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Abstract 

We adapt the post-Newtonian gravitational-radiation methods developed within general 
relativity by Epstein and Wagoner to the gravitation theory with torsion, recently proposed 
by Hehl et al., and show that the two theories predict in this approximation the same 
gravitational radiation losses. Since they agree also on the first post-Newtonian level, they 
are at the present time-observationally-indistinguishable. 

w Introduction 

The binary pulsar data obtained by Taylor and coworkers (Taylor [1]) 
have already ruled out many alternative gravitation theories. Will [2] has 
adopted the post-Newtonian gravitational-radiation methods developed within 
general relativity by Epstein and Wagoner [3] and by Wagoner and Will [4] to 
alternative metric theories of gravitation and thus has shown that in most (if not 
all) of these dipole gravitational radiation can also exist. The dipole radiation of 
a two-body system, say, is generated by the varying dipole moment of the gravi- 
tational binding energy and is typically much too large for the binary pulsar 
PSR 1913+ 16. There are examples (e.g. the Rosen bimetric theory) where the 
dipole gravitational radiation causes the system even to gain energy at a rela- 
tively high rate and strong dissipative mechanisms would have to be invented to 
account for the observed decrease. 

In an earlier paper [5] we have shown that the "Poincar4 gauge theory of 
gravity" proposed by Hehl et al. [6] agrees with general relativity on the first 
post-Newtonian level. The purpose of the present work is to demonstrate that 
the "dipole catastrophe" mentioned above does not occur in this theory and 
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that-within the approximation scheme of [3 ] - t he  gravitational radiation loss 
is the same as in general relativity. From the observational point of view it is, 
therefore, practically impossible to distinguish the theory of Hehi et al. from 
general relativity. 

In Section 2, the theory of Hehl et al. (slightly generalized) is briefly sum- 
marized in the language of differential forms. In Section 3, we recast the field 
equations into a form from which one can deduce easily that the first post- 
Newtonian approximation of the theory agrees with that of general relativity. 
In Section 4, we determine the energy-momentum forms of the gravitational 
field, and finally we demonstrate in Section 5 that the post-Newtonian genera- 
tion of gravitational radiation agrees also with general relativity. The results 
are summarized in Section 6. 

w The Poincar~ Gauge Theory o f  Hehl et al. 

In this section, we give a short description of the gravitation theory which 
was proposed by Hehl et al. [6]. In contrast to Reference 6 we use Cartan's 
calculus of differential forms and follow the conventions of Trautman [7]. (See 
also [5 ,8 ,9]  .) Let 0 ~ denote an orthonormal tetrad field of 1-forms, and coe~ 
the connection forms of a metric connection with torsion. The exterior covari- 
ant derivatives of 0 a and r are the torsion forms O a and the curvature forms 
~2ar = 1,87rG = 1). The 1-forms (0a; coa~) can be considered as gauge poten- 
tials of the Poincar6 group because they determine a connection in the Poincar~ 
bundle (which is a subbundle of the affine bundle). In this interpretation, the 2- 
forms (Oa; ~2a~) are the corresponding field strengths. A slight generalization 
of the gravitational Lagrangian which was chosen in [6] reads as follows: 

~g = s + ~rot (2.1) 

~Ctr~l = - ~ -  O ~ A 0 ~) A * (O~ A 0~) - (O ~ A 0~) A * (O ~ A 0~ (2.2) 

s = - 2~ ~ / ~  A * ~'~ce/~ (2 Q3~ 

Here I is the Planck length and k is a dimensionless coupling constant. Hehl et al. 
use X = 0 in (2.2). To the Lagrangian (2.1) we have to add a matter term,Lm. 
Independent variations ofLg + L m with respect to 0 ~ and coa/3 give the field 
equations. The variation of Lm with respect to w ~  determines the spin density 
which is for macroscopic matter very small compared to the energy-momentum 
density. For this reason Hehi et al. choose for astronomical systems the "trans- 
lational gauge limit" in which the curvature vanishes: 

~at~ = 0 (2.4) 
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Consequently the rotational (Yang-Mills type) part (2.3) in the Lagrangian (2.1) 
has to be dropped. The resulting theory has an obvious geometric interpretation 
in a Weitzenb6ck space. Relative to a teleparalM tetrad the connection forms 
w~t3 als0 vanish and the exterior covariant derivative reduces the ordinary ex- 
terior derivative. The torsion Oe  ̀is then equal to dOe`. Thus, we use the follow- 
ing total Lagrangian relative to an arbitrary (orthonormal) frame: 

