
Spectral asymmetry on the ball and

asymptotics of the asymmetry kernel

A. Kirchberg

Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universität Jena

Max-Wien-Platz 1, 07743 Jena, Germany

K. Kirsten∗

Department of Mathematics, Baylor University

Waco, TX 76798, USA

E. M. Santangelo†

Departamento de F́ısica, Universidad Nacional de La Plata

C.C.67, 1900 La Plata, Argentina

A. Wipf‡

Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universität Jena

Max-Wien-Platz 1, 07743 Jena, Germany

May 9, 2006

Let i/∂ be the Dirac operator on a D = 2d dimensional ball B with radius
R. We calculate the spectral asymmetry η(0, i/∂) for D = 2 and D = 4,
when local chiral bag boundary conditions are imposed. With these bound-
ary conditions, we also analyze the small-t asymptotics of the heat trace
Tr(FPe−tP 2

) where P is an operator of Dirac type and F is an auxiliary
smooth smearing function.

∗e-mail: Klaus Kirsten@baylor.edu
†e-mail: mariel@obelix.fisica.unlp.edu.ar
‡e-mail: wipf@tpi.uni-jena.de

1



1 Introduction

Local boundary conditions of chiral bag type for Euclidean Dirac operators have at-
tracted, over many years, the interest of both mathematicians and physicists.

From the physical point of view, such conditions are closely related to those appearing
in the effective models of quark confinement known as chiral bag models [1]. They
contain a real parameter θ, which is to be interpreted as the analytic continuation of the
well known θ-parameter in gauge theories. Indeed, for θ 6= 0, the effective actions for
Dirac fermions contain a CP -breaking term proportional to θ and proportional to the
instanton number [2, 3]. Moreover, these boundary conditions can be applied to one-loop
quantum cosmology [4, 5],supergravity theories [6] and branes [7] and are important in
the investigation of conformal anomalies [8]. Applications to finite temperature problems
were studied in [3, 9, 10]

From a mathematical point of view, as shown in [3], Euclidean Dirac operators under
local boundary conditions of chiral type define self-adjoint boundary problems. More
recently, it was shown [12] that both the first order boundary value problem and its
associated second order one are strongly elliptic. The asymptotics of the smeared trace
of the heat kernel was studied, for the second order problem on general Riemannian
manifolds with boundary, in [11], where use was made of functorial methods [13, 14, 15]
and special case calculations presented in [16, 12]; in this context see also [17].

The main characteristic of these boundary conditions, as compared to nonlocal or Atiyah-
Patodi-Singer [18] ones, is the explicit breaking of chiral symmetry. Since the Dirac
operator has no zero modes this breaking comes only from the excited modes. Since the
asymmetry is encoded in the corresponding eta-function, the study of this function if of
central importance, physical applications for example arising in the analysis of fermion
number fractionization in different field theory models [19, 20, 21, 22].

A recent step forward in the analysis of the eta function is [17], where the eta function
associated to the boundary value problem was shown to be regular at s = 0, and
where some properties of the asymptotic coefficients in the trace of the smeared kernel
corresponding to the eta function were obtained.

In the present paper, we evaluate the spectral asymmetry for Dirac operators on the ball
in two and four Euclidean dimensions, with their domain defined by local boundary con-
ditions of chiral bag type. Moreover, making use of these results, and the corresponding
ones for cylindrical manifolds obtained in [12, 23] we determine some properties of the
leading asymptotic coefficients in the trace of the smeared kernel corresponding to the
eta function, for arbitrary Riemannian manifolds.

The outlay of the paper is as follows: In section 2 we present a new method, based
on Group Theory, to obtain the spectrum of the boundary value problem under study.
Section 3 presents an integral formula for the spectral asymmetry of the Euclidean Dirac
operator in a ball of arbitrary even dimension. Section 4 is devoted to the explicit calcu-

2



lation of the asymmetry in a disk, while the specral asymmetry in the four dimensional
case is evaluated in section 5. Finally, in section 6, some properties of the leading coeffi-
cients in the heat trace associated to the eta function are established through functorial
methods, and the use of special cases. To be self-contained, the Appendix contains a
derivation of the Debye expansion of the Bessel functions.

2 Eigenvalue Problem for the Dirac Operator

Although the eigenvalue equations for the problem at hand were derived before [24, 16],
we present here a different derivation, based on group theory. We write the free Euclidean
Dirac operator (i.e. gauge fields are absent) as

i/∂ = i
D
∑

A=1

γA ∂

∂xA

= iγA∂A, (1)

where we used the Einstein summation convention for the index A = 1, . . . , D, and the
Dirac-matrices fulfill the Clifford algebra

{γA, γB} = 2δAB. (2)

We have to choose boundary conditions for the spinors Ψ, such that the Dirac operator
is Hermitian and in the following we will consider chiral-bag boundary conditions. Given
the projection operators

Π∓ =
1

2
(

� ∓ iγ∗e
γ∗θS) (3)

with free parameter θ and

γ∗ = (−i)dγ1 · · ·γD, S = γAxA/r, r =
√

xAxA, (4)

these boundary conditions are defined as

Π−Ψ|∂B = 0. (5)

In particular, S is the projection of γA onto the outward unit normal vector. In contrast
to Atiyah-Patodi-Singer boundary conditions, the chiral-bag boundary conditions are
local. One can further show that, for simply connected boundaries, these boundary
conditions do not allow for zero modes. Further details can be found in [3].

