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1 Introdu
tionOne of the interesting problems in quantum �eld theory in 
urved spa
e-times is to derive the indu
ed energy momentum tensor and in parti
ularthe Hawking radiation [1℄ from the e�e
tive a
tion approa
h [2, 3, 4℄. Thesolution of this problem is important for studying the ba
krea
tion problemfor bla
k holes [5-8℄. The e�e
tive a
tion for quantized matter �elds in a bla
khole metri
 is strongly nonlo
al and should des
ribe both the asymptoti
Hawking radiation and the va
uum polarization e�e
ts [9℄.Most of the re
ent works on the Hawking radiation and ba
krea
tionproblem (see, for instan
e [2,5-8℄) 
on
erned 2d bla
k holes. In parti
ular, ithas been shown that the 2d Hawking radiation 
an be derived from the 2de�e
tive a
tion [2,9℄. It is a priori not 
lear whether these results are of rele-van
e for real 4d bla
k holes. On the other hand, the 
ovariant perturbationtheory for the 4d e�e
tive a
tion � as developed in [3,10℄ seems to be veryinvolved for 
on
rete 
al
ulations. The results obtained so far are far frombeing 
omplete.In this paper we shall simplify the problem by 
onsidering s-modes ofminimally 
oupled massless s
alar �elds propagating in an arbitrary spheri-
ally symmetri
 4d spa
etime. We 
ompute the 
ontribution of these modesto the 4d e�e
tive a
tion �. The part of � whi
h is not invariant underWeyl-res
alings of the (r; t)-part of the metri
 is exa
tly 
al
ulated. For theinvariant part an appropriate perturbation expansion is developed. As anappli
ation the s-wave 
ontribution to the Hawking 
ux is obtained from thes-
hannel e�e
tive a
tion for 4d bla
k holes. We demonstrate why and howthe 2d-
al
ulations [2,5-8℄ are relevant for realisti
 4d bla
k holes.The 
al
ulations are performed in the Eu
lidean formalism. The sign
onventions, e.g. for the Riemann tensor and the signature when we returnto Lorentzian spa
e-time after the 
al
ulations have been done, are the sameas in [11℄. We set 
=�h=G=1:2 SetupThe Eu
lidean a
tion for the 
oupled gravitational and s
alar �elds isSE = SgravE + S�E = � 116� Z Rpg d4x + 12 Z pgg�������� d4x: (1)2



For spheri
ally symmetri
 spa
e-times it is 
onvenient to 
hoose adapted
oordinates for whi
h the metri
 takes the formds2 = g��dx�dx� = 
ab(xa)dxadxb + 
2(xa) !ijdxidxj; (2)where !ijdxidxj = (d�2 + sin2 �d'2) (3)is the metri
 of S2. The fun
tion 
 depends only on the 
oordinates (xa)=(x0; x1) = (t; r) and 
ab(xa) is the metri
 in the t � r se
tor. Note thatgab=
ab.In a spheri
ally symmetri
 spa
e-time we 
an expand a matter �eld intospheri
al harmoni
s. In parti
ular s
alar �elds in the s-
hannel depend onlyon t and r, � = �(xa). For s-waves the a
tion (1) redu
es to the following2d a
tionSE = SgravE + S�E = �14 Z �
2 
R+ !R + 2(r
)2�p
 d2x+ 2� Z 
2(r�)2p
 d2x; (4)where we took into a

ount that the volume of S2 is equal to 4�. Here 
Ris the s
alar 
urvature of the 2d-spa
e with metri
 
ab, !R=2 is the s
alar
urvature of S2 and (r
)2=
ab�a
�b
.The purely gravitational part of the a
tion (4) is almost the a
tion belong-ing to 2d dilatoni
 gravity with two ex
eptions: �rst, the numeri
al 
oeÆ
ientin front of (r
)2 is di�erent and se
ond, the a
tion (4) is not invariant un-der Weyl transformations due to the !R term whi
h is the 2d analog of the
osmologi
al 
onstant in 4 dimensions. The a
tion for the s
alar �eld �(t; r)is quite di�erent from the a
tions usually 
onsidered in 2d-�eld theories [5-8℄be
ause of the unusual 
oupling of � to the dilaton �eld 
. The a
tion (4)is the 4d-a
tion for spheri
ally symmetri
 gravitational and s
alar �elds andas su
h should not be regarded as just another 2d-toy-model for gravity.The independent �eld equations whi
h follow from (4) are4

