
Abelian Projetion on the Torus for general Gauge Groups1C. Ford, T. Tok and A. Wipf2Theor.{Phys. Institut, Universit�at JenaFr�obelstieg 1, D{07743 Jena, GermanyAbstratWe onsider Yang-Mills theories with general gauge groups G and twists on thefour torus. We �nd onsistent boundary onditions for gauge �elds in all instantonsetors. An extended Abelian projetion with respet to the Polyakov loop operatoris presented, where A0 is independent of time and in the Cartan subalgebra. Funda-mental domains for the gauge �xed A0 are onstruted for arbitrary gauge groups. Inthe setors with non-vanishing instanton number suh gauge �xings are neessarilysingular. The singularities an be restrited to Dira strings joining magnetiallyharged defets. The magneti harges of these monopoles take their values in theo-root lattie of the gauge group. We relate the magneti harges of the defets andthe windings of suitable Higgs �elds about these defets to the instanton number.PACS numbers: 11.10Wx, 11.15Tk, 11.15K, 12.38AwKeywords: Gauge �eld theory at �nite temperature, gauge �xing, abelian projetion,magneti monopoles, instanton number1 IntrodutionCon�nement and hiral symmetry breaking are supposed to follow from the dynamis ofYang-Mills �elds. These phenomena are highly non-perturbative and still have not beenderived from �rst priniples. In this paper we will follow the strategy put forward by 'tHooft [1℄ who onsidered Yang-Mills theories on a Eulidean spae-time torus T4. Thetorus provides a gauge invariant infrared ut-o�. Its non-trivial topology gives rise to anon-trivial struture in the spae of Yang-Mills �elds whih yields additional information onthe possible phases of Yang-Mills theories. Compared to other Riemannian 4-dimensionalompat manifolds the torus has many advantages (besides being the `spae-time' used inlattie simulations):� one an use a at metri in whih ase urvature e�et do not mix with �nite sizee�ets,1Supported by the Deutshe Forshungsgemeinshaft, DFG-Wi 777/3-22e{mails: Ford, Tok and Wipf�tpi.uni-jena.de 1



� the irumferene L0 in the temporal diretion an be identi�ed with the inversetemperature � [2, 3℄,� gauge invariant periodi �elds on R 4 an be viewed as �elds on T4,� one may alulate non-perturbative quantities from �nite size e�ets [4℄; the stringonstant is diretly related to the energy of a string winding around the torus [1℄,� one keeps the relevant part of the supersymmetry in SUSY-YM theories.Even the less ambitious goal to demonstrate on�nement of stati quarks without relianeon numerial simulations has not been ahieved yet. Without dynamial fermions therelevant observables are produts of Wilson-loops [5℄. At �nite temperature T = 1=� thegauge �elds in the funtional integrals are periodi in Eulidean time i.e.A�(x0 + �; ~x) = A�(x0; ~x):and one may use Polyakov loops [6℄P (~x) = Tr R(P(�; ~x)); where P(x0; ~x) = P exp "i Z x00 d�A0(�; ~x)# (1.1)as order parameters for on�nement. Here R is the representation of the gauge group whihats on the matter �elds. We shall assume that the gauge group G is simply onneted,e.g. G = SU(2) rather than SO(3) = Ad(SU(2)). But sine we allow for arbitraryrepresentations R of G our results apply to general gauge groups R(G), for example toSO(3).The Polyakov loop P (~x) is invariant under gauge transformations whih are periodiin time. Sine it is a funtional of A0 only, one is motivated to seek a gauge �xing whereA0 is as simple as possible. Note that the Weyl gauge, A0 = 0, is not ompatible withtime-periodiity. In a previous paper [7℄ we disussed an extended Abelian projetion forSU(2) gauge theories on the four torus in whih A0 is time independent and in the Cartansubalgebra. The gauge �xing proedure hinges on the diagonalization of the path orderedexponential, P(�; ~x), whose trae is the Polyakov loop. In ontrast to the two dimensionalase investigated in [8℄ the diagonalization proedure has unavoidable singularities [9, 10℄.The singularities an be interpreted as Dira strings [11℄ joining magnetially harged`defets'. Here we understand defets as points, loops (not to be onfused with the Dirastrings!), sheets and lumps where P(�; ~x) has degenerate eigenvalues. For the gauge groupSU(2), the eigenvalues of P(�; ~x) are degenerate when P(�; ~x) = �1l. Thus there aretwo types of defet aording to whether P(�; ~x) is plus or minus the identity. Assoiatedwith the gauge �xing proedure one an de�ne an Abelian magneti potential Amag onT3 [9℄. In [7℄ we showed that the total magneti harge of P = 1l defets is equal to theinstanton number q. Moreover, the total magneti harge of all defets is zero, i.e. the totalmagneti harge of P = �1l defets is minus that of the P = 1l defets. The relationshipbetween magneti harges and the instanton number was onsidered earlier by Christ and2



Jakiw [12℄, Gross et.al. [2℄ and Reinhardt [13℄ who worked on S1 � R 3 or R 4. Thoughhere one requires `harges at in�nity' to have overall magneti harge neutrality. For anexpliit disussion of the singularities emerging in the gauge �xing proedure at point likemonopoles see the reent paper by Jahn and Lenz [14℄.In this paper we extend the defet analysis to gauge theories on T4 with arbitrarygauge groups G of rank r. We also onsider arbitrary twists [1℄, whih allows us to treatmatter transforming aording to any representation of the gauge group. One has r +1 types of basi defets assoiated with the r + 1 faes onstituting the boundary of a`fundamental domain' (these are essentially ompati�ed Weyl hambers) in the root spae.Sine the magneti potential lies in the Cartan subalgebra H we now have a matrix QM 2H of magneti harges. The possible magneti harges are quantized and are in one toone orrespondene with the points of the integral o-root lattie. For a basi defet,QM is an integer multiple of a �xed matrix. Muh as in the SU(2) analysis there is asimple linear relation between the total magneti harge of a given type of defet andthe instanton number q. We have overall harge neutrality on T3 unless there are non-orthogonal magneti and eletri twists.The paper is organized as follows. In the remainder of this setion we reall somebasi fats onerning gauge �elds on T4. Next we present a set of transition funtions(i.e. boundary onditions for the gauge �elds) where the instanton number is equal tothe winding number of the mapping P(�; ~x) : T3 ! G. These transition funtions serveas the starting point for our gauge �xing. In setion three we onstrut `fundamentaldomains' for all gauge groups. Our Lie algebra onventions are stated here. Then weexplain preisely what we mean by `defets'. In the next setion we de�ne the magnetiharge of the defets. Our key result is given in setion six. Here we obtain the relationshipbetween the magneti harges and the instanton number. Next we rewrite P(�; ~x) in termsof `Higgs �elds'. This enables us to tie up a loose end from setion six, and also allows usto interpret the magneti harges as Higgs winding numbers. In setion eight we show howthe ideas apply to SU(3) and give our onlusions in setion nine. Tehnialities regardingour transition funtions (inluding a onstrution of magneti twist eaters for all gaugegroups) an be found in Appendix A. Finally, an identity quoted in setion six is derivedin Appendix B.We view the four torus as R 4 modulo the lattie generated by four orthogonal vetorsb�; � = 0; 1; 2; 3, for a reent review see [15℄. The Eulidean lengths of the b� are denotedby L� (we may identify L0 with the inverse temperature �). Loal gauge invariants suhas TrF��F�� are periodi with respet to a shift by an arbitrary lattie vetor. However,the gauge �elds have to be periodi only up to gauge transformations. In order to speifyboundary onditions for gauge potentials A� on the torus one requires a set of groupvalued transition funtions U�(x), whih are de�ned on the whole of R 4. The periodiityproperties of A� are as followsA�(x + b�) = U�1� (x)A�(x)U�(x) + iU�1� (x)��U�(x); �; � = 0; 1; 2; 3;where the summation onvention is not applied. It follows at one, that the path orderedexponential P(x0; ~x) in (1.1) has the following periodiity properties3