P and Π− commute with the total angular momentum

JAB = LAB + ΣAB , LAB = −i(xA∂B − xB∂A), ΣAB =
1

4i
[γA, γB]. (6)
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Using the algebraic approach developed in [25], we can first diagonalize the total angular
momentum, i.e. determine the spin spherical harmonics by group theoretical methods.
Our aim is to construct the highest weight states. These states are eigenstates of the
Cartan operators of the so(D)-algebra and are annihilated by the corresponding raising
operators. The remaining states in each multiplet can be obtained by applying low-
ering operators on these highest weight states. It is appropriate to introduce complex
coordinates and creation/annihilation operators as follows,

za = x2a−1 + ix2a, ∂a =
1

2
(∂x2a−1

− i∂x2a
), (7)

ψ†
a =

1

2
(γ2a−1 + iγ2a), ψa =

1

2
(γ2a−1 − iγ2a), a = 1, . . . , d = D/2.

For the fermionic operators, one easily verifies the relations

{ψa, ψ
†
b} = δab, {ψa, ψb} = 0, {ψ†

a, ψ
†
b} = 0. (8)

Thus, ψ†
a (ψa) acts as a creation (annihilation) operator, and we can employ the usual

(fermionic) Fock space construction, starting with the vaccum state |Ω〉,

ψa |Ω〉 = 0, |a1 . . . am〉 ≡ ψ†
a1
. . . ψ†

am
|Ω〉 , 1 ≤ m ≤ d. (9)

Now we choose the following Cartan-Weyl basis for the so(D)-algebra: Cartan operators
Ha and raising operators E1, ..., Ed (corresponding to simple positive roots) read (no
sum!)

Ha = za∂a − z̄a∂̄a +
1

2
(ψ†

aψa − ψaψ
†
a), a = 1, . . . , d,

Ea = −i(za∂a+1 − z̄a+1∂̄a + ψ†
aψa+1), a = 1, . . . , d− 1, (10)

Ed = −i(zd−1∂̄d − zd∂̄d−1 + ψ†
d−1ψ

†
d).

Since the operators in (10) act trivially on the radial part of spinor wave functions, we
consider the angular part only. We can easily determine the highest weight states with
respect to the orbital part, they are given by

φ` = z`
1. (11)

These states are annihilated by all simple positive roots, and the eigenvalues with respect
to the Cartans read (H1, . . . , Hd) = (`, 0, . . . , 0). Similarly, for the ‘fermionic’ part there
are only two highest weight states given by

χ+ = ψ†
1 · · ·ψ†

d |Ω〉 and χ− = ψ†
1 · · ·ψ†

d−1 |Ω〉 . (12)

The corresponding eigenvalues of the Cartan operators read ( 1
2
, . . . , , 1

2
,±1

2
), respectively.

Next, we determine the highest weight states of ‘fermionic’ and ‘bosonic’ degrees of
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freedom together. Two highest weight states can be constructed easily; they are just
given by the tensor products

φ+
` = φ`χ

+ and φ−
` = φ`χ

−, (13)

with eigenvalues of the Cartan operators (`+ 1
2
, 1

2
, . . . , 1

2
,±1

2
), respectively. Furthermore,

we observe that the operator S in (4),

S = (ψ†
az̄a + ψaza)/r = S†, S2 =

�
, (14)

commutes with the total angular momentum and therefore maps highest weight states
into highest weight states. We obtain two additional highest weight states,

φ̃+
` = Sφ+

` and φ̃−
` = Sφ−

` , (15)

with eigenvalues (`+ 1
2
, 1

2
, . . . , 1

2
,±1

2
). Equations (13) and (15) contain, in fact, all highest

weight states, which is seen as follows. The tensor product of the bosonic representation
(`, 0, . . . , 0) with the fermionic representation ( 1

2
, . . . , 1

2
) is given by

(`, 0, . . . , 0) ⊗ (1
2
, . . . , 1

2
) = (`+ 1

2
, 1

2
, . . . , 1

2
) ⊕ (`− 1

2
, 1

2
, . . . , 1

2
,−1

2
)

φ` χ+ φ+
` φ̃−

`−1

(16)

and the tensor product of the bosonic representation (`, 0, . . . , 0) with the fermionic
representation ( 1

2
, . . . , 1

2
,−1

2
) is given by

(`, 0, . . . , 0) ⊗ (1
2
, . . . , 1

2
,−1

2
) = (`+ 1

2
, 1

2
, . . . , 1

2
,−1

2
) ⊕ (`− 1

2
, 1

2
, . . . , 1

2
)

φ` χ− φ−
` φ̃+

`−1.
(17)

The highest weight states appear at the correct places, which is determined by the degree
of the polynomials in xA and the chirality of the states. By counting the dimensions of
the representations and comparing it with Weyl’s dimension formula for the Dd groups
[25], we see that there are no further representations in the tensor product rule.

