On 4D-Hawking Radiation from Effective
Action

V. Mukhanov} A. Wipf
Institut fur Theoretische Physik, Eidgenossische Hochschule,
Honggerberg, Ziurich CH-8093, Switzerland

and

A. Zelnikov!
Dept. of Physics, Univ. of Alberta,
Edmonton, AB T6G 2J1, Canada

ETH-TH/94-08

Abstract

We determine the s-waves contribution of a scalar field to the four
dimensional effective action for arbitrary spherically symmetric exter-
nal gravitational fields. The result is applied to 4d-black holes and it
is shown that the energy momentum tensor derived from the (nonlo-
cal) effective action contains the Hawking radiation. The luminosity
is close to the expected one in the s-channel. The energy momen-
tum tensor may be used as starting point to study the backreaction
problem.
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1 Introduction

One of the interesting problems in quantum field theory in curved space-
times is to derive the induced energy momentum tensor and in particular
the Hawking radiation [1] from the effective action approach [2, 3, 4]. The
solution of this problem is important for studying the backreaction problem
for black holes [5-8]. The effective action for quantized matter fields in a black
hole metric is strongly nonlocal and should describe both the asymptotic
Hawking radiation and the vacuum polarization effects [9].

Most of the recent works on the Hawking radiation and backreaction
problem (see, for instance [2,5-8]) concerned 2d black holes. In particular, it
has been shown that the 2d Hawking radiation can be derived from the 2d
effective action [2,9]. It is a priori not clear whether these results are of rele-
vance for real 4d black holes. On the other hand, the covariant perturbation
theory for the 4d effective action I' as developed in [3,10] seems to be very
involved for concrete calculations. The results obtained so far are far from
being complete.

In this paper we shall simplify the problem by considering s-modes of
minimally coupled massless scalar fields propagating in an arbitrary spheri-
cally symmetric 4d spacetime. We compute the contribution of these modes
to the 4d effective action I". The part of [' which is not invariant under
Weyl-rescalings of the (r,t)-part of the metric is exactly calculated. For the
invariant part an appropriate perturbation expansion is developed. As an
application the s-wave contribution to the Hawking flux is obtained from the
s-channel effective action for 4d black holes. We demonstrate why and how
the 2d-calculations [2,5-8| are relevant for realistic 4d black holes.

The calculations are performed in the Euclidean formalism. The sign
conventions, e.g. for the Riemann tensor and the signature when we return
to Lorentzian space-time after the calculations have been done, are the same
as in [11]. We set c=h=G=1.

2 Setup

The Euclidean action for the coupled gravitational and scalar fields is

rav ]- 1 a
Sp = SE + Sp = —1— /R\/gd% +5 / V39 0a005¢ d'z. (1)



For spherically symmetric space-times it is convenient to choose adapted
coordinates for which the metric takes the form

ds? = g datdr” = vy (2)da da’ + Q*(2*) wyda'da?, (2)
where
wzjdxldx] = (d02 + sin2 9ng2) (3)

is the metric of S?. The function Q depends only on the coordinates (z%)=
(2% 21) = (t,7) and 74 (2*) is the metric in the ¢ — r sector. Note that
gab:,)/ab‘

In a spherically symmetric space-time we can expand a matter field into
spherical harmonics. In particular scalar fields in the s-channel depend only
on t and r, ¢ = ¢(z). For s-waves the action (1) reduces to the following
2d action

1
Sp=SEv+ 8% = —Z/(Q“RJr “R+2(VQ)?) 7 d

4

+ ZW/QQ(Vqﬁ)Zﬁde, “
where we took into account that the volume of S? is equal to 47. Here "R
is the scalar curvature of the 2d-space with metric v,,, “R =2 is the scalar
curvature of S? and (VQ)?=~%9,00,Q.

