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olor spins') n from the Wilson a
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1. Introdu
tionCon�nement in pure Yang{Mills theory is still a theoreti
al 
hallenge. The problem a
-tually has two fa
es. On the one hand, there is 
on�nement of stati
 external sour
es inthe fundamental representation whi
h manifests itself through the appearan
e of a linearpotential (nonzero string tension). On the other hand, there should be gluon 
on�nementimplying a �nite range of the gluoni
 intera
tions, i.e. a mass gap. How the two fa
es arerelated is largely un
lear at the moment.Re
ently, Faddeev and Niemi (FN) have suggested that the infrared dynami
s of gluemight be des
ribed by the following low{energy e�e
tive a
tion [1℄,SFN = Z d4xhm2(��n)2 + 1e2H��H��i : (1.1)Here, n is a unit ve
tor �eld with values on S2, n2 � nana = 1, a = 1; 2; 3; m is adimensionful and e a dimensionless 
oupling 
onstant. The FN `�eld strength' is de�nedas H�� � n � ��n� ��n : (1.2)Faddeev and Niemi argued that (1.1) \is the unique lo
al and Lorentz{invariant a
tionfor the unit ve
tor n whi
h is at most quadrati
 in time derivatives so that it admits aHamiltonian interpretation and involves all su
h terms that are either relevant or marginalin the infrared limit".It has been shown that SFN supports string{like knot solitons [2, 3, 4℄, 
hara
terizedby a topologi
al 
harge whi
h equals the Hopf index of the map n : S3 ! S2. Here,n is supposed to be stati
 and approa
hes a uniform limit at spatial in�nity, n1 = ez.In analogy with the Skyrme model, the H2 term is needed for stabilization. The knotsolitons 
an possibly be identi�ed with 
losed gluoni
 
ux tubes and are thus 
onje
turedto 
orrespond to glueballs. For a rewriting in terms of 
urvature{free SU(2) gauge �eldsand the 
orresponding reinterpretation of SFN we refer to [5℄.In order for the model to really make sense, however, the following problems have tobe solved. First of all, neither the interpretation of n nor its relation to Yang{Mills theoryhave been fully 
lari�ed. An analyti
 derivation of the FN a
tion requires� an appropriate 
hange of variables, A! (n;X), relating the Yang{Mills potential Ato n and some remainder X� the fun
tional integration over X to arrive at an e�e
tive a
tion Se� for the n-�eld.{ 1 {



Some progress in this dire
tion has been made [6, 7, 8, 9, 10, 11℄ on the basis of theManton{Cho de
omposition [12, 13℄,A� = C�n� n� ��n+W � ; (1.3)where C is an Abelian 
onne
tion and n �W � = 0. Nevertheless, it is fair to say that thereare no 
on
lusive results up to now.Se
ond, there is no reason why in a low{energy e�e
tive a
tion for the n{�elds bothoperators in the FN `Skyrme term', whi
h 
an be rewritten asH2 = (��n � ��n)2 � (��n � ��n)2 ; (1.4)should have the same 
oupling. Third, and 
on
eptually most important, SFN has thesame spontaneous symmetry breaking pattern as the nonlinear �{model, SU(2) ! U(1).Hen
e, it should admit two Goldstone bosons and one expe
ts to �nd no mass gap. Inorder to ex
lude these unwanted massless modes we have re
ently suggested to break theglobal SU(2) expli
itly [14℄, an idea that has subsequently also been adopted by Faddeevand Niemi [15℄.In what follows the FN hypothesis will be tested on the latti
e. To avoid the appearan
eof Goldstone bosons we allow for expli
it symmetry{breaking terms.2. Generating an SU(2) latti
e ensemble of n{�eldsThe 
on
eptual problem to be solved in the �rst pla
e is to obtain a reasonable ensembleof n{�elds. The (latti
e version of the) de
omposition (1.3) is of no help: it assumes someparti
ular 
hoi
e of n on whi
h the de
omposition is then based. One way of de�ning ann{�eld is via Abelian gauge �xing, originally introdu
ed by `t Hooft [16℄. A prominentexample in this 
lass of gauges is the maximally Abelian gauge (MAG) whi
h is obtainedvia maximizing the fun
tional [17℄FMAG[U ; g℄ �Xx;� tr��3 gUx;��3 gU yx;�� �Xx;� tr�nxUx;�nx+�U yx;�� � ~FMAG[U ;n℄ ; (2.1)with respe
t to the gauge transformation g. The maximizing g then de�nes the n{�elda

