edure thus sele
ts one of thetwo instanton 
on�gurations, although, in a bundle pi
ture, they represent the same
onne
tion.It is interesting to note that the situation for the MAG on the sphere is similar:Singular and regular gauge instantons both satisfy the di�erential MAG 
ondition, butthe MAG fun
tional FMAG pi
ks out one of them in the very same way as FLAG: for R > �(R < �) the singular (regular) gauge instanton minimizes FMAG (see Appendix C). It is,however, a highly nontrivial task to 
he
k whether a given 
on�guration, say the `t Hooftinstanton, really 
orresponds to the absolute minimum along its orbit. In general, one
an never be sure that there is no other gauge equivalent 
on�guration that lowers thefun
tional even further.8the four-dimensional spinor representation labelled by fn1; n2g = f0; 1g in [35℄.
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The LAG, on the other hand, has the big advantage that the ground state (and thusthe absolute minimum of FLAG) 
an be found expli
itly. We have done so for R = � andhave given qualitative arguments 
on
erning the angular and radial dependen
e for the
ase R 6= �. Apart from the degenera
ies and the zeros (whi
h we have under 
ontrol),there are no further ambiguities.We have found a whole S3 of gauge equivalent 
on�gurations (obtained by globalSU(2) rotations of Asg similar to what has been observed in [46℄) lo
ated on the gauge�xing hypersurfa
e. These are Gribov 
opies of ea
h other, generated by both �nite andin�nitesimal gauge transformations. The latter give rise to three 
at dire
tions in the
on�guration spa
e along whi
h the gauge �xing fun
tional does not 
hange. Only oneof these dire
tions is 
overed by the residual U(1) freedom. The other two are relatedto zero modes of the (
oset part of the) Faddeev-Popov operator. We do see no reasonwhy these Gribov ambiguities should not be present on the latti
e. In 
ontrast to theMAG (and related gauges), however, where gauge �xing is a \numeri
al problem of non-polynomial 
omplexity" [42℄, there are no additional latti
e Gribov 
opies beyond thedenumerable ones we have en
ountered in the 
ontinuum. This 
learly makes the LAGa superior gauge.On
e a ground states is 
hosen for diagonalisation, additional obstru
tions o

ur interms of gauge �xing defe
ts 
aused by the nodes of the possible ground states. These arethe well-known sour
e for magneti
 monopoles in Abelian gauges. We have shown thatthese defe
ts must be present whenever the LAG ba
kground is in a non-trivial instantonse
tor. Monopoles, however, only arise for a parti
ular sphere radius R = � and for aparti
ular 
hoi
e of ground states. The generi
 defe
ts are lo
alised in spa
e-time (with
odimension 4). Their topologi
al invariant is the Hopf index S3 ! S2. Contrary tomonopoles they have �nite a
tion even in the in�nite volume limit. One may spe
ulatethat these defe
ts 
ondense in the low temperature phase of QCD, possibly giving riseto a new 
on�nement me
hanism. In view of the results presented in [26℄, they mayas well be related to the solitoni
 ex
itations observed in re
ent e�e
tive theories for
on�nement [47, 48, 49, 50℄.As we have 
al
ulated the LAG Higgs �eld only for a highly symmetri
 ba
kground,the question arises whi
h features are generi
 also for other ba
kgrounds. The degenera
yof the ground state is mainly due to the matrix stru
ture of the `Hamiltonian'. For asingle instanton ba
kground, this was indu
ed by nonvanishing angular momentum (likein quantum me
hani
al problems with spin). This should be 
ontrasted with the 
ase ofa trivial ba
kground. For the va
uum, A = 0, the ground state obviously has a threefolddegenera
y given by the 
anoni
al dreibein êa in isospa
e. The asso
iated 
onstant wavefun
tions do not have any zeros. We therefore 
onje
ture that Singer's obstru
tion [18℄against 
omplete gauge �xing is re
e
ted in the nodes rather than in the degenera
y ofthe ground state. To 
ompletely settle this issue, a full topologi
al 
lassi�
ation of Higgs�eld zeros would 
learly be helpful.A natural next step will be to analyse higher instanton se
tors and instanton-anti-instanton pairs. The existen
e of fermioni
 zero modes in the ba
kground of Hopf defe
tsis 
urrently being investigated (for related work see [51℄ and referen
es therein). Su
hzero modes may in the end lead to a relation between 
on�nement and 
hiral symmetry13



