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E�etive sigma models and lattie Ward identities
Leander Dittmann, Thomas Heinzl� and Andreas WipfTheoretish{Physikalishes Institut, Friedrih{Shiller{Universit�at Jena,Max{Wien{Platz 1, 07743 Jena, GermanyE-mail: l.dittmann�tpi.uni-jena.de, t.heinzl�tpi.uni-jena.de,a.wipf�tpi.uni-jena.deAbstrat:We perform a lattie analysis of the Faddeev{Niemi e�etive ation onjeturedto desribe the low{energy setor of SU(2) Yang{Mills theory. To this end we generatean ensemble of unit vetor �elds (`olor spins') n from the Wilson ation. The ensembledoes not show long{range order but exhibits a mass gap of the order of 1 GeV. Fromthe distribution of olor spins we reonstrut approximate e�etive ations by means ofexat lattie Shwinger{Dyson and Ward identities (`inverse Monte Carlo'). We show thatthe generated ensemble annot be reovered from a Faddeev{Niemi ation, modi�ed in aminimal way by adding an expliit symmetry{breaking term to avoid the appearane ofGoldstone modes.Keywords: e�etive �eld theory, lattie gauge theory, (inverse) Monte Carlo tehniques.
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1. IntrodutionCon�nement in pure Yang{Mills theory is still a theoretial hallenge. The problem a-tually has two faes. On the one hand, there is on�nement of stati external soures inthe fundamental representation whih manifests itself through the appearane of a linearpotential (nonzero string tension). On the other hand, there should be gluon on�nementimplying a �nite range of the gluoni interations, i.e. a mass gap. How the two faes arerelated is largely unlear at the moment.Reently, Faddeev and Niemi (FN) have suggested that the infrared dynamis of gluemight be desribed by the following low{energy e�etive ation [1℄,SFN = Z d4xhm2(��n)2 + 1e2H��H��i : (1.1)Here, n is a unit vetor �eld with values on S2, n2 � nana = 1, a = 1; 2; 3; m is adimensionful and e a dimensionless oupling onstant. The FN `�eld strength' is de�nedas H�� � n � ��n� ��n : (1.2)Faddeev and Niemi argued that (1.1) \is the unique loal and Lorentz{invariant ationfor the unit vetor n whih is at most quadrati in time derivatives so that it admits aHamiltonian interpretation and involves all suh terms that are either relevant or marginalin the infrared limit".It has been shown that SFN supports string{like knot solitons [2, 3, 4℄, haraterizedby a topologial harge whih equals the Hopf index of the map n : S3 ! S2. Here,n is supposed to be stati and approahes a uniform limit at spatial in�nity, n1 = ez.In analogy with the Skyrme model, the H2 term is needed for stabilization. The knotsolitons an possibly be identi�ed with losed gluoni ux tubes and are thus onjeturedto orrespond to glueballs. For a rewriting in terms of urvature{free SU(2) gauge �eldsand the orresponding reinterpretation of SFN we refer to [5℄.In order for the model to really make sense, however, the following problems have tobe solved. First of all, neither the interpretation of n nor its relation to Yang{Mills theoryhave been fully lari�ed. An analyti derivation of the FN ation requires� an appropriate hange of variables, A! (n;X), relating the Yang{Mills potential Ato n and some remainder X� the funtional integration over X to arrive at an e�etive ation Se� for the n-�eld.{ 1 {