1 X 
s = - ~ (o ~ A o~) A �9 (o~ A G) + 7 (o A G) A �9 (o ~ A oe) + s (2.S) 

which reduces to 

s = - (dO e  ̀A 0 e) A * (dO~ A Oa) + 7 (dOe` A Oa) A * (dO [3 A 0#) + s (2.6) 

for a teleparallel frame. 
Now we note that the Hilbert-Einstein Lagrangian can be written in the 

following way (up to an exact differential): 

s = - �89 (dOe` A 0 ~) A * (dOt3 A Oa) + 1 (dOe` A Oa) A * (dO ~ A 0~) (2.7) 

This can easily be shown by putting dOe` = �89 C~vO ~ A 0 v and expressing both 
sides of (2.7) in terms of Ce`t> r . Thus the gravitational part of (2.6) reduces to 
the Hilbert-Einstein Lagrangian for X = 1. This remark is crucial for all that 
follows and was also used in [5 ]. It is not surprising that the gravitational 
Lagrangian is invariant under local Lorentz transformations 

O~(x) ~ A~e(x) Oe(x), a (x )  E s (2.8) 

for X = 1 only. 
Variation of the tetrad fields leads to the field equations. We introduce the 

notations: 

E (2.9) 8s  E = ~i0e` Aee` 

8s = 80 ~ A t~ (2.10) 

6(As = 80e` A Aee` (2.11) 

where (X - 1) As is the difference between the gravitational part of (2.6) and 
(2.7). The explicit expressions of ~ and Aee` are 

e~ = -d[O ~ A �9 (dOe A 0e`)] - dO ~ A �9 (dO '~ A 0~) + �89 d {0 '~ A �9 (do ~ A 0e)} 

+ �89 dO e  ̀A * (dO ~ A 0~) (2.12) 

Ae ~ =dO~ A * (dOt~ A O#) - �89  (2.13) 

and the field equations read as follows: 

e~ + (X - 1) Aee` = -te` (2.14) 
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t a are the energy-momentum 3-forms of matter. The components of the energy- 
momentum tensor, T ~t3, relative to 0 ~ are given by 

*t a = T ~ O  ~ (2.15) 

The field equations (2.14) and the Einstein equations have a large family of 
common solutions. For any metric of the diagonal form 

ds 2 =ag (dx~ 2 - a] ( d x l )  2 - a~ (dx2) 2 - a~ (dxa) 2 

with arbitrary functions a i the forms Ae ~ vanish for the orthonormal basis 

0 ~ =a0 dx  ~ 01 =al  d x  1 , 0 2 =a2 dx  2 , 0 3 =a3 dx  3 

because dO s A 0a = 0. This proves in particular that all spherically symmetric 
solutions of the Einstein equations are also solutions of (2.14) and thus a large 
body of astrophysical applications remains unchanged. The Kerr solution is, 
however, no vacuum solution of (2.14) for ~ :~ 1. It is an open problem to 
generalize the stationary black hole solution to this case. 

w (3): The First  Post-Newtonian Approx ima t ion  

For all the further discussions, it will turn out to be useful to split the field 
equations (2.14) into symmetrized and antisymmetrized parts. In contrast to 
e} and t ~ the forms s ~ are not symmetric: 

Ae ~ A 0 t~ 4= Ae t~ A 0 ~ 

because zkg is not locally Lorentz invariant. The symmetric and antisymmetric 
parts of Ae ~ are 

ae~ = - 1 ,  [(dO ~ ^ 0 ~ + dO ~ A 0 ~) A * (dO ~ A 0~)] n~ (3.1) 

AeC~ = - �89 * {d [0 ~ A 0 e A * (dO r A 0u)] } nO (3.2) 

where rfl = * 0 t3. Hence the field equations (2.14) are equivalent to the pair of 
equations 

e } -  (X-  1 ) ,  [ ( d O a A O e + d O ~ A O a )  A , ( d O ~ A O ~ )  ] r l ~ = - t  a (3.3) 
2 

(X - 1)d[0 a A 0 # A * (dO "r A 0r) ] = 0 (3.4) 

Now we expand the teleparallel frames 0 a in terms of a coordinate basis 

0 ~ = dx  ~ + cb~ dx ~ (3.5) 

and decompose ~at~ into its symmetric and antisymmetric pieces 

�9 ~ = q ~  + aat~ (3.6) 
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q~s~ = q~(s~), as~ = q51 s~l (3.7) 