P(x0+L0; ~x) = P(x0; ~x)P(L0; ~x); P(x0; ~x+ bi) = U�1i (x0; ~x)P(x0; ~x)Ui(0; ~x): (1.2)The transition funtions U�(x) satisfy the oyle onditions [1℄U�(x)U�(x+ b�) = z��U�(x)U�(x + b�); z�� = z�1�� ; (1.3)where the twists z�� lie in the enter Z of the group. From now on we assume thatthe transition funtions belong to the universal overing group. In general, our matter�elds will not transform aording to the overing group. However, a matter �eld insome representation is equivalent to matter transforming aording to the overing groupprovided we plae suitable restritions on the twists. More preisely, onsider a matter �eldwhih transforms under some representation R(G) of the gauge group. A enter elementz 2 Z is an allowed twist if R(z) = 1l. For example if we have matter �elds in the de�ningrepresentation of SU(3) all the twists must be the identity, sine the other two enterelements are faithfully represented. By ontrast, if the matter �elds are in the adjointrepresentation of any group then there is no restrition on the twists.Under a gauge transformation, V (x), the pair (A;U) is mapped toAV� (x) = V �1(x)A�(x)V (x) + iV �1(x)��V (x); UV� (x) = V �1(x)U�(x)V (x+ b�): (1.4)The twists, z�� , are gauge invariant. We de�ne the topologial harge or instanton numberas follows q = 132�2 ZT4 ����� TrF��F��; (1.5)where the trae orresponds to the anonially normalized salar produt in the Lie al-gebra3. Note that q is fully determined by the transition funtions [17℄. In partiular, ifwe take all the transition funtions to be the identity (i.e. we assume the gauge �elds areperiodi in all diretions) then the instanton number is zero. Aordingly, if we are todesribe the non-perturbative setors, one must onsider non-trivial transition funtions.For a given q and set of twists, z�� , we only require one set of transition funtions. Ifwe have two sets of transition funtions with the same instanton number and twists thenthey are gauge equivalent [17℄.2 Transition funtions, the Polyakov loop operatorand gauge �xingFirst we onstrut a onvenient set of transition funtion suh that the instanton numberis equal to the winding number of the map P(�; ~x) : T3 ! G. Then we �nd the (in general3It is equal to half the trae in the adjoint representation divided by the dual Coxeter number.4



singular) gauge transformation whih transforms A0 into a time-independent �eld in theCartan subalgebra.In the untwisted ase, z�� = 1l, we may assume that the transition funtions have thefollowing propertiesU0 = 1l; Ui(x0=0; ~x) = 1l; i = 1; 2; 3; so that Ui(x + b0) = Ui(x): (2.1)In [7℄ it was shown by expliit onstrution that there exist untwisted (i.e. z�� = 1l)transition funtions satisfying (2.1) in all instanton setors. The ondition that U0 = 1lis simply the statement that our gauge �elds are periodi in time. Sine the transitionfuntions are trivial on the time slie x0 = 0, and hene with (2.1) also on the time sliex0 = �, the path ordered exponential P(�; ~x) is periodi in the three spatial diretions (see(1.2)).In the presene of magneti twists (i.e. at least one of the zij 6= 1l) it is no longerpossible to attain (2.1). However, one an still arrange for the transition funtions tobe independent of ~x on the time slie x0 = 0. In appendix A we prove that there existtransition funtions with the following propertiesU0 = 1l; Ui(x0 = 0; ~x) = !i; so that Ui(x0 = �; ~x) = !iz0i; (2.2)where the !i are independent of ~x and satisfy the `twist eating' onditions!i!j = zij!j!i; i; j = 1; 2; 3; (2.3)whih follow from the oyle onditions for the Ui at time x0 = 0. For example, onsiderSU(2) gauge theory with the following magneti twists z12 = �1l; z23 = z31 = 1l. Then apossible hoie of !i's is !1 = i�1, !2 = i�2; !3 = 1l, where the �i are the Pauli matries.Twist eaters satisfying (2.3) are known to exist for arbitrary twists in SU(N) gauge theories[16℄. Twist eaters for the other simple Lie groups are onstruted in appendix A.Now we use the properties of the transition funtions to obtain a relation for the instan-ton number in terms of the Polyakov loop. Consider the following gauge transformationV (x0; ~x) = P(x0; ~x);where P(x0; ~x) is the path ordered exponential in (1.1) whih in general is non-periodi intime. For brevity we use the notationP(~x) := P(�; ~x): (2.4)Using (1.2,1.4,2.1), the gauge transformed transition funtions areUV0 = P(~x); UVi = !i:The new U0 is simply the path ordered exponential P(~x), while the transformed spatialtransition funtions are onstant matries. Applying the well know formula for the instan-ton number in terms of the transition funtions [17℄ yields5



