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Abstract. 2 (~4 Theory is studied in 2 and 3 dimensions 
to examine the validity of the finite temperature per- 
turbation theory. We find that in some cases it is 
good even at high temperature in contrast to the case 
in 4 dimensions. We also discuss the problem of sym- 
metry restoration and show an example of symmetry 
restoration within a safe perturbation at high temper- 
ature. 

the first half of the paper we shall clarify to what 
extent T + 0  perturbation is reliable. In the latter half 
of the paper we shall discuss, as a related subject, 
the problem of symmetry restoration which has been 
argued for and against by several people [1, 2] in 
the context of the O(N) x O(N) model in 4 dimensions. 
It will be shown that in 3 dimensions symmetry is 
restored at high temperature. 

1 Introduction 

In this letter we investigate the j~q~4 theory at finite 
temperature ( ~  T +  0) in 2 and 3 dimensions. Our pri- 
mary interest is in the nature of T + 0  perturbation 
at high temperature i.e. flm<l. T+O perturbation 
involves not only the coupling constant but also the 
temperature as expansion parameter. At very high 
temperature the perturbation breaks down even when 
the coupling constant is small. As will be shown, T +  0 
perturbation for 2q~ 4 theories in D(<4)  dimensions 
differ in a non-trivial way from that in 4 dimensions. 
Unlike in 4 dimensions there are cases where the one- 
loop correction becomes dominant even at high tem- 
perature, fl m < 1. Another difference is in the infrared 
behaviour. In D(<  4) dimensions the infrared behav- 
iour is worse than in 4 dimensions. Even at the lowest 
order level one faces the infrared singularity which 
bars one from predicting the critical temperature. In 
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2 General character of T~= 0 perturbation 

We first discuss the features of ordinary T 0e 0 pertur- 
bation and thus the parameters 2 and m are defined 
at zero temperature. 

The temperature independent part is left out of 
consideration since we are interest only in tempera- 
ture effects. Further we consider only the high temper- 
ature case (fl m < 1). At low temperature (tim ~ 1) per- 
turbation is always good so long as we deal with 
massive theories because each loop goes with an ex- 
ponential suppression factor e -pro. The general ten- 
dency of T~=0 perturbation can be read off by calcu- 
lating a few typical diagrams (Figs. 1-6). The results 
are presented below. 

1. 3-Dimensional 2~b 4 
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Fig. 1. One-loop self-energy diagram 
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Fig. 2 ~ C 1 ~ In tim, 

Fig. 2. A two-loop self-energy diagram 
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Fig. 3 -~  C 2 ~ -  In tim, 

Fig. 3. A three-loop self-energy diagram 
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Fig. 4 ~ C  3 - ~ l n f l m ,  
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Fig. 4. A non-planar two-loop diagram 

Fig. 5 - C4 m~ In tim , 

Fig. 5. A three-loop diagram 
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Fig. 6. One-loop vertex diagram 
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322 1 

8n tim 2" (1.6) 

2. 2-Dimensional 2~b 4 
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Fig. 6=  2 2m dm 1 dx 
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1 I 
(x 2 - 1 )  ~ e pmx- 1 

(2.6) 

In the above ~ (i= 1 ~8) are numerical constants 
~O(1). The results shows that the self-energy correc- 
tion is dominated by the one-loop diagram (Fig. 1) 

2 1 2 
so long as 2n tim 2~1 in 3 dimensions and r B m ~ l  

in 2 dimensions. In other words there is a region of 
parameters where the perturbation makes good sense 
even at high temperature. This character in 2 and 
3 dimensions is missing in 4 dimensions. In 4 dimen- 
sions we have 

2m2 ~ dx (X2 - -  1)~ 
Fig. i =~2~2 1 ePmX-1 

2 m  2 [7~ 2 1 ~ 1 t-O(logflm),) 
~ 4~-~2 \ 6  f12m2 2 tim 

(3.1) 

2 2 m 2 
Fig. 2 ~ C (/3 m) ~ (C: constant). (3.2) 

Therefore at high temperature (tim,~ 1) the higher 
order diagrams such as Fig. 2 contributes more than 
the one-loop diagram (Fig. 1) and thus T:~0 pertur- 
bation breaks down. 