� � 
R2 � 4�(r�)2�
 = 0 (5) fromthe variation of 
, 3
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2 � !R + 8�
2(r�)2 = 0; (6)whi
h is the tra
e of the variation with respe
t to 
ab, and the equation forthe s
alar �eld ra(
2ra�) = 0: (7) Here4
 is the Lapla
e-Beltrami operator in 2-dimensional spa
e-time with themetri
 
ab. Note that the matter part of the a
tion (4) is invariant under 2-dimensional Weyl transformations, 
ab ! e2�
ab, and hen
e the partial tra
eT aa of the energy momentum tensor vanishes for spheri
ally symmetri
 s
alar�elds.Without matter (�=0) the 2d-Eu
lidean bla
k holes(2)ds2 = �1� rgr �dt2 + dr21� rg=r ; 
 = r (8) aresolutions of (5,6) as it should be.3 E�e
tive A
tionIn this se
tion we determine the s-wave 
ontribution of the quantized s
alar�eld to the e�e
tive a
tion. In parti
ular we shall show how this problem 
anbe redu
ed to a 2d problem. Then we shall 
al
ulate the non Weyl-invariantpart of the s-
hannel e�e
tive a
tion exa
tly and develop a perturbationtheory for the Weyl-invariant part.The Eu
lidean 4d-e�e
tive a
tion � is de�ned ase�� = Z D� e�S�E ; (9)where S�E = �12 Z �4�pg d4x (10)is the Eu
lidean a
tion for the minimally 
oupled s
alar �eld and 4 =4gis the 4d-Lapla
e-Beltrami operator. To de�ne the (formal) di�eomorphisminvariant measure in the path integral (9) we expand the �eld �(x�) in terms4



of the eigenfun
tions of �4. For a spheri
ally symmetri
 spa
e-time andadapted 
oordinates (2) this expansion reads�(x�) = Xnlm�nlm; (11)where �nlm = �lmn (t; r)Ylm(�; �); �4�nlm = �nl�nlm: (12) Herethe Ylm are the spheri
al harmoni
s and the eigenmodes are normalized withrespe
t to the 4-metri
:h�nlmj�n0l0m0i = Z �nlm�n0l0m0pg d4x = Ænn0Æll0Æmm0 : (13) Thenthe path integral be
omese�� = Z Ynlm d
nlm exp �� 12Xnlm�nl 
2nlm� = exp ��Xl (2l + 1)�l�; (14)where e��l = Z Yn d
nlm exp �� 12Xn �nl 
2nlm� (15)is the 
ontribution of the modes with quantum numbers (l; m) and we tookinto a

ount that the eigenvalues do not depend on the magneti
 quantumnumber m.The integrals (14,15) are of 
ourse ultraviolet divergent and must be reg-ularized. We shall use the zeta-fun
tion regularization [12℄. Any other 
o-variant regularization of (14) would yield the same result up to integrals oflo
al terms of the form pg, pgR and pgR2;pg��R [13℄. The 
oeÆ
ients ofthese ambigues terms should be determined by experiments or observationsin any 
ase. One 
an regularize every �l separately and then sum over allangular momenta to re
over the total e�e
tive a
tion � =Pl(2l + 1)�l. Ingeneral the sum of the regularized �l's is still quadrati
ally divergent. How-ever, the remaining quadrati
 and logarithmi
 divergen
es 
an be absorbedby rede�ning 
oeÆ
ients of the lo
al 
ounterterms. For the �nite non-lo
alterms of interest the regularization 
ommutes with taking the sum over the5



angular momentum se
tors. Hen
e, to obtain the nonlo
al 
ontribution ofthe di�erent se
tors to � one 
an apply the �-fun
tion regularization for everyse
tor separately.In this paper we shall 
al
ulate only the 
ontribution �s � �0 of thes-wave s
alar �elds to the total 4d e�e
tive a
tion:e��s = Z Yn d
n00 exp �� 12Xn �n0 
2n00�: (16)Now we shall show how (16) relates to the e�e
tive a
tion of a 2-dimensionaltheory. For that we introdu
e the 
omplete set of res
aled s-modes'n(t; r) = p4�
(t; r)�n00(t; r) (17)whi
h are orthonormal with respe
t to the 2-metri
 