ording to nx � gyx �3 gx � nx � � : (2.2)Instead of maximizing FMAG with respe
t to g one 
an equivalently maximize ~FMAG withrespe
t to n [18℄ whi
h results in the 
ondition4[U ℄nx � �xnx : (2.3)Here, 4[U ℄ denotes the 
ovariant Lapla
ian in the adjoint representation (see App. A),while �x is a Lagrange multiplier imposing that nx is normalized to unity, lo
ally atea
h latti
e site x. In prin
iple, (2.3) 
an be solved for the �eld n asso
iated with the{ 2 {
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xFigure 1: Behavior of the two{point fun
tion Gabxy along a latti
e axis for a random ensemble ofn{�elds, obtained via MAG and (2.2). Note that also the value 1/3 for a = b, x = 0 and x = L is
orre
tly reprodu
ed.ba
kground U . However, as this ba
kground is distributed randomly along its orbit we willin turn obtain a random ensemble of n{�elds 
hara
terized by the two{point fun
tionGabxy � hnaxnbyi = 13ÆabÆxy : (2.4)Thus, nontrivial 
orrelations are absent. Fig. 1 shows that this is indeed what one gets in atypi
al Monte Carlo run. One way out of this problem is to follow the 
ontinuum approa
hof [8℄ whi
h starts out with a 
ovariant gauge �xing. After having generated SU(2) latti
e
on�gurations using the standard Wilson a
tion we therefore �x to latti
e Landau gauge(LLG). The latter is de�ned by maximizing the fun
tionalFLLG �Xx;� tr
Ux;�; (2.5)with respe
t to the gauge transformation 
. In this way we impose some `pre
onditioning'[19℄ whi
h (i) eliminates the randomness in our Yang{Mills ensemble and (ii) leaves aresidual global SU(2){symmetry. The Landau gauge 
on�gurations are then plugged intothe MAG fun
tional (2.1) whi
h subsequently is maximized with respe
t to g. The gaugetransformation g obtained this way determines n a

ording to (2.2). One may say thatg (and hen
e n) measure the gauge{invariant (!) distan
e between the LLG and MAGgauge sli
es (see Fig. 2). In App. B we show that LLG and MAG are `
lose' to ea
h other.Therefore, the maximizing g is on average 
lose to unity, hen
e, on average, n will bealigned in the positive 3{dire
tion. In this way we have expli
itly broken the global SU(2)down to a global U(1). { 3 {
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Figure 2: Gauge invariant de�nition of n � gy�3g. The gauge equivalent 
on�gurations A1 andA2 are both mapped onto the same `representatives' on the LLG or MAG sli
es (ignoring Gribov
opies). Thus, they are both asso
iated with the same gauge transformation g de�ning n.
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Figure 3: Behavior of the LLG{fun
tional using di�erent algorithms. The parameter � measuresthe `distan
e' from the LLG, i.e. for � = 0 the LLG is a
hieved.All 
omputations have been done on a 164{latti
e with Wilson 
oupling � = 2:35,latti
e spa
ing 0:13 fm and periodi
 boundary 
onditions. For the LLG we used Fouriera

elerated steepest des
ent [20℄ (see Fig. 3). The MAG was a
hieved using two indepen-dent algorithms, one (AI) using iterations based on elementary geometri
 manipulations(in
luding overrelaxation steps), the other (AII) being analogous to LLG �xing (see Fig. 4).
{ 4 {
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iterationsFigure 4: Behavior of the MAG{fun
tional using di�erent algorithms.3. Numeri
al resultsAs expe
ted, we observe a non{vanishing expe
tation value of the �eld in the 3{dire
tion,a 'magnetization' M de�ned through hnai = M Æa3. Thus, the global symmetry is in-deed broken expli
itely a