The purely gravitational part of the action (4) is almost the action belong-
ing to 2d dilatonic gravity with two exceptions: first, the numerical coefficient
in front of (VQ)? is different and second, the action (4) is not invariant un-
der Weyl transformations due to the “R term which is the 2d analog of the
cosmological constant in 4 dimensions. The action for the scalar field ¢(¢,r)
is quite different from the actions usually considered in 2d-field theories [5-8]
because of the unusual coupling of ¢ to the dilaton field 2. The action (4)
is the 4d-action for spherically symmetric gravitational and scalar fields and
as such should not be regarded as just another 2d-toy-model for gravity.

The independent field equations which follow from (4) are

v

ALQ— (772 —47(V6)* )2 =0 (5) from

the variation of €2,



AP — YR+ 810 (V)® =0, (6)

which is the trace of the variation with respect to 74, and the equation for
the scalar field

V(Q*V,.0) = 0. (7) Here

A, is the Laplace-Beltrami operator in 2-dimensional space-time with the
metric 74. Note that the matter part of the action (4) is invariant under 2-
dimensional Weyl transformations, v, — €274, and hence the partial trace
T of the energy momentum tensor vanishes for spherically symmetric scalar
fields.

Without matter (¢ =0) the 2d-Euclidean black holes

(2) 7.2 Tg\ 7,2 dr?
ds® = (I—T)dt +177'/’[“7 Q=r (8) are
—ly

solutions of (5,6) as it should be.

3 Effective Action

In this section we determine the s-wave contribution of the quantized scalar
field to the effective action. In particular we shall show how this problem can
be reduced to a 2d problem. Then we shall calculate the non Weyl-invariant
part of the s-channel effective action exactly and develop a perturbation
theory for the Weyl-invariant part.

The Euclidean 4d-effective action I' is defined as

el = /ng 6752, (9)

where

Sp=—5 000G d's (10)

is the Euclidean action for the minimally coupled scalar field and A = A,
is the 4d-Laplace-Beltrami operator. To define the (formal) diffeomorphism
invariant measure in the path integral (9) we expand the field ¢(z®) in terms



of the eigenfunctions of —A. For a spherically symmetric space-time and
adapted coordinates (2) this expansion reads

Cb(l“a) = Z¢nlm; (11)

nlm

where

¢nlm = ¢£1m(t7 T)Yzm(ga ¢)7 _A¢nlm - Anl¢nlm- (12) Here

the Y}, are the spherical harmonics and the eigenmodes are normalized with
respect to the 4-metric:

<¢nlm|¢n’l’m’> - /¢nlm¢n’l’m’\/§ d4ZL‘ - 5nn’5ll’5mm’- (13) Then

the path integral becomes

T / I dewimexp ( - % S ) =exp (= @A), (1)

nlm nlm [

where

1
et = /H dCpim €Xp ( 9 Z Ant C?ﬂm) (15)

is the contribution of the modes with quantum numbers (I, m) and we took
into account that the eigenvalues do not depend on the magnetic quantum
number m.

The integrals (14,15) are of course ultraviolet divergent and must be reg-
ularized. We shall use the zeta-function regularization [12]. Any other co-
variant regularization of (14) would yield the same result up to integrals of
local terms of the form /g, \/gR and \/gR?, /gOOR [13]. The coefficients of
these ambigues terms should be determined by experiments or observations
in any case. One can regularize every I'; separately and then sum over all
angular momenta to recover the total effective action I'=3;(2l + 1)[';. In
general the sum of the regularized I')’s is still quadratically divergent. How-
ever, the remaining quadratic and logarithmic divergences can be absorbed
by redefining coefficients of the local counterterms. For the finite non-local
terms of interest the regularization commutes with taking the sum over the



angular momentum sectors. Hence, to obtain the nonlocal contribution of
the different sectors to I' one can apply the (-function regularization for every
sector separately.