abh'nj'n0i = Z 'n'n0p
 d2x = Ænn0 ; (18)
ontrary to the �n00, whi
h are orthonormal with respe
t to the 4-metri
 g��.Then any �eld '(t; r)=p4�
�l=0(t; r) 
an be expanded as' =Xn 
n'n: (19)Also note that sin
e 
 in (2) had the dimension of a length (if we keepthe dimension of the gravitational 
onstant G), ' be
omes dimensionless asrequired for a 2-dimensional s
alar �eld.It is easy to see that the 'n are the eigenmodes of the 2d-operatorÔ = ��4
 + 4


 � (20)with the same eigenvalues �n=�n0 an in (12). Then (16) 
an be rewrittenas the fun
tional integral of a �eld theory in 2-dimensional spa
e time withthe metri
 
ab:e��s = Z D' exp �� 12 Z 'Ô'p
 d2x�; (21)where the measure D' is the usual (formal) Lebeques measure. The 
lassi
al6



a
tion in (21) is of 
ourse just the a
tion S�E in (4) rewritten in terms of the2d-s
alar �eld '. From (21) it follows at on
e that�s = 12 log det Ô: (22)Thus, 
al
ulating the s-waves 
ontribution to the e�e
tive a
tion redu
es tothe problem of 
al
ulating the determinant of the operator Ô de�ned in 2d-spa
e with metri
 
ab. This operator has the ni
e and important propertythat it transforms homogeneously under Weyl-res
alings
ab ! e2�
ab =) Ô! e�2�Ô: (23)This immediately implies that the 
lassi
al 2d-a
tion for ' is Weyl invariant.As it is well-known [14℄, the 2d-e�e
tive a
tion 
eases to be Weyl invariantand the breaking is determined by the tra
e anomaly whi
h is proportionalto the �rst Seeley-deWitt 
oeÆ
ient a1, whi
h in our 
ase isa1 = 
R6 � 4


 : (24) Thuswe have 
ab 2p
 Æ�sÆ
ab = a14� : (25)This equation 
an easily be integrated if we 
hoose isothermal 
oordinates(the 
onformal gauge) 
ab = e2�
fab; (26)where 
fab is the metri
 of the 
at 2d spa
e. In this gauge
R = �24
� = �2e�2�4f� (27) and(25) simpli�es to Æ�sÆ� = 14��134f� + 4f

 �; (28)where 4f is the Lapla
e operator on 
at spa
e whi
h does not depend on �.7



Integrating (28) and expressing � in terms of 
R by means of eq. (27) oneends up with(n)�s[�;
℄ � �s[�;
℄ � �s[� = 0;
℄= 18� Z h 112 
R 14
 
R� 4
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Rip
 d2x (29)whi
h is manifestly invariant under 2d-
oordinate transformations. The �rstterm on the r.h.s in (29) has been obtained previously in [2,9℄.In [2℄ it hasbeen shown that it leads to the Hawking radiation for 2d bla
k holes. Weshall see in the following se
tion how it is related with the s-wave radiationof 4d bla
k holes. However, there is the se
ond term whi
h, as 
an easilybe 
he
ked, yields a infalling radiation 
ux. The amplitude of this radiationex
eeds the outgoing 
ux 
oming from the �rst term by a fa
tor 6. However,we must not forget that in (29) we 
al
ulated only that part of �s whi
his non-invariant under 2d-Weyl transformations. The total s-wave e�e
tivea
tion is �s =(n)�s +(i)�s; (30)where(i)�s = �s[� = 0;
℄ = 12 log det ��4f + 4f