q = 124�2 ZT3 �0ijkTr h(P�1�iP)(P�1�jP)(P�1�kP)i ; (2.5)where P = P(~x), and T3 = fx 2 T4jx0 = 0g. We emphasize that (2.5) is only valid whenthe (original) transition funtion satisfy (2.2). Another useful onsequene of (2.2) is thatP(~x) has very simple periodiity propertiesP(~x + bi) = z0i !�1i P(~x)!i; i = 1; 2; 3: (2.6)In partiular, P(~x) is ompletely periodi in the absene of twists.Now we follow [18, 19, 20, 7, 8℄ and seek a (time-periodi) gauge transformation, V (x),for whih the gauge transformed A0 is independent of time and in the Cartan subalgebra.Consider the time-periodi gauge transformationV (x0; ~x) = P(x0; ~x)P�x0=�(~x)W (~x); (2.7)where P(x0; ~x) is the path ordered exponential (1.1), and W (~x) diagonalizes P(~x), i.e.P(~x) =W (~x)D(~x)W�1(~x); D(~x) = exp[2�i h(~x)℄; (2.8)with h(~x) in the Cartan subalgebra H. The frational power of P is de�ned via thediagonalization of P. It follows at one that the gauge transformed A0 readsAV0 = 2�� h(~x); (2.9)whih is indeed independent of time and in the Cartan subalgebra. Whereas P(~x) is smooththe fatorsW (~x) and D(~x) in the deomposition (2.8) are in general not. The lassi�ationand impliations of these singularities are investigated in setions 4-7.3 Fundamental domainsThe mapping h(~x) ! D(~x) in (2.8) from the Cartan subalgebra to the toroidal (Cartan)subgroup is not one to one. In this setion we shall �nd domains M in the Cartansubalgebra suh that this mapping beomes bijetive. We shall hoose domains whihare left invariant under the ation of the Weyl group W. If w is a Weyl reetion, thenWw diagonalizes P in (2.8) if W does. We shall �x this residual gauge freedom, underwhih D ! wDw�1, by restriting h to one Weyl hamber. The intersetion of a Weylhamber with the `Weyl invariant' domain M de�nes our fundamental domain F . F isin one to one orrespondene with the toroidal subgroup modulo Weyl transformations orequivalently with the onjugay lasses of G. The main result of this setion is that F isthe simpliial box with the extremal points (3.7).6



Our Lie algebra onventions are as follows: Let Hk; k = 1; : : : ; r be an orthogonal basisof the Cartan subalgebra H, TrHkHl = j�Lj22 Ækl;whih are diagonal in a given representation4,Hkj�i = �kj�i and [Hk; E�℄ = �kE�:We normalize the roots suh that the long roots have length p2, i.e. (�L; �L) = 2, andthe Hk beome orthonormal. Throughout this paper we identify P �kHk = � �H 2 H with� 2 R r. Let�(i) ; �(i) ; �_(i) = 2�(i)(�(i); �(i)) and �_(i) = 2�(i)(�(i); �(i)) ; i = 1; : : : ; r (3.1)be the simple roots, fundamental weights, o-roots and o-weights, respetively:(�(i); �_(j)) = Kij; (�_(i); �(j)) = (�(i); �_(j)) = Æij; (�(i); �_(j)) = (K�1)ij: (3.2)We used that the simple roots and fundamental weights are related by the Cartan matrix,�(i) = rXj=1Kij �(j):The fundamental weight-states (whih are the highest weight states of the r fundamentalrepresentations) and states in the adjoint representation obey�_(i) �H j�(j)i = Æijj�(j)i and �_(i) �H j�(j)i = Æijj�(j)i: (3.3)The most negative root �(0) and its o-root �_(0) de�ne the integral Coxeter numbers niand dual Coxeter numbers n_i :0 = �(0) + rX1 ni�(i) � rX�=0n��(�) and 0 = �_(0) + rX1 n_i �_(i) � rX�=0n_��_(�);where we have de�ned n0 = n_0 = 1. The (dual) Coxeter numbers are listed in appendixA. For later onveniene we assign to �(0) the o-weight �_(0) = 0.The fundamental domains we seek are intimately related to the enter elements of thegroup. Thus it is useful to �nd onditions on � �H 2 H suh that exp(2�i� �H) is in theenter Z. Center elements are the identity in the adjoint representation. Beause of theseond set of equations in (3.3) they must be powers ofzi = exp �2�i�_(i) �H�:4We use the same symbol Hk for Hk in any representation.7



In an irreduible representation a enter element ats the same way on all states. Hene,a neessary and suÆient ondition for zi 6= 1l is thatzi j�(j)i = exp �2�iK�1ji �j�(j)i 6= j�(j)i; or that K�1ji =2 Zfor at least one fundamental weight �(j). Here we have used that the inner produts of theweights with the o-weights yield the inverse Cartan matrix, see (3.2). The order of theenter group is just det(K). The enters and their generators are listed in appendix A.Let us now �nd a suitable domain in the Cartan subalgebra whih is mapped bijetivelyinto the toroidal subgroup. The elementsexp �2�i� �H�in the toroidal subgroup are the identity if � is in the integral o-root lattie, i.e. thelattie spanned by the simple o-roots �_(i) (see (3.2)). Thus, the onvex regionM de�nedby the interseting half-spaes (�; �) � 1, where � is an arbitrary root, is in one to one5orrespondene with the toroidal subgroup of the gauge group6. This set is invariant underthe ation of the Weyl group W and is given byM = f�j (�; �) � 1 for all roots �g: (3.4)Now we may �x the residual Weyl reetions by further assuming that � � � �H is in theWeyl hamber de�ned byf�j (�; �(i)) � 0 for all simple roots �(i)g: (3.5)The inner produt of a vetor � in this Weyl hamber with the highest root ��(0) is alwaysgreater or equal to the inner produt with any other root. It follows that the onditions(3.4,3.5), whih de�ne the fundamental domain F , simplify toF = n�j (�; �(i)) � 0; �(�; �(0)) � 1o: (3.6)F is a simplex bounded by r+1 hyperplanes orthogonal to the roots f�(�)g = f�(0); �(i)g.In what follows we all the plane orthogonal to �(�) the �-plane, � 2 f0; ig. The i-planesall meet at the origin. Sine �(0) is a long root the last ondition in (3.6) means that the0-plane orthogonal to �(0) goes through ��_(0)=2. The roots �(�) point inside the box.An equivalent de�nition of F is that F is the onvex set with extremal pointsf0; 1n1�_(1); 1n2�_(2); : : : ; 1nr�_(r)g: (3.7)This an be seen by expanding � in terms of the o-weights5On the boundary of the so de�ned set we have to identify points di�ering by a vetor �_, i.e. we haveto remove half of the boundary to get a one to one orrespondene.6The hyperplane (�; �) = 1 is orthogonal to �_ and goes through �_=2.8