Some progress in this diretion has been made [6, 7, 8, 9, 10, 11℄ on the basis of theManton{Cho deomposition [12, 13℄,A� = C�n� n� ��n+W � ; (1.3)where C is an Abelian onnetion and n �W � = 0. Nevertheless, it is fair to say that thereare no onlusive results up to now.Seond, there is no reason why in a low{energy e�etive ation for the n{�elds bothoperators in the FN `Skyrme term', whih an be rewritten asH2 = (��n � ��n)2 � (��n � ��n)2 ; (1.4)should have the same oupling. Third, and oneptually most important, SFN has thesame spontaneous symmetry breaking pattern as the nonlinear �{model, SU(2) ! U(1).Hene, it should admit two Goldstone bosons and one expets to �nd no mass gap. Inorder to exlude these unwanted massless modes we have reently suggested to break theglobal SU(2) expliitly [14℄, an idea that has subsequently also been adopted by Faddeevand Niemi [15℄.In what follows the FN hypothesis will be tested on the lattie. To avoid the appearaneof Goldstone bosons we allow for expliit symmetry{breaking terms.2. Generating an SU(2) lattie ensemble of n{�eldsThe oneptual problem to be solved in the �rst plae is to obtain a reasonable ensembleof n{�elds. The (lattie version of the) deomposition (1.3) is of no help: it assumes somepartiular hoie of n on whih the deomposition is then based. One way of de�ning ann{�eld is via Abelian gauge �xing, originally introdued by `t Hooft [16℄. A prominentexample in this lass of gauges is the maximally Abelian gauge (MAG) whih is obtainedvia maximizing the funtional [17℄FMAG[U ; g℄ �Xx;� tr��3 gUx;��3 gU yx;�� �Xx;� tr�nxUx;�nx+�U yx;�� � ~FMAG[U ;n℄ ; (2.1)with respet to the gauge transformation g. The maximizing g then de�nes the n{�eldaording to nx � gyx �3 gx � nx � � : (2.2)Instead of maximizing FMAG with respet to g one an equivalently maximize ~FMAG withrespet to n [18℄ whih results in the ondition4[U ℄nx � �xnx : (2.3)Here, 4[U ℄ denotes the ovariant Laplaian in the adjoint representation (see App. A),while �x is a Lagrange multiplier imposing that nx is normalized to unity, loally ateah lattie site x. In priniple, (2.3) an be solved for the �eld n assoiated with the{ 2 {
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Ux;�; (2.5)with respet to the gauge transformation 
. In this way we impose some `preonditioning'[19℄ whih (i) eliminates the randomness in our Yang{Mills ensemble and (ii) leaves aresidual global SU(2){symmetry. The Landau gauge on�gurations are then plugged intothe MAG funtional (2.1) whih subsequently is maximized with respet to g. The gaugetransformation g obtained this way determines n aording to (2.2). One may say thatg (and hene n) measure the gauge{invariant (!) distane between the LLG and MAGgauge slies (see Fig. 2). In App. B we show that LLG and MAG are `lose' to eah other.Therefore, the maximizing g is on average lose to unity, hene, on average, n will bealigned in the positive 3{diretion. In this way we have expliitly broken the global SU(2)down to a global U(1). { 3 {
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Figure 2: Gauge invariant de�nition of n � gy�3g. The gauge equivalent on�gurations A1 andA2 are both mapped onto the same `representatives' on the LLG or MAG slies (ignoring Gribovopies). Thus, they are both assoiated with the same gauge transformation g de�ning n.
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Figure 3: Behavior of the LLG{funtional using di�erent algorithms. The parameter � measuresthe `distane' from the LLG, i.e. for � = 0 the LLG is ahieved.All omputations have been done on a 164{lattie with Wilson oupling � = 2:35,lattie spaing 0:13 fm and periodi boundary onditions. For the LLG we used Fourieraelerated steepest desent [20℄ (see Fig. 3). The MAG was ahieved using two indepen-dent algorithms, one (AI) using iterations based on elementary geometri manipulations(inluding overrelaxation steps), the other (AII) being analogous to LLG �xing (see Fig. 4).