ording to the pattern SU(2) ! U(1). We demonstrate this byexhibiting the angular distribution of the n{�eld on its target spa
e S2 in Fig. 5. Theazimuthal angle � is equally distributed, while the distribution of the polar angle � has amaximum near �=2 
orresponding to the north pole, n = (0; 0; 1).Expli
it symmetry breaking also shows up in the behavior of the two{point fun
tions(Fig. 6). The longitudinal 
orrelator, Gkx � hn3xn30i � hn3ihn3i = M2, exhibits 
lusteringfor large distan
es, the plateau being given by the magnetization (squared). The transverse
orrelation fun
tion (of the would{be Goldstone bosons)G?x � G?x0 � 12 2Xi=1hnixni0i ; (3.1)de
ays exponentially as shown in Fig. 7. This means that there is a nonvanishing mass gapM whose value 
an be obtained by a �t to a 
osh{fun
tion (see Fig. 7). The numeri
alvalues of the observables, M, M and the transverse sus
eptibility,�? �Xx G?x ; (3.2)whi
h all 
an be derived from the two{point fun
tions, are summarized in Table 1 forboth algorithms. The disagreement between AI and AII is statisti
ally signi�
ant. Weattribute it to the ubiquitous Gribov problem [21℄ (for Abelian gauges, see [22, 23℄). Onthe latti
e, this is the statement that maximizing gauge �xing fun
tions like FMAG or FLLG{ 5 {
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iated with the unit ve
tor non S2. The uniform distribution for � and the maximum for � = �=2 shows that n is lo
ated nearthe north pole, n = (0; 0; 1). PSfragrepla
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Figure 6: Behavior of the two{point 
orrelators of the n{�eld along a latti
e axis (labelled by
oordinate x). Note the di�eren
e between algorithms AI and AII (FFT). Error bars exhibit thestatisti
al error of the Monte Carlo simulation.is equivalent to a spin{glass problem with an enormous number of degenerate extrema.This implies that the algorithms AI and AII will almost 
ertainly end up in di�erent lo
almaxima, whi
h explains the di�eren
e between rows one and two in Table 1.{ 6 {
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Figure 7: The transverse 
orrelation fun
tion along an arbitrary latti
e axis, �tted as G?(x) =a1 
osh(M(x� L=2)) + a2 with a1 = 0:0048, a2 = �0:0053, M = 0:6084. Data points are obtainedwith algorithm AI. algorithm M a�4�? aM M [GeV℄AI 0.438 92.57 0.61 0.95AII 0.366 79.66 0.67 1.03Table 1: Numeri
al results for some observables as obtained from the longitudinal and transversetwo{point fun
tions, Gk and G?, respe
tively.As shown in the last 
olumn of Table 1, the numeri
al results for the mass gap M leadto a value of about 1 GeV in physi
al units.n3 is a lo
al fun
tional of the ni, n3 = (1�nini)1=2. Thus, one expe
ts the same expo-nential de
ay for the longitudinal 
orrelator Gk. This 
an be 
on�rmed with a numeri
alvalue for the mass gap of M = 0:66 a�1.To improve statisti
s, we have 
al
ulated the time{sli
e 
orrelator,C?(t) � L�3Xx G?x;t : (3.3)In the 
ontinuum, for purely exponential de
ay of G?, this would be
ome proportional toa modi�ed Bessel fun
tion K2. An asso
iated �t works very well as is shown in Fig. 8.Fitting the time{sli
e 
orrelator a

ording to Fig. 8, we obtain for the mass gapaM = 0:642 i.e. M = 0:97 GeV : (3.4)This is the value with the smallest statisti
al errors.The mass gap obtained di�ers signi�
antly from the SU(2) mass gap, MSU(2) ' 1.5GeV, obtained dire
tly from a Wilson ensemble with � = 2:4 [24℄. We believe that the{ 7 {
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Figure 8: The time{sli
e 
orrelator �tted to a (properly symmetrized) Bessel fun
tion, C?(t) =
1[t2K2(Mt) + (t�L)2K2(M(L� t))℄ + 
2, where 
1 = 0:0006, 
2 = 0:0001 and M = 0:6423. Datapoints are obtained with algorithm AI.di�eren
e is due to the highly nonlo
al relation between the original Yang{Mills degrees offreedom (the link variables) and the 
olor spin n. After all, we have impli
itly solved thepartial di�erential equation (2.3) with link variables U in Landau gauge entering the adjointLapla
ian. The solution n will 
learly be a nonlo
al fun
tional of these U 's. Consequently,we 
annot expe
t that the exponential de
ay of G?[n℄ will be governed by the lowestex
itation of the U{ensemble.4. E�e
tive a
tion and S
hwinger{Dyson equationsAt this point it is natural to ask whether there is an e�e
tive a
tion Se� [n℄ that reprodu
esthe distribution of n{�elds leading to the results of the previous se
tion.At low energies, it should make sense to employ an ansatz in terms of a derivativeexpansion, Se� =Xj �jSj [n℄ +Xj �0j S0j[n;h℄ ; (4.1)with O(3) invariant operators Sj and noninvariant operators S0j , whi
h are ordered byin
reasing mass dimension. Up to dimension four, one has the symmetri
 terms,S1 = (n;4n) ; S2 = (n;42n) ;S3 = �n � 4n;n � 4n� ; S4 = �n � �y���n;n � �y���n� ; (4.2)
{ 8 {