In this paper we shall calculate only the contribution I'y = [y of the
s-wave scalar fields to the total 4d effective action:

1
e_FS = /H dcnog exp ( — 5 Z )\TLO 672‘1,00) : (16)

Now we shall show how (16) relates to the effective action of a 2-dimensional
theory. For that we introduce the complete set of rescaled s-modes

On(t,r) = VAT Q(t, 1) Pnoo(t, 1) (17)
which are orthonormal with respect to the 2-metric v,
<90n|(;0n’> = / @n@n’ﬁdQ-’E = Opn, (18)

contrary to the ¢, which are orthonormal with respect to the 4-metric gqz.
Then any field p(t,r)=v47Qd—(t, ) can be expanded as

Y= Zn: Cn¥n- (19)

Also note that since € in (2) had the dimension of a length (if we keep
the dimension of the gravitational constant G), ¢ becomes dimensionless as
required for a 2-dimensional scalar field.

It is easy to see that the ¢, are the eigenmodes of the 2d-operator

AWQ) (20)

OA:(—AVJF 3

with the same eigenvalues A\, = A, an in (12). Then (16) can be rewritten

as the functional integral of a field theory in 2-dimensional space time with
the metric v4:

e ts = /Dgoexp ( — %/gpéwﬁd%), (21)

where the measure Dy is the usual (formal) Lebeques measure. The classical



action in (21) is of course just the action S% in (4) rewritten in terms of the
2d-scalar field ¢. From (21) it follows at once that

1 A
Iy = 3 log det O. (22)

Thus, calculating the s-waves contribution to the effective action reduces to
the problem of calculating the determinant of the operator O defined in 2d-
space with metric v,. This operator has the nice and important property
that it transforms homogeneously under Weyl-rescalings

Yab = €770 = O = e 0. (23)

This immediately implies that the classical 2d-action for ¢ is Weyl invariant.
As it is well-known [14], the 2d-effective action ceases to be Weyl invariant
and the breaking is determined by the trace anomaly which is proportional
to the first Seeley-deWitt coefficient a;, which in our case is

_ 'R A0

@ = O (24) Thus
we have
w2 Ols o
T A T A (25)

This equation can easily be integrated if we choose isothermal coordinates
(the conformal gauge)

Yab = 620’7({,), (26)
where 7/, is the metric of the flat 2d space. In this gauge

TR =200 =—2¢ *Nso (27) and

(25) simplifies to

551;_5 — ﬁ(lAfo—_F%),

3 Q (28)

where Ay is the Laplace operator on flat space which does not depend on o.
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Integrating (28) and expressing o in terms of 7R by means of eq. (27) one
ends up with

MT[0,Q] = T,0,Q] —T,[o =0,9]
1 1 1 AQ 1
— JE— " 7 _L_’Y d2
8#/[12 Ra, R &, R|vyd'e

(29)

which is manifestly invariant under 2d-coordinate transformations. The first
term on the r.h.s in (29) has been obtained previously in [2,9].In [2] it has
been shown that it leads to the Hawking radiation for 2d black holes. We
shall see in the following section how it is related with the s-wave radiation
of 4d black holes. However, there is the second term which, as can easily
be checked, yields a infalling radiation flux. The amplitude of this radiation
exceeds the outgoing flux coming from the first term by a factor 6. However,
we must not forget that in (29) we calculated only that part of I'y which
is non-invariant under 2d-Weyl transformations. The total s-wave effective
action is

Fs =) Fs +(Z) Fs; (30)

P, =T4[c=0,0Q] = %logdet ( AYE S %) = %logdet Of(31) is the
part of the total effective action which is invariant under 2d-Weyl transfor-
mations. To get the complete result we should also calculate the determinant
of O 7 on flat space and then restore the metric v, in the obtained expression
such as to recover general covariance.