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Figure 6: Behavior of the two{point orrelators of the n{�eld along a lattie axis (labelled byoordinate x). Note the di�erene between algorithms AI and AII (FFT). Error bars exhibit thestatistial error of the Monte Carlo simulation.is equivalent to a spin{glass problem with an enormous number of degenerate extrema.This implies that the algorithms AI and AII will almost ertainly end up in di�erent loalmaxima, whih explains the di�erene between rows one and two in Table 1.{ 6 {
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Figure 7: The transverse orrelation funtion along an arbitrary lattie axis, �tted as G?(x) =a1 osh(M(x� L=2)) + a2 with a1 = 0:0048, a2 = �0:0053, M = 0:6084. Data points are obtainedwith algorithm AI. algorithm M a�4�? aM M [GeV℄AI 0.438 92.57 0.61 0.95AII 0.366 79.66 0.67 1.03Table 1: Numerial results for some observables as obtained from the longitudinal and transversetwo{point funtions, Gk and G?, respetively.As shown in the last olumn of Table 1, the numerial results for the mass gap M leadto a value of about 1 GeV in physial units.n3 is a loal funtional of the ni, n3 = (1�nini)1=2. Thus, one expets the same expo-nential deay for the longitudinal orrelator Gk. This an be on�rmed with a numerialvalue for the mass gap of M = 0:66 a�1.To improve statistis, we have alulated the time{slie orrelator,C?(t) � L�3Xx G?x;t : (3.3)In the ontinuum, for purely exponential deay of G?, this would beome proportional toa modi�ed Bessel funtion K2. An assoiated �t works very well as is shown in Fig. 8.Fitting the time{slie orrelator aording to Fig. 8, we obtain for the mass gapaM = 0:642 i.e. M = 0:97 GeV : (3.4)This is the value with the smallest statistial errors.The mass gap obtained di�ers signi�antly from the SU(2) mass gap, MSU(2) ' 1.5GeV, obtained diretly from a Wilson ensemble with � = 2:4 [24℄. We believe that the{ 7 {
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Figure 8: The time{slie orrelator �tted to a (properly symmetrized) Bessel funtion, C?(t) =1[t2K2(Mt) + (t�L)2K2(M(L� t))℄ + 2, where 1 = 0:0006, 2 = 0:0001 and M = 0:6423. Datapoints are obtained with algorithm AI.di�erene is due to the highly nonloal relation between the original Yang{Mills degrees offreedom (the link variables) and the olor spin n. After all, we have impliitly solved thepartial di�erential equation (2.3) with link variables U in Landau gauge entering the adjointLaplaian. The solution n will learly be a nonloal funtional of these U 's. Consequently,we annot expet that the exponential deay of G?[n℄ will be governed by the lowestexitation of the U{ensemble.4. E�etive ation and Shwinger{Dyson equationsAt this point it is natural to ask whether there is an e�etive ation Se� [n℄ that reproduesthe distribution of n{�elds leading to the results of the previous setion.At low energies, it should make sense to employ an ansatz in terms of a derivativeexpansion, Se� =Xj �jSj [n℄ +Xj �0j S0j[n;h℄ ; (4.1)with O(3) invariant operators Sj and noninvariant operators S0j , whih are ordered byinreasing mass dimension. Up to dimension four, one has the symmetri terms,S1 = (n;4n) ; S2 = (n;42n) ;S3 = �n � 4n;n � 4n� ; S4 = �n � �y���n;n � �y���n� ; (4.2)
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and the symmetry{breaking terms inluding a unit vetor `soure �eld' h [14℄ (whih anbe thought of as the diretion of an external magneti �eld),S01 = (n;h) ; S02 = (n � h;n � h) ; S03 = (n � 4n;n � h) : (4.3)In the above, we have introdued the salar produts(f; g) �Xx fxgx ; u � v � uava ; (4.4)and the usual lattie Laplaian 4 (see App. A).Note that the n{�eld on�gurations are lassi�ed by the Hopf invariant irrespetiveof the partiular form of the (e�etive) ation. This, together with the usual saling argu-ments, shows that the ation (4.1) with the operators (4.2) and (4.3) should still supportlassial knot soliton solutions. Our ansatz thus does not exlude this important feature.The ouplings in (4.1) an be determined by inverse Monte Carlo tehniques. The no-tion is suggestive: instead of reating an ensemble