Let us now leave the ordinary perturbation and 
turn to what we call the self-consistent method which 
involves the summation of self-energy diagrams to 
all orders. It was introduced by Dolan and Jackiw 
[3] to discuss the restoration of symmetry due to 
temperature in O(N) models. In the single real scalar 
theory the self-consistent equations for the effective 
mass, m, is given diagrammatically as in Fig. 7. Unlike 
in O(N) models in the large N limit non-planar dia- 
grams become non-negligible. Still the self-consistent 
method is useful to discuss the symmetry restoration. 
To see that, we first truncate the self-consistent equa- 



Fig. 7. Self-energy equa t ion  for the effective m ass  

tion for m at one-loop. Then the equation in 3 dimen- 
sions becomes 

m 2 = _ p 2  AI - - -  1 2 0 
4re f l  logflm (4) 

where 2o and # are zero temperature parameters. 
Equation (4) gives a solution with positive effective 
mass, which means symmetry restoration. What is 
more, for a sufficiently small tim tim 2 becomes large 
enough that one may safely neglect the higher order 
terms in the self-consistent equation. On the other 
hand (4) is not useful for predicting the critical tem- 
perature because at the critical temperature m = 0 (4) 
does not make sense*. In 4 dimensions the corre- 
sponding equation is 

2 0 [7~ 2 1 n m ) 
m 2 = - - / ~ 2 + ~ / ~  f12 2 fl 4-m2xO(l~ (5) 

It does no harm to set m = 0  and one predicts the 
critical temperature, fl~, 

"24 2-~ 

One may compare it with a naive but physically rea- 
sonable estimate of fl~. One would think that the sym- 
metry is restored at the point where the thermal fluc- 
tuation becomes as large as the distance between the 

~2 4 )2 two minima of the tree potential, V ( 4 ) ) = - ~ -  
20 r 

+4~.T [3]. Then the critical temperature turns out 

to be identical to that in (6). As stated in the beginning 
the infrared ( m ~ 0 )  behaviour in 3 dimensions is 
worse and the self-consistent equation becomes use- 
less in the infrared region. 

3 Symmetry restoration 

In Sect. 2 we have investigated the symmetry restora- 
tion in the single real scalar theory. The subject be- 
comes more subtle and interesting when there are two 
or more fields. The problem was first posed by Wein- 
berg [5] in a O(N)• O(N) model in 4 dimensions 

* To supplement this point we shall perform a lattice calculation 
in a companion paper [7] 
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whose potential is 

v(r ~ 2 21 ~ - 1 - T  4 ) 2 + ~  (4)2) 2 

212  2 22  
12 4)2 4)2+4!  (4)22)2. (7) 

Rephrased in 3 dim. context the problem is as follows. 
Let us perform the ordinary perturbation and use 
high temperature expansion. Then the effective 
masses, m E (i = 1, 2), at one-loop are given by 

m2=-.2+{(N+2),h-N212} ~ log~  (8.1) 

- - 1 1  
m~= - -#2+{(N+2)  22--N212} ~ ~ logfl# (8.2) 

(for simplicity we have set #1 =#2~-# in (7)). If the 
parameters are such that 

( g + 2 )  21 >N212 > (g  +2) 22 (9) 

then m 2 never becomes positive. Therefore the broken 
O(N) • O(N) symmetry is not restored even at high 
temperature. This conclusion was challenged by the 
authors of Ref. [2] where they found symmetry resto- 
ration by solving self-consistent equations for the ef- 
fective masses. We investigate the problem below in 
the context of 3 dim. two-scalar theory and 
O(N) x O(N) model. (We shall not consider the 2 di- 
mensional case since it is known that spontaneous 
breaking does not occur in 2 dimensions [6]). The 
Lagrangian for the two-scalar theory is 

1 1 2 
L(4)1, 4)2)=~ 4)1 [] 4), + ~  4)2 [] 4)2 + ~ -  4)2 

/~2 2 2 1 4 ) ~ + ~  2 2 22 
+ T  4)2-T. 4)1 4)2-~ 4)2". (10) 

