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Hönggerberg, Zürich CH-8093, Switzerland

12 August 1991; Latex-ed: 10 January 2022

Abstract

By exploiting the diffeomorphism invariance we relate the finite size effects of
massless theories to their Weyl anomaly. We show that the universal contribu-
tions to the finite size effects are determined by certain coefficient functions in
the heat kernel expansion of the related wave operators. For massless scalars
confined in a 4-dimensional curved spacetime with boundary the relevant coeffi-
cients are given confirming the results of Moss and Dowker and also of Branson
and Gilkey. We apply the general results to theories on bounded regions in two-
and four-dimensional flat space-times and determine the change of the effective
action under arbitrary conformal deformations of the regions.

Keywords: Schwinger model; finite temperature; Euclidean path integral; fermionic
zero modes; Wilson loop; condensate; effective action; field theory, torus; two-point

function

Published as: Nucl.Phys. B377 (1992) 252-280

email (2022): wipf@tpi.uni-jena.de

1



Contents

1 Introduction 1

2 Finite Size Effects From Weyl Anomaly 2

3 Finite Size Effects in 2 Dimensions 7

4 Heat Kernel Expansion for Manifolds with Smooth Boundaries 9

5 Applications to Simple Geometries 19

6 Appendix A: Conventions 23

7 Appendix B: Seeley-de Witt coefficients 25

1 Introduction

Finite size effects play an important role for critical systems having no intrinsic length
scale except those dictated by the geometry. They are caused by the dependence of
the vacuum or equilibrium state on the underlying space-time. For example, the
energy-momentum of the vacuum depends on the boundary enclosing the systems
and this leads to a measured Casimir force acting on the boundary. The geometry-
dependence appears as anomalous contributions to the effective action which gener-
ates the correlation functions of the energy-momentum tensor. The anomalies are due
to external gravitational fields and/or boundaries of space-time. Their consequences
have been investigated in a wide range of theories like QED [1], QCD [2], Kaluza-Klein
theories [3], 2-dimensional conformal field theories [4] and Stringtheories [5].

Actually the gravitational- and boundary anomalies are related by general co-
variance and this interrelation will be considerably exploited in our investigations of
finite size effects. In what follows general covariance plays an essential role and thus
we choose a manifestly covariant regularization, namely the zeta-function regulariza-
tion which immediately connects to Schwingers proper time (heat kernel) expansion.
This regularization scheme is convenient to extract the geometry dependence of ex-
pectation values and in particular the relation between the bulk- and surface terms.
One only needs to separate the bulk- and surface contributions to the heat kernel
expansion for the wave operators of interest. Recently much efforts have been made
to work out the relevant expansion coefficients for various field theories and different
boundary conditions [7, 8, 9, 10]. Our surface terms agree with the earlier results of
Dowker and Moss [8] and Branson and Gilkey [9].

In this paper we study massless particles which are Weyl-invariantly coupled to
gravity and which are confined in a finite space-time region. Although we are mainly
concerned with finite size effects in flat Euklidean space-time it pays off to couple the
particles to a gravitational field and only assume space-time to be euklidean at the end
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of the computations. This allows us to exploit the consequences of general covariance
which relates the bulk- and surface terms. For example, the identification of the
central charge of two-dimensional models (defined via the short distance behaviour
of the energy-momentum correlators which is determined by the bulk term of the
effective action) as Casimir effect (determined by the surface term of the effective
action) follows immediately when one couples the system to gravity.

Our results apply to arbitrary massless particles interacting with the gravitational
field and the boundary. Since for different particles the finite size effects are related
if certain constants in the heat kernel expansion are adjusted accordingly we give
the explicit results for scalar particles only, since they play a prominent role in the
inflationary cosmological scenarios.

The paper is organized as follows. In section 2 the significance of the Weyl anomaly
for finite size effects and the interplay between bulk and surface terms for conformal
field theories is discussed. In particular we relate certain coefficients in the heat kernel
expansion to the finite size effects. In the following section 3 these general results are
applied to 2-dimensional systems and the response of the quantum system to arbitrary
changes of the boundary is derived. In section 4 we outline the computation of the
relevant heat kernel coefficients for 4-dimensional curved space-times with boundaries.
We used Seeley’s method [6] to determine these Seeley-deWitt coefficients. This
project has been undertaken independently from [7, 8, 9], has not yet been published
and was only privately communicated [10]. But the trilogy of papers [7, 8, 9] makes
clear, that it is worth having several derivations of this important result obtained
by different methods. In the last section 5 the general results are applied to 4-
dimensional systems and the finite size effects for simple geometries are evaluated.
In appendix A the notation and conventions used in the main body of the paper are
explained and in appendix B all relevant Seeley-deWitt coefficients in 4 dimensions
for scalar particles obeying Dirichlet boundary conditions are listed. The reader who
is less interested in technical details may skip part of section 4 and take formula (83)
as main result of this section.

2 Finite Size Effects From Weyl Anomaly

In this paper we shall investigate the change of field theoretical quantities under
conformal transformations. A conformal transformation f : {M, g} → {N , g̃} is a
map that preserves angles but not necessarily distances. The spacetimes M and N
may possess boundaries ∂M and ∂N and for simplicity we shall assume that both are
submanifolds of the same d-dimensional Lorentzian (Riemannian) spacetime X and
their boundaries are hypersurfaces in X. Then g and g̃ are the metric of X restricted
toM and N , respectively, and in the following both are denoted by g. Since f leaves
angles invariant the distance between neighbouring points can only change by a local
scale factor. Choosing local coordinates on X, so that

f : {M, ∂M} −→ {N , ∂N}; xµ −→ yµ = fµ(x) (1)
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this means that
gµν(y) dyµdyν = e2ϕ(x)gµν(x)dxµdxν , (2)

where the local scale factor is determined by the metric and conformal transformation
as

e2ϕ(x) =
1

d
gµν
(
y(x)

)∂yµ
∂xσ

∂yν

∂xρ
gσρ(x). (3)

It is important to distinguish between conformal transformations and diffeomorphism.
A map f :M→N is conformal with respect to prescribed geometries onM and N
and the proper length may change by a (local) scale factor. Of course, we may also
interpret such an f as diffeomorphism (or coordinate transformation), but then the
metric is carried along, i.e.

ĝµνdy
µdyν = gµνdx

µdxν =⇒ ĝµν(y) = e−2ϕgµν(y) (4)

and differs from the prescribed metric on N by a Weyl factor. Thus, an arbitrary
conformal transformation f is a composition of a diffeomorphism (defined by the same
f) and a compensating Weyl transformation. Note in particular that the conformal
group is not a subgroup of the diffeomorphism group since by diffeomophisms we
mean maps (1) together with the associated transformations of the metric tensor,
g = f ∗ĝ, and matter fields. Also note that contrary to the diffeomorphism group
which is always infinite dimensional, it may happen that there are no conformal
maps from M to N .