F = n� =Xi �i �_(i)j �i � 0; (n; �) � 1o; (3.8)where n = (n1; : : : ; nr) being the r-vetor formed from the Coxeter labels. For example, thefundamental domains F for the Ar and Cr groups are the simpliial boxes with extremalpoints f0; �(i); i = 1; : : : ; rg (reall, that we have hosen j�Lj2 = 2). Also, if �1 and �rare the long and short roots at the endpoints of the Br-Dynkin-diagram, the fundamentaldomain for Br is the onvex set with extremal pointsf0; �(1); 12�(2); 12�(3); : : : 12�(r�1); �(r)g:The fundamental domains F and the enter elements for the gauge groups of rank 2 aredepited in �g.1. The fundamental domain of A2 is an equilateral triangle, that of B2 halfa square, that of G2 half of an equilateral triangle and that of A1 � A1 is a square. Thereetions on the r walls of F through 0 generate the Weyl group W of G and give rise toM.Sine (�(0); �(i)) � 0, the highest root ��(0) is always inside the Weyl hamber (3.6)or on its boundary. Indeed, for all groups with the exeption of A2 ��(0) lies on theboundary of F . From the extended Dynkin diagram7(see �g.2) one reads o� that for allbut the Ar algebras the highest root is orthogonal to r� 1 simple roots. Hene it must beproportional to the weight �(i) orresponding to the simple root �(i) with (�(i); �(0)) 6= 0.Although our strategy is to work in the overing group with suitably restrited twistsrather than diretly dealing with arbitrary representations, we ould in priniple do withouttwists if we used transition funtions and fundamental domains FR appropriate to therepresentation R. Atually it is quite straightforward to onstrut domains FR for anyrepresentation. The volume of suh domains is always less than or equal to that of F ;more preisely Vol(FR) = Vol(F)jCRj ;where CR is the subgroup of the enter C whih is mapped to the identity by going fromthe overing group to the representation R and jCRj is its order. For a given group, thedomain with the smallest volume is that for the adjoint representation sine the enter istrivial in this ase. The fundamental domains for the adjoint representation for the ranktwo groups are shown in �gure 1.4 DefetsAlthough the Polyakov loop operator itself is smooth for smooth gauge potentials thefators W (~x) and D(~x) in the deomposition (2.8) are in general not. In this setion we7One adds the most negative root �(0) to the system of simple roots �(i) and uses the well-known rulesto draw the Dynkin diagram of this extended system of roots.9
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is then just the Dynkin diagram belonging to the semisimple fator of the entralizer. Toobtain the omplete entralizer group we must multiply with as many U(1)-fators as areneeded to get a group of rank r.Let us illustrate how this works for the simply laed groups G = Ar for whih the funda-mental domains F an be parametrized as� = rX1 �i �_(i); �i � 0; �0 � 1� rX1 �i � 0:The extremal points of the fundamental domain are f�_(�)g and they orrespond to the r+1enter elements of Ar. If just one �� vanishes then � lies inside the (r � 1)-dimensional�-plane. and we must keep the vertex � in the extended Dynkin of Ar, i.e. the leftmostdiagram in �g.2. The orresponding entralizer is A1 � U r�1(1). We all suh defetswith minimal non-Abelian entralizers basi defets. If �� and ��0 vanish in whih ase thedefet lies both on the �- and �0-plane, then we must keep the two verties � and �0 inthe extended Dynkin diagram. If they are neighbors in �gure 2, then the entralizer isA2�U r�2(1), otherwise it is A1�A1�U r�2(1). In the extreme ase where just one �� doesnot vanish (then � is one of the extremal points of F) we must retain all verties with theexeption of the vertex �. We get the Dynkin diagram of Ar and the entralizer is the wholegauge group. By sanning the whole boundary of F omprising of r�1-dimensional, r�2-dimensional,. . . ,1-dimensional simplies and the extremal points we obtain all stabilizersubgroups of G.5 Quantization of the magneti hargesIn this setion we de�ne the Abelian magneti potential Amag(~x) assoiated with the partialgauge �xing and show that the magneti harge of any defet is quantized. Away fromthe defets the entralizer of D(~x) is U r(1) and W (~x) in (2.8) is unique up to a residualAbelian gauge transformation (4.1):W (~x) �! W (~x)V (~x) with V (~x) = e�i�(~x) 2 U r(1) on D: (5.1)If we append to eah point in D the set of all diagonalizing matries W (~x) we obtain aU r(1) prinipal bundle over D. If we an �nd a smooth global setion in this bundle thenthe diagonalization is smoothly possible outside of the defets, see also [23℄. To investigatethe struture of the bundle we employ the Abelian U r(1) gauge potential, Amag(~x), obtainedby projeting the pure gauge A(~x) = iW�1(~x)dW (~x) onto the Cartan subalgebra, i.e.Amag(~x) := A(~x);where the subsript  denotes projetion onto the Cartan subalgebra of G. This potentialis singular at the defets and on Dira strings joining the defets. Under a residual gaugetransformation (5.1) the gauge potentials transform asAmag �! Amag + i(V �1dV ) = Amag + d� on D:12



Sine A is pure gauge the orresponding �eld strength is given byFmag = dAmag = i(A ^ A); (5.2)and it is invariant under residual U r(1)-gauge transformations.Next we will show that a defet may arry r quantized magneti harges [24℄. For eahdefet these harges form a matrix QM in the Cartan subalgebra H,QM = 12� ZS Fmag: (5.3)Here S is a surfae surrounding the defet Di. Exluding walls extending over the whole
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Figure 3: Two typial defets: a monopole and a magneti loop with surrounding surfaesand overlap regions.3-torus this surfae is either a 2-sphere or a 2-torus (see �g.3). For eah U(1) the magnetiharge is just the instanton number of an Abelian gauge model on S2 or T2 [25, 26℄ andhene is quantized. More expliitly, the magneti harges are the winding numbers of themap exp(i�) : S1 �! U r(1), QM = 12� IS1 d�;where S1 is in the overlap of the two pathes Ui one needs to over S2 or T2. Sine thegauge transformation exp(�i�) is single valued on the overlap, QM 2 H must satisfye2�iQM = 1l for eah defet. (5.4)For simply onneted G this equality must hold on all states j�i and we �ndQM = �_ �H; where �_ 2 o-root lattie. (5.5)Thus we obtain the same magneti harge quantization as unovered by Goddard, Nuytsand Olive [27℄ in their pioneering work on eletri-magneti duality in Yang-Mills-Higgstheories. 13