 � � 12 log det Ôf(31) is thepart of the total e�e
tive a
tion whi
h is invariant under 2d-Weyl transfor-mations. To get the 
omplete result we should also 
al
ulate the determinantof Ôf on 
at spa
e and then restore the metri
 
ab in the obtained expressionsu
h as to re
over general 
ovarian
e.Unfortunately log det Ôf 
annot be 
al
ulated exa
tly and we must re-sort to some perturbation expansion. The 
ovariant perturbation theorydeveloped in [3,10℄ seems to be of no help here be
ause of severe infrared di-vergen
es. These are related with the non-analyti
ity of the e�e
tive a
tionin the potential V f = 4f

 : (32)Instead we write the heat kernel for Ôf in the form8



K(x; x; �) = �24�� exp �� ��2W f(x; �)� (33)and develop the perturbation theory for W in powers of the potential V (seeappendix B). The arbitrary mass � has been introdu
ed su
h that � be
omesdimensionless.Using the �-fun
tion regularization (see appendix A) we immediately ar-rive at the following �nite expression for the e�e
tive a
tion in terms of Wand V :(i)�s = �CWs + �BSs ; where�CWs = 18� Z nV f � V f log V f�2 oq
fd2x�BSs = Z 10 d�nW f � V f�W f (�W f )0 exp(� ��2W f)oq
fd2x (34)and the prime means di�erentiation with respe
t to � . �CWs 
orrespond tothe 2d Coleman-Weinberg potential [16℄. For 
onstant V f we have W f =V f so that �BSs vanishes and the Coleman-Weinberg potential is the exa
tresult. In this se
tion we will negle
t �BSs in (34) whi
h is proportional tothe derivatives of the potential V . This approximation 
orresponds to thesimple 
lassi
al approximation to the heat kernel (33) and yields the 4d s-
hannel Hawking radiation without ba
ks
attering e�e
ts. The more involvedproblem of in
luding the ba
ks
attering will be dis
ussed in se
tion 5.Next we need to 
ovariantize the Weyl-invariant Coleman-Weinberg 
on-tribution to (34), that is restore the original metri
 
ab. Taking into a

ountthat V f � 4f

 = e2�4


 (35) andexpressing � in terms of of R via (27) we obtain the following 2d-
ovariantresult�CWs = 18� Z 4


 �1� log 1�24


 + 14
 
R�p
 d2x: (36)Note that only the last term is nonlo
al and 
ontributes to the Hawking 
ux.9



The a
tion �CWs is invariant under Weyl-transformations (26) as required andhen
e does not 
ontribute to the tra
e of the 2d energy momentum tensor(EMT). In the next se
tion we shall see that it also does not 
ontribute tothe partial tra
e T aa of the 4d EMT. However, it 
ontributes to the totaltra
e T ��. The free mass-parameter � 
orresponds to the renormalizationarbitrariness.Combining (29) and (36) one �nally obtains for the s-
hannel e�e
tivea
tion in the no-ba
ks
attering approximation(n)�s + �CWs = 18� Z � 112 
R 14
 
R� 4


 (1 + log 4

�2
 )�p
 d2x: (37)We see that the nonlo
al term in (36) 
an
els against the se
ond term in(29) whi
h yields a negative 
ontribution to the Hawking 
ux. However,in the se
tion 5 we shall see that the region near a bla
k hole 
ontributessigni�
antly to the (so far negle
ted) �BSs in (34) and e�e
tively redu
es the
oeÆ
ient in front of the nonlo
al term in (37). Physi
ally this 
orrespondsto a de
reasing of the Hawking 
ux due to ba
ks
attering e�e
ts.4 4d-Energy Momentum Tensor and Hawk-ing RadiationThe 4d-EMT 
an be derived from the 4d e�e
tive a
tion (9) a

ording toT�� = 2pg Æ�Æg�� : (38) Thes-waves 
ontribution to T�� is then gotten by inserting �s for � in (38). Forthat we rewrite the s-
hannel e�e
tive a
tion (22) in terms of the 4d metri
as �s = 14� Z 1
2 Lspg d4x: (39) Thenusing the symmetry properties and taking into a

ount that g��=(
ab;
2!ij)one obtains the following formulae for the non-vanishing 
omponents of the4d EMT: 10