In Minkowski space-time the conformal transformations consist of translations,
Lorentz transformations, dilatations

yµ = λxµ (5)

and special conformal transformations

yµ =
xµ + x2bµ

1 + 2b · x+ b2x2
(6)

and form a SO(d, 2) (in Euklidean space a SO(d + 1, 1)) group. The scale factor is
one for the Poincare subgroup and it is

eϕ = λ, eϕ =
(
1 + 2b · x+ b2x2

)−1
(7)

for the dilatations and special conformal transformations, respectively.
Let us now assume that a massless matter field Φµν... (which may be a spinor or

tensor field) couples Weyl invariantly to the gravitational field, i.e. that the classical
action is invariant under the Weyl transformations of the metric and matter fields{

xµ, gµν(x),Φµν...(x)
}
−→

{
xµ, e2ϕ(x)gµν(x), eαϕ(x)Φµν...(x)

}
. (8)

For example, a massless scalar has Weyl weight α = 1
2
(2− d), a spinor α = 1

2
(1− d)

and a photon in d = 4 dimensions has α = 0. For fermions one needs to introduce a
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d-bein field. It is understood that the d-bein inherits its Weyl transformation from
the metric field, i.e. eaµ → eϕeaµ.

Since a conformal transformation is a composition of a diffeomorphism and a
compensating Weyl transformation a generally covariant and Weyl invariant classical
field theory is automatically conformally invariant. We prefer to change the order and
first Weyl transform and then act with the diffeomorphism f in order for the Weyl
transformation to act on the original manifold M rather then on N . Thus, given a
conformal map (1) and the correponding Weyl factor (3), we first Weyl transform the
metric and matter fields with this Weyl factor and then act with f , now interpreted
as diffeomorphism. The net result is the conformal transformation{

xµ, gµν(x),Φµν...(x)
}
−→

{
yµ, gµν(y), eαϕΛ σ

µ Λ ρ
ν . . .Φσρ...(y)

}
, (9)

Since Weyl transformations and diffeomorphisms are both classical symmetries this
shows that conformal maps (9) are indeed classical symmetries. For example, in
Minkowski space-time (9) leaves ηµν invariant and are the well-known conformal
symmetry transformations of a Minkowskian field theory.

Note that under an infinitesimal conformal transformation

yµ = xµ − εXµ(x), Xµ;ν +Xν;µ =
2

d
gµν∇ ·X (10)

(X is a conformal Killing field for conformal transformations) the matter field trans-
forms as

Φµν... −→
(
LX −

α

d
∇ ·X

)
Φµν.... (11)

Which of these classical symmetries survive in the quantum theory depends on the
chosen regularization. We shall use the manifestly covariant zeta-function regulariza-
tion such that the theory is diffeomorpism invariant. However, it is well-known that
classical Weyl invariance ceases to be a symmetry of a covariantly quantized theory
if space time is curved and/or has boundaries. This implies then that the conformal
invariance is broken as well. In particular the change of the effective quantum action
under conformal transformations (1) is equals to the change under the corresponding
Weyl transformation (8)

δΓ ≡ Γ[N , g]− Γ[M, g] = Γ[M, e2ϕg]− Γ[M, g] (12)

if ϕ is related to the conformal transformation (1) by (3).
The variation of Γ under Weyl transformations is determined by the Weyl anomaly

(or trace anomaly of the energy-momentum tensor). This anomaly is local in the cur-
vature of space-time and its covariant derivatives and in the extrinsic and intrinsic
curvature of the boundary. Is is determined by the t-independent term in the expan-
sion of the heat kernel K(t, x) of the relevant wave operator. Thus we may compute
the change of Γ under conformal changes ofM from the heat kernel expansion alone.
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To be more specific we consider bosonic and fermionic theories with classical
actions

SB =

∫
M

√
g ΦA(g) Φ, and SF =

∫
M

√
g ΦD(e) Φ, (13)

where A(g) and D(e) are second and first order differential operators (e.g. A(g) =
−∆g+ξR for scalars and D(e) = /D for Dirac fermions). The Weyl invariance (8) then
requires that the wave operators transform as follows under Weyl transformations of
the metric and d-bein:

A(e2ϕgµν) = e−(α+d)ϕA(gµν)e
−αϕ and D(eϕeaµ) = e−(α+d)ϕD(eaµ)e−αϕ. (14)

Also we assume the matter fields to obey some conformally invariant boundary con-
ditions on ∂M.

According to (12) the response of the effective action

Γ[g] = − log

∫
DΦ e−S[Φ,g] = ±1

2
log det A (15)

(the plus sign holds for bosons and the minus sign for fermions for which A = D2) to
a conformal deformation ofM is equals to the difference Γ[e2ϕg]−Γ[g]. To determine
this difference one introduces the one-parameter family of metrics

gτµν = e2τϕgµν (16)

which interpolates between the two metrics, and determines the τ -variation of the
zeta-function regularized determinants

log detA(gτ ) = − d

ds
ζ(τ, s)|s=0, where ζ(τ, s) =

∑
λ−sn (τ). (17)

In what follows we shall assume that all eigenmodes Φn of A(gτ ) have positive eigen-
values λn(τ) for 0 ≤ τ ≤ 1. Clearly, the difference of the effective actions (for bosons)
is now given by

Γ[M, e2ϕg]− Γ[M, g] = −1

2

1∫
0

dτ
d

ds

d

dτ
ζ(τ, s)|s=0, (18)

and similarly for fermions. That (17) indeed regularizes the determinants, i.e. the
zeta-function is smooth at the origin, and that the τ -variation of Γ can be computed
from the heat kernel expansion can be seen as follows:

1. First one rewrites the sum defining the zeta-function in (17) as a Mellin trans-
form of the heat kernel as

ζ(τ, s) =
1

Γ(s)

∞∫
0

dt ts−1Tr e−tA(gτ ). (19)
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The τ -derivative of (19) is obtained if the Hellman-Feynman theorem

d

dτ
λn =

(
Φn,

d

dτ
A(gτ )Φn

)
and (14) with ϕ replaced by τϕ are used, resulting in a factor s(2α+ d) and an
insertion of a Weyl angle ϕ into the trace of (19).

2. For sufficiently smooth manifolds the curvature scalar is bounded and the wave
operators of interest are self-adjoint (e.g. (−∆τ + ξRτ ) is self-adjoint due to a
theorem of Kato and Rellich [11]). Using ordinary spectral theory one shows
that

e−tA(gτ ) = − 1

2πi

−i∞∫
i∞

e−tλ
(
A(gτ )− λ

)−1
dλ , (20)

where the contour encloses the spectrum at infinity. The representation (20) will
be the starting point for our explicit calculations of the heat kernel expansion
in section 4.