6 Instantons and magneti monopolesIn this setion we work with the simply onneted overing group and exlude twists8.Depending on the residual gauge symmetry in the defets we get di�erent types of magnetimonopoles. There are r+1 kinds of basi monopoles with minimal non-Abelian entralizerSU(2) � U r(1), orresponding to the r + 1 hyperplanes whih make up the boundary ofthe fundamental domain. We will show that a basi defet on the �-plane has magnetiharge QM = n�_(�) �H; � 2 f0; 1; : : : ; rg (6.1)with integer n. If we have a defet whih is on two or more of the hyperplanes (whih meansthat the Polyakov loop has more than two degenerate eigenvalues) then the magneti hargeof this defet is an integer ombination of the o-roots perpendiular to these hyperplanes.Below we argue that in general the total magneti harge of the defets on a given faegives the instanton number. For example, the magneti harge of a defet on the 0-planeis QM = (n�_(0) + �_) �H; n 2 Z, where �_ is in the o-root lattie. This deomposition ofthe magneti harge is unique, see below. Now the instanton number is simplyq = � Xdefets on 0-planen (6.2)This is our main result. Some illustrative examples of the use of this formula are given insetion 8.To derive the results (6.1,6.2) we assume that:� There are no wall defets9� Inside a defet the entralizer CD(~x) is uniform.The �rst assumption is a reetion of the fat that one annot surround a wall defet witha losed surfae and so it is not obvious how to de�ne the magneti harge of suh a defet.The seond assumption is made to avoid the ompliation of `defets within defets'. Itmay be possible to drop this requirement.Our arguments are based on the observation thatl ZT3 Tr(P�1dP)3 = ZT3 Tr(P�ldP l)3 (6.3)and furthermore8See setion 8 where we inluded twists for the relevant example G = SU(3).9We an formally de�ne the absene of walls as follows. Consider the extension of the defet manifoldto R 3, i.e. ~D = fx 2 R 3jCD(~x) 6= Ur(1)g There are no walls if ~D = R 3 n ~D is onneted.14



Tr(P�ldP l)3 = dA(�); � 2 f0; ig (6.4)where the 2-forms areA(�) = �12l �iTr �A ^ A�h� 1n��_(�) �H��+ 3Tr hAD�l ^ ADli : (6.5)Here l is the least ommon multiple of the Coxeter labels ni and as before �_(0) � 0 andn0 � 1. We prove this ruial identity in appendix B. These 2-forms are well de�ned outsidethe defets, beause they are invariant under the residual Abelian gauge transformations(5.1). Both terms in (6.5) may be singular at defets. However, in the following setionwe will show that A(�) an be singular only at defets on the �-plane or equivalently atdefets whose entralizers have �(�) as root,A(�) singular () defet is on � plane() �(�) is a root of defet entralizer. (6.6)Atually, in (6.5) we ould have subtrated an arbitrary onstant Lie algebra elementfrom h(~x) and (6.3) would still hold true. But the smoothness onditions (6.6) only holdif this onstant element is an extremal point of the fundamental domain and ifexp �2�i ln��_(�) �H�is a enter element. Thus we take for l in (6.3) the least ommon multiple of the Coxeterlabels ni. For example l = 1 for the Ar series and l = 2 for the other lassial groups.Now we make use of (6.3) to relate the magneti harges of the defets on the 0-plane tothe instanton number. Away from defets on the 0-plane A(0) is regular. Now we surroundeah defet D on the 0-plane with a losed surfae S and pik a two form A(i) whih issmooth inside S, see �g.4. Sine a defet an lie on at most r of the r+1 faes onstitutingthe boundary of F there is always at least one suh regular two form. With (1.5,6.3) the
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instanton number readsq = 124�2l Zoutside dA(0) + 124�2lXp ZBp dA(ip) = 124�2lXp ZSp (A(ip) �A(0)); (6.7)where, sine A(0) is periodi on T3, we get no ontributions from the `boundary of thetorus'10. Using (6.5) we obtainA(i) �A(0) = 12�i lni Tr �A ^ A�_(i) �H� :Sine the magneti �eld Fmag is the projetion to the Cartan of iA ^ A we �ndA(i) �A(0) = 12� lni Tr(Fmag �_(i) �H) (6.8)and end up with q =XDp 1nipTr �QM �_ip �H� ; (6.9)where we used (5.3). The sum extends over defets on the inhomogeneous 0-plane. Let ushave a loser look at the ontribution1niTr �QM �_(i) �H� (6.10)of a given defet on the 0-plane. Consider �rst a basi defet with minimal non-Abelianentralizer. Then all two forms A(i); i 2 f1; : : : ; rg are regular and must lead to the sameontribution (6.10). We see at one that the magneti harge must be proportional to �_(0),QM = n�_(0) �H; n 2 Zand it ontributes n to the instanton number.A non-basi defet on the inhomogeneous fae must also lie on at least one of thehomogeneous faes, say the i-plane. For suh a defet we must not take the orrespondingsingularA(i) in (6.7) or �_(i) in (6.10). We see that QM may be an integer linear ombinationof �_(0) and �_(i). More generally, if the defet lies on the 0-plane and several homogeneousplanes, thenQM = �n�_(0) +Xmi�_(i)� �H; mi 6= 0 if defet is not on plane i: (6.11)Sine a defet on the 0-plane an at most sit on r � 1 of the r homogeneous planes, therepresentation (6.11) for the magneti harge is unique.10For twisted gauge �elds there are surfae ontributions, see setion 8.16



Outside of the defets we ould have taken any A(�) instead of A(0). Then only defetson the �-plane would ontribute to the instanton number and we would �ndq = Xdefets on �-planeTr �QM(�_(�) � �_(�)) �H� :Again the ontribution of a given defet must not depend on � if the orresponding twoform A(�) is regular on the defet. As above we onlude that the magneti harge of adefet is in the o-root lattie of the defet entralizer,QM = �n�_(�) +Xm��_(�)� �H; m� 6= 0 if defet is not on plane �; (6.12)and that the instanton number isq = � Xdefets on �-planen:7 Higgs �eldsIn this setion we onsider a parametrization of P(~x) in terms of stati `Higgs' �elds. Thismay seem to be a bakward step sine we are enoding a smooth group-valued objet,P(~x), in terms of r + 1, in general singular, Lie algebra-valued �elds. However the Higgs�elds failitate a very diret proof that the A(�) 2-forms introdued in the previous setionhave the stated smoothness properties. Moreover, we shall see that the magneti hargesof the defets an be related to Higgs winding numbers around the defets.One an de�ne a `basi' Higgs �eld, �(0), as followsP(~x) = exp h2�i�(0)(~x)i with �(0)(~x) =W (~x)h(~x)W�1(~x): (7.1)Now, �(0)(~x), is smooth everywhere exept for the inhomogeneous 0-plane. This followsbeause the entralizer of D(~x) ommutes with h(~x) unless (�; �(0)) = �1. It is possibleto de�ne `alternative' Higgs �elds whih are smooth on the 0-plane, but singular on one ofthe homogeneous i-planes, i.e. onsider�(i) = W (~x)�h(~x)� 1ni�_(i) �H�W�1(~x); i = 1; 2; :::; r: (7.2)ni being the i'th Coxeter label. The �eld �(i) is smooth everywhere exept points on thei-plane. The relation between the Polyakov loop and the alternative Higgs �elds is asfollows [P(~x)℄nizi = exp h2�ini�(i)(~x)i ;where zi is the enter element exp[2�i�_(i) �H℄. The r+1 Higgs �elds �(�); � 2 f0; ig `over'the group in the sense that it is possible to partition T3 into pathes, so that in eah pathat least one of the Higgs �elds is smooth. 17