Next, we investigate the chiral-bag boundary conditions. As stated above, Π− commutes
with JAB, and we can diagonalize Π− in our basis of highest weigth states. We may
express γ∗ with the help of (7) by

γ∗ =
d
∏

a=1

(ψ†
aψa − ψaψ

†
a), such that γ∗ |Ω〉 = (−)d |Ω〉 . (18)

Since φ+
` and φ̃+

` (and likewise φ−
` and φ̃−

` ) have the same eigenvalues with respect to
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the Cartan operators Ha, we allow for linear combinations of them,

Ψ±
` = f±

` (r)φ±
` + g±` (r)φ̃±

` . (19)

Imposing the boundary condition Π−Ψ±
` = 0 leads to the following equations for the

radial functions

f±
` (R) ∓ ie±θg±` (R) = 0. (20)

Finally, using complex coordinates, we solve for the spectrum of the Dirac operator,

i/∂Ψ±
` = λΨ±

` , i/∂ = 2iψa∂̄a + 2iψ†
a∂a. (21)

From the eigenvalue equation of the Dirac operator (21), one obtains a system of coupled
first-order differential equations. Using ν = `+ d− 1/2, the system reads

i
(

f±
`

)′
= λg±` , i

(

g±`
)′

= λf±
` − 2i

r
νg±` .

It can be easily solved, and the solutions are given by

f±
` (r) = r1/2−ν(c1Jν−1/2(|λ|r) + c2Nν−1/2(|λ|r)), (22)

g±` (r) = −i sign(λ)r1/2−ν(c1Jν+1/2(|λ|r) + c2Nν+1/2(|λ|r)). (23)

Finally, keeping only those eigenfunctions that are nonsingular at the origin, imposing
the boundary condition (20) and defining k ≡ |λ|R, we obtain

Jν−1/2(k) − sign(λ)eθJν+1/2(k) = 0 for the + case, (24)

Jν−1/2(k) + sign(λ)e−θJν+1/2(k) = 0 for the − case. (25)

The degeneracy of the eigenvalues can be determined by Weyl’s dimension formula. For
each ` in D = 2d dimensions and for both, (24) and (25), the degeneracy is given by

d`(D) =
ds

2

(

D + `− 2
`

)

, (26)

with ds = 2d the dimension of the spinor space.

3 The eta function as an integral for arbitrary D

Our starting point for the evaluation of the spectral asymmetry will be a contour integral
representation of the eta function, which we derive first; for the general strategy see,
e.g., [23, 14]. In order to clearly distinguish positive and negative eigenvalues, let us
write down equations (24) and (25) for λ > 0 and λ < 0.
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For λ > 0 we have

Jν−1/2(k) − eθJν+1/2(k) = 0,

Jν−1/2(k) + e−θJν+1/2(k) = 0, ` = 0, ...,∞ , (27)

while for λ < 0

Jν−1/2(k) + eθJν+1/2(k) = 0,

Jν−1/2(k) − e−θJν+1/2(k) = 0, ` = 0, ...,∞ . (28)

Hence, the η-function

η(s, i/∂) =
∑

λ

(sgnλ)|λ|−s

is given by the following contour integral in the complex plane,

η(s, i/∂) =

∞
∑

`=0

d`(D)
1

2πi

∫

Γ

dz z−s d

dz
log

(

Jν−1/2(zR) − eθJν+1/2(zR)

Jν−1/2(zR) + eθJν+1/2(zR)

)

− (θ → −θ) ,

where the contour Γ encloses the positive real axis counterclockwise. The notation above
means, that we have to subtract the same expression, with θ replaced by −θ.
We deform the path of integration such that we integrate along the imaginary axis. After
using the definition of the modified Bessel functions and the elementary relation [26]

arctan x =
1

2i
ln

1 + ix

1 − ix
,

we find

η(s, i/∂) =
2

π
cos
(πs

2

)

∞
∑

`=0

d`(D)

∞
∫

0

dt t−s d

dt
[arctanQν(θ, tR) − arctanQν(−θ, tR)] ,

where the notation

Qν(θ, x) = eθ Iν+1/2(x)

Iν−1/2(x)

has been used.

In order to evaluate η(0, i/∂), which is by definition the spectral asymmetry, we will use
in the forthcoming sections the shifted Debye expansion of Bessel functions summarized
in Appendix A. We change the variable in the integral according to t = νu

R
. We observe

that all terms combine nicely if [26]

arctan x− arctan y =
π

2
− arctan

1 + xy

x− y
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is used. With

Pν(θ, x) =
1

2 sinh θ

(

Iν+1/2(x)

Iν−1/2(x)
+
Iν−1/2(x)

Iν+1/2(x)

)

,

we obtain the simple looking result

η(s, i/∂) = − 2

π
Rs cos

(πs

2

)

∞
∑

`=0

d`(D)ν−s

∞
∫

0

du u−s d

du
arctanPν(θ, uν). (29)

Using the notation

b =

√
1 + u2

u sinh θ
, t =

1√
1 + u2

,

as ν → ∞, equations (44) and (45) in Appendix A show that

Pν(θ, νu) = b(1 + δ)

where

δ =
1

ν

1

2
t3 +

1

ν2

5

8
t4(1 − t2) +

1

ν3
t5
(

1 − 23

8
t2 +

15

8
t4
)

+ O
(

ν−4
)

.