3. For the eigenvalues, there is an estimate [12]

λn > Cnδ , C > 0 , δ > 0 , (21)

valid, because the operators under consideration are not only selfadjoint but
also elliptic, a property explained below. Hence

∫∞
1
dt ts−1Tr exp(−tA(gτ )) is

an entire function of s. This suggests to split the integration region in (19) into
[0, 1] and [1,∞]. In the limit s → 0 the second integral and its τ -derivative
vanish, and we are left with the first integral.

4. In order to evaluate the first integral we construct the heat kernel in the limit
t→ 0+ up to regular parts. For the system (A,M, ∂M) it is known that

Tr e−tA(gτ )ϕ ∼ 1

t
d
2

∞∑
n=0

tn/2
[ ∫
M

√
gτ an

2
(ϕ, gτµν) +

∫
∂M

√
g̃τ bn

2
(ϕ, gτµν)

]
, (22)

where g̃τ is the determinant of the metric on ∂M induced by gτµν . For constant
ϕ the Seeley-deWitt coefficients an

2
are local polynomials in the curvature and

its covariant derivatives and the bn
2

are local polynomials in the intrinsic and
extrinsic curvatures of the boundaries. The a’s vanish for odd n and have
dimensions (length)−n. The b’s have dimensions (length)1−n.

Using this expansion the τ -derivative of the ζ-function is defined for 2s > d and can
be analytically continued, apart from poles at s = d/2 , (d− 1)/2 , ..., to all s. In the
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limit s→ 0 the pole at s = 0 combines with the asymptotic behaviour of s/Γ(s) ∼ s2

such that

δΓ = −
(
α +

d

2

) 1∫
0

dτ
(∫
M

√
gτ a d

2
[ϕ, gτµν ] +

∫
∂M

√
g̃τ b d

2
[ϕ, gτµν ]

)
, (23)

and this formula for the change of the quantum action will be used in the follow-
ing. Of course, in general Γ depends on the chosen renormalization conditions. The
possible counterterms are just the lower Seeley-deWitt coefficient-functions and their
coefficients are determined by these renormalization conditions. But contrary to the
universal (scheme-independent) result (23) these additional ambigues terms are not
universal.

The corresponding formula for fermions is obtained similarly and one obtains −2
times the expression on the right hand side of (23) where a d

2
and b d

2
are now the

Seeley-deWitt coefficients of D2(e).
We see that the variation of the free energy under Weyl transformations, and thus

under conformal transformations, is determined by the t-independent terms in the
small t expansion (22) of the (weighted) heat kernel. Since the Seeley-deWitt coef-
ficients are computed iteratively the calculation of the relevant coefficients becomes
rather involved in four or more dimensions. So far the coefficients an, n ≤ 4, which
are of interest in 8 or less dimensions, have been determined [12, 13]. The boundary
dependent b-terms are especially difficult to compute and only the bn, n ≤ 2 are
known [9, 10].

Note that (23) automatically yields a separation of δΓ into its bulk and surface
contributions. As we shall see later the individual bulk and surface terms are not
invariant under general coordinate transformations, only their sum is invariant. This
implies that they are not independent, and that the bulk terms partly determine the
surface terms. Before computing the relevant b2-term in four dimensions, we first
investigate the consequences of (12) and (23) in two dimensions.

3 Finite Size Effects in 2 Dimensions

In recent years the postulate of conformal invariance for critical models made it
possible to identify them quite successfully with 2-dimensional Euklidean conformal
field theories [14]. Such theories are characterized by the central charge c which is
determined by the singular part of the operator product expansion of the energy
momentum tensor. In two dimensions (and for topologically trivial regions) one can
always find coordinates for which the metric is conformally flat, gµν = e2ϕδµν and thus
(23) allows one to calculate the metric-dependence of the effective action for arbi-
trary 2-dimensional space-times. Thus in two dimension Γ[gµν ]−Γ[δµν ] is completely
determined by the Seeley-deWitt coefficients a1 and b1 (in other regularizations as
the one chosen here a 1

2
, b 1

2
and a0 may be needed as counterterms leading to extra
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non-universal terms in Γ). Since vacuum expectation values of products of the energy
momentum tensor can be computed from the effective action as

〈Tµν(x1) · · ·Tαβ(xn)〉 =
2n√

g(x1) · · · g(xn)

δnΓ[g]

δgµν(x1) · · · δgαβ(xn)
, (24)

they are determined by the volume part of the effective action alone, and thus by the
coefficient a1. In particular the central charge is determined by this coefficient.

Let us now apply the result (12) to a region in flat Euklidean space-time for which
gµν = δµν in (12). In two dimensions the (global) conformal group SO(2, 2) introduced
in the previous section is only a small subgroup of all conformal transformations of
the Euklidean plane since all analytic point transformations

w = w(z) and w̄ = w̄(z̄), z = x0 + ix1, w = y0 + iy1 (25)

are conformal, and thus the result (12) applies to all of them with

e2ϕ(z,z̄) =
dw

dz

dw̄

dz̄
. (26)

According to the Riemann mapping theorem [15] any region with smooth boundary
(and without hole) can be mapped into the unit disk by an analytic transformation.
Thus the formula (12) determines the effective actions for arbitrary shaped regions
relative to the effective action for the unit disk. For example, for A(g) = −∆g and
Dirichlet boundary conditions the coefficients a1 and b1 are given in appendix B and
the general formula (12) together with (25,26) yield

Γ[N , δµν ]− Γ[M, δµν ] =− i

48π

∫
M

( d
dz

log
dw

dz

)( d
dz̄

log
dw̄

dz̄

)
dzdz̄

− i

48π

∮
∂M

( d
dσ

log
z′

z̄′

)
log
(dw
dz

dw̄

dz̄

)
dσ , (27)

where M is mapped into N by the conformal transformation w = w(z). We have
used that for scalars α + d/2 = 1. The line-integral along the boundary ∂M of
M contains the derivative z′ = ∂σz of the parametrised boundary curve z(σ) with
respect to the curve parameter σ. Note that on the Euklidean plane only the surface
term in (23) contributes to the effective action since a1 vanishes, and indeed the first
term on the right hand side of (27) can be converted into a boundary term.

If one considers dilatations, the finite size effects are independent of the shape of
the boundary, simply given by the Euler number χE of the manifold

Γ[λM]− Γ[M] = −1

6
χE log λ, χE =

1

2π

∫
∂M

T rχ. (28)
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Here T rχ is the trace of the extrinsic version of the second fundamental form (see
appendix A) and the sign in the definition of χE is chosen to be positive for a sphere.

Let us now see how the bulk term
∫
a1 (which determines the Tµν correlators)

and the surface term
∮
b1 (which determines the finites size effects) are related. For

that one observes from the explicit expressions (107) and (110), that for a non-zero
R both terms are not seperately invariant under the transformations (25) taken as
diffeomorphism so that

ϕ̂(w, w̄) = ϕ(z(w), z̄(w̄)) +
1

2
log
( dz
dw

dz̄

dw̄

)
.