Let us first consider the linearized approximations of (3.3) and (3.4). The second 
term on the left-hand side of (3.3) contains obviously no linear terms. Further- 
more, the antisymmetric field as~ drops out identically in the linearized part 
of e~ (as a consequence of the local Lorentz invariance of (2.7)). Thus equation 
(3.3) is reduced to the linearized Einstein equation for 0s~. For k = 1 (i.e., 
general relativity) equation (3.4) is empty; as~ is just a gauge degree of freedom. 
For X v ~ 1 equation (3.4) leads in the linearized approximation to the decoupled 
source free equation 

[ ]  a sp + aXS'#;~ - aX#'s x = 0 (3.8) 

for a st~ which is invariant under the gauge transformation 

asB > aa~ + ~s,~ - ~ , a  (3.9) 

Imposing the gauge condition a s~, ~ = 0, we are left with [ ]  a s~ = 0. In the New- 
tonian approximation as~ vanishes in this gauge and the theory gives the correct 
Newtonian l imit. Next we show that the first post-Newtonian approximation of 
(3.3) and (3.4) agrees with that of general relativity. (This was shown already in 
[5], but the following discussion is simpler.) Since the term proportional to (X- 
1) in (3.3) is of higher order in qss~, it contains in the first post-Newtonian ap- 
proximation at most quadratic expressions of the Newtonian approximation of 
~bst~. But these vanish identically because dO s A 0s is already quadratic in ~s~. 
(The linear term vanishes identically.) Hence (3.3) reduces to the first post- 
Newtonian approximation of general relativity. For the discussion of equation 
(3.4), we note first that the Newtonian approximation, ~b(~ ), of ~,bst 3 is diagonal 
in a suitable coordinate system: a,(N) = 6sCqS, q5 = Newtonian potential. From 'es/3 

�9 (N) �9 (3.4) vanish identi- this, one concludes easily that the quadratic terms In ~bs~ m 
cally and thus the first post-Newtonian approximation of (3.4) reduces to equa- 

~(PN) of . This implies tion (3.8) for the post-Newtonian approximation, "sr , as~ 
(PN) that as~ vanishes also in a suitable gauge and hence our claim is proven. Hehl 

and Nitsch [10] have shown that the post-post-Newtonian approximation no 
longer agrees with that of general relativity. The deviations are, however, un- 
measurably small. 

w Conservation Laws  

We start by writing the symmetric field equation (3.3) in arbitrary (not 
necessarily teleparallel or orthonormal) frames: 

e~: ( X -  1 ) , [ ( O S A O  ~ + |  s) A * ( O  ~AO.r) ]  r / ~ = - t  s 
2 

(4.1) 
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For e~ we use the "Landau decomposit ion" derived in [11] : 
LC 

e~ = [2(-g)  1/2 ] -x . d [(_g)112 r A//aft,),] + t~L (4.2) 
LC 

Here co~r are the Levi-Civith connection forms and t~L are the Landau-Lifschitz 
energy-momentum forms of  the metric field given explicitly by 

LC LC LC 
1 ~./t~fl',/8 r LC A co~ 0~5 A A 0 ~) (4.3) t ~ L  = -  ~ ~ o~ - 6of37 6oo6 

Relative to a coordinate basis 0 a = dx  ~ the 3-forms t~L are symmetric.  Insert- 
ing (4.2) into (4.1) the symmetric field equation takes the form 

l_d[(_g)q 2 LC 2 r ), A ~a~3,] = (_g)l/2 ga (4.4) 

where 

r a = t a + t~L - (X - 1) At a (4.5) 

At a = �89 * [(O ~ A 0 ~ + O # A 0 a) A * (O "r A 0.r) ] r?# (4.6) 

It may be useful to note that the left-hand side of  (4.4) relative to a coordinate 
basis can be expressed in terms of  the Landau-Lifschitz superpotential as follows: 

LC 
d[(_g)t l2 oo~7 Ar/u~7] = (_g)l/2 HU~Vt3,a r/v 

where 

with 

As in general relativity, the r ~ are interpreted as the total energy-momentum 
forms. By construction, they are symmetric relative to a coordinate basis: 

r ~ A d x  (~ = r ~ A d x  ~ (4.7) 

From (4.4) we conclude that the field equations imply the conservation laws 

d[ ( -g )  ~/2 r~] = 0 (4.8) 

The last two equations imply 

where 

d[ ( -g )  1/2 M a#] = 0 (4.9) 