Using this in

arctan (b[1 + δ]) = arctan b+ δ
b

1 + b2
− δ2 b3

1 + b2
+ δ3 b

3

3

3b2 − 1

(1 + b2)3
+ O(δ4),

the leading three orders of the ν → ∞ expansion are obtained. Introducing Z =
2 + u2 + u2 cosh(2θ), where Z−j naturally occurs as a factor multiplying δj, we find
explicitly

arctanPν(θ, νu) = arctan

(√
1 + u2

2 sinh θ

)

+
2u sinh θ

Z

{

1

ν

1

2
t2 +

1

ν2

(

5

8
t3 − 5

8
t5
)

+
1

ν3

(

t4 − 23

8
t6 +

15

8
t8
)}

−4u sinh θ

Z2

{

1

ν2

1

4
t3 +

1

ν3

(

5

8
t4 − 5

8
t6
)}

+
1

ν3

u sinh θ

Z3

{

t4 − 1

3
t6u2 sinh2 θ

}

+ O
(

1

ν4

)

. (30)

These asymptotic contributions are all we will need for the evaluation of η(0, i/∂) in two
and four dimensions. More general, in D dimensions, D− 1 asymptotic orders would be
needed.

Note that using (30) in (29), each order of 1/ν leads to the appearance of zeta functions
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of the Barnes type [27, 28, 29],

ζB(s, a) =
∞
∑

`=0

(

D + `− 2

`

)

(`+ a)−s.

In detail we have

∞
∑

`=0

d`(D)ν−s =
1

2
dsζB

(

s,
D − 1

2

)

. (31)

This fact is characteristic for spectral problems on balls.

All resulting u-integrations can be done in terms of hypergeometric functions,

∞
∫

0

duu−s(1 + u2)−α

[

1 +
u2

2(1 + u2)
(cosh(2θ) − 1)

]−β

=

Γ
(

α + s−1
2

)

Γ
(

1−s
2

)

2Γ(α)
2F1

(

β,
1 − s

2
;α;− sinh2 θ

)

. (32)

This allows us to express all terms resulting from the asymptotic expansions (30) in the
compact form

Ai,k,l,j(s) = − sds

2j+1π
cos
(πs

2

) Γ
(

j + k+s−l
2

)

Γ
(

l−s
2

)

Γ
(

j + k
2

) ζB

(

s+ i;
D − 1

2

)

×

2F1

(

j,
l − s

2
; j +

k

2
;− sinh2 θ

)

. (33)

We next use these results to evaluate the asymmetry on balls in two and four dimensions.

4 D = 2: The asymmetry on a disk

In two dimensions the degeneracy is d`(2) = 1 and we have ν = `+ 1/2, such that from
(29) we get

η(s, i/∂) = − 2

π
Rs cos

(πs

2

)

∞
∑

`=0

ν−s

∞
∫

0

duu−s d

du
arctanPν(θ, uν). (34)

Here, the relevant Barnes boundary zeta function reduces to a Hurwitz zeta function,
i.e., ζB(s, 1

2
)=ζH(s, 1/2). In this case, in order to obtain the analytic extension to s = 0,

it is enough to consider only two terms in the Debye expansion. In order to see this we
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integrate (34) by parts and have for 0 < <(s) < 1

η(s, i/∂) = −2s

π
Rs cos

(πs

2

)

∞
∑

`=0

ν−s

∞
∫

0

du u−s−1 arctanPν(θ, uν).

The s-factor in the numerator can be cancelled by singularities coming from divergencies
in the integral (this is the case for the ν-independent term in the Debye expansion) or
from the pole in the successive Hurwitz zeta functions (this is the case for the term of
order ν−1 in the Debye expansion).

The leading two asymptotic terms contributing to η(0, i/∂) are

η(s, i/∂) = sinh θ (A0,1,1,1(s) + A1,2,1,1(s) + ...)

Because ζH(0, 1/2) = 0 we have A0,1,1,1(0) = 0 and this shows

η(0, i/∂) = −1

4
sinh θ 2F1

(

1,
1

2
, 2,− sinh2 θ

)

= −1

2

sinh θ

1 + cosh θ
= −1

2
tanh

(

θ

2

)

. (35)

Note that the result is invariant under the transformation θ → θ + 2πi.

The case D = 2 was treated before, in reference [23], as an example of a non-product
manifold. Unfortunately, the term coming from the pole in the Hurwitz zeta function was
missing in that calculation, which led to erroneous conclusions about relations between
results on product and non-product manifolds stated in the same reference.

5 Asymmetry in D = 4

In the four-dimensional case we have ν = ` + 3/2 and the degeneracy reads d`(4) =
ν2 − 1/4. Our immediate concern is the evaluation of the η-function at the value s = 0
in dimension D = 4. Arguing as below (34), terms up to the order 1/ν3 need to be
considered. Further simplifications occur since (see, e.g., [30, 14])

ζB

(

0;
3

2

)

= 0, Res ζB

(

s = 2;
3

2

)

= 0 .