Only the sum of the bulk and the surface term is invariant (up to ϕ-independent
terms, reflecting the non-invariance of Γ[M, δµν ] under the transformations (25) and
leading to finite size effects in flat space-time) and this fixes the relative normalization
of a1 and b1. Thus the correlators (24) and finite size effects (27) are very much
related. This relation can only be seen when the scalar field is coupled to a non-
trivial background metric. More generally, for an arbitrary conformal field theory
the coefficient a1 must be a local, dimension 2 object which is a scalar for ϕ = 1.
The only such object is the Ricci scalar, so that a1 must have the form (107), up to
a constant factor c, and c is the central charge. From general covariance we conclude
that b1 must have the form (110) times the same constant c. It follows that the
central charge define via the short distance expansion of 〈Tµν(x1)Tαβ(x2)〉 reappears
in the formulae (27,28). In particular [16]

Γ[λM]− Γ[M] = − c
6
χE log λ, (29)

for a conformal field theory with central charge c. Stricly speaking the volume terms
do not determine the surface terms uniquely. But the ambiguous surface terms
must be scalars under analytic coordinate transformations. The only ambiguous
term in 2 dimensions is

∫
M∆ϕ, and such a term does not contribute on flat space-

time.

4 Heat Kernel Expansion for Manifolds with Smooth

Boundaries

In this section we outline the method used to calculate b2. More extensive expositions
may be found in [6] and [13, 17, 18, 19, 20]. In the previous sections we have seen
that the singular structure of the heat kernel trace for small parameters t is required.
Starting from (20), the techniques of pseudodifferential operators can be employed
to investigate this singular behaviour. In this formalism two operators are identified
if they possess the same singularity structure. In particular the inverse operator
appearing in (20) is constructed up to smooth parts.
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More precisely, an equivalence relation will be defined

A ∼ B ⇔ A−B : D → C∞ , (30)

where the function space D will be specified later on. Operators like A − B do not
produce singularities and are viewed as being neglegible. The procedure reminds of
Lebesgue theory, where all results are valid up to sets of measure zero.
In a first step we consider Rd instead of the general case (M, ∂M). Let A(x,D) =∑
|α|≤m aα(x)Dα

x be a differential operator with C∞-coefficient functions aα. We use
the multi-index notations

α = (α1, ......, αd) , |α| =
d∑
i=1

αi , α! = α1!.......αd! ,

Dα
x =

1

i|α|
∂

∂α1
x1

.....
∂

∂αdxd
. (31)

With A we associate a polynomial, called symbol, replacing the derivatives in x by
the momentum p ∈ Rd

σA(x, p) =
∑
|α|≤m

aα(x)pα , σmA =
∑
|α|=m

aα(x)pα . (32)

σmA is called leading symbol and if it is different from zero for all non-zero p the
operator is called elliptic. We recover the differential operator A from its symbol σA
by Fouriertransformation

Au(x) =

∫
ei〈x,p〉σA(x, p)û(p)dp, û(p) =

1

(2π)d

∫
e−i〈x,p〉u(x)dx . (33)

The calculations simplify considerably when these polynomials are used instead of
the corresponding operators. The prize we pay is that we must introduce equivalence
classes of operators to recover, for example, the inverse operator from the inverted
symbol. The reason is that the inverted symbol usually has singularities which must
be regularized by introducing a cut off function. In addition, to derive (22) from (20),
we must scale λ as

λ→ −iλ
t
, (34)

so that t appears in the inverse (A(g) + iλ/t)−1 and hence in the inverted symbol.
Unfortunately the latter lacks a homogeneity property and t can not be removed from
it. But it turns out that we can find a sequence of homogeneous symbols approaching
the exact inverse in the sense of (30), if the function space D is the Schwartz class
supplied with the Sobolev norm, denoted by Hs, s ∈ R,

‖u‖s =

(∫
û(p)(1 + |p|2)sdp

) 1
2

.

These spaces have the following properties:
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1. Dα
x : Hs → Hs−|α| is continuous.

2. Let d be the dimension of space. For s > d/2

u ∈ Hs+k ⇒ u ∈ Ck (Sobolev-Lemma)

u|M → u|∂M is continuous and surjectiv .

To treat the inverse (A − λ)−1 let us introduce the notion of parameter dependent
symbols. σ ∈ Sm if

i) σ(x, p, λ) is holomorphic in λ ,

ii) |Dα
xD

β
pD

γ
λσ| ≤ Cαβγ(1 + |p|+ |λ|1/2)m−|β|−2γ . (35)

We then establish the following equivalence relation on symbols

σ ∼ σ′ ⇔ σ − σ′ ∈ S−∞ , S−∞ :=
⋂
m∈R

Sm

⇔ A− A′ : Hs → C∞ for all s . (36)

The next step is to define a symbol product

σ(AQ) =
∑
α

1

α!
∂αp σAD

α
xσQ . (37)

Now we are ready to approximate, in the sense of (30), the inverse A−1 of A, (σA ∈
Sm) by an operator Q. The symbol q of Q is obtained as follows:

1. Using truncations one proves the existence of a q

σAq ∼ qσA ∼ 1 and q ∈ S−m . (38)

2. For q one makes an ansatz

q = q−m + q−m−1 + ...... , qi ∈ S−i (39)

where the sum on the right hand side uniquely determines a symbol.

3. Calculate the qi iteratively from (38,39) by using (37).

So far we haven’t made any particular choice for the wave operator A. In what follows
we shall consider scalar particles for which this operator has the form

A = −∆+ ξR. (40)
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Let us now apply the above algorithm to scalar particles for which σA+iλ/t is the
second degree polynomial

σA+ iλ
t

= a2 + a1 + a0 , ai ∈ S i

a2 = gαβpαpβ +
iλ

t
, a1 = igαβΓγαβpγ, a0 = ξR . (41)

The ai are homogeneous in the momentum p and
√
λ. It is of main importance to

include the λ dependent part into a2. The ansatz for the symbol of the approximating
inverse reads

q ∼ q−2 + q−3 + q−4 + .... , q−i ∈ S−i . (42)

Using (38,39) one finds

q−2 =
1

a2

, (43)

which is nowhere singular and homogeneous in p and
√
λ. Having made this choice

the product of (41) with (42) yields (1+ lower order terms). The lower order terms
are grouped together, each group belonging to S−l for some l, and then separately
set equal to zero

a2 q−2−l +
∑
j<l

1

α!
∂αp akD

α
xq−2−j = 0 |α|+ 2 + j − k = l ∀ l ≥ 0 . (44)

This algebraic system of equations must be solved for the q’s, which are easily seen
to have the homogeneity property

q−2−l (x, p, iλ/t) = t1+l/2 q−2−l(x,
√
t p, iλ) . (45)

By this procedure it is guaranteed, that after infinitely many steps the remaining
contribution is in S−∞. Because of homogeneity the substitution

p→
√
t p (46)

allows us to factorize the t-dependence in all integrals to be performed.
As explained in section 2, we are need to determine the heat kernel trace with the

insertions of a conformal angle ϕ. Denoting as usual by ϕ̂ the Fourier transformed
angle we arrive at

exp[−tA(g)]ϕ(x) =

∫
U

dz〈x|e−tA(g)|z〉〈z|ϕ〉 (47)

∼ 1

2π

∑
l

∫
dλ

∫
dp eiλei〈x,p〉q−2−l ϕ̂(p) .