Unfortunately logdet Of cannot be calculated exactly and we must re-
sort, to some perturbation expansion. The covariant perturbation theory
developed in [3,10] seems to be of no help here because of severe infrared di-
vergences. These are related with the non-analyticity of the effective action
in the potential

BAYLY

f
v Q

(32)

Instead we write the heat kernel for O 7 in the form



2
)= M _ T wh (e
K(.’L’,[L‘,T) - 47TT exp( /LZW (:I“aT)) (33)
and develop the perturbation theory for W in powers of the potential V' (see
appendix B). The arbitrary mass p has been introduced such that 7 becomes
dimensionless.
Using the (-function regularization (see appendix A) we immediately ar-

rive at the following finite expression for the effective action in terms of W
and V:

Or, = 19" 4+ 155 where

1 v/
FCW — / f_ fl fd2
s 3x {V V/log oz }\/7 x (34)
00 wi—-vi T
BS _ f f 2
ry> = /0 dT{ T (W )'exp(—EW )}\/’yfd T

and the prime means differentiation with respect to 7. T¢" correspond to
the 2d Coleman-Weinberg potential [16]. For constant V/ we have W/ =
V7 so that ['5 vanishes and the Coleman-Weinberg potential is the exact
result. In this section we will neglect I'?% in (34) which is proportional to
the derivatives of the potential V. This approximation corresponds to the
simple classical approximation to the heat kernel (33) and yields the 4d s-
channel Hawking radiation without backscattering effects. The more involved
problem of including the backscattering will be discussed in section 5.

Next we need to covariantize the Weyl-invariant Coleman-Weinberg con-
tribution to (34), that is restore the original metric v,,. Taking into account
that

_ AfQ _ 20 A"/Q

V= O e (35) and

expressing o in terms of of R via (27) we obtain the following 2d-covariant
result

1 A 1 AQ 1
cw v v 2
L'y 3 / Q (1 log — O + - VR)ﬁd x. (36)

Note that only the last term is nonlocal and contributes to the Hawking flux.



The action T'¢" is invariant under Weyl-transformations (26) as required and
hence does not contribute to the trace of the 2d energy momentum tensor
(EMT). In the next section we shall see that it also does not contribute to
the partial trace 17'¢ of the 4d EMT. However, it contributes to the total
trace T'¢. The free mass-parameter ;o corresponds to the renormalization
arbitrariness.

Combining (29) and (36) one finally obtains for the s-channel effective
action in the no-backscattering approximation

" 1 1 1 JAVSY: JAWRY:
P, 4+ 17 = 87/(5 VRA_V TR — ;2 (1+ log u;Q DVA P, (37)
We see that the nonlocal term in (36) cancels against the second term in
(29) which yields a negative contribution to the Hawking flux. However,
in the section 5 we shall see that the region near a black hole contributes
significantly to the (so far neglected) I'®9 in (34) and effectively reduces the
coefficient in front of the nonlocal term in (37). Physically this corresponds
to a decreasing of the Hawking flux due to backscattering effects.

4 4d-Energy Momentum Tensor and Hawk-
ing Radiation
The 4d-EMT can be derived from the 4d effective action (9) according to

29T L
af = ﬁégaﬂ' (38) The

s-waves contribution to Ty is then gotten by inserting I'y for I' in (38). For
that we rewrite the s-channel effective action (22) in terms of the 4d metric
as

1 1
I, = g / op Ls\/g d*z. (39) Then

using the symmetry properties and taking into account that gas = (v, Q2*wi;)
one obtains the following formulae for the non-vanishing components of the
4d EMT:

10



1 1 6L, . 1 16T,

Ta ac i

b7 o2 ﬁfy oyt 7 T 8wQ 60T (40)

Without backscattering effects Iy is given by (37) and the functional deriva-
tive is to be calculated in 2d-space. Straightforward calculations lead to the
following explicit expressions for the EMT (A =A,,R=R"):

1 1 1 1 1
T — [ _ovevw, (4 a( L L
b= w2V VR VI ERIViER "
1 1 1
+0% (2R — ivc(ZR)VC(ZR))} + local terms

The components Tij contain only local terms which give rise to vacuum
polarization effect. Here we are mainly interested in particle creation and
for that reason skipped all local terms in (41). We stress that up to this
point our results apply to arbitrary spherically symmetric backgrounds. Thus
(41) describes the s-channel particle creation (and vacuum polarization) for
minimally coupled scalars propagating in an arbitrary spherically symmetric
spacetime, e.g. of a collapsing star. Here we are mainly concerned with the
Hawking radiation and leave other interesting applications to a forthcoming
publication.

