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We investigate the emergence of N = 1 supersymmetry in the long-range behavior

of three-dimensional parity-symmetric Yukawa systems. We discuss a renormaliza-

tion approach that manifestly preserves supersymmetry whenever such symmetry is

realized, and use it to prove that supersymmetry-breaking operators are irrelevant,

thus proving that such operators are suppressed in the infrared. All our findings are

illustrated with the aid of the ε-expansion and a functional variant of perturbation

theory, but we provide numerical estimates of critical exponents that are based on

the non-perturbative functional renormalization group.

1. INTRODUCTION

Symmetries shape the structure of physical systems. In turn, the dynamics of physical

systems can influence the status and realization of symmetries. Most prominently in quan-

tum field theories as well as statistical or many-body systems, fluctuations can contribute

to the spontaneous or anomalous breakdown of symmetries. In such a case, the symmetry

is present at a microscopic level, but macroscopically broken through long-range ordering

or anomalous fluctuations.

The present work investigates an inverse phenomenon where a symmetry may not be

present at the level of the microscopic interactions, but can emerge in the long-range physics

as a consequence of fluctuations. Emergent space or spacetime symmetries are a well-

known phenomenon in solid-state physics, where atomic or molecular lattices generically

break rotational invariance microscopically, but such symmetry is nevertheless restored

for macroscopic properties. Emerging Lorentz symmetry often forms the basis of lattice

formulations of relativistic quantum field theories [1], and is also expected at the critical

points in specific condensed matter systems such as graphene [2–4]. The emergence of

internal symmetries has also been discussed both in fermionic [5] as well as bosonic [6, 7]

systems.

Recently, the emergence of supersymmetry and thus of a nontrivial combination of

spacetime and internal symmetries has received a great deal of attention [8]. Concrete

realizations in (2+1) dimensional lattice systems have been worked out in [9–12], and first

scenarios in (3+1) dimensions have been proposed in [12–14]. Typical constructions start

with gapless fermionic degrees of freedom; their bosonic counterparts may also be added
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on a fundamental level or may arise as composite order parameter fields. In the latter

case, the bosons can naturally match the criterion of a gapless spectrum in the vicinity of

a quantum phase transition.

This line of argument suggests (2+1)-dimensional systems with relativistic fermion de-

grees of freedom as candidate systems for emergent supersymmetry, as they exhibit quan-

tum phase transitions at sufficiently strong interactions [15]. These phase transitions are

reflected by interacting UV fixed points of the renormalization group (RG). In fact, there is

a substantial body of literature on such models as they can give rise to critical phenomena

where – in addition to the dimension and the symmetry of the (bosonic) order parameter –

also the number and structure of the (fermionic) long-range degrees of freedom characterize

the universal properties. Their quantitative determination has been pursued by a variety

of methods including ε and 1/N expansions [16–24], Monte-Carlo simulations [17, 25–33],

as well as the functional RG [34–41]. These models have recently received a great deal

of attention as effective models describing phase transitions from a disordered (e.g., semi-

metallic) to an ordered (e.g., Mott-insulating or superconducting) phase [2–4, 42, 43]

In the present work, we investigate the emergence of supersymmetry in a (2+1) dimen-

sional Yukawa-type model with a single Majorana fermion and a dynamical real scalar

order parameter field. This model may be viewed as the simplest representative of the

class of so-called chiral Ising models; for a larger fermionic content, the latter includes

the Gross-Neveu-Yukawa models featuring the symmetries of the Gross-Neveu model. For

very particular values of the masses and couplings, our model reduces to a supersymmet-

ric Wess-Zumino model. In this work, we quantitatively analyze how the supersymmetric

model emerges within the more general theory space.

On the method side, the functional RG is highly advantageous for the present model,

as it works directly in (2+1) dimensions using the physical degrees of freedom, and is not

inflicted by sign problems. Apart from using the functional RG as a quantitative tool,

we focus on two conceptual aspects: first, we make direct contact with the perturbative

ε expansion technique, working on a fully functional level. Second, we use a manifestly

supersymmetric off-shell formulation of the functional RG allowing us to investigate both

the subspace of the supersymmetric theory as well as the flow in the nonsupersymmetric

vicinity in the space of theories. The latter provides us with unprecedented information

about the quantitative emergence of supersymmetry in this class of models.

It is instructive to abstract the general picture within a heuristic notion of theory space:

consider Lagrangian field theories on the level of space spanned by all possible operators

arising from a given field content and coordinates given by corresponding coupling values

gi, cf. Fig. 1. The RG flow from microscopic to macroscopic physics now corresponds to

trajectories in this space, being initiated in terms of a bare action SΛ at a UV cutoff Λ.

The physics at a lower momentum scale k is then described by a Wilsonian effective action

which is abstractly denoted by points along the trajectory parametrized by k.