The integrals are absolutely convergent, and we may interchange the order of inte-
gration. Therefore

〈x|e−tA(g)ϕ|x〉 ∼ t−
d
2

∑
l

a l
2
[ϕ, gµν ] t

l
2 (48)
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with

a l
2
[ϕ, gµν ] =

1

(2π)d+1

∫
Rd

dp

∞∫
−∞

dλ eiλq−2−l ϕ . (49)

The notation a l
2
[ϕ, gµν ] is used in accordance with the existing literature on the

subject.
To generalize from Rd to M the following remarks are in order: Using a decom-

position of one on M, compatible with an atlas, one can derive the results (48,49)
in each chart. It follows that the trace in (22) is a sum of the contributions from the
different charts covering space-time. It can be shown that the result is independent
of the chosen atlas.

We now turn to the general case with boundary. Near the boundary we introduce
geodesic coordinates xα = (r, xa), α, β, .. = 0, 1, 2, . . . , d− 1, a, b, .. = 1, 2, . . . , d− 1.
xa is the point on the boundary minimizing the geodesic distance to xα and r is the
geodesic distance. Also we use Riemann normal coordinates on the boundary. This
way we may identify a neighbourhood of a point on the boundary with a region in
(R,Rd−1), the boundary being given by r = 0. Points inM have then positive r and
those in X \M have negative r. Again using a decomposition of one we may even
assume this region to be (R,Rd−1). In these coordinates the metric has the form

grr = grr = 1, gra = gra = 0, ds2 = dr2 + gab(r, x) dxadxb (50)

and then the intrinsic version of the second fundamental form (see appendix A)
simplifies to

Kab = Γrab = −1

2
gab,r.

At the origin we have

gab|0 = δab, Γcab|0 = 0, T rK|0 = Kaa|0 . (51)

In what follows we denote the restriction of gab, gab,r etc. to ∂M as

gab|r=0 =: g̃ab, gab,r|r=0 =: g̃ab,r etc.

Now we would like to generalize (48,49) when boundaries are present. We supplement
(40) with the conformally invariant Dirichlet boundary conditions

Φ|∂M = 0 (52)

for Φ in some Sobolev space. It follows that

(A+ iλ)−1Φ|∂M = 0 . (53)

Now we define restriction and extension operators r̂,ê as follows: For Φ defined on
M

êΦ :=

{
Φ if r ≥ 0 ,

0 if r < 0 ,
(54)
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and r̂ restricts functions on X to M. Assume that we have already constructed an
approximative inverse Q of A + iλ on X (as explained above). Its restriction r̂Qê
does not obey to the boundary condition and hence

Gλ : =
(
r̂Qê− 1

A+ iλ

)
. (55)

does not vanish in the sense of (30). However we can use the previous results for the
boundary-less case to calculate this correction. It is determined by

(A+ iλ)Gλ = 0 and Gλ|∂M = r̂Qê |∂M . (56)

It can be shown, that Gλ is only relevant near the boundary [14], because if a, b are
truncations having arbitrarily small support around ∂M then the last two terms in

Gλ = aGλb+ (1− a)Gλ + aGλ(1− b) . (57)

have C∞ kernels and are neglegible. Thus the system (56) need only be solved on
(Rd−1, R+) near r = 0. In addition to (56) one must demand that

Gλ|r→∞ = 0 (58)

which is one of the reasons why we can ignore the finite sizes of charts [6].
To handle the general case we introduce boundary symbols σ̃. They are polyno-

mials in pa but remain differential operators in r. For scalar particles

A+
iλ

t
= −∂2

r −
1

2
gabgab,r∂r − gab∂a∂b + gabΓcab∂c + αR+

iλ

t
(59)

has the full symbol

σA+ iλ
t

= a2 + a1 + a0

a2 = τ 2 + %2, a1 =− i

2
gabgab,rτ + igabΓcabpc a0 = ξR . (60)

where we have introduced

%2 := gabpapb +
iλ

t
(61)

and (τ, pa) are the momenta conjugate to (r, xa). Because of (57) it is natural to
expand the boundary symbol around r = 0.

σ̃(x, r, p,Dr, λ) =
∑
k,l

rk∂kr al(x, 0, p,Dr) =
∑
l

ã(l)

ã(l) =
∑
j−k=l

rk∂kr aj/k! . (62)
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In (62) terms of equal homogeneity are grouped together. ã(l) has homogeneity −(m+
l) in (1/r, p,Dr, λ

1/m) , if σ̃ is a symbol of order (−m). For scalar particles the
boundary symbols read explicitly:

ã(2) = − ∂2
r + g̃abpapb + iλ

ã(1) = rg̃ab,r papb −
1

2
g̃abg̃ab,r∂r + ig̃abΓ̃cabpc

ã(0) =
1

2
r2g̃ab,rrpapb −

1

2
rg̃ab,r g̃ab,r∂r + g̃abg̃ab,rr∂r

+ ir(g̃ab,r Γ̃cab + g̃abΓ̃cab,r)pc + σξR̃

ã(−1) =
1

6
r3g̃ab,rrrpapb −

1

4
r2g̃ab,rrg̃ab,r∂r −

1

4
r2g̃abg̃ab,rrr∂r

− 1

2
r2g̃ab,r g̃ab,rr∂r + i

1

2
r2g̃ab,rrΓ̃

c
abpc + ir2g̃ab,r Γ̃cab,rpc

+
i

2
g̃abΓ̃cab,rrpc + rσξR̃,r . (63)

For the symbol of Gλ the ansatz reads

σGλ ∼
∑

d−2−l

leading with (56) to

σ̃A+ iλ
t

∑
d−2−l = 0 (64)

and to the boundary conditions

d−2−l|r=0 = q−2−l|r=0 and d−2−l → 0 for r →∞ . (65)

Using (62) the condition (64) can be rewritten as

ã(2)d−2−l +
∑
j<l

1

α!
∂αp ã

(k)Dα
xd−2−j = 0, |α|+ 2 + j − k = l ∀ l ≥ 0 , (66)

which is a system of ordinary differential equations for the d’s. The solutions, subject
to the boundary conditions (65), are now inserted into

