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We study the Gross-Neveu model in 2 + 1 dimensions in an external magnetic eld B. We
rst summarize known mean-eld results, obtained in the limit of large avor number Nf , before
presenting lattice results using the overlap discretization to study one reducible fermion avor,
Nf = 1. Our ndings indicate that the magnetic catalysis phenomenon, i.e., an increase of the chiral
condensate with the magnetic eld, persists beyond the mean-eld limit for temperatures below the
chiral phase transition and that the critical temperature grows with increasing magnetic eld. This
is in contrast to the situation in QCD, where the broken phase shrinks with increasing B while the
condensate exhibits a non-monotonic B-dependence close to the chiral crossover, and we comment on
this discrepancy. We do not nd any trace of inhomogeneous phases induced by the magnetic eld.

I. INTRODUCTION

In recent years the study of strongly-interacting quan-
tum eld theories exposed to external electromagnetic
elds has received a signicant amount of attention in the
high-energy physics community. This is due to the fact
that magnetic elds are believed to play an important
role in a plethora of physical processes, such as heavy-ion
collisions [1–5], the strong interactions within neutron
stars [6–9], and at several stages of the early Universe
[10–13] – see [14] for an extensive review.
Quantum Chromodynamics (QCD) is the theoretical

framework underlying the strong interactions and – as
such – describes the aforementioned phenomena. Since
QCD cannot be studied using perturbation theory in
the parameter regime of interest, one has to resort to
non-perturbative methods, of which lattice quantum eld
theory is the most reliable one. Lattice simulations, how-
ever, suer from the infamous complex-action problem,
rendering the use of conventional Monte-Carlo methods
impossible at nite density.
Needless to say, there are countless attempts aiming

at circumventing the complex-action problem (see, e.g.,
[15]), but none of them have fully solved it within nite-
density QCD. In this work we employ a dierent approach
altogether, using a low-dimensional toy model, the Gross-
Neveu (GN) model [16], as an eective description of
QCD. This is motivated by the fact that the GN model
shares a number of important features with QCD, such
as chiral symmetry and its spontaneous breakdown, or
(in 3 dimensions or less) renormalizability [17, 18].

It should be mentioned that there exist more realistic
models, bearing a closer similarity to QCD than the one
considered in this work, for instance models of the Nambu–
Jona-Lasinio (NJL) [19] or quark-meson (see, e.g., [20])
type. Still, the simplicity of the GN model merits its
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use as a starting point for the search of a description of
QCD using eective models, which may then be expanded
upon.

Furthermore, we mention that the GN model and vari-
ants thereof are also interesting from a condensed-matter
perspective as they have been used successfully to describe
certain one-dimensional and planar materials, such as
polymers [21–24], graphene [25–28], and high-temperature
superconductors [29–31]. One should, however, take some
care in translating the results because the mapping of
physical (non-relativistic) degrees of freedom to the eld-
theoretical description with emergent Lorentz invariance
is not always straightforward – see [32] for one example.
Four-Fermi theories, including GN-type models, have

been extensively studied in the literature with a variety
of methods. A rst – and often quite reasonable – approx-
imation is given by mean-eld treatments, which become
exact at innitely large avor numbers Nf and can be
systematically improved by expanding in orders of 1/Nf .
Since we use the mean-eld behavior as a guideline and
important comparison for our lattice investigation, we
summarize the most relevant known results for our system
of interest in the following.

Early attempts to study the GN model in three space-
time dimensions including an external magnetic eld were
made in [33] and extended to nite temperature in [34, 35].
It was found that the magnetic eld is a strong catalyst
of chiral symmetry breaking, enhancing the chiral con-
densate at both zero and non-zero temperature. This
eect, termed magnetic catalysis, was explained in [36]
to be caused by a dimensional reduction due to the ap-
plied eld, similar to the eect of the Fermi surface in
superconductivity – see also the reviews [37, 38].
The goal of this work is to investigate whether the

magnetic catalysis in the GN model is merely an arti-
fact of the large -Nf limit, where quantum uctuations
are suppressed, or is present in the full theory at nite
avor number as well. Work in this direction has already
been performed using methods superior to the mean-eld
approximation, such as the functional renormalization
group [39] or optimized perturbation theory [40], both
supporting the presence of magnetic catalysis also at -
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nite Nf . However, we are not aware of any lattice studies
of the GN model in an external electromagnetic eld to
be found in the literature at the time of writing and we
attempt to ll this gap. To this end, we performed ex-
tensive lattice simulations using overlap fermions at both
zero and non-zero temperature and for vanishing chemical
potential. The nite-density case will be studied in detail
in an upcoming publication.
We note that – to the best of our knowledge – this

is the rst lattice Monte-Carlo simulation of GN-type
models that uses overlap fermions (although theoretical
considerations already exist in the literature [41]). Thus,
we have put considerable eort into working out the
technical details and intricacies involved. However, we
decided that they are better suited to be part of another
planned publication with a more technical and analytical
focus.

As we value the reproducibility of our results according
to the FAIR Guiding Principles [42] (see [43] for a recent
study about its status in our community), we provide
access to our simulation results under [44]. Furthermore,
the scripts used to perform our data analyses can be found
under [45].
This work is structured as follows: In Sec. II we in-

troduce the GN model in an external magnetic eld and
discuss its large -Nf limit. Our lattice formalism is out-
lined in Sec. III and our results are presented in Sec. IV.
Finally, we discuss and critically analyze our ndings and
put them into perspective with respect to known QCD
results in Sec. V.

II. ANALYTICAL RESULTS

The GN model in its most basic form is given by the
Lagrangian [16]

L = ψ̄i/∂ψ +
g2

2Nf
(ψ̄ψ)2 , (1)

featuring Nf avors of fermionic elds, collected implicitly
in the tuple ψ and self-interacting via a scalar-scalar
channel with coupling constant g2. The sum over avors
is implied in (1).
In order to bring the model into a form amenable to

our mean-eld treatment as well as to lattice simula-
tions, one introduces an auxiliary scalar eld σ by means
of a Hubbard-Stratonovich transformation. The semi-
bosonized, but fully equivalent, theory then reads

Lσ = iψ̄(/∂ + ie /A+ σ)ψ +
Nf

2g2
σ2 , (2)

where we have furthermore coupled the fermions to an
external vector eld Aµ and e denotes the elementary
electric charge.
For the remainder of this work we shall be concerned

with a (2+1)-dimensional space-time and four-component
spinor elds transforming in a reducible representation

of the Dirac algebra [46]. This allows one to introduce
a “fth”1 gamma matrix γ5, anti-commuting with all
other γµ. The Lagrangian (2) is, then, invariant under a
discrete Z2 chiral transformation:

ψ → γ5ψ , ψ̄ → −ψ̄γ5 , σ → −σ . (3)

It is this chiral symmetry and its spontaneous breaking
that will be our main concern in this work.
As an order parameter for chiral symmetry breaking

we consider the fermion condensate 〈ψ̄ψ〉, which is pro-
portional to the expectation value of the auxiliary eld σ
by means of a Dyson-Schwinger equation:

〈ψ̄ψ〉 = iNf

g2
〈σ〉 . (4)

In the limit of an innite avor number, the path integral
dening the partition function of the model,

Z =

∫

Dψ̄DψDσe−S[ψ̄,ψ,σ] , S[ψ̄,ψ,σ] =

∫

d3xLσ ,

(5)

is, after integrating out the fermions, reduced to the
problem of minimizing the eective potential

Ve =
V

2g2
σ2 − ln detD , (6)

where we have assumed σ to be homogeneous in space
and time, V denotes the space-time volume and D is the
Dirac operator

D = /∂ + ie /A+ σ . (7)