To get the flux of the Hawking radiation we need to go back to Lorentzian
space-time by changing the signs in the appropriate places. According to the
results in [2,17] we arrive at the in-vacuum EMT by replacing —1/A by the
retarded Greens function G~. Only the second term in (41) contributes to
the Hawking radiation. The calculations leading to the corresponding flux
are analogous to the ones which have been done by Frolov and Vilkovisky
[2]. Thus we may skip them here by referring the reader to that paper.

The luminosity of the black hole, which is obtained from the Lorentzian
(in-vacuum) version of the EMT (41) is then found to be

s 1

L= 12 (8rM)?’ (42)

where M is the mass of the black hole. This exactly coincides with the total
s-waves flux of the Hawking radiation obtained by standard methods [14]
without taking backscattering effects into account.

11



5 Backscattering effect

To take into account the backscattering of Hawking radiation we must cal-
culate I'B% in (34),

1 —Vf
8= = (1B 1= [art i e, gt

the effective action. For that we develop the perturbation expansion for W/
in powers of the potential V/. This expansion in presented in appendix B.
Up to linear order in V/ we find

W (s 7) = 2(2#1)!(;&) VI (2) + O(VV! - V), (14)

To simplify the analysis we choose the natural radial variable introduced by
Regge and Wheeler
“ =7 +2Mlog|— — 1
rf=r-+ 0g|m— | (45) S0
that the (r,¢)-part of the (Euclidean) black hole metric takes the form
2M
ds? = (1 — =) (dt* + dr*?). (46) Note
r

that 7* — oo as r — oo, but also r* — —o0 as r — 2M. In this coordinate
system the potential V/ reads

A 2M 2M
f(ax — 20 —7 =(1—
V(T) € 0 ( T)T3

; (47)

where 7 should be expressed in terms of r* via (45). Since the potential V/
depends only on one coordinate, namely 7*, the asymptotic series (44) can
be converted into an integral

W/ (r*;7) = ﬂ:’f / O:O V(i) (1 - @(WOW*, (48)

where

12



O(z) = /0I eV dt (49)

is the error function. For r* > 2M, where r* =~ r, we can find a good
approximation to the integral (48) for different values of 7/p?. The 7/u*-
dependence of W/ for r > 2M is depicted in figure 1. We see that for
T/p* < VI/A;VI the function W/ slowly increases as a function of T,
starting with W/(r;7=0) = V/(r). Then, in a very short interval in the
vicinity of 7/u? ~ V//A;V/ it increases dramatically from M/r® to 1/Mr.
When 7 is much bigger then W/ decreases as 1//7. Since W/r ~ /7 when
T — 00 the expression for the effective action is infrared-convergent.
Clearly, the small interval in the vicinity of V¥ /A V7 where W/ changes
a lot, gives the main contribution to the integral in (34). In this interval we
have W/ > V/ (W/)'7 > W/ and we can estimate the integral (43) as

o] fT
I [dr (W) exp (- VZ )~ W (7o), (50)

where 7y is the value of 7 for which oW/ (r5) ~ p?. For potentials for
which W/ has the qualitative shape depicted in figure 1, we have 7o/u? ~
VI /A VI, Thus one obtains

NV
Vi

I~¢ (51)
where £ is some fudge coefficient. In our approximate treatment of the inte-
gral in (43) we cannot get the exact value for this coefficient. Note that at
7 ~ Ty the main contribution to the integral (48) which defines W/ comes
from the region near the black hole horizon. This confirms that (51) actu-
ally takes into account the backscattering of the Hawking radiation in the
potential of the black hole, which is most effective near a black hole.

Now we need to restore the metric 7,, in (51). Taking into account eqs.
(27) and (36) we find that (51) leads to the following contribution to the
total effective action

1
59 = —% (VRA— TR + local terms) Vdx. (52) This
v

must be added to (37) to get the s-channel effective action. Notice that the

13



nonlocal term in (52) cancels part of the nonlocal term in (37) and diminishes
the total Hawking flux. Comparing our result with that obtained by other
means [] we conclude that £ should be about 10 percent less than 1/12.