T ab = 12�
2 1p

a
 Æ�sÆ

b , T ij = � 18�
 1p
 Æ�sÆ
 Æij: (40)Without ba
ks
attering e�e
ts �s is given by (37) and the fun
tional deriva-tive is to be 
al
ulated in 2d-spa
e. Straightforward 
al
ulations lead to thefollowing expli
it expressions for the EMT (4 = 4
;R = R
):T ab = 14�
2 148� h� 2rarb( 14R) +ra( 14R)rb 14R+Æab�2R� 12r
( 14R)r
( 14R)�i+ lo
al terms (41)The 
omponents T ij 
ontain only lo
al terms whi
h give rise to va
uumpolarization e�e
t. Here we are mainly interested in parti
le 
reation andfor that reason skipped all lo
al terms in (41). We stress that up to thispoint our results apply to arbitrary spheri
ally symmetri
 ba
kgrounds. Thus(41) des
ribes the s-
hannel parti
le 
reation (and va
uum polarization) forminimally 
oupled s
alars propagating in an arbitrary spheri
ally symmetri
spa
etime, e.g. of a 
ollapsing star. Here we are mainly 
on
erned with theHawking radiation and leave other interesting appli
ations to a forth
omingpubli
ation.To get the 
ux of the Hawking radiation we need to go ba
k to Lorentzianspa
e-time by 
hanging the signs in the appropriate pla
es. A

ording to theresults in [2,17℄ we arrive at the in-va
uum EMT by repla
ing �1=4 by theretarded Greens fun
tion G�. Only the se
ond term in (41) 
ontributes tothe Hawking radiation. The 
al
ulations leading to the 
orresponding 
uxare analogous to the ones whi
h have been done by Frolov and Vilkovisky[2℄. Thus we may skip them here by referring the reader to that paper.The luminosity of the bla
k hole, whi
h is obtained from the Lorentzian(in-va
uum) version of the EMT (41) is then found to beL = � �12 1(8�M)2 ; (42)where M is the mass of the bla
k hole. This exa
tly 
oin
ides with the totals-waves 
ux of the Hawking radiation obtained by standard methods [14℄without taking ba
ks
attering e�e
ts into a

ount.11



5 Ba
ks
attering e�e
tTo take into a

ount the ba
ks
attering of Hawking radiation we must 
al-
ulate �BSs in (34),�BSs = 18� Z Iq
fd2x , I = Z d� W f � V f�W f (W f�)0 e�W f� ; (43) tothe e�e
tive a
tion. For that we develop the perturbation expansion for W fin powers of the potential V f . This expansion in presented in appendix B.Up to linear order in V f we �ndW f(x; �) = 1Xn=0 n!(2n+ 1)!(�4�2 )n V f (x) +O(rV f � rV f): (44)To simplify the analysis we 
hoose the natural radial variable introdu
ed byRegge and Wheelerr� = r + 2M log j r2M � 1j (45) sothat the (r; t)-part of the (Eu
lidean) bla
k hole metri
 takes the formds2 = (1� 2Mr )(dt2 + dr�2): (46) Notethat r� !1 as r !1, but also r� ! �1 as r ! 2M . In this 
oordinatesystem the potential V f readsV f(r�) = e2�4


 = (1� 2Mr )2Mr3 ; (47)where r should be expressed in terms of r� via (45). Sin
e the potential V fdepends only on one 
oordinate, namely r�, the asymptoti
 series (44) 
anbe 
onverted into an integralW f(r�; �) = s��24� Z 1�1 V (~r�) 1� �(�j~r� � r�jp� )!d~r�; (48)where 12