M ~ = x ~ r  p - x ~ r  ~ (4.10) 

is the total angular momentum density. For isolated systems the total m o m e n t u m  

pC' = f ( - g ) l / " r ~  (4.1 1) 
JZ 
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and the total angular momentum 

jeff = f2 (_g)1/2 Mo~f (4.12) 

(E: spacelike surface) can be expressed with the help of the field equations (4.4) 
in terms of flux integrals at infinity: 

pe �89 f LC = - 6097 A ~e~7 (4.13) 

f jeff = } (_g)1/2 [(X%~o.V _ X~TeoT) A co ~ + rl ~ ]  (4.14) 

As usual, the coordinates have to be asymptotically Lorentzian. pe and d aD 
transform like Lorentz tensors under coordinate transformations which preserve 
this property. Clearly, the flux integrals (4.13) and (4.14) are the same as in 
general relativity. Since we have not seen equation (4.14) in the literature, we 
derive it in the Appendix. 

w Post-Newtonian Generation of Gravitational Radiation 

In this section we adapt the method of Epstein and Wagoner [3] and show 
that the post-Newtonian generation of gravitational radiation is the same as in 
general relativity. 

First we have to bring the field equations (3.3) and (3.6) into a convenient 
form by separating explicitly the linear terms in the fields ~e~ and ae~. 

We have already noted in Section 3 that the term proportional to (3, - 1) 
in (3.3) contains no linear terms and that the field aa~ does not appear in the 
linearized part of e}. Hence we only have to split off the linear part in the 
Einstein form 

The linear part, e~, is given by 

e~ = eeL + e~ (5.1) 

e~ = - G~3r/3 (5.2) 

where G~ f is the ]inearized Einstein tensor 

_ e ~ ~ ~,o ex ~, e ( 5 . 3 )  _ G ~ f = [ ] ( r  6 fr  7) +6 ~r ,xo + r 1 6 2  , ~ + r  f '  ),x 

The quadratic and higher-order terms are easily obtained from (2.12): 

e~ = Ae~ + {.4 t3a + B ~e + C fa} ~?t~ (5.4a) 
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where 

A vu = 2 * [0 v A dO ~ A * (dOa A 0u)] (5.4b) 

BV~Z = 1 , [0 v A dO '~ A * d(O • A 0o~) + O" A dO ~ A * d(O v A 0~)1 (5.4c) 

= _ 1 , [0 v A 0 ~ A d * (dO a A cbu2~ dx  x) + (dx v A cbaa dx  ~ + ~bvx dx  x A dx  a C vu 

+ ~";,,b~o dx h A dr~ A d * (dO~ A dr") 

+ 0 u A 0 ~ A d * (dO~ A Ovk dx  x) + (dx ~ A cb~ dr  k + cbuo dx a A dx  ~ 

+ cb"o,I,'~h dx  a A dx x) A d * (dOo, A dry)] (5.4d) 

The decomposition (5.4) is equivalent to equation (31) of Reference 3 and is 
quite useful for practical (post-Newtonian) calculations. 

Inserting (5.1) into (3.3) gives 

G ~  - mat~ L -- " e r r  ( 5 . 5 )  

with 

~3 = t ~ Zeff ' /7~ + e~ + (X - 1) Ae~ (5.6) 

where Ae~ is given by (3.1) (and contains no linear terms). The last term in 
(5.6) is absent in general relativity. We also rewrite (3.4) (for X :/: 1) in a similar 
way: 

[] a ~ + ah~'3~. - a~~"a k =Ae~f~f (5.7) 

where Aef f collects the quadratic and higher-order terms of 

!2 a[ ~ A o H A �9 (dO r A 0.r)] 

For outgoing-wave boundary conditions, we obtain from (5.5) and (5.7) the 
integral equations 

1 f T ~ p ( t - I x -  x'l ,x') dax, + ~a,~ + ~ ,~  (5.8) 
q~( t ,  x ) = -  4-~nJ Ix -  x'l 

AS _ 1 
(T # = T e f f a 3  '2- ac~3 T e f f h X )  

1 fAgg(t-  Ix-  x'l,x')d3 x, _ ( 5 . 9 )  

x) = i x - x ' (  

The gauge terms added on the right-hand sides of (5.8) and (5.9) are, of course, 
not determined. 

Let us now consider the fields ~bat3 and aa~ far from the source (r = ix I > >  
R = "size" of source, 1 ~ 1  < <  1, l a~ l  < <  1) where the radiation is detected. 
In the approximation scheme of Reference 3, one first expands the 1/r terms 
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with respect to the retardation within the source (slow motion). In the next 
a/J c ~  

step, one constructs a post-Newtonian expansion of the sources Tel  f and Aef f. 