and the symmetry{breaking terms in
luding a unit ve
tor `sour
e �eld' h [14℄ (whi
h 
anbe thought of as the dire
tion of an external magneti
 �eld),S01 = (n;h) ; S02 = (n � h;n � h) ; S03 = (n � 4n;n � h) : (4.3)In the above, we have introdu
ed the s
alar produ
ts(f; g) �Xx fxgx ; u � v � uava ; (4.4)and the usual latti
e Lapla
ian 4 (see App. A).Note that the n{�eld 
on�gurations are 
lassi�ed by the Hopf invariant irrespe
tiveof the parti
ular form of the (e�e
tive) a
tion. This, together with the usual s
aling argu-ments, shows that the a
tion (4.1) with the operators (4.2) and (4.3) should still support
lassi
al knot soliton solutions. Our ansatz thus does not ex
lude this important feature.The 
ouplings in (4.1) 
an be determined by inverse Monte Carlo te
hniques. The no-tion is suggestive: instead of 
reating an ensemble from a given a
tion, one wants to 
om-pute a (trun
ated) a
tion whi
h gives rise to the given ensemble of n{�elds. A parti
ularapproa
h uses the S
hwinger{Dyson equations [25, 26℄. These represent an overdeterminedlinear system whi
h 
an be used to solve for the 
ouplings in terms of 
orrelation fun
tions.The latter are nothing but the 
oeÆ
ients of the linear system.For an un
onstrained s
alar �eld �, the S
hwinger{Dyson equations follow from trans-lational invarian
e of the fun
tional measure, implying0 = Z D�PxnF [�℄ exp(�S[�℄)o ; (4.5)where Px � �iÆ=Æ�x is the (fun
tional) momentum operator, and F an arbitrary fun
-tional1 of the �eld �. For a 
onstrained �eld like n with a 
urved target spa
e things areslightly more subtle [25℄. There is, however, a rather elegant way to derive the S
hwinger{Dyson equations if one exploits the isometries of the target spa
e S2 [27℄. The target spa
emeasure, Dn =Yx dnx Æ�n2x � 1� ; (4.6)is obviously rotationally invariant, i.e. under n! Rn, R 2 O(3). This implies the modi�edS
hwinger{Dyson identityZ DnLx nF [n℄ exp �� Se� [n;h℄�o = 0 ; (4.7)where Lx denotes the angular momentum operator (at latti
e site x),iLx = nx � ��nx or iLax � �ab
nbx ÆÆn
x : (4.8)In shorthand{notation, (4.7) 
an be rewritten ashLx F [n℄� F [n℄Lx Se� [n℄i = 0 : (4.9)1Usually one 
hooses F [�℄ = �(x1) : : : �(xk). { 9 {



These exa
t identities 
an be used to determine the unknown 
ouplings �j . To this endone 
hooses a set of �eld monomials Fi[n℄ and plugs them into (4.9) together with the form(4.1) of the a
tion. This yields the lo
al linear systemXj hFiLx Sji�j +Xk hFiLx S0ki�0k = hLx Fii ; (4.10)whi
h, in prin
iple, 
an be solved numeri
ally, for instan
e by least{square methods. Theidentities obtained so far hold for arbitrary a
tions Se� [n℄. In parti
ular, we have not madeuse of any symmetries. Taking the latter into a

ount will lead to Ward identities.Let us spe
ialize to our latti
e e�e
tive a
tion (4.1). It is a sum of a symmetri
 partS 
ontaining the terms (4.2) and an asymmetri
 part S0 
ontaining the terms (4.3),Se� = S[n℄ + S0[n;h℄ : (4.11)Due to the invarian
e of S under global O(3) rotations it is an O(3){singlet and hen
eannihilated by the total angular momentum,LS = 0; L =Xx Lx ; (4.12)su
h that LSe� = LS0. Thus, summing over all latti
e sites x in (4.9) yields the (broken)Ward identity, hLF [n℄� F [n℄LS0[n;h℄i = 0 ; (4.13)where the se
ond terms 
ontains the in�nitesimal 
hange of the non-invariant part S0 ofthe e�e
tive a
tion under rotations of n. Note that the 
oupling 
onstants �j of theO(3){symmetri
 operators Sj have disappeared in the Ward identity (4.13) so that onlythe symmetry{breaking 
ouplings �0 are present. We have 
olle
ted the expli
it latti
eS
hwinger{Dyson and Ward identities used in our simulations in App. C. As the formerare lo
al relations, they naturally 
ontain more information than the global Ward identities.In parti
ular, one does have a

ess to length s
ales.5. Comparing Yang{Mills and FN ensembles5.1 Leading{order ansatzTo leading order (LO) in the derivative expansion we have a standard nonlinear sigmamodel with symmetry{breaking term,Se� =Xx (�nx � 4nx + �0nx � h) ; h � ez : (5.1)Inverse Monte Carlo amounts to determining the 
ouplings � and �0 su
h that the probabil-ity distribution asso
iated with the LO a
tion (5.1) �ts the observables of the Yang{Millsensemble of n{�elds2. The asso
iated S
hwinger{Dyson equation (4.10), with F [n℄ = nax,
an be written as �Hxy + �0G?xy = �M Æxy ; (5.2)2Throughout this se
tion, we refer to algorithm AI.{ 10 {