�(x) = Z x0 e�t2dt (49)is the error fun
tion. For r� � 2M , where r� � r, we 
an �nd a goodapproximation to the integral (48) for di�erent values of �=�2. The �=�2-dependen
e of W f for r � 2M is depi
ted in �gure 1. We see that for�=�2 � V f=4fV f the fun
tion W f slowly in
reases as a fun
tion of � ,starting with W f(r; � = 0) = V f (r). Then, in a very short interval in thevi
inity of �=�2 � V f=4fV f it in
reases dramati
ally from M=r3 to 1=Mr.When � is mu
h bigger then W f de
reases as 1=p� . Sin
e W f� � p� when� !1 the expression for the e�e
tive a
tion is infrared-
onvergent.Clearly, the small interval in the vi
inity of V f=4fV f , whereW f 
hangesa lot, gives the main 
ontribution to the integral in (34). In this interval wehave W f � V f , (W f)0� �W f and we 
an estimate the integral (43) asI � Z 10 d� (W f)0 exp (� W f��2 ) � W f (�0); (50)where �0 is the value of � for whi
h �0W f(�0) � �2. For potentials forwhi
h W f has the qualitative shape depi
ted in �gure 1, we have �0=�2 �V f=4fV f . Thus one obtainsI � �4fV fV f ; (51)where � is some fudge 
oeÆ
ient. In our approximate treatment of the inte-gral in (43) we 
annot get the exa
t value for this 
oeÆ
ient. Note that at� � �0 the main 
ontribution to the integral (48) whi
h de�nes W f 
omesfrom the region near the bla
k hole horizon. This 
on�rms that (51) a
tu-ally takes into a

ount the ba
ks
attering of the Hawking radiation in thepotential of the bla
k hole, whi
h is most e�e
tive near a bla
k hole.Now we need to restore the metri
 
ab in (51). Taking into a

ount eqs.(27) and (36) we �nd that (51) leads to the following 
ontribution to thetotal e�e
tive a
tion�BSs = � �8� Z � 
R 14
 
R+ lo
al terms�p
d2x: (52) Thismust be added to (37) to get the s-
hannel e�e
tive a
tion. Noti
e that the13



nonlo
al term in (52) 
an
els part of the nonlo
al term in (37) and diminishesthe total Hawking 
ux. Comparing our result with that obtained by othermeans [℄ we 
on
lude that � should be about 10 per
ent less than 1=12.6 Con
lusionsWe have 
al
ulated the 
ontribution of the s-waves of massless minimally
oupled s
alars to the 4d-e�e
tive a
tion in an arbitrary spheri
ally symmet-ri
 external gravitational �eld. The problem was to a large extend simpli�edby redu
ing the s-waves se
tor to an e�e
tive 2-dimensional, 
lassi
ally Weyl-invariant theory. Of 
ourse, it is obvious that the s-wave 
hannel redu
es to a2-dimensional theory. But during the redu
tion pro
ess one needs to res
alethe spheri
ally symmetri
 s
alar �eld (see (e16)) su
h that the new measurein the path integral belongs to a s
alar �eld propagating in a 2-dimensionalspa
etime. The �eld theory for the 2-dimensional �eld is a 
onformal �eldtheory. This observations permitted us to 
al
ulate the Weyl non-invariantpart of the e�e
tive a
tion exa
tly. Then the problem redu
es to the 
al
ula-tion of the 2d-Weyl invariant part whi
h a
tually is an e�e
tive a
tion in 2d
at spa
etime. To 
al
ulate this we developed the perturbation expansionwhi
h works well in the 
ase of bla
k holes and permits us to take into a
-
ount the ba
ks
attering of the Hawking radiation by the gravitational �eldof the bla
k hole. As an appli
ation we derived the expli
it form of that partof the stress-energy tensor whi
h leads to the Hawking radiation.However, the range of appli
ability of our main results is not at all re-stri
ted to the bla
k hole physi
s. They hold for arbitrary spheri
ally sym-metri
 ba
kgrounds and 
onsequently 
an be applied to study 
ollapse prob-lems, e.g. the parti
le produ
tion by time-dependent spheri
al gravitational�elds.A
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A Regularization of the e�e
tive a
tion andinfrared problemThe e�e
tive a
tion � expressed in terms of the heat kernel is divergent.Sin
e we are only interested in the �nite part of � rather than the divergentone we derive here the expression for the �-fun
tion regularized � in termsof some fun
tion W (x; �) � W (x; x; �) whi
h is de�ned via the heat kernelK(x; y; �) in d-dimensional spa
e asK(x; y; �) = �d(4��) d2 exp h� �2(x� y)24� � W (x; y; �) ��2 i: (53) Here� is an arbitrary mass-parameter introdu
ed for dimensional reasons. Sin
ethis parameter 
an be easily restored in the �nal results we will set it to oneto simplify the formulae. We will see how one solves the infrared problemwhi
h is usually met when one uses the Seeley-deWitt expansion for the heatkernel in the massless 
ase. Keeping in mind the other possible appli
ationsbesides the bla
k hole physi
s we 
onsider the general d-dimensional 
ase.The formula (64) below whi
h we need for our purposes is then gotten asparti
ular example. Finally we show how to 
onstru
t the asymptoti
 seriesfor the �nite part of � in terms of the Seeley-deWitt 
oeÆ
ients.An eÆ
ient methods (whi
h respe
ts the di�eomorphism invarian
e) to
al
ulate the e�e
tive a
tion is the �-fun
tion regularization [12℄ in terms ofwhi
h � = �12 d�(s)ds js=0: (54)Here �(s) is the meromorphi
 fun
tion whi
h for s > d=2 has the integralrepresentation �(s) = 1�(s) Z 10 d�� s�1trK(�) (55)in terms of the heat kernel (53). First, let us introdu
e instead of � the newvariable � = W (x; �)� (56)15