6 Conclusions

We have calculated the contribution of the s-waves of massless minimally
coupled scalars to the 4d-effective action in an arbitrary spherically symmet-
ric external gravitational field. The problem was to a large extend simplified
by reducing the s-waves sector to an effective 2-dimensional, classically Weyl-
invariant theory. Of course, it is obvious that the s-wave channel reduces to a
2-dimensional theory. But during the reduction process one needs to rescale
the spherically symmetric scalar field (see (e16)) such that the new measure
in the path integral belongs to a scalar field propagating in a 2-dimensional
spacetime. The field theory for the 2-dimensional field is a conformal field
theory. This observations permitted us to calculate the Weyl non-invariant
part of the effective action exactly. Then the problem reduces to the calcula-
tion of the 2d-Weyl invariant part which actually is an effective action in 2d
flat spacetime. To calculate this we developed the perturbation expansion
which works well in the case of black holes and permits us to take into ac-
count the backscattering of the Hawking radiation by the gravitational field
of the black hole. As an application we derived the explicit form of that part
of the stress-energy tensor which leads to the Hawking radiation.

However, the range of applicability of our main results is not at all re-
stricted to the black hole physics. They hold for arbitrary spherically sym-
metric backgrounds and consequently can be applied to study collapse prob-
lems, e.g. the particle production by time-dependent spherical gravitational
fields.

Acknowledgments: We thank A. Barvinsky, V. Frolov, I. Sachs and C.
Schmid for illuminating discussions. This work has been supported in part
by the Swiss National Science Foundation.
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A Regularization of the effective action and
infrared problem

The effective action I' expressed in terms of the heat kernel is divergent.
Since we are only interested in the finite part of I' rather than the divergent
one we derive here the expression for the (-function regularized I' in terms
of some function W (x;7) = W (x,x;7) which is defined via the heat kernel
K(x,y,7) in d-dimensional space as

d

(4rT)

_— - P —y)? W(xay;T)T]‘

K(.I‘,y,']—) = 47_ ,LL2

(53) Here

i is an arbitrary mass-parameter introduced for dimensional reasons. Since
this parameter can be easily restored in the final results we will set it to one
to simplify the formulae. We will see how one solves the infrared problem
which is usually met when one uses the Seeley-deWitt expansion for the heat
kernel in the massless case. Keeping in mind the other possible applications
besides the black hole physics we consider the general d-dimensional case.
The formula (64) below which we need for our purposes is then gotten as
particular example. Finally we show how to construct the asymptotic series
for the finite part of [' in terms of the Seeley-deWitt coefficients.

An efficient methods (which respects the diffeomorphism invariance) to
calculate the effective action is the (-function regularization [12] in terms of
which

_1dg(s)

' =
2 ds

|s:0- (54)

Here ((s) is the meromorphic function which for s > d/2 has the integral
representation

¢(s) = % /OOO drm* tr K (1) (55)

in terms of the heat kernel (53). First, let us introduce instead of 7 the new
variable

n=W(z;)T (56)

15



assuming that W (z;7)7 increases monotonically from 0 to co when 7 runs
through the same interval. Then the expression (55) takes the form

1 o0 d d T]W’
t I/ dne " AW (1 — ,
% 5) g 0 e ( w )

" G

(57)

where now prime means differentiation with respect to n. The integral in
(57) is convergent for s > d/2. Integrating sufficiently often by parts one
gets the following expression for the analytic continuation of ((s) to s — 0:

d
2

1.4 1—‘(8 — Q) 0 d (4) .
=(—)2—~__ 27 S(W2=3e™ " d m
d=2,4,... dimensions and
1 —1.4¢ T(s—9 © 14 41 :
- (Yo _ 2] 5= (W2 %e " (3 2)d
(=52 rareay 4 e e sgyin
d=1,3,... dimensions. Here (...)™ denotes the n’t derivative with respect

to n. Calculating the s-derivative at s = 0 we arrive at the following formulae
for the finite parts of the effective actions