1

2π

∑
l

∞∫
−∞

dλ

∫
Rd−1

dp

∞∫
−∞

dτ eiλei〈x,p〉d−2−l ϕ̂(p) . (67)

There is no exponential factor related to the τ -integration because the symbols are
taken at r = 0. Inserting

ϕ̂ = (2π)−d
∫
dzds e−i〈s,τ〉e−i〈z,p〉ϕ
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an exponential factor e−i〈r,τ〉 reappears in the limit x = z, r = s. Scaling the variables
according to

p′ =
√
t p, τ ′ =

√
t τ r′ =

1√
t
r (68)

and expanding the conformal angle into a Taylor series

ϕ(x, t
1
2 r) =

∞∑
0

rn

n!
∂nr ϕ

∣∣∣
r=0

t
n
2

the t-dependence factorizes again in the occuring integrals. The result is then

Gλ ∼ t−
d
2

∑
l

b l
2
[ϕ, gµν ] t

l
2 (69)

and

b l
2
[ϕ, gµν ] = − 1

(2π)d+1

∑
n+k=l−1

∫
Rd−1

dp

∞∫
−∞

dτ

∞∫
0

dr

∞∫
−∞

dλ · eiλe−i〈r,τ〉d−2−k(∂
n
r ϕ)
∣∣∣
r=0

.

(70)
The results of section 2 combined with (48,49), (69,70) show that the relevant Seeley-
de Witt coefficients in d dimensions are those with l = d, that is

a l
2
[ϕ, gµν ] and b l

2
[ϕ, gµν ] . (71)

Taking into account that

a 1
2

(2l+1)[ϕ, gµν ] = 0 and b l
2
[ϕ, gµν ] = 0 for ∂M = 0 ,

the coefficients relevant for the zeta-function regularisation are listed in Table 1.

dimension coefficients
a l

2
[ϕ, gµν ] b l

2
[ϕ, gµν ]

1 b 1
2
[ϕ, gµν ]

2 a1[ϕ, gµν ] b1[ϕ, gµν ]
3 b 3

2
[ϕ, gµν ]

4 a2[ϕ, gµν ] b2[ϕ, gµν ]

Table 1: Coefficients relevant for the zeta-function regularisation.

A full list of these coefficients is given in appendix B. To calculate b2, we need d−5

and solve (66) successively up to third order. To satisfy (65), we also need q−5, which
is the solution of the algebraic system

a2q−2−l+
∑
j<l

(∂αr akD
α
r q−2−j + ∂αp akD

α
xq−2−j)/α! = 0

k − |α| − 2− j = −l ∀l ≥ 0 . (72)
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According to (70) we must integrate

d−5ϕ , d−4 ∂rϕ , d−3 ∂
2
rϕ , d−2 ∂

3
rϕ . (73)

to determine b2[ϕ, gµν ]. Because of (66) the first one is determined by (recall ρ̃ =
ρ(r = 0))

(∂r − %̃)(∂r + %̃)d−5 =
1

i
∂paã

(2)∂xad−4 + ã(1)d−4 −
1

2
∂pabã

(2)∂xabd−3

+
1

i
∂paã

(1)∂xad−3 + ã(0)d−3 −
1

6i
∂pabcã

(2)∂xabcd−2

− 1

2
∂pabã

(1)∂xabd−2 +
1

i
∂paã

(0)∂xad−2 + ã(−1)d−2

= : (A+Br + Cr2 +Dr3 + Er4 + Fr5)e−ρ̃r , (74)

and has the solution

d−5 = q̃−5e
−ρ̃r + (ar + br2 + cr3 + dr4 + er5 + fr6)e−ρ̃r

a = − 15

8%̃6
F − 3

4%̃5
E − 3

8%̃4
D − 1

4%̃3
C − 1

4%̃2
B − 1

2%̃
A

b = − 15

8%̃5
F − 3

4%̃4
E − 3

8%̃3
D − 1

4%̃2
C − 1

4%̃
B

c = − 5

4%̃4
F − 1

2%̃3
E − 1

4%̃2
D − 1

6%̃
C

d = − 5

8%̃3
F − 1

4%̃2
E − 1

8%̃
D

e = − 1

4%̃2
F − 1

10%̃
E

f = − 1

12%̃
F . (75)

After that we perform subsequently the integrations

∞∫
−∞

dτ ,

∞∫
0

dr ,

∞∫
−∞

eiλdλ ,

∞∫
−∞

d(3) p (76)

and use the formula [21]

∞∫
−∞

dτ e−irτ
τm

(τ 2 + %̃2)n+1
=

(−i)m(−1)n

n!
π∂n%̃2(%̃

m−1e−%̃r). (77)

It is easily seen that terms of odd order in p vanish after integration. This explains
why the coefficients an, n odd, do not appear in the table. After the step (66) has
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been performed the computation can be done at the origin of the Riemann normal
coordinte system. The corresponding contribution to b2[ϕ = 1, g] is

π3
(
− 11

90
Kbbgaa,bb + 1

9
Kaagaa,bb − 1

45
Kaagab,ab + 1

18
gaa,bbT rK

− 2
9
gab,abT rK + 1

3
Γbaa,rb + 2

3
KaaΓbaa,b − 1

3
Γbaa,bT rK

− 1
20
gaa,rbb + 7

30
gab,rab − 1

6
gaa,rrr − 1

15
gaa,rrr

− 2
3
Kaagaa,rr + 9

15
Kaagaa,rr + 1

3
gaa,rrT rK + 2

15
gaa,rrT rK

+ 19
189

(T rK)3 − 109
63
T rKT rK2 + 100

189
T rK3 − 2

3
αR,r

+ 2
3
αRT rK

)
, (78)

where all functions are to be evaluated at the origin xα = 0 and equal indices are
summed over. This expression can be written covariantly by using the extrinsic
version χµν of the second fundamental form (see appendix A) as follows

(78) =
1

(4π)2

1

1890

(
80T rχ3 − 66T rχT rχ2 + 10(T rχ)3

105RT rχ− 21Rµνχ
µν − 189

2
nµ∇µR

− 21Rµνn
µnνT rχ+ 84Rσµρνn

σnρχµν

− 63
2
∆(3)T rχ+ 630 ξnµ∇µR

− 630 ξT rχR
)
. (79)

Here nµ is the inward pointing normal. For the remaining terms in (73) we find

−2π3
(

1
2
ξR− 1

14
(T rχ)2 + 3

28
T rχ2 + 1

12
Rµνn

µnν − 1
12
R
)
∂rϕ

−2π3
(

3
20
T rχ∂2

rϕ− 1
12
∂3
rϕ
)