As a consequence we find that

A0,k,l,j(0) = 0, A2,k,l,j(0) = 0
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for all relevant values of k, l, j. Then, the contributions to the eta invariant read

η(0) =
∑

i,k,l,j

Ci,k,l,jAi,k,l,j(0) (36)

where i = 1, 3 contributes and the non-vanishing numerical multipliers are found from
(30); in detail, the results are

C1,2,1,1 = sinh θ C3,4,1,1 = 2 sinh θ C3,6,1,1 = −23

4
sinh θ C3,8,1,1 =

15

4
sinh θ

C3,4,1,2 = −5

2
sinh θ C3,6,1,2 =

5

2
sinh θ C3,4,1,3 = sinh θ C3,6,3,3 = −1

3
sinh3 θ.

For all relevant values of i, k, l, j, the hypergeometric functions turn out to be hyperbolic
functions. Using (see, e.g., [30, 14])

Res ζB

(

s = 3;
3

2

)

=
1

2
, Res ζB

(

s = 1;
3

2

)

= −1

8
,

and adding up all contributions, we find

η(0, i/∂) =
1

6144

tanh
(

θ
2

)

cosh6
(

θ
2

) (259 + 344 cosh θ + 161 cosh(2θ) + 16 cosh(3θ)) . (37)

6 Determination of the leading coefficients in heat

traces

In this section, we use the special case of the ball just presented, together with sim-
ilar results for the cylinder and functorial techniques, to find some results about the
coefficients aη

n(F, P,Π−) in the expansion [12, 13, 31]

Tr
(

FPe−tP 2

)

∼
∞
∑

n=0

aη
n(F, P,Π−)t

n−D−1

2 ,

with P an operator of Dirac type decomposed as

P = iγj∇j + ψ.

Here ∇ denotes a connection on a vector bundle V over a compact D-dimensional
Riemannian manifold M with smooth boundary ∂M such that ∇γ = 0, furthermore
ψ and F are smooth endomorphisms of V .

The functorial techniques will consist of conformal transformations and of relations be-
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tween the above expansion and the well-known expansion for the heat-kernel [12, 13, 31]

Tr
(

Fe−tP 2

)

∼
∞
∑

n=0

aζ
n(F, P 2,Π−)t(n−D)/2.

To write down the geometrical structure of the coefficients aη
n let Lab be the second

fundamental form, a, b = 1, ..., D − 1, and let ;D denote the derivative with respect to
the exterior normal.

Lemma 6.1 Let f be scalar, and F = f · IdV . There exist universal constants di(θ,D)
such that

aη
0(F, P,Π−) = 0,

aη
1(F, P,Π−) = (4π)−D/2







(1 −D)

∫

M

f Tr(ψ)dx+

∫

∂M

d1(θ,D)f Tr(Id)dy







,

aη
2(F, P,Π−) = (4π)−(D−1)/2

∫

∂M

Tr (d2(θ,D)Laaf + d3(θ,D)fψγ∗(iS)

+d4(θ,D)fψ(iS) + d5(θ,D)fψγ∗ + d6(θ,D)fψ + d7(θ,D)f;DIdV ) dy

Proof: This follows from the theory of invariants as described e.g. in [13]. �

We have used the invariant iS, with S the projection of γA onto the outward unit normal
vector, such that the numerical multipliers remain real as is commonly chosen. We next
determine the universal multipliers di(θ,D), i = 1, ..., 7. We first exploit known special
cases.

Lemma 6.2 We have

d1(θ,D) =
1

2
(D − 1) sinh θ 2F1

(

1, 1 − D

2
;
3

2
;− sinh2 θ

)

,

d2(θ,D) = − 1

16
(D − 2) sinh θ 2F1

(

1,
3 −D

2
; 2;− sinh2 θ

)

.

Proof: This follows from the calculations on the ball with f = 1 and ψ = 0, which is the
situation considered in the previous sections. For convenience, we also put the radius of
the ball R = 1. We will use the relation [13, 31]

aη
n(1, P,Π−) =

1

2
Γ

(

D − n+ 1

2

)

Res η(D − n, P ) (38)

and, therefore, we can use the previously analyzed η-function η(s, i/∂).

Instead of looking at s = 0, the information relevant for Lemma 6.1 is found by con-
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sidering η(s, i/∂) in eq. (29) about the points s = D − 1 and s = D − 2. Arguing as
before, we need to consider the leading two asymptotic contributions in (30) only and
find, modulo terms that do not contribute to the relevant residues

η(s, i/∂) ∼ − 1√
π
ds

Γ
(

1 + s
2

)

Γ
(

1+s
2

) sinh θ 2F1

(

1,
1 − s

2
;
3

2
;− sinh2 θ

)

ζB

(

s;
D − 1

2

)

+
1

8
ds s(s+ 1) sinh θ 2F1

(

1,
1 − s

2
; 2;− sinh2 θ

)

ζB

(

s+ 1;
D − 1

2

)

.

The residues of η(s, i/∂) at s = (D − 1) and s = (D − 2) follow immediately from the
residues of the Barnes zeta function, see e.g. [32],

Res ζB

(

D − 1;
D − 1

2

)

=
1

(D − 2)!
=

1

Γ(D − 1)
,

Res ζB

(

D − 2;
D − 1

2

)

= 0.