For Aµ describing a constant and homogeneous (elec-
tro)magnetic eld B and, without loss of generality, as-
suming B > 0, one nds the following eective potential
density [48]:

Ve

V
= −σ2

2π
σ0 −

√
2

π
(eB)3/2ζH

(

−1

2
,
σ2

2eB

)

+
|σ|eB

2π

−eB

πβ

∞
∑

l=0

dl ln


1 + exp


−β


σ2 + 2eBl


, (8)

where σ0 > 0 denotes the minimum of Ve at vanishing
temperature and magnetic eld, ζH is the Hurwitz zeta
function, β = 1/T denotes the inverse temperature and

1 More precisely, the reducible representation of the Cliord algebra
contains two linearly independent matrices anti-commuting with
all other elements. The respective Z2 symmetries they generate,
however, are not independent. This is because the product of
these matrices is non-trivial and commutes with all other elements
of the Cliord algebra, giving rise to a further U(Nf) symmetry
which relates the (seemingly) independent Z2 factors. This U(Nf ),
however, is irrelevant for us since it persists in the presence of a
chiral condensate. Further information can be found, e.g., in [47].
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FIG. 1. Large -Nf phase diagram in the (B, T ) plane. σ0

denotes the value of 〈σ〉 at vanishing T and B.

the last term is a sum over Landau levels l with degenera-
cies dl = 2−δl0. Note that we work in the strong-coupling
regime, where chiral symmetry is spontaneously broken
at vanishing T and B, i.e., σ0 6= 0, which is not the case
for weak couplings. Remarkably, the volume-dependence
of Ve is contained only in the discretization of eB in
a nite volume, see Eq. (19) below. For a derivation of
Eq. (8), see App. A. The global minima 〈σ〉 of the eective
potential for dierent temperatures and magnetic eld
strengths determine the mean-eld phase structure of the
GN model, which we show in Fig. 1.

Evidently, chiral symmetry is spontaneously broken
(i.e., 〈σ〉 6= 0) for low temperatures and B = 0. The mag-
netic eld then enhances this breaking even further, caus-
ing the chiral condensate to increase. This is the magnetic
catalysis phenomenon mentioned in the Introduction. We
furthermore observe that the critical temperature Tc(B),
beyond which chiral symmetry is restored (i.e., 〈σ〉 = 0)
increases monotonically with B and, thus, the region of
broken symmetry grows with the magnetic eld.

We remark at this point that the magnetic-eld-induced
dimensional reduction down to one space-time dimension,
found in [36, 48, 49] to be responsible for magnetic catal-
ysis, is not in conict with the no-go theorem prohibiting
the existence of phases in one dimension [50] (not to be
confused with the Coleman-Hohenberg-Mermin-Wagner
theorem [51–53] preventing the spontaneous breaking of
continuous symmetries in two dimensions). This is due
to the fact that the chiral condensate itself is electrically
neutral and, thus, unaected by the dimensional reduc-
tion. For a similar argument in the U(2)-symmetric NJL
model, see [48].

It is the main purpose of this work to shed light on the
fate of the results presented in this section when going
beyond the mean-eld limit, i.e., when considering a nite
number of fermionic avors Nf and lifting the restriction
of homogeneity on σ.

III. LATTICE SETUP

A. Discretization

We intend to study the theory with Lagrangian (2) on
a three-dimensional lattice Λ with Nµ lattice points in the
xµ-direction (µ = 0, 1, 2) and an isotropic lattice constant
a. For the entirety of this work we shall always consider
N1 and N2 to be equal, N1 = N2 =: Ns, such that the
physical lattice extent in each spatial direction is given by
L = aNs. Furthermore, we introduce Nt := N0 to denote
the number of lattice points in (Euclidean) time direction,
such that the inverse temperature reads β = aNt. We
then denote the space-time volume as V = L2β. The
bosonic eld σ obeys periodic boundary conditions in all
directions, while the fermions are periodic in space and
anti-periodic in time.
The question of which lattice discretization to use for

fermions is a non-trivial one. Studies of QCD in back-
ground magnetic elds mainly rely on the use of staggered
fermions [54–57] (with a few authors employing overlap
fermions as well [58]). However, it has become clear that
staggered fermions can be problematic in asymptotically
safe theories [59–63], of which (2) is an example. More-
over, since we are interested in studying chiral symmetry,
we refrain from using Wilson fermions and since we prefer
to avoid the fermion doubling problem we cannot use
the naive discretization for Nf < 8, either. Finally, even
though in previous works [61, 64–66] the SLAC derivative
[67, 68] has proven to be the best-suited discretization
for studying GN-like theories on the lattice, it fails when
naively applied to theories with gauge symmetry [69]. As
a matter of fact, it is not obvious how to properly formu-
late the GN model in a magnetic eld with SLAC fermions
in a gauge-invariant way in the rst place. We neverthe-
less discuss this issue further and provide a more detailed
comparison between dierent possible discretizations in
App. B.

We are left with the choice of employing Ginsparg-
Wilson fermions [70], which have ideal chiral properties
but come with a signicantly increased cost due to their
non-ultralocality [71]. For our lattice studies we use Neu-
berger’s formulation [72] of the overlap operator [73, 74],
reading2

Dov =
1

a



1+A/
√
A†A



. (9)

Here, the kernel A is given by the Wilson operator DW

with a negative mass parameter m = −1:

A = aDW − 1 , (10)

DW =
1

2



γµ


∇∗
µ +∇µ



− a∇∗
µ∇µ



, (11)

2 We remark that this expression does not make use of γ5 and
could thus be used in an irreducible representation of gamma
matrices in (2 + 1) dimensions as well [75, 76].
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where the action of the covariant forward and backward
dierence operators on ψ(x) is dened as

∇µψ(x) =
1

a
[Uµ(x)ψ (x+ aµ̂)− ψ(x)] ,

∇∗
µψ(x) =

1

a



ψ(x)− U†
µ(x− aµ̂)ψ (x− aµ̂)



.

(12)

In (12), µ̂ denotes the unit vector in xµ-direction and

Uµ(x) = eiaeAµ(x) (13)

are U(1) link variables.
Guided by the Lagrangian (2), where the Yukawa term

σψ̄ψ would reduce to a fermionic mass term if σ was con-
stant, one can introduce the scalar eld into the overlap
formalism by the denition [41]

D = Dov + σ


1− a

2
Dov



(14)

for the full Dirac operator.3 For constant σ the sec-
ond term in Eq. (14) is just a mass term in Ginsparg-
Wilson language [78] (see [79] for a similar argument in
the domain-wall formalism). By this denition one en-
sures that the identity (4), relating the expectation value
of σ to the chiral condensate, is preserved4 on the lattice,
i.e.,

−Nf

g2
〈σ〉 = 〈ψ̄ψ〉ov :=

〈

ψ̄


1− a

2
Dov



ψ
〉

, (15)

facilitating the numerical study of chiral symmetry break-
ing considerably. The full action of our lattice theory thus
reads

S = ψ̄Dψ +
Nf

2g2
σ2 , (16)

where summation over space-time and internal indices is
implied.
The discrete symmetry (3) of the continuum theory

has an exact lattice counterpart in the overlap formalism,
much like it is the case for theories with the more common
U(1) chiral symmetry [80]. Namely, introducing γ̂5 =
γ5(1 − aDov), we nd that the action (16) is invariant
under

ψ → γ̂5ψ , ψ̄ → −ψ̄γ5 , σ → −σ , (17)

by using the Ginsparg-Wilson relation [70]

{Dov, γ5} = aDovγ5Dov . (18)

It should be noted that the additional symmetries in
the continuum theory that arise due to ambiguity in the

3 Note that this denition diers from the one given in [77].
4 The fact that a factor of i is missing when comparing Eq. (15) to
Eq. (4) is purely conventional and has no inuence on any of the
results or their interpretation.