The coupling constants are required to satisfy 

2 1 > 2 1 2 > 2 2 > 0  , 2 , 2 2 - - 2 2 2 > 0 .  (11) 

Let us set up self-consistent equations at one-loop. 

m 2 = - -  J12"-[- 21 X F(flmO--212 x F(flm2) 

,~ t t2 21 1 logflml 
27r 

212  1 
+ ~ ~ log tim2 (tim1, tim2 ~ 1) (12.1) 

mE = _#2 +22 x F(flm2)-- 212 x F(flmO 

p2 22 1 logflm2 ~-=212 1 
2re fl +2rc fl l~ (12.2) 
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where 

- 1 1  
F (/3 m) = ~ ~ {log (e am _ 1) --/3 m}. 

One may rewrite the equations as follows 

(12.3) 

4nx = _#2/3-[- (~1 - - ~ 1 2 )  log/3- 1 

--21 1ogx+212 logy (12.1) 

4 n y =  - -  ~/2 /3 -]- (22 - -  )~12 ) log/3 -1 

--22 logy+212 logx (12.2) 

where x =/3m 2, y =/3m~. Although we omit the proof, 
the above equations always yield a solution with posi- 
tive x and y for sufficiently high temperature, /3,~ 1. 
A numerical result in the case 21=0.5 22=0.0475 
212=0.05 /~=0.865 is given in Table 1. As tempera- 
ture increases the effective masses ml, m2 become 
larger, as expected. So our result indicates symmetry 
restoration. However there is a problem in the one- 
loop approximation we made. As discussed in the 
previous section the criteria for a safe T ~ 0 perturba- 
tion in 3 dims. are, flm2>>l and /3m~l. As Table 1 
shows/3mZ>> 1 is not satisfied. In fact one can show 
that with the parameters we have chosen/3m 2 is al- 
ways less than 1. It means higher order terms cannot 
be neglected. Therefore one cannot safely conclude 
that symmetry is restored within this approximation. 

The situation is different in O(N)• O(N) models, 
with potential 

/.,/2 2 "~1 
v( l, 4,9= + 

212 •2 
12 q~2 q52 +4.T (q52)2" (13) 

If N is sufficiently large the non-planar diagrams 
may be neglected relative to the planar ones. Then 
the self-consistent equations become the same as 
(12.1), (12.2) apart from N and one finds 

4TEN = [22/3 IN+2 ) - - ~ - t - ~  21--212 log(/3U) -1 

N + 2  
N 211ogx+212 logy (14.1) 

Table 1. Solution of self-consistent equations (12.1), (12.2) 

fl 0.01 0.001 0.0001 0.00001 
ml 4.6 16.5 60 200 
mz 1.0 3.0 10 50 

4ny  . . . .  1 

N + 2  
N 22 logy+,~12 logx (14.2) 

where 

/3m l /3m  
X = N  Y-  N 

N 

N + 2  
If one sets =0.865, N 21=0.5, 212=0.05, 
N + 2  

N 22 =0.0475 the results of Table 1 is reproduced 

m 
with the replacements of m ~ ~ ,  fl ~ fiN. If N = 103, 

/3 = 10- 5 then from the first row in Table 1 one reads 
off m l = 4 . 6 x  103, m 2 = l  x 103 and thus flmx=4.6 
x l 0  -2, / 3 m 2 = l x 1 0  -2, /3m~=2.1xlO 2, /3m22=10. 

Therefore the truncation of self-consistent equations 
at one-loop is safe. The higher order contribution is 

1 1 
suppressed by both ~ and ~m ~ .  In this case one 

may safely claim that symmetry is restored at high 
temperature. All the preceding analysis is concerned 
with the effective mass at the origin and thus there 
is left a possibility that the absolute minimum lies 
at some point away from the origin and the symmetry 
remains broken. We do not believe that is the case. 

4 Summary 

We have investigated 2 q54 theories in 2 and 3 dimen- 
sions and pointed out that is a parameter region 
where T4:0 perturbation is safe and reliable even at 
high temperature, in contrast to the 4 dim. case. We 
have also shown within the safe region of parameters 
that the broken O(N)x O(N) symmetry is restored 
at high temperature using the self-consistent method. 
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