where H denotes the (antisymmetrized) two{point fun
tion of ni and ni4n3,Hxy � hnixniy4n3yi � hnixn3y4niyi � hnixn[ iy 4n3℄y i : (5.3)To analyse (5.2) we de�ne a `redu
ed' two{point fun
tion hxy and magnetization �,hxy � Hxy=G?xy ; � �M=G?xx ; (5.4)and rewrite (5.2) as the inhomogeneous system (using translational invarian
e to repla
ex� y ! x), �hx + �0 = 0 ; x = 1; : : : ; 8 ; (5.5)�h0 + �0 = �� : (5.6)The solution is found to be � = 1hx � h0 � ; (5.7)�0 = � hxhx � h0 � ; (5.8)with the numeri
al boundary value given by h0 = 0:1410 (
f. Fig. 9). Clearly, the system(5.5), (5.6) is overdetermined (nine equations for two unknowns). This is re
e
ted in thefa
t that � and �0 in (5.7) and (5.8) depend on the latti
e distan
e x via hx. If the Yang{Mills ensemble were exa
tly des
ribed by the LO a
tion (5.1), there would be no su
hx{dependen
e. Rather, for any x = 1; : : : ; 8, we would have the same values for � and �0,respe
tively. Thus, to test the quality of the LO ansatz, we divide (5.8) by (5.7) showingexpli
itly that hx should be 
onstant,hx = ��0� � ��0 = 
onst: ; x 6= 0 : (5.9)Fig. 9 shows that this is not the 
ase. Therefore, a minimal sigma model with symmetry{breaking term does not yield a good representation of our Yang{Mills ensemble of n{�elds.If we nevertheless insist on the LO des
ription, we have to `�t' hx by a horizontal lineso that the numeri
al determination of the 
ouplings via (5.7) and (5.8) is beset by largeerrors, � = �1:41� 5:25 ; (5.10)�0 = �1:33� 0:74 : (5.11)Obviously, � (in
luding its sign) remains essentially undetermined. For �0 the situation isslightly better.In order to assess the errors it is worthwhile to 
he
k whether our numeri
al a

ura
yis suÆ
ient to really validate the S
hwinger{Dyson identity (5.2) for the LO a
tion (5.1)on the latti
e. To this end we have simulated (5.1) with a 
ombination of Metropolis and
luster algorithms produ
ing a number of 150 
on�gurations using the 
entral values (5.10)and (5.11) as the input 
ouplings. The result for hx in the LO ensemble is presented in{ 11 {
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xFigure 10: hx for the LO ensemble. Fitting the data points yields hx = ��0 = �0:938� 0:002.Fig. 10. It is reassuring to note that the simulation of the minimal sigma model reprodu
esthe input value �0 = 0:943 very well (for x 6= 0), the error being of the order of one per
ent.The predi
tion (5.9) thus 
an be veri�ed with high a

ura
y for the LO a
tion (5.1). We
on
lude that inverse Monte Carlo works quite well when applied to the minimal �{model.The dis
repan
y between the LO and Yang{Mills ensembles 
an be further visualizedby looking at the sus
eptibility. For the a
tion (5.1) and the 
hoi
e F [n℄ = nax, the Ward{ 12 {