(x1, x2) (x1 + a, x2)

(x1, x2 + a) (x1 + a, x2 + a)

P(x1, x2)

FIG. 2. Plaquette at position (x1, x2) in the spatial plane.

choice of the “fth” gamma matrix (see footnote 1) can
also be exactly translated to the lattice [81], but shall not
be of interest in this work.

From App. B we know that (massive) overlap fermions
suer from discretization eects that quantitatively
change the chiral condensate in a theory of free fermions.
One should, thus, investigate the interacting theory with
a particular emphasis on its behavior towards the contin-
uum limit to see if the discretization eects persist.

B. Magnetic eld on the lattice

It is well known that the magnetic ux through a torus
with an area L2, orthogonal to an applied magnetic eld B,
is necessarily quantized [82, 83]. One nds the following
quantization condition for the magnetic eld:

eB =
2π

L2
b , b ∈ Z . (19)

Let us now outline how to implement an external mag-
netic eld perpendicular to the spatial plane using the
gauge links (13) in our lattice formulation (16). In the
continuum one could represent such a magnetic eld by,
e.g., the following choice of vector potential:

A0(x) = 0 , A1(x) = 0 , A2(x) = Bx1 . (20)

On a lattice with periodic boundary conditions, however,
this denition does not lead to a constant magnetic ux

ΦP =

∮

P

Aµdsµ (21)

through every lattice plaquette P(x1, x2) in the spatial
plane at position (x1, x2) – see Fig. 2 for the denition of
such a plaquette and the integration path in Eq. (21). In
fact, one nds

ΦP =

{

a2B if 0 ≤ x2 < L− a

a2B − aBL if x2 = L− a
, (22)

i.e., the ux through the lattice boundary in x2-direction
is large and opposite to the ux through the bulk, such
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that the total magnetic ux through the lattice vanishes:

Φtot =
∑

P

ΦP = 0 . (23)

The solution is to introduce correction terms in Aµ on
the lattice boundary in a way that shifts all the negative
(assuming B > 0) ux to the single plaquette at the
combined boundary x1 = x2 = L − a. This can be
achieved by the following denition [84]:

A1(x) = −BL

a
x2δx1,L−a , A2(x) = Bx1 , (24)

with A0 set to zero. The ux through P(L− a, L− a) is
now given by

ΦP |x1=x2=L−a = a2B −BL2 = a2B − 2π

e
b , (25)

where we have used (19), and ΦP = a2B everywhere
else. Since in our lattice formulation Aµ only appears in
exponentials due to (13), the only way ΦP contributes is
via the plaquette terms

Uµν(x) = Uµ(x)Uν(x+ aµ̂)U †
µ(x+ aν̂)U †

ν (x) , (26)

as we have

U12(x) = eieΦP . (27)

In this last expression the term proportional to 2π in
(25) cancels out. We thus end up with a situation that
is physically indistinguishable from one with a constant
magnetic ux ΦP = a2B through every plaquette and a
non-vanishing total ux

Φtot =
2π

e
b , (28)

as desired.
We therefore use the following denition of the U(1)

gauge links Uµ(x) (13), entering the Wilson operator (11)
via (12):

U0(x) = 1 ,

U1(x) =

{

e−2πibx2/L if x1 = L− a

1 else
,

U2(x) = e2πiabx1/L
2

.

(29)

We see that the compactness of the gauge links introduces
a periodicity in the magnetic eld and hence an eective
upper bound for the ux quantum number b, i.e.,

0 ≤ b ≤ N2
s . (30)

In practice, one restricts b even further in order to avoid
discretization artifacts [55, 85] and we shall do the same in
this work, performing simulations only up to b . N2

s /16.

C. Computational details

Our lattice setup of the GN model in a magnetic eld,
using the overlap Dirac operator (14), has a signicant
computational advantage compared to the use of overlap
fermions in gauge theories. This is due to the fact that
in our case the gauge links are not dynamical, depending
only on the constant magnetic eld. This allows for an
exact computation of the massless overlap operator Dov in
(9) that we perform once, at the beginning of a simulation.
We then re-use Dov in every update step for the now
straightforward computation of the full operator (14).
Needless to say, computing the overlap operator exactly,
i.e., without using approximations (see, e.g., [86]), would
be unthinkable in realistic QCD simulations.

For this work we have performed simulations at various
temperatures and magnetic elds using a standard rHMC
algorithm. We change the temperature by varying Nt at
constant Ns and we study dierent lattice spacings by
changing the coupling g2 while simultaneously adjusting
Ns such that the physical lattice volume remains constant.
We furthermore approach larger physical volumes by in-
creasing Ns at xed g2. Finally, we mention that our
theory does not suer from a complex-action problem, as
is shown in App. C.

D. Observables

As the order parameter for chiral symmetry breaking,
the main observable of interest is the chiral condensate
〈σ〉 in (15). Assuming an ergodic simulation algorithm,
however, this quantity will average to zero. This is be-
cause the eective potential of the GN model is known
to exhibit two equivalent minima in the spontaneously
broken phase, diering only in the sign of σ, hence leading
to a cancellation between those minima. In order to avoid
this cancellation, we thus use the quantity

〈|σ̄|〉 , with σ̄ =
1

V

∑

x∈Λ

σ(x) (31)

as an order parameter instead [87]. Here, the sum runs
over the whole lattice and 〈 · 〉 denotes the Monte-Carlo av-
erage. While 〈|σ̄|〉 approaches ±〈σ〉 in the innite-volume
limit, one should keep in mind that on nite volumes 〈|σ̄|〉
will never be zero exactly, even when chiral symmetry is
intact, which complicates the study of phase transitions.
For this reason, 〈|σ̄|〉 should – strictly speaking – not be
referred to as an order parameter. However, for the sake
of convenience we will still do so in the following.

In order to nd the critical temperature Tc, correspond-
ing to the phase transition between the two respective
regions of spontaneously broken and restored chiral sym-
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metry, we study the chiral susceptibility, dened as5

χ = V


〈σ̄2〉 − 〈|σ̄|〉2


, (32)

as a function of T . Approaching a second-order phase
transition, χ(T ) diverges rationally. This behavior is
washed out by nite-volume corrections and we expect to
nd a sharp but smooth peak close to the transition tem-
perature that monotonically grows, sharpens and moves
towards the latter [88].

At this point we should mention that the introduction of
an additional length scale and some form of imbalance in
fermionic theories might induce spatial inhomogeneities in
the system [89]. While this is most prominently observed
in mean-eld treatments at nite density [32, 90], it could
also apply for external magnetic elds. In fact, it is
known that in 3 + 1 dimensions magnetic elds can favor
inhomogeneous condensates at nite density when they
would be disfavored at B = 0 [90–93]. This can be
understood by recalling the dimensional reduction induced
by the magnetic eld [36] and the fact that inhomogeneous
phases are more abundant in lower dimensions. Of course,
our situation is qualitatively dierent because in our (2 +
1)-dimensional setup the dimensional reduction in a strong
magnetic eld leaves us with no spatial dimension at all
(and we do not expect inhomogeneities in the temporal
direction in equilibrium).

Since in 2+1 dimensions there is no conclusive evidence
for the existence of inhomogeneous structures beyond
mean-eld (as compared to the (1 + 1)-dimensional case
[64–66, 94]) and there even exist some negative mean-eld
results [95–97], such inhomogeneities are not the focus
of this work. Nonetheless, since the previous studies did
not take into account the inuence of magnetic elds,
we also investigate whether an external magnetic eld
can induce inhomogeneities in 2 + 1 dimensions at zero
density. To this end, we follow [64] by introducing the
spatial correlation function

C(x1,x2) =

1

N2
s Nt

∑

x′∈Λ

〈σ(x′
0, x1, x2)σ(x

′
0, x1 + x′

1, x2 + x′
2)〉 .