assuming that W (x; �)� in
reases monotoni
ally from 0 to 1 when � runsthrough the same interval. Then the expression (55) takes the form�(s) = 1(4�) d2�(s)tr x Z 10 d� e���s�1� d2W d2�s�1� �W 0W �; (57)where now prime means di�erentiation with respe
t to �. The integral in(57) is 
onvergent for s > d=2. Integrating suÆ
iently often by parts onegets the following expression for the analyti
 
ontinuation of �(s) to s! 0:�(s) = (�14� ) d2 �(s� d2)�(s)�(s+ 1) Z 10 �s�W d2�s e���( d2 )d� (58) ind = 2; 4; : : : dimensions and�(s) = 12p� (�14� ) d2 �(s� d2)�(s)�(s+ 12) Z 10 �s� 12 (W d2�s e��)( d2� 12 )d� (59) ind = 1; 3; : : : dimensions. Here (: : :)(n) denotes the n't derivative with respe
tto �. Cal
ulating the s-derivative at s = 0 we arrive at the following formulaefor the �nite parts of the e�e
tive a
tions� = 12 1(4�) d2 1�(d2 + 1) d2�1Xk=0(�1) d2�1�k d2 � 1k !�tr x(� (W d2 logW )(k)0 + ( d=2Xn=1 1n)(W d2 )(k)0+ Z 10 d� e��� h(W d2 )(k) � (W d2 )(k)0 i) (60) in
even dimensions and� = 12 p�(4�) d2 1�(d2 + 1) d�12Xk=0(�1) d2� 12�k d2 � 12k !�tr x Z 10 d�e��p� (W d2 )(k) (61)in odd dimensions, where the subs
ript 0 means that the derivative should16



be taken at � = 0. Taking into a

ount (56) we 
an see that the integrals in(60,61) are 
onvergent both in the ultraviolet (� ! 0) and infrared (� !1)regions. Note that even for massless �elds no infrared divergen
es appear.Of 
ourse we assumed that the map [0;1) 3 � ! � is bije
tive whi
h inparti
ular implies that W (x; �) does not de
ay faster than 1=� for large � .Now we shall show how to relate the �nite part of the e�e
tive a
tion to theSeeley-deWitt 
oeÆ
ients.In 2-dimensions the formulae simplify 
onsiderably and the e�e
tive a
-tion (60) reads� = 18� tr xhW0 �W0 logW0 + Z 10 d�e��� (W �W0)i: (62) Foran operator Ô = �4+ V (x) (63)in 
at spa
e we have W0 = V . The �rst two terms in (62) 
orrespond thento the 2d-Coleman-Weinberg potential and the integral gives the 
orre
tionwhi
h vanishes for 
onstant V . Expanding W (x; �) in a Taylor series andintegrating over � we �nd the following asymptoti
 series for �:� = 18� tr x�W0 �W0 logW0 + 1Xn=1 1nW (n)0 �: (64) Notethat the derivative with respe
t to � is related to the � -derivative via��� = 1W + �W�� � ��� : (65)Thus, the series (64) 
an be viewed as an expansion of the e�e
tive a
tionin terms of the � -derivatives of W (x; �). In parti
ular, the �rst few terms in(64) 
an be expli
itly written as� = 18� tr x W0 �W0 logW0 + 1W0 (�W�� )0 + 12 1W 20 (�2W�� 2 )0� 2W 30 (�W�� )20!+O� 1W 30 (�3W�� 3 )0; 1W 40 (�W�� )30; : : :� (66)
17