In the previous setion we wrote Tr(P�ldP l)3 as the derivative of two forms A(�). Welaimed that A(�) is only singular on the �-plane. In other words, wherever �(�) is smoothA(�) is smooth. This is obvious in the light of the following identityA(�) = 12�2l2 Z 10 ds(s� 1)Tr hexp(2�isl�(�))d�(�) ^ exp(�2�isl�(�))d�(�)i ; (7.3)where as before l is the least ommon multiple of the Coxeter labels11.We now show that the magneti �eld, Fmag an be written in terms of the Higgs �elds.Using the �elds �(i) one an onstrut normalized Higgs �elds '̂(i) as follows'̂(i)(~x) = �(0)(~x)� �(i)(~x) =W (~x) �_(i)ni �HW (~x)�1:In terms of the normalized Higgs �elds, the magneti �elds are� lniTr(Fmag�_(i) �H) = �l2 Z 10 ds(s�1)Tr h exp �2�isl'̂(i)� d'̂(i) ^ exp ��2�isl'̂(i)� d'̂(i)iIf the Coxeter label ni is unity, the integral redues toTr(Fmag �_(i) �H) = iTr �'̂(i)d'̂(i) ^ d'̂(i)� : (7.4)Let S be a losed surfae surrounding a defet. Sine the entralizer of �_(i) �H in G isK�U(1), where K is semi-simple, the normalized Higgs �eld '̂(i) indues a map from S intoa oset spae Ci = G=(K�U(1)) with �2(Ci) = Z. That is to eah normalized Higgs �eld '̂(i)there is one assoiated winding number whih an be identi�ed with Tr �QM(S)�_(i) �H�.For SU(N) all the Coxeter labels are unity, and soFmag = i N�1Xi=1 �(i) �H Tr �'̂(i)d'̂(i) ^ d'̂(i)� :For the groups Br, Cr, Dr, E6 and E7 it seems that the magneti �eld annot be writtentrilinearly in normalised �elds sine (7.4) only applies if the relevant Coxeter label is one.For example the gauge group E7 has only one unit Coxeter label, n7. However, the Weylorbit of �_(7) ontains a linearly independent basis of the root spae. To make this moreonrete, onsider the �eld '̂X = W (~x)X �HW�1(~x):A simple alulation shows thatTr(FmagX �H) = iTr ('̂X d'̂X ^ d'̂X) ;11One an prove this identity by inserting � = WDW�1 into the integral and ompar-ing with equation (6.5). Alternatively, one an get it from the identity Tr(e� de )3 =3d hR 10 ds (s� 1)Tr �e�s d ^ es d �i. 18



if and only if (X;�)3 = (X;�) for all roots �. (7.5)Clearly, X = �_(i) is a solution of (7.5) if and only if ni = 1. But there are other solutions of(7.5) apart from the o-weights with unit Coxeter; these orrespond to Weyl reetions ofthe o-weights. In fat for Br, Cr, Dr, E6 and E7 one an always �nd r linearly independentsolutions of (7.5) whih we denote by Xi; i = 1; 2; :::; r. Thus we haveFmag = i rXi=1 Y i �H Tr �'̂(i) d'̂(i) ^ d'̂(i)� ;where now '̂(i) = 'Xi , and the Y i are dual to the Xi in the sense that (Y i; Xj) = Æij (theY i are roots or Weyl reetions thereof). To eah normalized Higgs �eld '̂(i) there is oneassoiated winding number whih an be identi�ed with Tr (QM Xi �H).For the groups E8, F4 and G2 no solutions of (7.5) exist.8 SU(3)In this setion we illustrate the ideas of the previous setions by onsidering the relevantgauge group SU(3). In the instanton number alulation of hapter 6 we assumed that ourmatter transformed aording to the overing group. Here we will also onsider the aseof matter in the adjoint representation by allowing for twists.First we onsider SU(3) with untwisted gauge �elds, i.e. the Polyakov loop operator inthe de�ning representation. The fundamental domain F has been depited in �gs.(1a,5).The magneti harges of the three types of defets orresponding to the three edges of Fare integer multiples of�_(1) �H = 0B� 1 0 00 �1 00 0 01CA ; �_(2) �H = 0B� 0 0 00 1 00 0 �11CA ; �_(0) �H = 0B��1 0 00 0 00 0 11CABeause of overall harge neutrality the magneti harges of all defets must add up tozero, Xall defets QM = 0:Any luster of magneti monopoles onneted by a Dira string has vanishing magnetiharge. For example, if a monopole pair is unharged no Dira string, besides the oneonneting the two monopoles, is needed. Sine defets on the 0-plane for whih QM =n�_(0) �H (ignoring `higher defets') ontribute to the instanton number asq = Xdefets on 0-planeTr�QM �_(1) �H�19
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z01 we shift h(~x) by the vetor ��_(2) �H. Then we have to Weyl reet this shifted vetorbak into the fundamental domain F with w. In F itself this orresponds to a rotation withangle 2�=3 around the enter of the equilateral triangle F . It follows that we get hargeneutrality in the `tripled' torus obtained by taking three adjoining tori in the x1-diretion.If we have in the �rst torus a defet of one type then in the adjoining torus in the x1diretion we have a defet with the next type of harge and so on, see �g.6. In the x2-
Ηα α (2) α (0)(1)Η Η