(33)

As has been outlined in [64], this correlator should capture
any inhomogeneities if they exist.

E. Scale setting

We set the scale via the order parameter at vanishing
magnetic eld and the lowest temperature considered,
T0 ≈ 0:

σ0 := 〈|σ̄|〉B=0, T=T0
. (34)

5 The factor of V is compensated by the use of space-time-averaged
quantities in the expectation values such that χ is an intensive
quantity, as it should be.

FIG. 3. Coupling-dependence of the chiral condensate 〈|σ̄|〉
for various cubic lattice sizes, Nt = Ns. The dashed line

shows −ag2

Nf
〈ψ̄ψ〉ov , as dened in Eq. (15) (with the absolute

value taken appropriately), for Ns = 8 and the red band is an
extrapolation to the innite volume. All quantities are given
in lattice units.

We keep T0 constant as we approach the innite-volume
(L2 → ∞ at xed a) and continuum (a → 0 at xed
L2) limits, respectively. However, in order to ensure rea-
sonably low scale-setting temperatures at an aordable
computational cost, we consider two dierent T0 corre-
sponding to the two dierent limits.

For a detailed list of the parameters we have performed
simulations for as well as their corresponding σ0 and T0,
we refer to Tab. I in App. D. In App. D we also give a
brief description on how the error estimates presented in
this work are obtained.

IV. RESULTS

In this section we report on our results obtained in the
GN model in 2 + 1 dimensions, using overlap fermions for
one reducible fermionic avor, Nf = 1.

A. Consistency checks

As an important starting point, we test our discretiza-
tion (14) and perform consistency checks with results in
the existing literature. To this end, we show in Fig. 3 the
dependence of the order parameter (31) on the coupling
constant g2 for increasing lattice volumes. The dashed
blue line shows, exemplarily for the smallest lattice consid-
ered, the right-hand side of the Dyson-Schwinger equation
(15) for comparison. This indicates that Eq. (15) is, in-
deed, fullled. The coupling strengths we use for the bulk
of this work lie in the left half of Fig. 3.

In Fig. 3 we also show an extrapolation to the innite
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FIG. 4. Temperature-dependence of the chiral condensate
〈|σ̄|〉 for dierent physical volumes and B = 0.

volume, using the nite-size scaling law

〈|σ̄|〉 = α+ γL−κ , (35)

where α, γ and κ are constants, for the L-dependence of
the order parameter for every value of the coupling.
When a/g2 takes values between 0.188 and 0.198 we

nd the oset α to be consistent with zero within errors
in the innite-volume limit, which indicates the presence
of a phase transition. In this case, κ is related to the
critical exponents β and ν of the order parameter and
correlation length, respectively, via

κ =
β

ν
. (36)

With this crude and naive method, we nd β/ν = 0.93±
0.29 as a weighted average which – while not competitive
in precision – is in quantitative agreement with pertinent
results obtained with dedicated methods as, for example,
collated in [98], β/ν = 0.74 . . . 1.01. Recovering this non-
perturbative result is a strong indication that we are
simulating the correct physics. From now on we shall
always consider strong enough couplings such that chiral
symmetry is spontaneously broken at T ≈ 0 = B, i.e., we
work in the strong-coupling or super-critical regime as in
Sec. II.

B. Vanishing magnetic eld

Having established the correctness of our method, we
now present results for the order parameter at vanishing
magnetic eld and non-zero temperature, which allows
for a comparison with results in [87, 99, 100], at least on
a qualitative level.

In Fig. 4 we show the T -dependence of 〈|σ̄|〉 for increas-
ing physical volumes. We observe the expected sponta-
neous breaking of chiral symmetry at low temperatures,
indicated by a non-vanishing order parameter, and a de-
crease of the condensate with increasing temperature,

FIG. 5. Chiral susceptibility (32) as a function of temperature
for dierent physical volumes.

corresponding to the well-known picture of thermal uc-
tuations destroying long-range order and restoring chiral
symmetry. Of course, as was mentioned above, 〈|σ̄|〉 can-
not vanish exactly on nite volumes. What one can see,
however, is that the phase transition becomes more pro-
nounced as the volume increases, while the non-vanishing
tail for high temperatures approaches lower and lower
values.

In order to locate the phase transition we show in
Fig. 5 the T -dependence of the chiral susceptibility (32)
for dierent volumes. As expected, it shows a pronounced
peak at a critical temperature T = Tc, which shifts slightly
to lower temperatures as the volume is increased. For
large enough volumes, where the peak becomes even more
pronounced, we nd Tc/σ0 ≈ 0.145.
We furthermore computed the Binder cumulant [101],

UL := 1− 〈σ̄4〉/3〈σ̄2〉2 , (37)

as a function of T . The intersection of UL(T ) for dier-
ent volumes provides us with another estimate for the
critical temperature, Tc/σ0 ≈ 0.135. We take the interval
between the two values as a rough estimate of the actual
critical temperature. A direct comparison to the existing
literature [87, 99, 100] is, unfortunately, not straightfor-
ward, as those works either employ higher avor numbers
or use dierent scale settings.
The observations presented so far are consistent with

the GN model approaching a second-order phase transi-
tion in T in the innite-volume limit, as one would expect
based on the large -Nf analysis of Sec. II and as has been
previously observed in [87, 99, 100].

Obviously, bosonic quantum uctuations do leave their
mark on the system for avor numbers as low asNf = 1, as
can be seen by comparing the critical temperature quoted
above with its large -Nf value, Tc/σ0 = 1/2 ln(2) ≈ 0.72,
the latter being signicantly larger. This means that the
broken phase shrinks when one departs from the mean-
eld limit by decreasing Nf , which is not at all surprising
given the tendency of quantum uctuations to destroy any
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sort of long-range order. This phenomenon has also been
observed in the earlier studies [87, 99, 100] and occurs in
the (1 + 1)-dimensional model as well [64].
We remark that even the largest volume considered

in this work is still comparatively small. One should
thus not be tempted to draw quantitative conclusions
about the precise location or the order of the chiral phase
transition at Nf = 1. The qualitative behavior, however,
which is what we are ultimately interested in at B 6= 0,
is as expected, which further builds up condence in the
chosen discretization.

C. Non-zero magnetic eld

1. Temperatures close to zero

We now switch on an external magnetic eld and rst
devote our attention to the lowest available temperatures.
The B-dependence of the chiral condensate for various
dierent lattice constants and volumes is shown in Figs. 6a
and 6b, respectively. In all data the magnetic eld is found
to increase the chiral condensate which is in qualitative
agreement with the large-Nf expectation.

While the latter predicts quadratic growth for our sce-
nario (and only linear growth in the sub-critical coupling
regime), our data look rather linear but might still be com-
patible with a weak quadratic growth. This discrepancy
could also come from discretization eects. Although
Fig. 6a suggests that one could hope for them to be
small in the interacting theory, such a deviation would be
the expected form of discretization artifacts in the non-
interacting case as discussed in App. B. We found that
such artifacts would systematically diminish the chiral
condensate such that we are condent that our results
are qualitatively correct even if discretization eects are
larger than suggested by Fig. 6a.
Moreover, one observes a curious non-monotonic be-

havior of 〈|σ̄|〉 with B, as the order parameter seems to
assume a minimum at the lowest possible non-vanishing
magnetic eld, corresponding to b = 1 in Eq. (19), for
all lattice spacings. For ux parameters larger than 1
the condensate then grows monotonically with B. This
non-monotonicity, however, is a nite-size eect, as be-
comes clear by looking at the innite-volume extrapolation
shown in Fig. 6b, where b = 1 ceases to be a minimum of
〈|σ̄|〉 for the largest available volume (green curve). We
note that the physical volume considered in Fig. 6a, which
we keep approximately constant as we decrease the lattice
spacing, corresponds to the smallest volume in Fig. 6b.