11 I =N |
b= 5(47r)%P(§+1)Z(_1) ( k )

%)(k) (60) in

even dimensions and

IRV S VRNV L
b= 2(4m)sT(£+1) ,;0( 1 ( k > (61)

in odd dimensions, where the subscript 0 means that the derivative should

16



be taken at 7 = 0. Taking into account (56) we can see that the integrals in
(60,61) are convergent both in the ultraviolet (n — 0) and infrared (n — o0)
regions. Note that even for massless fields no infrared divergences appear.
Of course we assumed that the map [0,00) > 7 — 7 is bijective which in
particular implies that W (z,7) does not decay faster than 1/7 for large 7.
Now we shall show how to relate the finite part of the effective action to the
Seeley-deWitt coefficients.

In 2-dimensions the formulae simplify considerably and the effective ac-
tion (60) reads

1 00 -n
= —trI[WO — Wolog Wy + / dn“—(W — WO)]- (62) For
8m 0 n

an operator

O=—-A+V(z) (63)

in flat space we have Wy = V. The first two terms in (62) correspond then
to the 2d-Coleman-Weinberg potential and the integral gives the correction
which vanishes for constant V. Expanding W (z;n) in a Taylor series and
integrating over n we find the following asymptotic series for I':

1 > 1
_ _ Lun)
I'= 87rtr$(wo Wolog Wy + § - W ) (64) Note

n=1
that the derivative with respect to 7 is related to the 7-derivative via

o__ 1 9
on W+ Nror (65)

Thus, the series (64) can be viewed as an expansion of the effective action
in terms of the 7-derivatives of W (x; 7). In particular, the first few terms in
(64) can be explicitly written as

1—‘ - WO—WOIOgWO+_

i, Car 0 T 2t g )
2 0w 2> O( 1 oW 1 ,0W 3 )

1 ( 1 oW 11 0°W
—tr,
T

(66)
—Wg(ﬁ)o Wg,(ﬁ)ﬁaw(?)m”‘
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Expanding (53) in powers of 7 and comparing it with the Seeley-deWitt
expansion for the heat kernel on the diagonal

1
(4#7)%

K(z,z;7) = > a,m™" (67)

we can express the derivatives of W at 7 = 0 in terms of the Seeley-deWitt
coefficients as

Wy = —a
ow. 1,
(26—7')0 = 5“1 — a2 (68) Then
oW 2
( 972 )0 = 2@1@2 — 2@3 — gai‘, PN

the effective action (66) can be rewritten in terms of the a, as

1 1
I = —trm{al —ayloga; + (% — —ay)
8 ay 2 In
(—%+a—%—ia)+ } o
al% a:i) 12 1 P .

particular, for operators of the form (64) in a 2d flat spacetime one gets

1 1AV
r — — — V1 eV
87rtr${V ViegV + 5V

L(VV)? | 1AW 1 (AV)? } (70)

12 V2 60 V2 36 V3

Note that the asymptotic expansion (64) (and correspondingly (70)) is good
only if the potential V' is big compared with its derivatives. In this case the
formal expansion parameter is AV/V? < 1. When this condition is not met,

as for instance for the black hole metric, then we must work directly with
(62).
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B Perturbation theory for W

To calculate the effective action for an operator (63) in flat spacetime we
need to develop some perturbation expansion for the heat kernel K (7) which
satisfies

—— = _0OK and K(T =0) = 1. (71)

In the coordinate representation we write the heat kernel in the form (53)
(again we set © = 1) and derive the perturbation series for W in powers of the
potential V. Keeping in mind other possible applications of the perturbation
expansion (e.g. in statistical mechanics [15]) we consider an arbitrary number
of dimensions d. Substituting (53) into (71) we obtain the following equation
for W:

ow

o= AWT — (. —y)' VW — (VW) 2 +V — W. (72)
T

Making the ’ansatz’
Wz, y;7) = an(:r, y)m" (73) we
immediately arrive at the recurrence relations for the b,:

bo + (z —y)'Viby = V,

. 74) and
2b1 + (ZL‘ — y)zvibl = Abo R ( )
for n > 2
. n_2 .
(n+1)b, + (x — y)'Vib, = Ab, 1 — Z Vib, Vb, _p_s. (75)
p=0