identity (4.13) assumes the simple form�? = �M=�0 : (5.12)A 
onsisten
y 
he
k is provided by noting that this 
an dire
tly be obtained by summing(5.2) over x. Plugging in the magnetization from Table 1 and �0 from (5.11) we �nd�? = 0:33 � 0:18 ; (5.13)This is way o� the Yang{Mills value of 92.6 displayed in Table 1. For magnetization andmass gap the simulation of the LO ensemble yields the valuesM = 0:93 ; M = 1:5 ; (5.14)whi
h are both larger than the Yang{Mills values of Table 1.The dis
ussion of this subse
tion thus shows quite 
learly that more operators willhave to be in
luded in order to possibly make inverse Monte Carlo work reasonably well.5.2 FN a
tion with symmetry{breaking termIn this subse
tion we 
onsider the FN a
tion (1.1) with a LO symmetry{breaking term,Se� =Xx n�nx � 4nx + �FN h(n � 4n)2 � (n � �y���n)2i+ �0nx � ho : (5.15)This ansatz does not in
lude all terms of next{to{leading order (NLO) in the derivativeexpansion. It should be viewed as a minimal modi�
ation of the original FN a
tion byadding an expli
it symmetry{breaking term to obtain a mass gap.The S
hwinger{Dyson equation generalizing (5.2) be
omes�Hxy + �FNHFNxy + �0G?xy = �M Æxy : (5.16)The new two{point fun
tion HFN is given by (C.19). The lo
al identities (5.16) are tobe solved for the three unknown 
ouplings �, �0 and �FN. Introdu
ing another redu
edtwo{point fun
tion, hFNxy � HFNxy =G?xy ; (5.17)whi
h is plotted in Fig. 11, we obtain, instead of (5.5) and (5.6), the (overdetermined)system, �hx + �FNhFNx + �0 = 0 ; x = 1; : : : ; 8 ; (5.18)�hy + �FNhFNy + �0 = 0 ; y > x ; (5.19)�h0 + �FNhFN0 + �0 = �� ; (5.20)to be solved for ea
h pair of latti
e distan
es (x; y), y > x. The number of independentpairs is 7(7 + 1)=2 = 28 for latti
e extension L = 16. The solutions, labelled by x and y,{ 13 {
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es x and y. The valuesasso
iated with y > x are plotted along verti
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es, the data seem to deviate less from the
entral values. (a) 
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For ea
h pair of latti
e distan
es (x; y) we thus have a 
ertain value for any of the three
ouplings (5.21{5.23). For ea
h parti
ular 
oupling those would all agree (within statisti
alerrors) if the NLO a
tion (5.15) would exa
tly des
ribe the Yang{Mills ensemble. Again,however, analogous to the LO 
ase, the 
ouplings do vary with latti
e distan
es x and y asshown in Fig. 12. Numeri
ally, one �nds,� = �0:232 � 0:035 ; (5.25)�0 = 0:257 � 0:014 ; (5.26)�FN = �0:0402 � 0:0004 : (5.27)Several remarks are in order. First of all, the relative errors, given by the standard deviationfrom the mean (see Fig. 12), are small 
ompared to the LO ansatz. In parti
ular, the signsof all 
ouplings are �xed. Interestingly, the addition of the FN 
oupling �FN, although smallnumeri
ally, has a large e�e
t: it reverts the sign of �0 as 
ompared to (5.11), implying anegative magnetization. This follows, for instan
e, from the Ward identity (5.12), whi
hstill holds for the a
tion (5.15), and the positivity of the sus
eptibility, hen
eM = ��0�? < 0 ; (5.28)in 
ontradistin
tion with the positive Yang{Mills value of Table 1.To further analyse the result for the 
ouplings, we divide (5.18) by �, leading to alinear relation between h and hFN (for x 6= 0),hx = ��0 � �FNhFNx ; �FN � �FN=� : (5.29)Thus, plotting hx against hFNx should yield a straight line with inter
ept ��0 and slope��FN. The numeri
al values (5.25{5.27) yield�0 = �1:108 � 0:228 ; �FN = 0:173 � 0:024 : (5.30)In analogy with the LO 
ase, we have numeri
ally 
he
ked the predi
tion (5.29) for the NLOa
tion (5.15) by a Monte Carlo simulation with 150 
on�gurations using the input 
ouplings(5.25{5.27). Fig. 13 
learly demonstrates the expe
ted linear behavior. A 
orresponding�t results in �0 = �1:120 ; �FN = 0:171 ; (5.31)being 
onsistent with the 
entral values of (5.30) to within one per
ent. We thus 
on
ludethat inverse Monte Carlo also works quite well for the NLO ensemble. For the sake ofexpli
it 
omparison with Fig.s 9 and 11 we display the redu
ed two{point fun
tions ob-tained by simulating the NLO a
tion in Fig.s 14 and 15.As expe
ted, the NLO simulation yields a negative magnetization,M = �0:49 ; (5.32)while the mass gap be
omes M = 1:2, i.e. slightly larger than the value listed in Table 1.{ 16 {
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e distan
es x and y. The 
entral value is �0 = �1:38.of hFN for small hFN so that in reality there may be no inter
ept at all.The behavior of �0 as a fun
tion of latti
e distan
es x and y may also be investigated.Dividing (5.22) by (5.21) we �nd�0 = �0=� = hxhFNy � hyhFNxhFNx � hFNy = �1:38 � 0:29 ; (5.34)where, in the analyti
 expression, the determinant dxy has dropped out. Fig. 17 shows thevariation of �0 with x and y. Again, a di�erent sign for �0 is 
ompletely out of rea
h.Following the logi
 of gradient expansions, one may argue that the e�e
tive a
tion(5.15) is supposed to represent the Yang{Mills ensemble only for large distan
es. Fig. 16,for instan
e, seems to indi
ate that the straight{line �t works parti
ularly well for the lastthree points to the right whi
h 
orrespond to x = 6; 7; 8, respe
tively. In physi
al units,this amounts to distan
es R larger than six latti
e units, i.e. R >� 0.8 fm. Restri
ting tothe analogous data points in Fig. 12, we obtain for the 
ouplings in (5.15),� = �0:2775 � 0:026 ; (5.35)�0 = 0:2661 � 0:012 ; (5.36)�FN = �0:040 � 0:0005 ; (5.37)and for the `redu
ed' ones,�0 = �0:97� 0:13 ; �FN = 0:15 � 0:01 : (5.38)All these do not di�er signi�
antly from the values (5.25{5.27) and (5.30) obtained byusing the unrestri
ted data set. In parti
ular, the sign of �0 remains positive. We therefore
on
lude that, also at large distan
es, the minimally modi�ed FN a
tion (5.15) fails todes
ribe the Yang{Mills ensemble of n{�elds.{ 19 {