The largest magnetic elds we plot in Fig. 6 are deter-
mined by our requirement that b ≤ N2

s /16. For larger
magnetic elds we nd unphysical saturation eects, the
onset of which is already visible in the Ns = 8 data
of Fig. 6 (blue curves). We plan to present a more de-
tailed discussion of these discretization artifacts and the
aforementioned nite-size eects, as well as a thorough
spectral analysis of the overlap operator for the GN model

(a) Continuum extrapolation.

(b) Innite-volume extrapolation.

FIG. 6. Magnetic-eld-dependence of the chiral condensate
〈|σ̄|〉 for low temperatures.

in non-zero magnetic elds in a forthcoming publication.
We arrive at the conclusion that, on suciently large

volumes and for temperatures close to zero, the magnetic
eld causes the order parameter to increase, thus enhanc-
ing the breaking of chiral symmetry, in accordance with
the mean-eld prediction of magnetic catalysis outlined
in Sec. II. This is hardly surprising, given the eective
one-dimensional dynamics induced by the magnetic eld.
In fact, as has been argued in [36], magnetic catalysis at
zero temperature is a universal, i.e., model-independent
feature in 2 + 1 dimensions, at least in the absence of
gauge degrees of freedom [102].

2. Higher temperatures

Next, we study the combined inuence of nite temper-
ature and magnetic eld on the order parameter. We show
phase diagrams in the (B, T )-plane for various lattice sizes
in Fig. 7.
Evidently, magnetic catalysis takes place not only for
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FIG. 7. (B, T ) phase diagrams for increasing volumes at constant lattice spacing. Left: Ns = 8, aσ0 ≈ 1.063. Center: Ns = 12,
aσ0 ≈ 1.004. Right: Ns = 16, aσ0 ≈ 0.987. The gray band indicates our estimate for the critical temperature at B = 0 and on
the largest lattice, see the main text.

the lowest temperatures, but for all T below Tc. We
indicate the values of Tc at B = 0 and Ns = 16, de-
termined above via χ and UL, respectively, by the gray
bands shown. For higher temperatures the magnetic eld
ceases to have a noticeable eect on the order parameter.
This is not unexpected, as in this region we only measure
the (modulus of the) uctuations of σ around zero due to
our denition of 〈|σ̄|〉 in Eq. (31).

The magnetic elds we are forced to restrict to (in order
to avoid discretization eects) in our lattice simulations
at xed lattice spacing are quite small, eB/σ2

0 . 0.35.
Hence, the results obtained in the large -Nf approximation,
shown in Fig. 1, suggest that one should not expect the
broken region to grow in size all that much. Indeed, this
expectation is conrmed by Fig. 7.

To investigate larger values of eB/σ2
0 , we consider the

(B, T ) phase diagram for the smallest available lattice

FIG. 8. (B, T ) phase diagram for Ns = 16 and aσ0 ≈ 0.460.
The gray band shows our crude estimate for the B-dependence
of the critical temperature of the phase transition, see the
main text. The scale on the color bar is dierent from Fig. 7.

spacing in Fig. 8. One observes that for strong enough
magnetic elds the region of spontaneously broken chiral
symmetry indeed starts to grow, as expected from Fig. 1.
We roughly indicate this by the gray band, which shows
the critical temperature Tc, determined by the suscepti-
bility (32), as a function of B. When Tc could not be
determined unanimously we took the average of the two
temperatures corresponding to the competing peaks in-
stead and we do not show error bars for the resulting –
very crude – estimate. Recall that nite-volume eects
distort the behavior for weak magnetic elds.
It would be interesting for future studies to consider

even stronger magnetic elds in order to compare Figs. 1
and 8 on a more quantitative level. In conjunction with
simulations at dierent avor numbers, one could aim at
nding a relation between the phase boundaries as Nf is
varied. In the simplest scenario, the critical temperature
Tc(B) could conceivably be related to its large -Nf value
by a mere Nf -dependent scaling factor.

D. Search for inhomogeneous phases

Finally, we investigate the existence of inhomogeneous
phases by studying the spatial correlator (33). Such a
phase would likely occur at low temperatures and rela-
tively strong magnetic elds, the former since thermal
uctuations will wash out any inhomogeneities and the
latter since we know that the order parameter is homoge-
neous for vanishing magnetic eld [95–97].

Fig. 9 shows the correlator C from Eq. (33) for a strong
magnetic eld along the two spatial coordinate axes and
their diagonal. Each of them decays monotonically to a
constant close to the contribution from the disconnected
terms. In fact, we can beautifully showcase the rotational
invariance here and no further structure is seen in other
directions or for other parameters. We conclude that the
assumption of spatial homogeneity is well justied in the
accessible parameter range. Whether stronger magnetic
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FIG. 9. Spatial correlator (33) for Ns = Nt = 16, eB/σ2
0 ≈

1.39 and aσ0 ≈ 0.460 along the two coordinate axes and their
diagonal. Due to the lattice periodicity we only show the rst
half of the respective abscissas.

elds could induce a spatially varying order parameter,
especially in combination with a nite chemical potential,
is a question for further studies.

V. DISCUSSION

We have investigated the (2 + 1)-dimensional Gross-
Neveu model (2) exposed to an external magnetic eld in
the chiral limit using one reducible avor of fermions and
Neuberger’s formulation (9) of the overlap operator. The
auxiliary scalar eld σ couples in a way so as to preserve
the continuum Ward identity (4) relating the expectation
value of σ to the chiral condensate.

Our results suggest that the magnetic catalysis phe-
nomenon, i.e., an enhancement of the order parameter
for chiral symmetry breaking with the magnetic eld,
persists for nite avor numbers, in accordance with the
phenomenological picture of the magnetic eld reducing
the number of spatial dimensions, thus promoting in-
frared dynamics. On small volumes, however, this eect
is non-monotonic for weak magnetic elds. We also re-
mark that our lattice formulation seems to suer from
strong discretization eects in a free-theory setup, while
the interacting case appears less problematic.

We have furthermore investigated the fate of magnetic
catalysis at nite temperature and found that it persists
for all temperatures below the phase transition. Our
ndings are thus in qualitative agreement with mean-eld
[33–35] as well as beyond-mean-eld [39, 40] calculations.
The phase of spontaneously broken chiral symmetry grows
slightly for the strongest magnetic elds considered but
shrinks overall in comparison to the large-Nf limit.

It is important to stress that our results are very dier-
ent from the well-known inverse magnetic catalysis eect,
i.e., a decrease of the order parameter with B, that takes
place in QCD at temperatures close to the chiral crossover

[56, 57]. In QCD, the critical temperature furthermore
decreases with the magnetic eld [103, 104], which we
also do not observe. We now comment on this issue.

In QCD the aforementioned eects are likely caused by
a delicate interplay between quark and gluonic degrees of
freedom [105], which our model, lacking the latter, cannot
reproduce. One should thus not be tempted to interpret
our results as new physics. Rather, we argue that the
GN model is simply, and unsurprisingly, insucient for a
proper description of QCD once gluonic eects become
important. While our results are thus in agreement with
the expectation, we also stress that it was not entirely
clear to us before this study to what extent the eect
of quantum uctuations might change the qualitative
picture.