from a given ation, one wants to om-pute a (trunated) ation whih gives rise to the given ensemble of n{�elds. A partiularapproah uses the Shwinger{Dyson equations [25, 26℄. These represent an overdeterminedlinear system whih an be used to solve for the ouplings in terms of orrelation funtions.The latter are nothing but the oeÆients of the linear system.For an unonstrained salar �eld �, the Shwinger{Dyson equations follow from trans-lational invariane of the funtional measure, implying0 = Z D�PxnF [�℄ exp(�S[�℄)o ; (4.5)where Px � �iÆ=Æ�x is the (funtional) momentum operator, and F an arbitrary fun-tional1 of the �eld �. For a onstrained �eld like n with a urved target spae things areslightly more subtle [25℄. There is, however, a rather elegant way to derive the Shwinger{Dyson equations if one exploits the isometries of the target spae S2 [27℄. The target spaemeasure, Dn =Yx dnx Æ�n2x � 1� ; (4.6)is obviously rotationally invariant, i.e. under n! Rn, R 2 O(3). This implies the modi�edShwinger{Dyson identityZ DnLx nF [n℄ exp �� Se� [n;h℄�o = 0 ; (4.7)where Lx denotes the angular momentum operator (at lattie site x),iLx = nx � ��nx or iLax � �abnbx ÆÆnx : (4.8)In shorthand{notation, (4.7) an be rewritten ashLx F [n℄� F [n℄Lx Se� [n℄i = 0 : (4.9)1Usually one hooses F [�℄ = �(x1) : : : �(xk). { 9 {



These exat identities an be used to determine the unknown ouplings �j . To this endone hooses a set of �eld monomials Fi[n℄ and plugs them into (4.9) together with the form(4.1) of the ation. This yields the loal linear systemXj hFiLx Sji�j +Xk hFiLx S0ki�0k = hLx Fii ; (4.10)whih, in priniple, an be solved numerially, for instane by least{square methods. Theidentities obtained so far hold for arbitrary ations Se� [n℄. In partiular, we have not madeuse of any symmetries. Taking the latter into aount will lead to Ward identities.Let us speialize to our lattie e�etive ation (4.1). It is a sum of a symmetri partS ontaining the terms (4.2) and an asymmetri part S0 ontaining the terms (4.3),Se� = S[n℄ + S0[n;h℄ : (4.11)Due to the invariane of S under global O(3) rotations it is an O(3){singlet and heneannihilated by the total angular momentum,LS = 0; L =Xx Lx ; (4.12)suh that LSe� = LS0. Thus, summing over all lattie sites x in (4.9) yields the (broken)Ward identity, hLF [n℄� F [n℄LS0[n;h℄i = 0 ; (4.13)where the seond terms ontains the in�nitesimal hange of the non-invariant part S0 ofthe e�etive ation under rotations of n. Note that the oupling onstants �j of theO(3){symmetri operators Sj have disappeared in the Ward identity (4.13) so that onlythe symmetry{breaking ouplings �0 are present. We have olleted the expliit lattieShwinger{Dyson and Ward identities used in our simulations in App. C. As the formerare loal relations, they naturally ontain more information than the global Ward identities.In partiular, one does have aess to length sales.5. Comparing Yang{Mills and FN ensembles5.1 Leading{order ansatzTo leading order (LO) in the derivative expansion we have a standard nonlinear sigmamodel with symmetry{breaking term,Se� =Xx (�nx � 4nx + �0nx � h) ; h � ez : (5.1)Inverse Monte Carlo amounts to determining the ouplings � and �0 suh that the probabil-ity distribution assoiated with the LO ation (5.1) �ts the observables of the Yang{Millsensemble of n{�elds2. The assoiated Shwinger{Dyson equation (4.10), with F [n℄ = nax,an be written as �Hxy + �0G?xy = �M Æxy ; (5.2)2Throughout this setion, we refer to algorithm AI.{ 10 {



where H denotes the (antisymmetrized) two{point funtion of ni and ni4n3,Hxy � hnixniy4n3yi � hnixn3y4niyi � hnixn[ iy 4n3℄y i : (5.3)To analyse (5.2) we de�ne a `redued' two{point funtion hxy and magnetization �,hxy � Hxy=G?xy ; � �M=G?xx ; (5.4)and rewrite (5.2) as the inhomogeneous system (using translational invariane to replaex� y ! x), �hx + �0 = 0 ; x = 1; : : : ; 8 ; (5.5)�h0 + �0 = �� : (5.6)The solution is found to be � = 1hx � h0 � ; (5.7)�0 = � hxhx � h0 � ; (5.8)with the numerial boundary value given by h0 = 0:1410 (f. Fig. 9). Clearly, the system(5.5), (5.6) is overdetermined (nine equations for two unknowns). This