breaking. Finally, the dynami
al role of Hopf defe
ts in QCD has to be analysed.A
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al harmoni
sIn the following we list the eigenfun
tions of ~J 2 and ~L2 for the three 
ases of interest(suppressing the two magneti
 quantum numbers labelling the ve
tors in ea
h multiplet).(i) For (j; l) = (1; 0) the spheri
al harmoni
s are given by the 
anoni
al dreibein êa of
onstant unit ve
tors,Y sg(1;0) = Y reg(1;0) = 8<:0� 100 1A ; 0� 010 1A ; 0� 001 1A9=; : (36)(ii) For (j; l) = (1=2; 1=2) there are four eigenfun
tions, all linear in x̂�,Y sg(1=2;1=2) = 8<:0� x̂4x̂3x̂2 1A ; 0� �x̂3x̂4�x̂1 1A ; 0� �x̂2x̂1�x̂4 1A ; 0� x̂1x̂2x̂3 1A9=; ; (37)Y reg(1=2;1=2) = 8<:0� �x̂4x̂3x̂2 1A ; 0� �x̂3�x̂4�x̂1 1A ; 0� �x̂2x̂1x̂4 1A ; 0� x̂1x̂2x̂3 1A9=; : (38)The following remarks are in order. Obviously, Y reg is obtained from Y sg upon ex
hang-ing x̂4 ! �x̂4. This is a
hieved via 
onjugation with h, Y sg(j=1=2;m=1=2) � hy Y reg(j=1=2; n=1=2) h.Note that the `intertwining' gauge transformation h is only de�ned up to rotationsaround the dire
tion of the Higgs �eld � in isospa
e. It is 
onvenient to 
ombine themembers of ea
h (1/2, 1/2) quadruplet into a `four-ve
tor' Y�. Introdu
ing the basismatri
es �� � (i�a; 1), one �nds the relation Y reg� = ��Y sg� �y� for any � = 1; : : : ; 4. Any
omponent Y�(x̂) vanishes, if x̂� = �ê�, the ê� denoting the 
anoni
al basis of R4. Thismeans that the zeros of the quadruplet eigenfun
tions are given by two points lo
atedon a three-sphere with �xed radius r (see Fig. 3).(iii) For the 
ase (j; l) = (0; 1) one has three basi
 eigenfun
tions, now bilinear in x̂�,Y sg(0;1) = 8<:0� x̂21 � x̂22 � x̂23 + x̂242(x̂1x̂2 + x̂3x̂4)2(x̂1x̂3 � x̂2x̂4) 1A;0� 2(x̂1x̂2 � x̂3x̂4)�x̂21 + x̂22 � x̂23 + x̂242(x̂2x̂3 + x̂1x̂4) 1A;0� 2(x̂1x̂3 + x̂2x̂4)2(x̂2x̂3 � x̂1x̂4)�x̂21 � x̂22 + x̂23 + x̂24 1A9=;(39)
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Y reg(0;1) = 8<:0� x̂21 � x̂22 � x̂23 + x̂242(x̂1x̂2 � x̂3x̂4)2(x̂1x̂3 + x̂2x̂4) 1A;0� 2(x̂1x̂2 + x̂3x̂4)�x̂21 + x̂22 � x̂23 + x̂242(x̂2x̂3 � x̂1x̂4) 1A;0� 2(x̂1x̂3 � x̂2x̂4)2(x̂2x̂3 + x̂1x̂4)�x̂21 � x̂22 + x̂23 + x̂24 1A9=;(40)Again, the two sets of eigenfun
tions are related via x̂4 ! �x̂4 and 
an most easily beobtained from 
ase (i) by 
onjugation with h,Y sg(j=0;m=1) = hy Y reg(j=1; n=0) h; Y reg(j=0; n=1) = h Y sg(j=1;m=0) hy; (41)whi
h, in parti
ular, implies that they never vanish.B. Feynman-Hellmann theorem and perturbationtheoryIn order to obtain information when R 6= �, we keep R �xed and vary �. We restri
tourselves to the singular gauge. The �-dependent part of (14) 
ontains two terms,V sg� (j;m)(r) � 4e��R(r) "�2( ~J2 � ~M2)r2(r2 + �2) � ~T 2�2(r2 + �2)2# : (42)The �2-dependen
e of the ground state energy is determined by the Feynman-Hellmanntheorem, ���2E = ���2 h�jHj�i = h�j�H��2 j�i � h�j�V���2 j�i: (43)For the three angular momentum se
tors of interest (t = 1) we have,�V sg� (0;1)(r)��2 = (r2 +R2)2R4 �4r2(r2 + �2)3 < 0 ;�V sg� (1=2;1=2)(r)��2 = (r2 +R2)2R4 2(�2 � r2)(r2 + �2)3 ; (44)�V sg� (1;0)(r)��2 = (r2 +R2)2R4 4�2(r2 + �2)3 > 0:A

ording to (43), these fun
tions have to be integrated with the positive fa
tor j�j2pg.Therefore, the ground state energies in the �rst and the third se
tor are monotoni
 in�2, their slopes satisfying ���2Esg(0;1) < 0 ; ���2Esg(1;0) > 0 : (45)As the energies meet at R = � (`level 
rossing') we 
on
lude,Esg(0;1) < Esg(1;0) for R < � ; Esg(0;1) > Esg(1;0) for R > � : (46)15



This explains the behaviour of the full lines in Fig. 1.For the se
tor (1=2; 1=2) there is no su
h simple argument. Still, we 
an 
omputethe slope of E(�2) at the point � = R by simply inserting the known fun
tion �. Thisamounts to ordinary perturbation theory in Æ � �2 � R2,H(�2) = H(Æ = 0) + Æ �H��2 ����Æ=0 +O(Æ2) = H0 +Hpert : (47)In this way we �nd a vanishing slope for the se
tor (1=2; 1=2),���2Esg(1=2;1=2)�����2=R2 � Z 10 (1� r2)(r2 + 1)7 r5dr = 0 : (48)The lowest-lying state of this se
tor is thus pin
hed between the other two, at least forR � � (
f. Fig. 1).C. The MAG on the sphereIn [16℄ it has been shown that, due to their parti
ular Lorentz and isospin stru
ture,both Asg and Areg are in the MAG when de�ned on R4. This still holds true on S4,where the gauge �xing fun
tional has the values,FMAG[A℄ = Z 2X�a=1 A�a�A�a� g��pg d4x= 16�2R4[R4 � 2R2�2 ln(R2=�2)� �4℄�2(R2 � �2)3 � � 1 for AsgR2=�2 for Areg : (49)Obviously, FMAG[Areg℄ = (R2=�2)FMAG[Asg℄, so that for R > � (R < �) the singular(regular) gauge is singled out.Referen
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