The necessary orders in the post-Newtonian expansion parameter which are 
needed for the various pieces are described in [3] and will not be repeated. In 
this approximation, the effective sources are contained within the near zone. 
We may then employ (5.8) and (5.9) for field points within this region as well, 
again in terms of a post-Newtonian expansion. But the near-zone post-Newtonian 
expansion was already studied in Section 3. To the necessary orders a~g vanishes 
and ~ agrees with general relativity if we impose suitable gauge conditions. 
[Ae~f~f and the last term in (5.6) for T~f~f both vanish in the near-zone post- 
Newtonian approximation.] Hence, we conclude from (5.8) and (5.9) that 
far away from the source aag is just equal toa  guage term and that ~f l  agrees 
also there with general relativity. But in this weak field region, the equation for 
the a field decouples and has a separate gauge invariance. Thus the a field can be 
gauged away. 

Finally we note that the modified energy-momentum t~L - (X - 1) At a 
[see equation (4.5)] does not change the gravitational energy loss because At ~ 
is cubic in ~ .  This follows from (4.6) and from the fact that the factor 
dO ~r A 0~ in (4.6) is already quadratic in ~ .  (The linear term vanishes identi- 
cally.) Taken all together, this proves our claim at the beginning of this section. 

w Summary 

The gravitational theory with torsion corresponding to the one-parameter 
family of Lagrangians (2.6) has many exact solutions in common with general 
relativity. We have shown that they agree also with general relativity on the first 
post-Newtonian level (but not in higher orders.). The main new result of this 
paper is contained in Section 5, where we demonstrate that even the post- 
Newtonian generation of gravitational waves (developed within general rela- 
tivity by Epstein and Wagoner [3] ) is the same as in general relativity. In par- 
ticular, the "dipole catastrophe," described in the Introduction, which occurs 
in many alternative metric theories of gravitation, is absent. Therefore, the re- 
sults obtained in [3] and [4] also hold in the theory by Hehl et al. [6]. At the 
present time, this theory can thus not be distinguished observationally from 
general relativity. 

This is, of course, only true if the approximation scheme of Reference 3 
is numerically reliable. Various authors (see, e.g., [12] and references therein) 
have criticized the presently existing approximation methods for treating the 
radiation problem. We are aware of the critical questions that have been raised, 
but we think that the method used here is physically plausible. 

Apart from aesthetic arguments, we see no way to favor the Lagrangiau with 
X = 1 in (2.6), i.e., general relativity. 
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Append ix  

In this Appendix, we derive the expression (4.14) for the angular momen- 
tum. From the definition (4.10) and the field equations in the fogm (4.4) we 
conclude that 

(_g)1/2 Mau = 1 (x a dh a _ x{~ dh a) 

= 12 d (  x % a  - xaha)  - �89 ( dxa A h a - dx  a A h a) (A.1) 

where 

h a = _(_g)1/2 (ofl'r A nab,r) (A.2) 

In this Appendix 66~# denote always the Levi-Civit~ connection forms. Now we 
write also the last term in (A.1) as an exact differential. We have 

dx  ~ A h a - dx  c~ A h a = (_g)X/2 66#7 A dx  a A 71a#.r - (a < > o) 

= (-g)~l" (co# ~ A n a# + 66~ A n #a 

- 66#~ A n a# - 66% A C a) 

Here we use 

and obtain 

But 

and hence 

drl ~ + wa# A rl #a + 66a# A rl a# = 0 

dxa A h ~ - d x a  Aha=( -g ) l12166#a  A ~ a # - ( o <  > a ) - d r l  aa] 

66#o A rl a# = P ~  dx  ~ A r/s# = F# M r/~ - P#~ar/# 

dx ~ A h ~ - d# ~ A h ~ = (-g)~/~ ( r ~ %  ~ - r ~ % "  - an'  ' ~ )  

If we use in this expression 

p~" = (_g)l/2 . : a  o.(_g)i/2 

then we find easily 

dx  a A h a - dx  a A h a = -d [ ( -g )  1/2 �9 r/a{~ ] (h.3) 

With this result and (A.2) equation (A.1) becomes 

(_g)1/2 Ma~ = I d {(_g)1/2 [rlaa + (xarlarj3, _ xarla#,r) A 66#3" 1 ) (A.4) 

Inserting this into (4.14) and using Stokes' theorem finally gives equation (4.14). 
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