is reeted in thefat that � and �0 in (5.7) and (5.8) depend on the lattie distane x via hx. If the Yang{Mills ensemble were exatly desribed by the LO ation (5.1), there would be no suhx{dependene. Rather, for any x = 1; : : : ; 8, we would have the same values for � and �0,respetively. Thus, to test the quality of the LO ansatz, we divide (5.8) by (5.7) showingexpliitly that hx should be onstant,hx = ��0� � ��0 = onst: ; x 6= 0 : (5.9)Fig. 9 shows that this is not the ase. Therefore, a minimal sigma model with symmetry{breaking term does not yield a good representation of our Yang{Mills ensemble of n{�elds.If we nevertheless insist on the LO desription, we have to `�t' hx by a horizontal lineso that the numerial determination of the ouplings via (5.7) and (5.8) is beset by largeerrors, � = �1:41� 5:25 ; (5.10)�0 = �1:33� 0:74 : (5.11)Obviously, � (inluding its sign) remains essentially undetermined. For �0 the situation isslightly better.In order to assess the errors it is worthwhile to hek whether our numerial aurayis suÆient to really validate the Shwinger{Dyson identity (5.2) for the LO ation (5.1)on the lattie. To this end we have simulated (5.1) with a ombination of Metropolis andluster algorithms produing a number of 150 on�gurations using the entral values (5.10)and (5.11) as the input ouplings. The result for hx in the LO ensemble is presented in{ 11 {
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identity (4.13) assumes the simple form�? = �M=�0 : (5.12)A onsisteny hek is provided by noting that this an diretly be obtained by summing(5.2) over x. Plugging in the magnetization from Table 1 and �0 from (5.11) we �nd�? = 0:33 � 0:18 ; (5.13)This is way o� the Yang{Mills value of 92.6 displayed in Table 1. For magnetization andmass gap the simulation of the LO ensemble yields the valuesM = 0:93 ; M = 1:5 ; (5.14)whih are both larger than the Yang{Mills values of Table 1.The disussion of this subsetion thus shows quite learly that more operators willhave to be inluded in order to possibly make inverse Monte Carlo work reasonably well.5.2 FN ation with symmetry{breaking termIn this subsetion we onsider the FN ation (1.1) with a LO symmetry{breaking term,Se� =Xx n�nx � 4nx + �FN h(n � 4n)2 � (n � �y���n)2i+ �0nx � ho : (5.15)This ansatz does not inlude all terms of next{to{leading order (NLO) in the derivativeexpansion. It should be viewed as a minimal modi�ation of the original FN ation byadding an expliit symmetry{breaking term to obtain a mass gap.The Shwinger{Dyson equation generalizing (5.2) beomes�Hxy + �FNHFNxy + �0G?xy = �M Æxy : (5.16)The new two{point funtion HFN is given by (C.19). The loal identities (5.16) are tobe solved for the three unknown ouplings �, �0 and �FN. Introduing another reduedtwo{point funtion, hFNxy � HFNxy =G?xy ; (5.17)whih is plotted in Fig. 11, we obtain, instead of (5.5) and (5.6), the (overdetermined)system, �hx + �FNhFNx + �0 = 0 ; x = 1; : : : ; 8 ; (5.18)�hy + �FNhFNy + �0 = 0 ; y > x ; (5.19)�h0 + �FNhFN0 + �0 = �� ; (5.20)to be solved for eah pair of lattie distanes (x; y), y > x. The number of independentpairs is 7(7 + 1)=2 = 28 for lattie extension L = 16. The solutions, labelled by x and y,{ 13 {
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For eah pair of lattie distanes (x; y) we thus have a ertain value for any of the threeouplings (5.21{5.23). For eah partiular oupling those would all agree (within statistialerrors) if the NLO ation (5.15) would exatly desribe the Yang{Mills ensemble. Again,however, analogous to the LO ase, the ouplings do vary with lattie distanes x and y asshown in Fig. 12. Numerially, one �nds,� = �0:232 � 0:035 ; (5.25)�0 = 0:257 � 0:014 ; (5.26)�FN = �0:0402 � 0:0004 : (5.27)Several remarks are in order. First of all, the relative errors, given by the standard deviationfrom the mean (see Fig. 12), are small ompared to the LO ansatz. In partiular, the signsof all ouplings are �xed. Interestingly, the addition of the FN oupling �FN, although smallnumerially, has a large e�et: it reverts the sign of �0 as ompared to (5.11), implying anegative magnetization. This