6. Summary and dis
ussionWe have performed a latti
e test of the FN 
onje
ture stating that low{energy SU(2) Yang{Mills theory is equivalent to a Skyrme{type sigma model. More spe
i�
ally, FN suggestthat the knot solitons of their model might be related to the Yang{Mills glueball spe
trum.Using standard Monte Carlo te
hniques, we have generated an ensemble of SU(2)link �elds from the Wilson a
tion. This ensemble was then used to extra
t an asso
iatedensemble of 
olor ve
tors n, with n parametrizing the gauge invariant distan
e betweenthe maximally{Abelian and latti
e Landau gauge sli
es. As these gauges are 
lose to ea
hother, there is a preferred dire
tion for the n{�eld whi
h 
orresponds to expli
it symmetrybreaking. In this way we avoid the appearan
e of massless Goldstone bosons and thusgenerate a nonvanishing mass gap. A study of the exponential de
ay of 
orrelators yields amass gap 
lose to 1 GeV. To �nd the e�e
tive a
tion des
ribing the Yang{Mills ensemble ofn{�elds we have employed inverse Monte Carlo te
hniques. These are based on S
hwinger{Dyson and Ward identities whi
h we have derived analyti
ally on the latti
e. The identitieshave been evaluated numeri
ally for the Yang{Mills ensemble on the one hand, and forensembles stemming from LO and NLO e�e
tive a
tions on the other hand. As a result,we have found strong eviden
e that the ensemble generated from Yang{Mills theory 
annotbe des
ribed by the FN a
tion plus a minimal symmetry{breaking term to allow for a massgap. This follows from a number of dis
repan
ies between the two ensembles. First, andmost prominent, the sign of �0 is positive, implying negative magnetization M, at varian
ewith the value from the Yang{Mills ensemble. Se
ond, the redu
ed two{point fun
tionh (hFN) from the NLO ensemble in
reases (de
reases) with latti
e dis
tan
e x, while forYang{Mills the behavior is just the opposite. Third, the size of the mass gap is larger thanfor the Yang{Mills ensemble of n{�elds.It is quite 
on
eivable that magnetization (and sus
eptibility) 
an be re
overed 
or-re
tly by adding more (symmetry{breaking) terms to the NLO a
tion (work in this dire
tionis under way). The same remark applies to the mass gap. Note, however, that one 
annotnaturally expe
t the Yang{Mills and �{model mass gaps to 
oin
ide due to the nonlo
alrelation between n and the link variables U3. Whether this represents a problem is aquestion of s
ales. If the e�e
tive �{model were valid only for distan
es of, say, R >� 0.8fm 
orresponding to energies E <� 0.25 GeV, as suggested by the dis
ussion of Se
tion 5,then it would make no sense to address questions like the glueball spe
trum. An analogoussituation holds for the Fermi theory of weak intera
tions whi
h also is only e�e
tive mu
hbelow the W and Z s
ales.Finally, one should mention that there is still another fundamental problem asso
iatedwith des
ribing Yang{Mills theory in terms of e�e
tive �{models. Allowing for �nite tem-perature, the latter are in the universality 
lass of the 4d Heisenberg model, while SU(2)Yang{Mills theory is in the 3d Ising 
lass [28℄. This issue has been dis
ussed re
ently in the3As there is no unique or natural de�nition for n, one may try alternative pres
riptions for n = n[U ℄.A fairly lo
al one is the following. Write the (gauge �xed) links as Ux;� = u0x;� + iux;�. Then de�ne�nx � �ux=j�uxj with the link average �ux � P� ux;�. Under global gauge transformations this transformsproperly su
h that �n is another 
olor unit ve
tor.{ 20 {