(80)

which can be covariantly written as

1

(4π)2

1

1890

(
45T rχ2nµ∇µϕ+ 126 T rχ∆ϕ− 9(T rχ)2nµ∇µϕ

− 315
2
Rnµ∇µϕ− 315

2
nµ∇µ∆ϕ

− 126 T rχ∆(3)ϕ+ 945 ξRnµ∇µϕ
)
. (81)

Using ∫
∂M

∆(3)nµ∇µϕ = 0∫
∂M

ϕ∆(3)T rχ =

∫
∂M
T rχ∆(3)ϕ (82)∫

∂M
∇(3)
µ ϕ∇(3)

ν χµν = −
∫
∂M

χµν∇(3)
µ ∇(3)

ν ϕ

18



with an upper index (3) indicating derivatives inside the boundary, the final form that
coincides with [8, 9] is

b2[ϕ, gµν ] =
1

(4π)2

1

1890

([
80T rχ3 − 66T rχT rχ2 + 10(T rχ)3

+ 105RT rχ− 21Rµνχ
µν − 189

2
nµ∇µR

− 21Rµνn
µnνT rχ+ 84Rσµρνn

σnρχµν

+ 630ξnµ∇µR− 630ξT rχR
]
ϕ

+ 45T rχ2nµ∇µϕ+ 126T rχ∆ϕ− 9(T rχ)2nµ∇µϕ

− 315
2
Rnµ∇µϕ− 315

2
nµ∇µ∆ϕ+ 945ξRnµ∇µϕ

)
. (83)

As always, explicit formulae are with respect to a chosen convention. To allow for a
easy comparison of our results with those in the literature we specified our conventions
in appendix A. Finally note that after using

f;nn = ∆(4)f −∆(3)f + T rχ f,n,

Rnnnn = 0 and

RabcbLac = Rµνχ
µν −RanbnLab

= Rµνχ
µν −Rσµρνn

σnρχµν ,

the coefficient b2 becomes identical to the one of Branson and Gilkey [9].

5 Applications to Simple Geometries

After having derived the explicit form of the heat kernel coefficient b2 we can now
apply the general formula (23) to determine the change of Γ under conformal transfor-
mation of an arbitrary region {M, ∂M} in 4-dimensional (flat) Euklidean space-time.
As we shall see the influence of a wall ∂M on the vacuum fluctuations is more subtle
than in 2 dimensions.

Note that for a Weyl angle belonging to a diffeomorphism the volume integral
in (23) vanishes and the conformal anomaly is solely a surface effect. This is of
course true in arbitrary dimensions as long as the imbedding space-time X is flat. To
evaluate the surface term in (23) we still must express the curvature terms in (83) as
functions of τϕ (recall that gτµν = e2τϕδµν) and perform the τ -integration. The final
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result for massless scalars is

δΓ = − 1

(4π)2

1

1890

∫
∂M

√
g̃
{[

80T rχ3 − 66T rχT rχ2 + 10(T rχ)3

+ 21(T rχ)2∂nϕ− 21T rχ2∂nϕ

− 14T rχ∂nϕ2 − 21χµνϕ,µν + 14χµνϕ,µϕ,ν

+ 21T rχ∆ϕ− 28∆ϕ∂nϕ+ 28nµnνϕ,µν∂nϕ

− 21
2
ϕ,νϕ

,ν∂nϕ− 21T rχϕ,µνnµnν
]
ϕ

+ 45T rχ2∂nϕ− 18T rχ(∂nϕ)2 + 18(∂nϕ)3

− 9(T rχ)2∂nϕ+ 126T rχ∆ϕ+ 126T rχϕ,µϕ,µ
+ 126∆ϕ∂nϕ+ 126ϕ,µϕ

,µ∂nϕ− 315
2
∂n∆ϕ

− 315
2
∂n(ϕ,νϕ

,ν)
}
, (84)

where ∂n = nα∂α is the (inward) normal derivative and all contractions in traces and
derivatives are understood with respect to the original undeformed metric g0

µν = δµν .
Of course g̃ is the determinant of the metric on ∂M induced by g0

µν .

Dilatations

Now we generalize the two-dimensional result (28) for the change of Γ under dilata-
tions (5) to four dimensions. Since then the Weyl angle is constant, ϕ = log λ, all
but the first three terms in (84) vanish so that

Γ[λM]− Γ[M] = − 1

(4π)2

log λ

1890

∫
∂M

√
g̃
[
80 T rχ3 − 66 T rχT rχ2 + 10 (T rχ)3

]
. (85)

Contrary to the two-dimensional case the right hand side is not a topological invariant.
To see that more clearly let us introduce the Euler number χE. Applying the index
theorem to the De Rham-complex [22] the Euler number of a bounded flat manifold
is

χE = − 1

12π2

∫
∂M

√
g̃
[
2T rχ3 − 3T rχT rχ2 + (T rχ)3

]
. (86)

It is just the winding number of the normal map n : ∂M→ S3 and the sign convention
is such, that it is one for a sphere. Thus (85) can be written as

δΓ = − log λ

180
χE − log λ

280π2

∫
∂M

√
g̃ f(χ) (87)

where we have introduced the third order polynomial

f(χ) = T rχ3 − T rχ T rχ2 +
2

9
(T rχ)3 . (88)
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Contrary to the Euler number the last term in (87) depends on the shape of the
surface and thus is not topological. For simple geometries we obtain:
Spherical bubbles: For a spherical bubble,M = B, the boundary surface is a 3-sphere
for which f(χ) = 0. It follows that

Γ[λB]− Γ[B] = − 1

180
log λ (89)

leading to a repulsive Casimir force as in 2 dimensions (see 28).
Squashed and stretched bubbles: We parametrize the surface of the ellipsoid as

{x0, x1, x2} = A sinα {sin β cos γ, sin β sin γ, cos β}, x3 = B cosα , (90)

where
0 ≤ γ ≤ 2π and 0 ≤ α, β ≤ π.

Inserting the corresponding second fundamental form into f(χ) in ()87,88) yields

δΓ = log λ D(u), D(u) = −
[(u− 1)3(5u3 + 20u2 + 29u+ 16)

5040u(1 + u)
+

1

180

]
, (91)

where we have introduced the parameter u = A/B which measures the deviation
from a spherical bubble. The graph of D(u) is displayed in Figure 1.

u

100 ·D(u)

0.5 1.0 1.5 2.0

-2

-1.5

-1.0

-0.5

0.5

1.0

1.5

Figure 1: Change of the quantum actions of squashed or stretched bubbles under
dilatations as a function of the bubble excentricity u. A stretched bubble has u < 1
and a squashed one u > 1.