Using equation (38), and the fact that the volume of the (D−1)-dimensional unit sphere
is 2πD/2/Γ(D/2), we conclude the proof of Lemma 6.2. �

We next apply conformal variations of Dirac type operators.

Lemma 6.3 We have

d7(θ,D) =
D − 1

D − 2
d2(θ,D).

Proof: Let f be a smooth function with f |∂M = 0. Define gµν(ε) := e2εfgµν(0) and
P (ε) := e−εfP . Let ∇ be the standard spinor connection. We expand P = iγν∇∂ν

+ ψ
with respect to a local coordinate system x = (x1, ..., xD) and use the metric to lower
indices and define γν. Then the connection transforms like

∇(ε)∂µ
:= ∇∂µ

+
1

2
ε(−f;νγ

νγµ + f;µ).

Furthermore,

ψ(ε) = e−εf

(

ψ − 1

2
ε(D − 1)f;ν(iγ

ν)

)

.

Note that the boundary condition remains unchanged under conformal variation. Pro-
ceeding as for the heat kernel coefficients, one shows that the eta invariant coefficients
satisfy the equation [33]

d

dε

∣

∣

∣

∣

ε=0

aη
n (1, P (ε),Π−) = (D − n)aη

n (f, P,Π−) . (39)

13



To study the numerical multiplier d7(θ,D) we need the variation of

d

dε

∣

∣

∣

∣

ε=0

Laa = −fLaa + (D − 1)f;D.

Applying equation (39) shows the assertion. �

In order to determine the numerical multipliers d3(θ,D), d4(θ,D), d5(θ,D) and d6(θ,D)
we relate the eta invariant to the zeta invariant. We will then evaluate the zeta invariant
on the D-dimensional cylinder for the case of an arbitrary endomorphism valued F .

The result we are going to use is the following:

Lemma 6.4 Let F ∈ C∞(End(V )) and let P (ε) := P + εF . We then have

∂εa
η
n(1, P (ε),Π−) = (n−D)aζ

n−1(F, P (ε),Π−).

Proof: The proof is insensitive to the boundary conditions imposed and parallels the
proof in [34, 33]. �

Remark 6.5 The very useful property of this result is that the aη
n coefficient for the

eta invariant is related to the coefficient aζ
n−1 for the zeta invariant, which will have a

significantly simpler structure.

In order to apply Lemma 6.4 to the coefficient aη
2 we need the general form of the aζ

1

coefficient.

Lemma 6.6 Let F ∈ C∞(End(V )). There exist universal constants fi(θ,D) such that

aζ
1(F, P

2,Π−) =

(4π)−(D−1)/2

∫

∂M

Tr {f3(θ,D)Fγ∗(iS) + f4(θ,D)F (iS) + f5(θ,D)Fγ∗ + f6(θ,D)F} .

Proof: This follows immediately from the theory of invariants taking into account that
F is in general a matrix-valued endomorphism. �

Remark 6.7 Lemma 6.4 relates the universal constant dj(θ,D) with fj(θ,D), j =
3, ..., 6. In detail we have

dj(θ,D) = −(D − 2)fj(θ,D), j = 3, ..., 6.

Finding the fj(θ,D) is easier, because they follow from the case with ψ = 0. They can be
evaluated from the cylinder where the heat kernel is known locally [12] and its coefficients
can be evaluated for an arbitrary endomorphism F .

In order to summarize the results of [12] we need to introduce the relevant notation. Let

14



M = � +×N be an even dimensional cylinder equipped with the metric ds2 = dx2
D+ds2

N ,
where xD is the coordinate in � + and plays the role of the normal coordinate, and
ds2

N is the metric of the closed boundary N . The coordinates on N are denoted by
y = (y1, y2, ..., yD−1). To write down the heat kernel on M for P 2 = (iγj∇j)

2 with
boundary condition Π−, we call φω(y) the eigenspinors of the operator B = γ∗Sγa∇a,
corresponding to the eigenvalue ω, normalized so that

∑

ω

φ?
ω(y)φω(y

′

) = δD−1(y − y
′

),

with δD−1 the Dirac delta function, and

∫

N

dy φ?
ω(y)φω(y) = 1 .

Finally we need x = (y, xD), ξ = xD − x′D, η = xD + x′D, uω(η, t) = η√
4t

+
√
tω tanh θ,

and the complementary error function

erfc(x) =
2√
π

∫ ∞

x

dξe−ξ2

.

We then have the result.

Lemma 6.8 From the calculation on the cylinder M = � + ×N we obtain the following
values for the multipliers fi(θ,D), i = 3, 4, 5, 6:

f3(θ,D) =
1

4
coshD−2 θ,

f4(θ,D) = 0,

f5(θ,D) =
1

4
coshD−2 θ sinh θ,

f6(θ,D) =
1

4

(

coshD−1 θ − 1
)

.

Proof: In [12] we have shown that the local heat-kernel on the cylinder reads

K(x, x′; t) =
1√
4πt

∑

ω

φ?
ω(y

′

)φω(y)e−ω2t

{(

e
−ξ2

4t − e
−η2

4t

)

1

+
2Π+Π?