As was mentioned in the Introduction, we believe that
our work serves as a starting point for the ultimate goal
of studying QCD in background magnetic elds from the
point of view of eective models beyond the mean-eld
limit and on the lattice. In the following we discuss ways
on how to systematically improve the GN model in order
to approach QCD. To this end, one should rstly consider
models in 3+1 dimensions that have the same continuous
chiral symmetry as QCD. One may then take gluonic
interactions into account, for example, by coupling the
fermions to the Polyakov loop [106]. Most importantly,
the crucial back-reaction of magnetized quarks onto the
gluonic distribution can be taken into account by intro-
ducing a suitable eective B-dependent coupling. This
has been shown to reproduce the desired features of QCD
in [107–110].

One could furthermore consider endowing the scalar
elds in the NJL model with kinetic terms, thus enabling
their interpretation as dynamical mesons and potentially
add quartic mesonic self-interactions as well. The ensu-
ing linear sigma model coupled to quarks (LSMq) has
the added advantage that it is renormalizable in 3 + 1
dimensions, which the GN and NJL models are not. If
one then incorporates the aforementioned magnetic-eld-
dependent couplings, while properly taking into account
plasma screening eects, one also observes inverse mag-
netic catalysis as in QCD [111–113].

A proper understanding of such eective theories for
QCD beyond the mean-eld limit, e.g., from ab initio

lattice simulations at nite numbers of quark avors and
colors is therefore certainly desirable. For reviews on
the topic of reproducing features of QCD in magnetic
elds using model theories and a more complete list of
references, see [113–115].

We would like to briey comment on possible implica-
tions for condensed-matter systems that are described by
Four-Fermi theories. While in this work we were only con-
cerned with the strong-coupling regime, in which chiral
symmetry is broken at zero temperature and magnetic
eld, we believe that the qualitative predictions of mean-
eld studies should also remain valid for weak couplings.
This would then imply that strong enough magnetic elds
are indeed capable of generating a mass gap, providing



11

further evidence [116, 117] that magnetic catalysis could
be responsible for the kink-like behavior of the thermal
conductivity of superconducting cuprates exposed to a
magnetic eld observed in [118].

Finally, our results suggest that a small magnetic eld
does not seem to induce inhomogeneous phases in the GN
model in 2 + 1 dimensions at zero density. A detailed
study of the nite-density case is currently underway.

Our simulation results as well as the tools required to
reproduce the gures shown in this work are available
online [44, 45].
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Appendix A: Derivation of the eective potential in

the large -Nf limit

In this appendix we outline the calculation of the ef-
fective potential in Eq. (6), see also [126]. The main
diculty is, of course, the fermionic determinant, det(D).
For the derivation we shall, in fact, consider the more
general Dirac operator

D = /∂ + ie /A+ σ + µγ0 , (A1)

where we have also included a chemical potential µ and
Aµ is given in Eq. (20). In the following we assume B > 0
without loss of generality.

For the computation of ln detD we use the zeta-function
regularization method [127]:

ln detD =
1

2
ln detD2 = −1

2

∂

∂s
ζD2(s)

∣

∣

∣

∣

s=0

, (A2)

with the zeta-function of D2 dened by

ζD2(s) =
1

Γ(s)

∫ ∞

0

dt ts−1 tr e−tD2

, (A3)

where Γ(s) denotes the usual gamma function. The spec-
trum of D2 is known and its eigenvalues read

λ = σ2 + (ωn + iµ)2 + (2l + 1 + α)eB , (A4)

where ωn = π
β
(2n + 1) are the Matsubara frequencies

(n ∈ Z), l ∈ N0 denotes the Landau level index and α± 1
denotes the Zeeman splitting of energy levels of fermions
with opposite spin due to the Pauli term in D2. The
eigenvalues come with a degeneracy of 2 · V eB

2πβ , where

the rst factor of 2 comes from the use of a reducible
representation of gamma matrices while the second factor
is the standard Landau level degeneracy.
We are thus left with

ζD2(s)

V
=

1

Γ(s)

eB

πβ

[
∫ ∞

0

dt ts−1e−tσ2

∞
∑

n=−∞

e−t(ωn+iµ)2+

2

∫ ∞

0

dt ts−1e−tσ2

∞
∑

n=−∞

e−t(ωn+iµ)2
∞
∑

l=1

e−2eBlt

]

,

(A5)

where we have already performed the sum over α and split
up the summation over Landau levels into magnetic-eld-
independent terms (l = 0) and corrections due to B (l >
0). By performing a Poisson resummation in n and taking
the integrals over t, a straightforward calculation leads
to an expression for the zeta function, whose derivative
with respect to s at s = 0 simplies to

1

V

∂

∂s
ζD2(s)

∣

∣

∣

∣

s=0

=
eB

π
|σ|− (2eB)3/2

π
ζH

(

−1

2
,
σ2

2eB

)

−eB

πβ

∞
∑

l=0

dl

[

ln


1 + e−β(
√
σ2+2eBl+µ)



+ (µ ↔ −µ)

]

,

(A6)
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where dl = 2− δl0. After setting µ = 0 and inserting this
expression into (A2) and (6), we obtain

Ve

V
=

σ2

2g2R
−

√
2

π
(eB)3/2ζH

(

−1

2
,
σ2

2eB

)

+
|σ|eB

2π

−eB

πβ

∞
∑

l=0

dl ln


1 + exp


−β


σ2 + 2eBl


, (A7)

where we have replaced g2 by the renormalized coupling
g2R as dictated by the zeta function formalism. Finally,
we introduce the minimum of the eective potential at
vanishing temperature, density and magnetic eld, σ0 =
−π/g2R, to recover (8).

Appendix B: Comparison of fermion discretizations

We discuss and compare three dierent fermion dis-
cretizations one could employ when attempting to study
the GN model exposed to magnetic elds: naive, SLAC
and overlap fermions. For the comparison we consider a
theory of massive non-interacting fermions in an external
magnetic eld, characterized by the Lagrangian

L = ψ̄


/∂ + ie /A+m


ψ =: ψ̄Dψ , (B1)

and compute the chiral condensate

〈ψ̄ψ〉 := − 1

V

∂

∂m
lnZ , (B2)

where the partition function Z is given by the fermion
determinant,

Z = detD . (B3)

We have already computed ln detD in the continuum
theory in App. A, allowing us to directly use the result
(A6) by setting σ = m > 0. Thus, with Eq. (A2), the
chiral condensate in the continuum at µ = 0 is given by
the closed-form expression

〈ψ̄ψ〉(B) =

eB

2π
− m

π

√

eB

2
ζH

(

1

2
,
m2

2eB

)

+
eB

π

∞
∑

l=0

d(l)m

εl

1

1 + eβεl
,

(B4)

where

εl =



m2 + 2eBl . (B5)

We remark again that the volume-dependence only enters
via the discretization of eB, Eq. (19). This means that if
one were to naively take the limit eB → 0 in a continuous
manner one would simultaneously approach the innite-
volume limit.