For computing the effective action or partition function it suffices to know K
and correspondingly the b, on the diagonal x = y. Taking this coincidence
limit in (74,75) (of course, after the derivatives have been taken) we arrive
at
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n!

limb, = ———=A®
25y (2n + 1) v
n! (n_2-k) n—2 ) (76) The
— i Z P R DA

terms proportional to V¢bV;b are at least quadratic in the potential. Let us
note that the terms which are nonlinear in V' always contain products of gra-
dients (as V,VV'V, V;AVV'V etc.). The terms linear in V' in the expansion
(73,76) correspond to the sum of all terms of the forms V, V2 ..., VAV, A?V
etc. in the Seeley-deWitt expansion. Thus in the linear approximation one
finds

Wi(x;7)=W(z,z;7) Z 2t 1) ANV L O(VV - VV). (77)

In one dimension or in the case when the potential V' depends just on one
variable, the series (77) can be converted into the following integral

Wi(x;T) = \/g/o; V(y) [1 - @(|x\;;y|)]dy +O(VV-VV), (78)

where @ is the error function. The nonlocal result (78) for W accounts for
all terms which are linear in V. It is relevant for improving the Coleman-
Weinberg effective potential as well as the partition function in statistical
physics. It is related but not identical to a similar expression obtained by
Feynman by variational method [15].

References

[1] S.W. Hawking, Commun. Math. Phys. 43 (1975) 199.

(2] V.P. Frolov and G.A. Vilkovisky, in Proc. second seminar on quantum
gravity (1981), Moscow, ed. M.A. Markov and P.C. West, Plenum, Lon-
don, 1983.

(3] A.O. Barvinsky and G.A. Vilkovisky, Nucl. Phys. B333 (1990) 471.

20



[4] I.D. Novikov and V.P. Frolov, Physics of Black Holes, Kluwer Acad.
Publishers, Dordrecht/Boston/London, 1989.

[5] C.G. Callan, S.B. Giddings, J.A. Harvey and A. Strominger, Phys. Rev.
D45 (1992) 1005.

6] L. Susskind and L. Thorlacius, Nucl. Phys. B382 (1992) 123.

(7] J.G. Russo, L. Susskind and L. Thorlacius, Phys. Rev. D46 (1992) 3444.
(8] D.A. Love, Phys. Rev. D47 (1993) 2446.

9] A.M. Polyakov, Phys. Lett. B103 (1981) 207.

[10] A.O. Barvinsky, Yu.V. Gusev, V.V. Zhutnikov and G.A. Vilkovisky,
preprint PRINT-93-0274, (1993) Manitoba.

[11] C.W. Misner, K.S. Thorne and J.A. Wheeler, Gravitation, Freeman, San
Francisco, 1973.

[12] J.S. Dowker and R. Critchley, Phys. Rev. D13 (1976) 3224; S.W. Hawk-
ing, Commun. Math. Phys. 55 (1977) 133.

[13] D.J. O’Connors, B.L. Hu and T.C. Shen, Phys. Lett. 130B (1983) 31;
S. Blau, M. Visser and A. Wipf, Phys. Lett. 209B (1988) 2009.

[14] N.D. Birrell and P.C.W.Davies, Quantum Fields in Curved Space , Cam-
bridge Univ. Press, 1982.

[15] R.P. Feynman, Statistical Mecchanics, W.A. Benjamin, Massachusets,
1972.

[16] S. Coleman and E. Weinberg, Phys. Rev. D7 (1973) 1888.

[17] A.O. Barvinsky and G.A. Vilkovisky, Nucl. Phys. B282 (1987) 163.

21