+

cosh2(θ)

[

1 −
√

(πt)ω tanh θeuω(η,t)2erfc(uω(η, t))
]

e
−η2

4t

}

, (40)

with Π+ = (1/2)(1 + ieθγ∗γ∗S). (Note that [12] and the present article use different
conventions. Here we use the exterior normal contrary to the interior normal there.
Furthermore, the γ∗ here is minus γ̃ there. As a result, in the solution formula from
[12] we have to replace θ by −θ in order to find a solution for the problem considered
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here.) The first term is the heat-kernel of the manifold � × N , a manifold that has
no boundary. Therefore we do not consider this term further as it provides no relevant
information for Lemma 6.1.

It is natural to introduce the heat kernel KB(y, y′; t) of the operator B2,

KB(y, y′; t) =
∑

ω

φ∗
ω(y′)φω(y)e−ω2t;

furthermore, to make the single steps easier to follow we use the splitting

K1(x, x
′; t) = − 1√

4πt

∑

ω

φ?
ω(y′)φω(y)e−ω2te

−η2

4t ,

K2(x, x
′; t) =

1√
4πt

∑

ω

φ?
ω(y′)φω(y)e−ω2t 2Π+Π?

+

cosh2(θ)
[

1 −
√

(πt)ω tanh θeuω(η,t)2erfc(uω(η, t))
]

e
−η2

4t .

We are interested in the trace TrL2(FK(x, x; t)). We assume F = F (y) to be independent
of the normal variable xD, such that the xD-integration of the L2-trace can be done
without greater complication.

First, it is straightforward to see that

∞
∫

0

dxDF (y)K(x, x; t) = −1

4
F (y)KB(y, y; t). (41)

The representation for K2(x, x; t) can be conveniently rewritten as to perform the xD-
integration. We have

K2(x, x; t) = − 1

2 cosh2 θ

∑

ω

φ∗
ω(y)φω(y)e−ω2tΠ+Π∗

+

∂

∂xD

[

e−
x2

D
t

+u2
ω(2xD ,t)erfc (uω(2xD, t))

]

,

where we used the relation

−1

2

∂

∂xD

[

e−x2

D
/t+u2

ω(2xD ,t)erfc(uω(2xD, t))
]

=

e−x2

D/t

[

1√
πt

− ω tanh θ eu2
ω(2xD ,t)erfc(uω(2xD, t))

]

.
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Therefore,

∞
∫

0

dxDFK2(x, x; t) =
1

2 cosh2 θ

∑

ω

φ∗
ω(y)φω(y)e−ω2tΠ+Π∗

+

etω2 tanh2 θerfc
(√

tω tanh θ
)

.

We need to collect the contributions to the coefficient aζ
1(F, P

2,Π−). The first term,
equation (41), can be described by the heat-kernel of the boundary and we find the rele-
vant contribution to be −(1/4)aζ

0(F,B
2). In order to find the contribution of K2(x, x; t)

is considerably harder; we found it most convenient to relate the heat-kernel coefficients
to the zeta function,

ζ(s;F, P 2,Π−) =
1

Γ(s)

∞
∫

0

dt ts−1 TrL2

(

Fe−tP 2

)

,

in the standard fashion

Res ζ
(

z;F, P 2,Π−
)

=
aζ

D−2z(F, P
2,Π−)

Γ(z)
, (42)

for z = D/2, (D − 1)/2, ..., 1/2,−(2n+ 1)/2, n ∈ � .

For K2(x, x; t) the related zeta function contribution is

ζ2(s, F, P
2,Π−) =

1

2 cosh2 θΓ(s)
Tr

{

F
∑

ω

φ∗
ω(y)φω(y)Π+Π∗

+×

∞
∫

0

dt ts−1e−
ω2t

cosh2 θ

(

1 + erf(−
√
tω tanh θ)

)







.

The integral can be performed in terms of a hypergeometric function to read

ζ2(s, F, P
2,Π−) =

1

2 cosh2 θΓ(s)
Tr

{

F
∑

ω

φ∗
ω(y)φω(y)Π+Π∗

+×

cosh2s θ

|ω|2s

[

Γ(s) − 2√
π

Γ

(

s+
1

2

)

sinh θ sgn(ω) 2F1

(

1

2
, s+

1

2
;
3

2
;− sinh2 θ

)]}

.
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In terms of the boundary spectral functions this is

ζ2(s;F, P
2,Π−) =

cosh2s−2 θ

2Γ(s)

{

Γ(s)ζ
(

s; Π+Π∗
+F,B

2
)

(43)

− 2√
π

Γ

(

s+
1

2

)

sinh θ 2F1

(

1

2
, s+

1

2
;
3

2
;− sinh2 θ

)

η(2s; Π+Π∗
+F,B)

}

.

In order to find the heat-kernel coefficient aζ
1, we use the relation

Res ζ

(

D − 1

2
;F, P 2,Π−

)

=
aζ

1 (F, P 2,Π−)

Γ
(

D−1
2

) .