Figure 6: In the twisted setor with q = 1=3 there maybe just one basi monopole in thetorus. In the tripled torus we have harge neutrality.and x3-diretions h(~x) is periodi (z02 = z03 = 1l). The periodiity properties of W (~x) aregiven byW (~x+ b1) =W (~x)w�1R1(~x) and W (~x+ bi) = !iW (~x)Ri(~x); i = 2; 3;where !1 and !2 are twist eaters suh that !2!3 = !3!2z23 and Ri are funtions with valuesin the Cartan subgroup12. From these onditions we obtain periodiity of the magneti�eld strength Fmag = iA^A in the x2- and x3-diretions and Fmag(~x+ b1) = wFmag(~x)w�1.To alulate the topologial index q we may use the 2-forms A(�), but now we will getontributions from the `boundary' of the torus. This is in ontrast to the non twisted asewhere we have had no ontributions from the boundary beause of the periodiity of P(~x).We assume that there are no defets on the boundary. Then we an integrate A(0) over theboundary. One easily heks that A(0) is periodi in the x2- and x3-diretions. Thereforewe end up withqb = 124�2 Z�T3 A(0) = 124�2 Zx1=0A(0)(~x + b1)�A(0)(~x) = 12� Zx1=0Tr(Fmag�_(2) �H):This shows the relation between the noninteger boundary ontribution13 to the instantonnumber and the total magneti ux through the torus whih results from the loss of hargeneutrality on T3. In our example the element w of the Weyl group is a rotation of 2�=3in the Cartan subalgebra. Therefore r3 = 1l whih shows together with the periodiityproperties of Fmag that in the tripled torus we have no boundary ontributions to thetopologial index.12In general the funtions Ri an not be hosen smooth on the whole torus.13By writing Fmag = dA and using the oyle ondition for R2 and R3 one easily sees that qb is indeednoninteger. 21



9 ConlusionsIn this paper we have onsidered gauge-�xing of Yang-Mills theory on the four torus forarbitrary gauge groups, instanton setors and twists. We have generalized our earlier results[7, 8℄ on the extended Abelian projetion with respet to the Polyakov loop operator onthe four torus. We have onstruted a omplete set of non-Abelian transition funtions,whih enode the `boundary onditions' for the gauge potentials, for all instanton setorsand arbitrary twists. With these transition funtions the path ordered exponential, P(~x),whih is entral to the gauge �xing, is periodi up to multipliation by onstant matries,even though of ourse the gauge �eld itself is non-periodi. Then we found an expliit gaugetransformation whih transforms A0 into the Cartan subalgebra and hene the Polyakovloop operator into the toroidal subgroup of G. The resulting gauge �xed A0 is timeindependent. We have �xed the freedom in hoosing the gauge transformation by restritingA0 to a fundamental domain in the Cartan subalgebra.In the setors with non-vanishing instanton number the �nal gauge �xed potential musthave singularities [9℄. These singularities are due to ambiguities in the diagonalization ofP(~x) at points where the entralizer of P(~x) is non-Abelian. There is a lose analogybetween these defets and magneti harges in Yang-Mills-Higgs theories. The defets arelassi�ed aording to the non-Abelian entralizer subgroups of P(~x). A point ~x belongs toa defet if the gauge �xed A0(~x) lies on the boundary of the fundamental domain. Here theresults for SU(2) may be misleading; at the defets the Polyakov loop operator need not bein the enter of the gauge group as it must for SU(2). For example, forG 2 fE8; F4; G2g theenter is trivial but there are many di�erent types of defets orresponding to the di�erentfaes of the fundamental domain. The magneti harges of the defets are quantized andlinearly related to the points of the integral o-root lattie. For all groups with nontrivialenters we have onstruted r normalized Higgs �elds whih wind around the magnetizeddefets. Finally we generalized earlier results in [12, 2, 13, 7℄ and related the magnetiharges of a given type of defet to the instanton number q. In partiular, if q 6= 0 then allpossible magneti defets must appear.One may view our gauge �xing as the `nearest' �xing to the Weyl gauge ompatiblewith time periodiity. Yet unlike the Weyl gauge we �nd monopole like singularities. Thisis gratifying, sine in those theories where we analytially understand on�nement, thelatter is due to the ondensation of monopoles; these examples are ompat QED [29℄ andsupersymmetri Yang-Mills theories [30℄. Of ourse, there is a long way from the pitureof ondensed magneti monopoles to real QCD.The treatment given here has been purely lassial. The next step would be to studythe path integral within this gauge �xing. At this point one would need a sensible approxi-mation [31℄. The balaning of the energy and the entropy of monopoles (and/or loops) mayexplain the ourrene of the deon�nement transition in QCD. It would be interestingto larify the role of the enter of the gauge groups. There are gauge groups with trivialenters but many di�erent types of monopoles and other magneti defets.
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AknowledgementsWe are grateful to Falk Brukmann, Jan Pawlowski and Hugo Reinhardt for helpful dis-ussions. We thank R. Jakiw for bringing [12℄, in whih the relation between magnetiharges and the instanton number has been disovered, to our attention.A Transition funtions and twistWe prove that for arbitrary twists and instanton number there exist transition funtionswith the following property U0 = 1l; Ui(x0 = 0) = !i; (A.1)where the !i are twist eaters satisfying!i!j = zij!j!i; zij 2 Z: (A.2)We now start o� with Abelian transition funtionsU� = exp "2�i 3X�=0 n��x�L� # ; (A.3)where n�� is a Cartan sub-algebra valued lower triangular matrixn�� = 0BBB� 0 0 0 0n1 0 0 0n2 m3 0 0n3 �m2 m1 0 1CCCA : (A.4)With this hoie of n�� we have U0 = 1l. The oyle ondition ensures that the ni and misatisfy the onstraintse2�ini = z0i; e2�im1 = z23 and yli permutations: (A.5)The instanton number is simplyq = Tr (n1m1 + n2m2 + n3m3):Now we laim that there exists a time-independent gauge transformation V (~x) with thefollowing properties V �1(~x)Ui(x0 = 0; ~x)V (~x + bi) = !i: (A.6)To prove this onsider the following two sets of transition funtions. Firstly take theAbelian transition funtions (A.3) but with the ni all set to zero. Seondly take the setof transition funtions U0 = 1l; Ui = !i, where the !i are de�ned as in (A.2). Now both23



sets of transition funtions have instanton number zero and an idential set of (magneti)twists. Hene they must be gauge equivalent [17℄. This establishes the existene of asmooth V (~x) satisfying (A.6). Now we perform this gauge transformation on the originalAbelian transition funtions (i.e. with the ni not neessarily zero)UV0 = 1l; UVi = V �1(~x) exp "2�i 3X�=0 ni�x�L� #V (~x + bi): (A.7)These transition funtions have the stated properties.This proof hinges on two assumptions:� The existene of Abelian transition funtions for arbitrary twists and instanton num-ber.� The existene of twist eaters for all possible magneti twists zij.It is well known that the �rst assumption breaks down in the odd instanton setors ofuntwisted SU(2) gauge theory. This speial ase has been addressed in ref. [7℄. In [16℄it was shown that the seond assumption is valid for SU(N). We will show the existeneof magneti twist eaters also for the other simple Lie groups. For every group (withthe exeption of the D2r-series, whih will be onsidered separately) the yli enter isgenerated by z = exp �2�i�_(z) �H�:In the table below we list the o-weights �_(z) generating the enters. We now argue thatmagneti twist eaters an be onstruted from an Abelian element A and an element w inthe Weyl group. The Abelian element A is given byA = exp "2�ig Æw �H# ; (A.8)where g = 1+Pni is the Coxeter number (see the table below) and Æw is the Weyl vetorÆw =Xi �(i) = 12 X�>0� ; jÆwj2 = dimG24 g j�Lj2:The element w is �xed by the requirement thatw�1(Æw �H)w = Æw �H � g�(z) �H: (A.9)Suh a Weyl group element w exists for all groups. For example for G = SU(N) and�(z) = �(r) it is w = w1w2 : : :wN�1;24