ontext of 
onstru
ting e�e
tive a
tions via Abelian proje
tions [29, 30, 31℄. Again, if the�{model s
ale were below the 
riti
al temperature, the e�e
tive theory would only be validin the 
on�ned phase and would have nothing to say about the behavior of Yang{Millstheory 
lose to the phase transition. Otherwise, an in�nite number of operators would berequired whi
h, of 
ourse, is anything else but an `e�e
tive' des
ription. Summarizing, we
on
lude that, while a reasonable e�e
tive model generalizing the FN a
tion may exist inprin
iple, it will be of little pra
ti
al use.A
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e.A. ConventionsLeft and right latti
e derivatives are de�ned as��fx � fx+� � fx ; (A.1)�y�fx � fx�� � fx : (A.2)The ordinary latti
e Lapla
ian 4 � ��y��� is a negative semi{de�nite operator. Its a
tionon latti
e fun
tions f is given by4fx � �X� (2fx � fx+� � fx��) : (A.3)The 
ovariant Lapla
ian 4[U ℄ in the adjoint representation a
ts as4ab[U ℄f bx � �X� �2fax �Rabx;� f bx+� �Rbax��;� f bx��� ; (A.4)where we have de�ned the adjoint linkRabx;� � 12tr(�aUx;�� bU yx;�) : (A.5)B. Relating LLG and MAGFrom (2.5) it follows immediately that the LLG minimizes the fun
tional [32℄�FLLG �Xl tr(1� 
Ul) ; l � (x; �) ; (B.1)
{ 21 {



and thus tends to bring the links Ul 
lose to 1. The MAG, on the other hand, minimizes�FMAG �Xl (1� gR33l ) ; (B.2)and thus wants to bring the 33{entry of the adjoint link Rabl 
lose to 1. From (A.5) it isobvious that, if Ul equals unity, the same will be true for Rl. This 
an be made more pre
ise:if Ul ' 1+ iaAl, Al hermitean, then it is an easy exer
ise to show that R33l = 1 + O(a2).In this sense, the LLG is 
lose to the MAG.C. S
hwinger{Dyson equations and Ward identitiesWe begin with 
omputing the in�nitesimal rotations of the various 
ontributions in (4.2)and (4.3) to the e�e
tive a
tion. It turns out that, for all Sj, the a
tion of the angularmomentum 
an be written as iLxSj = nx �Kjx ; (C.1)(and analogous for the S0k) with the ve
tors Kjx and K 0kx given byK1x = 24nx (C.2)K2x = 242 nx (C.3)K3x = 2 [4nx(nx � 4nx) +4 (nx(nx � 4nx))℄ (C.4)K4x = 2 h�y���nx(nx � �y���nx) + �y��� �nx(nx � �y���nx)�i (C.5)K 01x = h (C.6)K 02x = 2h (nx � h) (C.7)K 03x = h (nx � 4nx) +4nx(nx � h) +4(nx(nx � h)) : (C.8)Choosing the F 's in (4.13) as nax, naxnby and naxnbyn
z, respe
tively, results in the Wardidentities Giixy�01 + 2G3iixxy�02 +G�iixxy�03 = �2G3y ; (C.9)Gii3xyz�01 + 2G3ii3xxyz�02 +G�ii3xxyz�03 = �2G33yz +Giiyz ; (C.10)Gii33xyzz0�01 + 2G3ii33xxyzz0�02 +G�ii33xxyzz0�03 = �2G333yzz0 + 2Gi(i3)yzz0 : (C.11)Here, the supers
ript (i3) denotes symmetrization in i, 3, and we have introdu
ed theshorthand notations Gab
:::xyz::: � hnaxnbyn
z : : :i ; (C.12)Gii:::xy::: � Xx Gii:::xy::: ; (C.13)G3ii:::xxy::: � Xx hn3xnixniy : : :i ; (C.14)G�ii:::xxy::: � Xx h(nax4nax)nixniy : : :i ; (C.15)
{ 22 {



with x denoting summation over all latti
e sites x. In parti
ular, one hasG3y �M ; Giixy � 2�? ; Giixy � 2G?xy ; G33xy � Gkxy : (C.16)It seems that a parti
ular re
urren
e pattern arises in (C.9{C.11) that 
ould be used to de-rive a Ward identity for an insertion of an arbitrary number of n's. For the NLO derivativeexpansion, however, the three identities are suÆ
ient to determine the symmetry{breaking
ouplings �0.For the parti
ular 
ase that F in (4.10) equals n, F ax = nax, we 
an give the generalS
hwinger{Dyson equation in 
losed form,Xj �jHj;xy +Xk �0kH 0k;xy = �MÆxy ; (C.17)where we have introdu
ed the two{point fun
tionHj;xy � hnixn[ iy K3℄jyi ; (C.18)and, 
ompletely analogous, H 0k;xy. The FN terms are (C.4) minus (C.5), so that the relevanttwo{point fun
tion be
omes HFNxy � H3;xy �H4;xy ; (C.19)whi
h has been used in (5.16).Referen
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