Expanding (53) in powers of � and 
omparing it with the Seeley-deWittexpansion for the heat kernel on the diagonalK(x; x; �) = 1(4��) d2 X an�n (67)we 
an express the derivatives of W at � = 0 in terms of the Seeley-deWitt
oeÆ
ients as W0 = �a1(�W�� )0 = 12a21 � a2(�2W�� 2 )0 = 2a1a2 � 2a3 � 23a31; : : : (68) Thenthe e�e
tive a
tion (66) 
an be rewritten in terms of the an as� = 18� tr xna1 � a1 log a1 + (a2a1 � 12a1)(�a3a21 + a22a31 � 112a1) + : : :o: (69) Inparti
ular, for operators of the form (64) in a 2d 
at spa
etime one gets� = 18� tr x(V � V logV + 164VV� 112 (rV )2V 2 + 16042VV 2 � 136 (4V )2V 3 + : : :): (70)Note that the asymptoti
 expansion (64) (and 
orrespondingly (70)) is goodonly if the potential V is big 
ompared with its derivatives. In this 
ase theformal expansion parameter is 4V=V 2 � 1. When this 
ondition is not met,as for instan
e for the bla
k hole metri
, then we must work dire
tly with(62).
18



B Perturbation theory for WTo 
al
ulate the e�e
tive a
tion for an operator (63) in 
at spa
etime weneed to develop some perturbation expansion for the heat kernel K̂(�) whi
hsatis�es �K̂�� = �ÔK̂ and K̂(� = 0) = 1̂: (71)In the 
oordinate representation we write the heat kernel in the form (53)(again we set � = 1) and derive the perturbation series forW in powers of thepotential V . Keeping in mind other possible appli
ations of the perturbationexpansion (e.g. in statisti
al me
hani
s [15℄) we 
onsider an arbitrary numberof dimensions d. Substituting (53) into (71) we obtain the following equationfor W :� �W�� = 4W� � (x� y)iriW � (rW )2� 2 + V �W: (72)Making the 'ansatz'W (x; y; �) =X bn(x; y)�n (73) weimmediately arrive at the re
urren
e relations for the bn:b0 + (x� y)iribo = V;2b1 + (x� y)irib1 = 4b0 ; (74) andfor n > 2(n+ 1)bn + (x� y)iribn = 4bn�1 � n�2Xp=0ribpribn�p�2: (75)For 
omputing the e�e
tive a
tion or partition fun
tion it suÆ
es to know Kand 
orrespondingly the bn on the diagonal x = y. Taking this 
oin
iden
elimit in (74,75) (of 
ourse, after the derivatives have been taken) we arriveat
19



limx!y bn = n!(2n+ 1)!4(n)V� limx!y n�2Xk=0 n!(2n� 1� k)!4(n�2�k)x n�2Xp=0ribpribk�p: (76) Theterms proportional to ribrib are at least quadrati
 in the potential. Let usnote that the terms whi
h are nonlinear in V always 
ontain produ
ts of gra-dients (as riVriV; ri4VriV et
.). The terms linear in V in the expansion(73,76) 
orrespond to the sum of all terms of the forms V; V 2; : : : ; V4V;42Vet
. in the Seeley-deWitt expansion. Thus in the linear approximation one�ndsW (x; �) � W (x; x; �) = 1Xn=0 n!(2n+ 1)!�n4(n)V +O(rV � rV ): (77)In one dimension or in the 
ase when the potential V depends just on onevariable, the series (77) 
an be 
onverted into the following integralW (x; �) = r �4� Z 1�1 V (y)h1� �( jx� yjp� )idy +O(rV � rV ); (78)where � is the error fun
tion. The nonlo
al result (78) for W a

ounts forall terms whi
h are linear in V . It is relevant for improving the Coleman-Weinberg e�e
tive potential as well as the partition fun
tion in statisti
alphysi
s. It is related but not identi
al to a similar expression obtained byFeynman by variational method [15℄.Referen
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