The eta invariant in (43) does not contribute as η(D − 1; Π+Π∗
+F,B) = 0. Therefore,

Res ζ2

(

D − 1

2
;F, P 2,Π−

)

=
1

2
coshD−3 θ

aζ
0

(

Π+Π∗
+F,B

2
)

Γ
(

D−1
2

)

and the contribution to the heat-kernel coefficient aζ
1(F, P

2,Π−) is

1

2
coshD−3 θ (4π)−

D−1

2

∫

N

dy Tr(Π+Π∗
+F ).

To compare it with the form given in Lemma 6.6 we use

Π+Π∗
+ =

1

2
cosh θ (cosh θ + γ∗ sinh θ + γ∗(iS)) ,

providing the relevant heat-kernel contribution in the form

1

4
coshD−2 θ (4π)−

D−1

2

∫

N

dy Tr (cosh θF + sinh θγ∗F + γ∗(iS)F ) .

Adding the contribution from K1(x, x; t) shows the result. �

7 Conclusions

In this article we have determined the asymmetry η(0, i/∂) of the Dirac operator with
chiral bag boundary conditions given by (5) on the two-dimensional and four-dimensional
ball, see equations (35) and (37). Furthermore, the leading coefficients in the trace of
the smeared kernel corresponding to the eta function were obtained, see Lemma 6.1, 6.2,
6.3 and 6.8.
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A Debye expansion of Bessel functions

Consider the ordinary differential equation

(∂2
z + u∂z + v)φ(z) = 0.

For the solution we use the ansatz

φ(z) = exp

{
∫

dt p(t)

}

ψ(z).

With the choice p = −u/2, the resulting differential equation for ψ is

ψ′′ + qψ = 0, where q = v − u′

2
− u2

4
.

It is more convenient to consider

∂z lnφ = p + S, where S = ∂z lnψ.

Contact between S and the solution φ is made by observing that

φ(z) = const exp

{
∫

dz p(z)

}

exp

{
∫

dz S(z)

}

.

The differential equation for S turns out to be

S ′ = −q − S2.

We assume that the differential equation contains a parameter ν and that we are inter-
ested in the large-ν asymptotic of S. The particular choice of the asymptotic expansions
below is the relevant case for the consideration of the asymptotic of Bessel functions.
We assume that as ν → ∞, the function q has the asymptotic expansion

q =

∞
∑

i=−2

ν−iqi.
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In that case, the function S can be seen to have the asymptotic form

S =

∞
∑

i=−1

ν−iSi.

Using these asymptotic forms in the differential equation for S, the asymptotic orders
are seen to be given by

S−1 = ±√−q−2,

S0 = − q−1

2S−1
− 1

2
∂z lnS−1,

Si+1 = −
qi + S ′

i +
∑i

j=0 SjSi−j

2S−1
.

Let us apply these formulas to the differential equation for the Bessel functions Iν+α(νz)
and Kν+α(νz). The relevant differential equation reads

φ′′ +
1

z
φ′ −

{

ν2

(

1 +
1

z2

)

+ λ
2α

z2
+
α2

z2

}

φ = 0.

Therefore, for the given example, we find

p = − 1

2z
, q0 =

1

z2

(

1

4
− α2

)

, q−1 = −2α

z2
, q−2 = −

(

1 +
1

z2

)

.

Linearly independent solutions of the differential equation are proportional to Iν+α(νz)
and Kν+α(νz). From the known behaviour of these functions for large arguments [26],
we can conclude that S−1 = +

√−q−2 corresponds to Iν+α, whereas S−1 = −√−q−2

corresponds to Kν+α. For the present occasion we need the asymptotics for Iν+α and
continue with this case only. Using the asymptotic orders in S, the solution has the
asymptotic behavior

φ(z) ∼ const exp

{

ν

∫

dzS−1

}

exp

{
∫

dz

(

S0 −
1

2z

)}

exp

{ ∞
∑

i=1

ν−i

∫

dzSi

}

.

The constant prefactor is determined from the known Debye expansion of the Bessel
function Iν(νz) and it reads

const =
1√
2πν

.

Using the explicit form of q−2 and q−1 for the present example, one obtains therefore the
result

Iν+α(νz) ∼ 1√
2πν

eνβt1/2

(

1 − t

1 + t

)α/2

exp

{ ∞
∑

i=1

ν−iCi(z, α)

}

, (44)
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where t = 1/
√

1 + z2, β =
√

1 + z2 + ln[z/(1 +
√

1 + z2)],

Ci(z, α) =

∫

dzSi,

and with the understanding that for α = 0 the known answers for Iν(νz) are reproduced
[35]. The list of the first Ci(z, α) obtained are

C1(z, α) =
t

8
− α2 t

2
− α t2

2
− 5 t3

24
,

C2(z, α) =
t2

16
− α2 t2

4
− 13α t3

24
+
α3 t3

6
− 3 t4

8
+
α2 t4

2
+

5α t5

8
+

5 t6

16
,

C3(z, α) =
25t3

384
− 13α2t3

48
+
α4t3

24
− 7αt4

8
+
α3t4

2
− 531t5

640
+

7α2t5

4
− α4t5

8

+
11αt6

4
− 2α3t6

3
+

221t7

128
− 25α2t7

16
− 15αt8

8
− 1105t9

1152
. (45)

Higher orders can be produced as needed.
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