where wi is the fundamental reetion on the plane orthogonal to the simple root �(i),w�1i (� �H)wi = ��(i)(�) �H:The Weyl word w1w2 �rst reets on the plane orthogonal to �(1) and then on the planeorthogonal to �(2). A and w have the basi propertyw�1Aw = z�1A so that w�pAqwp = z�pqAq:To prove this property we �rst note, that we may replae the weight �(z) in (A.9) by theorresponding o-weight, sine �(z) is always a long root. Now we onlude thatw�1Aw = exp "2�ig w�1Æw �Hw# = exp (� 2�i�_(z) �H)A = z�1A;as required.Now we prove that for given magneti twists zij = z�ijktk ; tk 2 Z we an �nd twisteaters !i satisfying equation (A.2). We make the ansatz!i = wpiAqi suh that !i!j = zpiqj�pjqi!j!i:It follows that equation (2.3) is equivalent to~n � ~p ^ ~q mod(jZj); (A.10)where jZj is the order of the enter group. If all twists are the identity (all ni are zero)the solution is trivial. So let us assume that at least one ni, say n3 is not zero. Then wehoose ~p = 0B� 01p1CA ; ~q = 0B��n30n1 1CA so that ~n = 0B� n1�pn3n3 1CA :It remains to be shown that for a given n2 and n3 6= 0 we an solven2 = �pn3 mod(jZj): (A.11)If the order of the enter is a prime number, as it is for all but the A and D groups, thenwe an always �nd a p solving this equation. For the Dr groups with odd r the order ofthe enter is not prime but 4. If only one ni, say again n3 is odd then we an again solve(A.11). In the other ase all ni must be even and (A.11) an again be solved. This provesthe existene of twist eaters for all but the Dr-groups with even rank.For the Dr-groups with even rank the enter omprises of1l; z1 = e2�i�_(1) �H ; z2 = e2�i�_(r)�H and z3 = e2�i�_(r�1)�H ;where zizj = Æij1l + �ijkzk. As before one an �nd ommuting Weyl words w(i) suh thatfor eah enter element 25



w�1(i)Aw(i) = z�1i A = ziA and w(i)w(j) = w(j)w(i): (A.12)For example, w(1) = w1w2 � � �w2rw2r�2w2r�3 � � �w1:Now we make a ase by ase analysis to show the existene of twist eaters for arbitrarygiven twists. Using (A.12) one �nds the following solution for the possible hoies for zijin (A.2): ase !1 !2 !3 z12 z13 z23one twist A w(i) 1l zi 1l 1ltwo twists A w(i) w(j) zi zj 1l3 di�erent twists w(i)A w(j)A w(k)A �ijkzk �ikjzj �jkizi2 or 3 idential twists w(i) w(j)A A zi zi zjTogether with the result in [16℄ this �nally proves the existene of magneti twist-eatersfor all gauge groups.In the main body of the paper we needed the enters, (dual) Coxeter labels and Coxeternumbers of the various gauge groups. For ompleteness we have listed these in the tablesbelow. group Ar Br Cr Dr; r even Dr; r oddZ Zr+1 Z2 Z2 Z2 � Z2 Z4�_(z) �_(1) �_(1) �_(r) �_(1); �_(r) �_(r)ni 1; : : : ; 1 1; 2; : : : ; 2; 2 2; : : : ; 2; 1 1; 2; : : : ; 2; 1; 1 1; 2; : : : ; 2; 1; 1n_i 1; 2; : : : ; 2; 1 1; : : : ; 1; 1g r + 1 2r 2r 2r � 2 2r � 2Table 1a: Centers Z, generators �_(z) of the enters: z = exp(2�i�_(z)), Coxeter labels ni,dual Coxeter labels n_i and Coxeter number g of the lassial groupsgroup E6 E7 E8 F4 G2Z Z3 Z2 1l 1l 1l�_(z) �_(1) �_(7)ni 1; 2; 2; 3; 2; 1 2; 2; 3; 4; 3; 2; 1 2; 3; 4; 6; 5; 4; 3; 2 2; 3; 4; 2 3; 2n_i 2; 3; 2; 1 1; 2g 12 18 30 12 6Table 1b: Centers Z, generators �_(z) of the enters: z = exp(2�i�_(z)), Coxeter labels ni,dual Coxeter labels n_i and Coxeter number g of the exeptional groups
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B Proof of (6.3)For l = 1 this formula is easily heked if one uses P = WDW�1 and the de�nitionsA = iW�1dW and logD = 2�ih. To prove the formula for l > 1 is less trivial. As a �rststep onsider two group valued �elds P1; P2. ThenTr�(P1P2)�1d(P1P2)�3 =Xi Tr(P�1i dPi)3 � 3 dTr(P�11 dP1 ^ dP2P�12 ):If the Pi are smooth and periodi thenZT3 Tr�(P1P2)�1d(P1P2)�3 =Xi ZT3 Tr(P�1i dPi)3:With our hoie for the transition funtions the Polyakov loop operator is indeed periodiand we onlude that ZT3 Tr�P�ld(P l)�3 = l ZT3 Tr(P�1dP)3: (B.13)Now we an relate the instanton number in (1.5) to the winding of P l as followsq = 124�2l ZT3 Tr�P�l dP l�3Sine P l = WDlW�1 we an now apply formula (6.3) with D replaed by Dl. This thenleads to q =X� 124�2l ZM� dA(�) ; [� M� = T3 ; M� \M�0 = ; ; if� 6= �0;where A(�) is smooth in M� and has been de�ned in (6.5). This proves (6.3) for l > 1 asrequired.Referenes[1℄ G. 't Hooft, Nul. Phys. B153 (1979) 141; Ata Phys. Austria CA Suppl. XXII (1980)1063; Phys. Sr. 24 (1981) 841[2℄ D.J. Gross, R.D. Pisarski and L.G. Ya�e, Rev. Mod. Phys. 53 (1981) 43[3℄ J.I. Kapusta, Finite-temperature �eld theory, Cambridge University Press, 1989[4℄ M. L�usher, Phys. Lett. 118B (1982) 391[5℄ K.G. Wilson, Phys. Rev. D10 (1974) 244527
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