To obtain the chiral condensate for vanishing magnetic
eld on a nite volume, one must repeat the calculation

leading up to Eq. (B4), replacing the last term in Eq. (A4)
by p

2 = p21 + p22, with pi =
2π
L ni and ni ∈ Z, and taking

the sum over momenta in the place of Landau levels.
Taking the four-fold degeneracy of the eigenvalues into
account and repeating the steps outlined in App. A leads
to the expression

〈ψ̄ψ〉(B = 0) =

m2

π
− 2m

L2

∑

p6=0

1

|p|
e−

L2m
2π

|p| +
4

L2

∑

p

m

εp

1

1 + eβεp
,

(B6)

with

εp =



m2 + p
2 , (B7)

for the chiral condensate on a nite volume and for B = 0.
Let us now turn to the lattice computations.
The basic ingredients for implementing external mag-

netic elds on the lattice are outlined in Sec. III B. For
naive and overlap fermions we use the formalism devel-
oped there, mainly involving the U(1) gauge links in
Eq. (29), which enter the naive Dirac operator,

Dnaive =
1

2
γµ



∇∗
µ +∇µ



+m , (B8)

directly (∇µ and ∇∗
µ are dened in Eq. (12)) and the

overlap operator via its Wilson kernel (10).
When using the SLAC derivative, however, one cannot

use compact gauge variables in the form of group-valued
lattice links connecting neighboring lattice sites because
the derivative itself is non-local and thus involves all lattice
points in a given direction. We therefore briey discuss
an alternative solution: In analogy to the continuum, we
dene the SLAC Dirac operator as

DSLAC := /∂
SLAC

+ ie /A+m , (B9)

where the SLAC derivative in position space is given by
the Toeplitz matrix [128]

∂SLAC
µ (x, y) = (−1)(xµ−yµ)/a

π/Lµ

sin (π(xµ − yµ)/Lµ)
(B10)

if xµ 6= yµ and xν = yν for all ν 6= µ, and ∂SLAC
µ = 0

otherwise.
Obviously, the discretization (B9) is not gauge invari-

ant. One could, however, attempt to treat the e /A term
as a small perturbation if the magnetic eld is not too
large, such that (B9) still describes the correct physics
approximately.6 We do so in the following, reducing its

6 One should note that this assumption is hard to justify given
that the gauge eld is a linear function of x that (at individual
sites) can have a magnitude proportional to L.
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numerical value as much as possible by employing the
symmetric gauge

A0(x) = 0 , A1(x) = −B

2
x2 , A2(x) =

B

2
x1 , (B11)

with x1,2 in the range


−L
2 , L

2



. Problems will inevitably
arise once the kinetic momentum pµ + eAµ crosses the
boundary of the rst Brillouin zone, since there the SLAC
derivative is discontinuous. This is the reason SLAC
fermions are not used in gauge theories and in our case
such a crossing will occur for strong magnetic elds.

We note that the minimal coupling prescription used in
(B9) makes the lattice boundary correction terms intro-
duced in Eq. (24) obsolete, as they cannot be compensated
for in the absence of compact periodic gauge variables.
We have veried that their inclusion indeed gives worse re-
sults. Notice, however, that we are dealing with a dierent
physical situation with SLAC fermions as now the total
magnetic ux through the lattice vanishes, see Sec. III B.
Let us now compare the continuum result (B4) with

the lattice chiral condensate, dened by

〈ψ̄ψ〉latt = − 1

V
tr


D−1
latt



, (B12)

where Dlatt stands for

Dlatt =











Dnaive for naive fermions ,

DSLAC for SLAC fermions ,

D


1− a
2Dov

−1
for overlap fermions ,

(B13)

the operators Dov and D being dened in Eqs. (9) and
(14), respectively. For naive fermions (B12) has to be di-
vided by the number of doublers, i.e., 8 in 2+1 dimensions,
in order to compare with continuum results.

We show in Fig. 10 the change in the chiral condensate
induced by the magnetic eld,

∆〈ψ̄ψ〉 = 〈ψ̄ψ〉(B)− 〈ψ̄ψ〉(0) , (B14)

for the continuum result (where ∆〈ψ̄ψ〉 is obtained by
subtracting (B6) from (B4)) and the three discretizations.
One observes that the agreement with the continuum
condensate is best for naive fermions. In an interacting
theory, however, one cannot simulate the Nf = 1 model
with naive fermions by simply dividing by the number
of doublers, which is the main reason we refrained from
using the naive discretization in our study.
The agreement for overlap fermions is very good for

weak magnetic elds, in particular in the regime of eB/m2

we investigate in our simulations. For stronger magnetic
elds the qualitative behavior is still the same as for the
continuum result, but the quantitative deviation (which
appears to be quadratic in B) is substantial. We accredit
this deviation to discretization artifacts, which for massive
overlap fermions are worse (O(a)) than for naive fermions
(O(a2)). One should therefore be cautious when interpret-
ing our simulation results – while we do believe in their

FIG. 10. Comparison of ∆〈ψ̄ψ〉 in Eq. (B14) between contin-
uum and lattice results for Ns = 16 (for the SLAC result we
use Ns = 15), Nt = 16 and am = 0.1024. Notice that, since
we work in a nite volume, the magnetic eld is discrete even
in the continuum.

qualitative correctness, the absolute numbers could be
systematically underestimated at large magnetic elds. In
future studies one could employ an improvement program,
such as the one suggested in [129], to reduce discretization
eects.

For SLAC fermions, perhaps unsurprisingly, the agree-
ment with the continuum result is rather poor, as the
SLAC condensate does not even reproduce the qualitative
features of the continuum one, for instance, the dip for
the lowest allowed magnetic eld. We mention a number
of (ultimately futile) attempts we experimented with in
order to improve the SLAC derivative in a magnetic eld
given in Eq. (B9).

First, we tried out dierent gauges instead of (B11),
the latter leading to the best agreement, however. Next,
we considered a physical situation where the magnetic
eld is constant and positive in one half of the lattice
and constant and negative (with the same absolute value)
in the other half. This avoids the need of introducing
the lattice boundary terms in Eq. (24) entirely, which for
the SLAC formulation were quite awkward in the rst
place. We then only considered the chiral condensate on
a single lattice point x, lying in the center of the region
with positive magnetic eld. This was motivated by the
intuition that at such a point the inuence from the region
with negative magnetic eld should be negligible for large
enough lattices. However, the agreement with continuum
results we found was still poor. We conclude that more
work is necessary if one aims at making SLAC fermions
work for a background magnetic eld.
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Appendix C: Proof there is no sign problem

We show that there is no complex-action problem in
the overlap formalism (14) by showing that detD is real
and non-negative. To this end, we work with the following
representation of gamma matrices:

γµ =

(

σµ 0
0 −σµ

)

, (C1)

where the σµ can be chosen as the usual Pauli matrices.
This decomposition makes clear how the reducible repre-
sentation we use in this work is made up from the two
inequivalent irreducible representations in three space-
time dimensions, σµ and −σµ.

It is then straightforward to convince oneself that the
overlap operator (14) also assumes a block form:

D =

(

D1 0
0 D2

)

, (C2)

where (i = 1, 2)

Di = Dov,i + σ


1− a

2
Dov,i



, (C3)

Dov,i =
1

a

(

1+Ai

/



A†
iAi

)

, (C4)

Ai = DW,i − 1 , (C5)

and the irreducible components of the Wilson operator
read (see Eq. (12) for the denitions of ∇µ and ∇∗

µ)

DW,1 =
1

2



σµ(∇∗
µ +∇µ)− a∇∗

µ∇µ



,

DW,2 =
1

2



−σµ(∇∗
µ +∇µ)− a∇∗

µ∇µ



.

(C6)

We emphasize that the diagonal elements D1,2 in (C2)
are precisely the expressions one would obtain for the over-
lap operator when working in one of the two irreducible
representations. Hence, D decomposes in complete anal-
ogy to the continuum Dirac operator.
Now, obviously,

detD = detD1 detD2 . (C7)

Furthermore, we note that the symmetric dierence op-
erator ∇∗

µ +∇µ in (C6) is anti-Hermitian, while the dis-
cretized Laplacian ∇∗

µ∇µ is Hermitian, such that DW,1

and DW,2 are Hermitian conjugates of one another. By
using the spectral representation of the inverse square
root in the denition of Dov,2, one can then show that
the same holds for D1 and D2, such that, using Eq. (C7),

detD = detD1 detD
†
1 = | detD1|

2 ≥ 0 , (C8)

i.e., there is no complex-action problem since the deter-
minant is real and non-negative. We emphasize that the
crucial ingredient for this proof was the use of a reducible
representation of gamma matrices.