follows, for instane, from the Ward identity (5.12), whihstill holds for the ation (5.15), and the positivity of the suseptibility, heneM = ��0�? < 0 ; (5.28)in ontradistintion with the positive Yang{Mills value of Table 1.To further analyse the result for the ouplings, we divide (5.18) by �, leading to alinear relation between h and hFN (for x 6= 0),hx = ��0 � �FNhFNx ; �FN � �FN=� : (5.29)Thus, plotting hx against hFNx should yield a straight line with interept ��0 and slope��FN. The numerial values (5.25{5.27) yield�0 = �1:108 � 0:228 ; �FN = 0:173 � 0:024 : (5.30)In analogy with the LO ase, we have numerially heked the predition (5.29) for the NLOation (5.15) by a Monte Carlo simulation with 150 on�gurations using the input ouplings(5.25{5.27). Fig. 13 learly demonstrates the expeted linear behavior. A orresponding�t results in �0 = �1:120 ; �FN = 0:171 ; (5.31)being onsistent with the entral values of (5.30) to within one perent. We thus onludethat inverse Monte Carlo also works quite well for the NLO ensemble. For the sake ofexpliit omparison with Fig.s 9 and 11 we display the redued two{point funtions ob-tained by simulating the NLO ation in Fig.s 14 and 15.As expeted, the NLO simulation yields a negative magnetization,M = �0:49 ; (5.32)while the mass gap beomes M = 1:2, i.e. slightly larger than the value listed in Table 1.{ 16 {
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6. Summary and disussionWe have performed a lattie test of the FN onjeture stating that low{energy SU(2) Yang{Mills theory is equivalent to a Skyrme{type sigma model. More spei�ally, FN suggestthat the knot solitons of their model might be related to the Yang{Mills glueball spetrum.Using standard Monte Carlo tehniques, we have generated an ensemble of SU(2)link �elds from the Wilson ation. This ensemble was then used to extrat an assoiatedensemble of olor vetors n, with n parametrizing the gauge invariant distane betweenthe maximally{Abelian and lattie Landau gauge slies. As these gauges are lose to eahother, there is a preferred diretion for the n{�eld whih orresponds to expliit symmetrybreaking. In this way we avoid the appearane of massless Goldstone bosons and thusgenerate a nonvanishing mass gap. A study of the exponential deay of orrelators yields amass gap lose to 1 GeV. To �nd the e�etive ation desribing the Yang{Mills ensemble ofn{�elds we have employed inverse Monte Carlo tehniques. These are based on Shwinger{Dyson and Ward identities whih we have derived analytially on the lattie. The identitieshave been evaluated numerially for the Yang{Mills ensemble on the one hand, and forensembles stemming from LO and NLO e�etive ations on the other hand. As a result,we have found strong evidene that the ensemble generated from Yang{Mills theory annotbe desribed by the FN ation plus a minimal symmetry{breaking term to allow for a massgap. This follows from a number of disrepanies between the two ensembles. First, andmost prominent, the sign of �0 is positive, implying negative magnetization M, at varianewith the value from the Yang{Mills ensemble. Seond, the redued two{point funtionh (hFN) from the NLO ensemble inreases (dereases) with lattie distane x, while forYang{Mills the behavior is just the opposite. Third, the size of the mass gap is larger thanfor the Yang{Mills ensemble of n{�elds.It is quite oneivable that magnetization (and suseptibility) an be reovered or-retly by adding more (symmetry{breaking) terms to the NLO ation (work in this diretionis under way). The same remark applies to the mass gap. Note, however, that one annotnaturally expet the Yang{Mills and �{model mass gaps to oinide due to the nonloalrelation between n and the link variables U3. Whether this represents a problem is aquestion of sales. If the e�etive �{model were valid only for distanes of, say, R >� 0.8fm orresponding to energies E <� 0.25 GeV, as suggested by the disussion of Setion 5,then it would make no sense to address questions like the glueball spetrum. An analogoussituation holds for the Fermi theory of weak interations whih also is only e�etive muhbelow the