One sees that the quantum action increases or decreases with the volume depend-
ing on whether u < 0.274 or u > 0.274. Thus, the vaccum fluctuations try to shrink
bubbles stretched in the x3-direction and expand squashed bubbles.
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Special conformal transformations

A special conformal transformations (6) is a composition of an inversion, transla-
tion and again an inversion. We require that bounded regions are transformed into
bounded ones which means that the transformed regions should contain the origin of
the coordinate system if and only if the original body contained it. For an ellipsoid
(90) and a special conformal transformation (6) with bµ = (0, 0, 0, b) this is fulfilled
for Ab,Bb < 1. Thus we may expand (84) (for special conformal transformations ϕ
is x-dependent) in Ab and Bb, and the first non-vanishing terms are of second order.
The explicit result up to second order reads

δΓ = (Ab)(Bb) S(u) (92)

where

S(u) = −5u9 + 10u8 + 6u7 + 2u6 − 32u5 − 66u4 + 182u3 + 38u2 − 9u− 8

5040u2(1 + u)2
. (93)

The function S(u) is displayed in Figure 2. Again one finds that stretched bubbles

u

100 · S(u)

0.5 1.0 1.5 2.0

-2.0

-1.5

-1.0

-0.5

0.5

1.0

1.5

Figure 2: Change of the quantum actions of squashed or stretched bubbles under
special conformal transformations. Depending on the excentricity the bubble favours
or resists a conformal deformation.

resist a deformation and squashed ones are unstable against the special conformal
deformations (6). Bubbles with u = uc = 0.348 are marginal in the sense that their
deformation does not change the quantum action induced by the vacuum fluctua-
tions. The figures 3 shows two typical deformation of ellipsoids (the figures show the
intersection of the ellipsoid with the (x1, x2)-plane). In Figure 3 a stretched bubble
with (A,B) = (0.5, 2), drawn with broken line, is deformed with b = 0.3 into the
body drawn with the unbroken line. This deformation increases the quantum action.
In Figure 4 a squashed bubble with (A,B) = (2, 0.5) is deformed with the same b.
The bubble is unstable against this deformation.

We thank H. Dorn for critical remarks.
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Figure 3: The stretched bubble enclosed
by the broken line is mapped into the
body enclosed by the full line by a special
conformal transformations. The quan-
tum system resists this deformation.

A = 0.5
B = 2.0
b = 0.3

x0

x3

-1 1

-4.5

-3.5

-2.5

-1.5

-0.5

0.5

1.5

Figure 4: The squashed
bubble enclosed by the bro-
ken line is mapped into the
body enclosed by the full
line. This deformation de-
creases the quantum action. A = 2.0

B = 0.5
b = 0.3

x0

x3

-2 -1 1 2

-0.75

-0.50

-0.25

0.25

0.50

0.75

6 Appendix A: Conventions

Let the d-dimensional manifoldM with boundary ∂M be embedded a in space-time
X. The metric on M is gαβ. The definition of the curvature terms on M is

Rα
βγδ = Γαδβ,γ − Γαγβ,δ + ΓσδβΓαγσ − ΓσγβΓαδσ (94)

and
Rβδ = Rα

βαδ = Γαδβ,α − Γααβ,δ + ΓσδβΓαασ − ΓσαβΓαδσ. (95)

The geometric properties of the boundary are usually described in terms of induced
curvatures. Choosing local coordinates xα, α = 0, . . . , d− 1, in X the boundary can
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(locally) be parametrized through functions

xα = fα(ui), i = 1, . . . , d− 1, (96)

and then the induced metric is defined by

g̃ij := gαβ x
α
|ix

β
|j . (97)

Here xα|i is the covariant derivative defined by the induced metric, but since the xα are

invariants under coordinate transformations of the ui, it is just the ordinary derivative
with respect to ui. xα|i is a tangent vector and hence

gαβx
α
|in

β = 0 . (98)

nβ is the unit inner pointing normal of ∂M. The second fundamental form of the
surface is the symmetric tensor

Kij := gαβn
βxα|ij , (99)

which is equivalent to
Kij = −xα|ixβ|jnα;β . (100)

Here it is understood that the normal field n is extended to a neighbourhood of ∂M
and that the covariant derivative is then computed with the connection on X. The
value of nα;β on the boundary does not depend on the extension. Let us introduce
the extrinsic version χµν of the second fundamental form

χαβ := xα|ix
β
|jK

ij . (101)

Introducing the projector

hαβ = gαβ − nαnβ = gαγgβδ x
γ
,ix

δ
,j g̃

ij (102)

it can be cast into the form
χµν = −hσµh%νnσ;% . (103)

and this form is convenient since it only involves the metric on M, the normal field
n and its covariant derivative. It is easily shown that

Trχ = gµνχµν = g̃ijKij = TrK . (104)

Using the relation
∇(d−1)
µ = hνµ∇(d)

ν (105)

between the extrinsic covariant derivative and the covariant derivative on M (the
instrinsic one on ∂M is just the projection of ∇d−1 on ∂M) one can prove the Gauss
equation

R(d−1)
αβγδ = hασhβρhγµhδνR(d)

σρµν + χαγχβδ − χαδχβγ . (106)
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7 Appendix B: Seeley-de Witt coefficients

These are the volume Seeley-deWitt coefficients for massless scalars which are relevant
in d ≤ 4-spacetime dimensions:

a1[ϕ, gµν ] =
1

(4π)d/2
(

1
6
− ξ
)
R(d)ϕ (107)

a2[ϕ, gµν ] =
1

(4π)d/2
1

180

(
R(d)
σµρνR(d)σµρν −R(d)

µνR(d)µν (108)

+ (6− 30ξ)∆(d)R(d) + 90(1
6
− ξ)2R(d)2

)
ϕ .

For Dirichlet boundary conditions

Φ|∂M = 0 ,

the relevant surface coefficients read

b 1
2
[ϕ, gµν ] =

1

(4π)d/2

(
−
√
π

2

)
ϕ (109)

b1[ϕ, gµν ] =
1

(4π)d/2

(
1
3
T rχϕ− 1

2
nµ∇µϕ

)
(110)

b 3
2
[ϕ, gµν ] =

1

(4π)d/2

√
π

192

([
− 3(T rχ)2 + 6T rχ2 − 4R(d−1) + 12(8ξ − 1)R(d)

]
ϕ

+ 30T rχnµ∇µϕ− 24nµnν∇ν∇µϕ
)

(111)

b2[ϕ, gµν ] =
1

(4π)d/2
1

1890

{[
80T rχ3 − 66T rχT rχ2 + 10(T rχ)3

+ 105R(d)T rχ− 21R(d)
µνχ

µν − 189
2
nµ∇µR(d)

− 21R(d)
µν n

µnνT rχ+ 84R(d)
σµρνn

σnρχµν

+ 630ξnµ∇µR(d) − 630ξT rχR(d)
]
ϕ

+ 45T rχ2nµ∇µϕ+ 126T rχ∆ϕ− 9(T rχ)2nµ∇µϕ

− 315
2
R(d)nµ∇µϕ− 315

2
nµ∇µ∆ϕ

+ 945ξR(d)nµ∇µϕ
}
. (112)
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