Appendix D: Parameters

In our simulations we generated O(103)−O(104) con-
gurations per parameter set. We performed binned
jackknife resamplings for our error analyses, making sure
that each bin contained at least τint congurations (but
most commonly multiples thereof), where τint refers to
the integrated auto-correlation time corresponding to the
order parameter 〈|σ̄|〉. We found τint . 50 in all cases.
We list the relevant parameters for which we have

obtained simulation data as well as the respective scales
σ0 and scale-setting temperatures T0 in Tab. I. Notice
that the scale-setting temperatures are dierent between
the innite-volume and continuum limits, see Sec. III E.
Since the errors in σ0 are negligible, we do not quote
them here and refrain from taking their inuence on error
propagation into account in the entirety of this work.
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TABLE I. Parameter sets used in the simulations. Ns denotes the spatial lattice extent, assumed equal in both directions, Nt is
the temporal extent, g2 denotes the coupling constant in Eq. (16), b is the magnetic ux quantum number in Eq. (19) and T0

denotes the temperature at which we set the scale aσ0 in Eq. (34), which we quote in lattice units here. For the scale-setting
data, the dots indicate steps of 0.005. As was explained in Sec. III E, we use dierent T0 for the innite-volume and continuum
extrapolations.

Ns 1/g2 Nt b T0/σ0 aσ0

Scale-setting

8
10
12
14
16

0.150, . . . , 0.205
0.150, . . . , 0.205

0.150, . . . , 0.190, 0.200, 0.205
0.150, . . . , 0.165, 0.175, . . . , 0.205

0.150, . . . , 0.200

8
10
12
14
16

0 − −

innite-volume extrapolation

8 0.1520
2, 3, 4, 5, 6, 7, 8, 12

16
0, 1, 2, 3, 4

0
0.059 1.063

12 0.1520

2, 4, 5, 7, 8
6
12
16

0, 1, 3, 6, 8
0, 1, 3, 5, 6, 8

0, 1, 2, 3, 4, 6, 8
0

0.062 1.004

16 0.1520 2, 4, 5, 6, 7, 8, 12, 16 0, 1, 2, 4, 8, 12 0.063 0.987

continuum extrapolation

8 0.1520 2, 3, 4, 5, 6, 7, 8 0, 1, 2, 3, 4 0.126 0.995

12 0.1650
2, 4, 5, 6, 7, 8

12
0, 1, 3, 6, 8

0, 1, 2, 3, 4, 6, 8
0.121 0.691

16 0.1740
2, 4, 6, 8, 12

16
0, 1, 3, 6, 12, 14

0, 1, 2, 3, 4, 6, 8, 12, 14
0.136 0.460
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and D. Ébert, JETP Lett. 73, 121 (2001), arXiv:hep-
th/0012256.

[31] M. Thies, Phys. Rev. D 68, 047703 (2003), arXiv:hep-
th/0303026.

[32] M. Thies, J. Phys. A 39, 12707 (2006), arXiv:hep-
th/0601049.

[33] K. G. Klimenko, Theor. Math. Phys. 89, 1161 (1991).
[34] K. G. Klimenko, Z. Phys. C 54, 323 (1992).
[35] K. G. Klimenko, Theor. Math. Phys. 90, 1 (1992).
[36] V. P. Gusynin, V. A. Miransky, and I. A. Shovkovy,

Phys. Rev. Lett. 73, 3499 (1994), [Erratum: Phys. Rev.
Lett. 76, 1005 (1996)], arXiv:hep-ph/9405262.

[37] I. A. Shovkovy, Lect. Notes Phys. 871, 13 (2013),
arXiv:1207.5081 [hep-ph].

[38] J. O. Andersen, W. R. Naylor, and A. Tranberg, Rev.
Mod. Phys. 88, 025001 (2016), arXiv:1411.7176 [hep-ph].

[39] D. D. Scherer and H. Gies, Phys. Rev. B 85, 195417
(2012), arXiv:1201.3746 [cond-mat].

[40] J.-L. Kneur, M. B. Pinto, and R. O. Ramos, Phys. Rev.
D 88, 045005 (2013), arXiv:1306.2933 [hep-ph].

[41] I. Ichinose and K. Nagao, Mod. Phys. Lett. A 15, 857
(2000), arXiv:hep-lat/9909035.

[42] M. D. Wilkinson et al., Sci. Data 3, 160018 (2016).
[43] A. Athenodorou, E. Bennett, J. Lenz, and E. Pa-

padopoullou, (2022), arXiv:2212.04853 [hep-lat].
[44] J. J. Lenz, M. Mandl, and A. Wipf, “Dataset for “Mag-

netic Catalysis in the (2+1)-Dimensional Gross-Neveu
Model”,” Zenodo (2023).

[45] J. J. Lenz, M. Mandl, and A. Wipf, “Analysis and
Visualisation Code for “Magnetic Catalysis in the (2+1)-
Dimensional Gross-Neveu Model”,” Zenodo (2023).

[46] R. D. Pisarski, Phys. Rev. D 29, 2423 (1984).
[47] H. Gies and L. Janssen, Phys. Rev. D 82, 085018 (2010),

arXiv:1006.3747 [hep-th].
[48] V. P. Gusynin, V. A. Miransky, and I. A. Shovkovy,

Phys. Rev. D 52, 4718 (1995), arXiv:hep-th/9407168.
[49] V. P. Gusynin, V. A. Miransky, and I. A. Shovkovy,

Nucl. Phys. B 462, 249 (1996), arXiv:hep-ph/9509320.
[50] L. D. Landau and E. M. Lifshitz, Statistical Physics, 3rd

ed. (Pergamon Press Ltd. Oxford, 1980).
[51] N. D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133

(1966), [Erratum: Phys. Rev. Lett. 17, 1307 (1966)].
[52] P. C. Hohenberg, Phys. Rev. 158, 383 (1967).
[53] S. Coleman, Commun. Math. Phys. 31, 259 (1973).
[54] M. D’Elia, S. Mukherjee, and F. Sanlippo, Phys. Rev.

D 82, 051501(R) (2010), arXiv:1005.5365 [hep-lat].
[55] M. D’Elia and F. Negro, Phys. Rev. D 83, 114028 (2011),

arXiv:1103.2080 [hep-lat].
[56] G. S. Bali, F. Bruckmann, G. Endrődi, Z. Fodor, S. D.
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(2011), arXiv:1104.5664 [hep-lat].

[86] J. van den Eshof, A. Frommer, Th. Lippert, K. Schilling,
and H. A. van der Vorst, Comput. Phys. Commun. 146,
203 (2002), arXiv:hep-lat/0202025.

[87] J. B. Kogut and C. G. Strouthos, Phys. Rev. D 63,
054502 (2001), arXiv:hep-lat/9904008.

[88] W. Janke, in Computational Many-Particle Physics, Vol.



17

739, edited by H. Fehske, R. Schneider, and A. Weiße
(Berlin, Heidelberg, 2008) pp. 79–140.

[89] D. Roscher, J. Braun, and J. E. Drut, Phys. Rev. A 89,
063609 (2014), arXiv:1311.0179 [cond-mat].

[90] M. Buballa and S. Carignano, Eur. Phys. J. A 52, 57
(2016), arXiv:1508.04361 [nucl-th].

[91] I. E. Frolov, V. Ch. Zhukovsky, and K. G. Klimenko,
Phys. Rev. D 82, 076002 (2010), arXiv:1007.2984 [hep-
ph].
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