W and Z sales.Finally, one should mention that there is still another fundamental problem assoiatedwith desribing Yang{Mills theory in terms of e�etive �{models. Allowing for �nite tem-perature, the latter are in the universality lass of the 4d Heisenberg model, while SU(2)Yang{Mills theory is in the 3d Ising lass [28℄. This issue has been disussed reently in the3As there is no unique or natural de�nition for n, one may try alternative presriptions for n = n[U ℄.A fairly loal one is the following. Write the (gauge �xed) links as Ux;� = u0x;� + iux;�. Then de�ne�nx � �ux=j�uxj with the link average �ux � P� ux;�. Under global gauge transformations this transformsproperly suh that �n is another olor unit vetor.{ 20 {



ontext of onstruting e�etive ations via Abelian projetions [29, 30, 31℄. Again, if the�{model sale were below the ritial temperature, the e�etive theory would only be validin the on�ned phase and would have nothing to say about the behavior of Yang{Millstheory lose to the phase transition. Otherwise, an in�nite number of operators would berequired whih, of ourse, is anything else but an `e�etive' desription. Summarizing, weonlude that, while a reasonable e�etive model generalizing the FN ation may exist inpriniple, it will be of little pratial use.AknowledgmentsThe authors are indebted to S. Shabanov for suggesting this investigation and to P. van Baalfor raising the issue of Goldstone bosons. Disussions with F. Brukmann, P. de Forrand,A. di Giaomo, A. Gonz�alez-Arroyo, D. Hansen, M. Hasenbush, K. Langfeld, E. Seiler,M. Teper, and V. Zakharov are gratefully aknowledged. The work of T.H. was supportedby DFG under ontrat Wi 777/5-1. He thanks the theory department of LMU Munih,in partiular V. Mukhanov, for the hospitality extended to him. L.D. thanks G. Bali forproviding the ode for algorithm AI as well as helpful advie.A. ConventionsLeft and right lattie derivatives are de�ned as��fx � fx+� � fx ; (A.1)�y�fx � fx�� � fx : (A.2)The ordinary lattie Laplaian 4 � ��y��� is a negative semi{de�nite operator. Its ationon lattie funtions f is given by4fx � �X� (2fx � fx+� � fx��) : (A.3)The ovariant Laplaian 4[U ℄ in the adjoint representation ats as4ab[U ℄f bx � �X� �2fax �Rabx;� f bx+� �Rbax��;� f bx��� ; (A.4)where we have de�ned the adjoint linkRabx;� � 12tr(�aUx;�� bU yx;�) : (A.5)B. Relating LLG and MAGFrom (2.5) it follows immediately that the LLG minimizes the funtional [32℄�FLLG �Xl tr(1� 
Ul) ; l � (x; �) ; (B.1)
{ 21 {



and thus tends to bring the links Ul lose to 1. The MAG, on the other hand, minimizes�FMAG �Xl (1� gR33l ) ; (B.2)and thus wants to bring the 33{entry of the adjoint link Rabl lose to 1. From (A.5) it isobvious that, if Ul equals unity, the same will be true for Rl. This an be made more preise:if Ul ' 1+ iaAl, Al hermitean, then it is an easy exerise to show that R33l = 1 + O(a2).In this sense, the LLG is lose to the MAG.C. Shwinger{Dyson equations and Ward identitiesWe begin with omputing the in�nitesimal rotations of the various ontributions in (4.2)and (4.3) to the e�etive ation. It turns out that, for all Sj, the ation of the angularmomentum an be written as iLxSj = nx �Kjx ; (C.1)(and analogous for the S0k) with the vetors Kjx and K 0kx given byK1x = 24nx (C.2)K2x = 242 nx (C.3)K3x = 2 [4nx(nx � 4nx) +4 (nx(nx � 4nx))℄ (C.4)K4x = 2 h�y���nx(nx � �y���nx) + �y��� �nx(nx � �y���nx)�i (C.5)K 01x = h (C.6)K 02x = 2h (nx � h) (C.7)K 03x = h (nx � 4nx) +4nx(nx � h) +4(nx(nx � h)) : (C.8)Choosing the F 's in (4.13) as nax, naxnby and naxnbynz, respetively, results in the Wardidentities Giixy�01 + 2G3iixxy�02 +G�iixxy�03 = �2G3y ; (C.9)Gii3xyz�01 + 2G3ii3xxyz�02 +G�ii3xxyz�03 = �2G33yz +Giiyz ; (C.10)Gii33xyzz0�01 + 2G3ii33xxyzz0�02 +G�ii33xxyzz0�03 = �2G333yzz0 + 2Gi(i3)yzz0 : (C.11)Here, the supersript (i3) denotes symmetrization in i, 3, and we have introdued theshorthand notations Gab:::xyz::: � hnaxnbynz : : :i ; (C.12)Gii:::xy::: � Xx Gii:::xy::: ; (C.13)G3ii:::xxy::: � Xx hn3xnixniy : : :i ; (C.14)G�ii:::xxy::: � Xx h(nax4nax)nixniy : : :i ; (C.15)
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