Now, any subset of theories in this space with a higher degree of symmetry forms an

invariant subspace, i.e., a hypersurface in theory space. If the theory is formulated in

a manifestly invariant manner, the corresponding RG trajectory flows completely inside

this hypersurface, see solid trajectory in Fig. 1. A criterion for emergent symmetry can

now be formulated as follows: if RG trajectories that are initiated outside the invariant
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FIG. 1. Illustration of the emergence of supersymmetry in an abstract theory space parametrized

by couplings {gi}. The black dot depicts an RG fixed point which lies in the hypersurface of

supersymmetric coupling values. A manifestly invariant formulation of the theory results in an

RG flow within the supersymmetric hypersurface, yielding the solid line with arrows pointing

towards the IR. If all perturbations orthogonal to the symmetric hypersurface are RG irrelevant,

then the RG flow of any nonsymmetric model with microscopic action SΛ is attracted by the

symmetric hypersurface. Thus, supersymmetry emerges as a long-range phenomenon.

hypersurface are attracted by the hypersurface towards infrared (IR) scales, the long-

range physics will be dominated by the symmetries defining the hypersurface. Symmetry

violating processes may still be observable, but are parametrically suppressed by the degree

of IR attractivity of the invariant hypersurface.

This picture becomes fully quantitative in the presence of fixed points of the RG. In

fact, fermionic or Yukawa models in (2+1)-dimensions are prototypic in that respect since

they have the potential to feature interacting fixed points similar to but quantitatively dif-

ferent from the Wilson-Fisher fixed point in scalar theories. Fixed points can be classified

according to their number and nature of relevant (IR-repulsive) directions and correspond-

ing critical exponents. If the model of higher symmetry, say supersymmetry, exhibits a

fixed point with relevant directions purely inside the symmetric hypersurface, any non-

symmetric perturbation outside of it is attracted by the invariant hypersurface towards

the IR, cf. dashed trajectory in Fig. 1. Hence, even nonsymmetric microscopic models

feature symmetric long-range observables: the symmetry is emergent as a result of the

fluctuation-driven RG flow.1

To confirm emergent symmetry as a universal property of a certain model class, two

properties have to be verified: first, the model should have at least one nontrivial fixed

1 We emphasize that these requirements ensure that the symmetry emerges naturally in the long-range

regime. If the critical point is symmetric, but there are nonsymmetric relevant deformations, it is still

possible to observe the symmetry in the infrared, provided that additional parameters are tuned to

criticality. This can be illustrated using the model considered in this work: if a parity symmetry is not

imposed, then supersymmetry can be observed only after tuning the masses of bosonic and fermionic

fluctuations to the same value.
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point inside the invariant hypersurface. Second, all RG relevant directions have to be

inside the symmetric hypersurface as well, whereas perturbations outside the hypersurface

must be irrelevant and thus die out towards the IR. The second property makes clear

that it is not sufficient to study the manifestly symmetric theory, but the embedding into

the non-symmetric theory space is fundamental to verify and quantify emergence of the

symmetry.

The paper is organized as follows: In Sect. 2 we introduce the effective action of the

Yukawa model under consideration, investigate the nature of its chiral symmetry, and

show how to reformulate it as an explicitly broken supersymmetric model by including

an auxiliary field which completes the Yukawa fields into a supermultiplet. In Sect. 3 we

summarize our two main strategies to study the scaling behavior of the Yukawa model in

the light of the results of the preceding section, and give some further direction to navigate

this paper. Sect. 4 discusses the general form of an RG step, both with and without

the auxiliary field. Sections 5 and 6 study the RG flow of the N = 1 model and the

Yukawa model respectively, while Sect. 7 shows how the former is embedded in the latter

at criticality. Sect. 8 gives the RG flow of the broken supersymmetric model and completes

the mapping initiated in the previous section. In Sect. 9 we give the numerical estimates

for the critical exponents and compare them with the literature, while also providing some

conclusion and future prospects for our work.

2. EFFECTIVE ACTIONS, LOCAL POTENTIALS AND SYMMETRIES

We work with the language of Lagrangian field theory, using effective actions for the

parametrization of the theory and the discussion of symmetries. The effective action used in

the following can be thought of in the spirit of Landau-Ginzburg-Wilson actions, obtained

from a suitable coarse graining. Within the non-perturbative functional RG used and

described in the appendices, a precise connection exists to the full 1PI effective action

[44–46].

Let us consider a truncation of the effective action of a general Yukawa model of the

form

SY[ϕ, ψ, ψ̄] =

∫
d3x
{1

2
∂µϕ∂

µϕ+
i

2
ψ̄ /∂ψ + U(ϕ) +

1

2
H(ϕ)ψ̄ψ

}
, (2.1)

in which we introduced a local effective potential U(ϕ) for a real scalar field ϕ, and a

function H(ϕ) mediating a Yukawa-type interaction between ϕ and a Majorana spinor ψ.

Even though we mostly work in Euclidean spacetime, the relevant symmetries are those

of the Minkowskian version of the model. For the latter, the action is invariant under a

parity transformation x→ x̃, by which x2 changes sign and the fields transform as

ϕ(x)→ −ϕ(x̃) , ψ(x)→ iγ2ψ(x̃) , ψ̄ → −iψ̄(x̃)γ2, (2.2)

provided we constrain U(ϕ) and H(ϕ) to be even and odd functions respectively. The

scalar field ϕ can be understood as order parameter for the discrete Z2 symmetry. Note

that the parity transformation (2.2) maps Majorana fermions into Majorana fermions.
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We find it convenient to introduce a new parametrization of the local functions U(ϕ)

and H(ϕ). Let us first separate the zero point energy from the effective potential U(ϕ) =

U0 + V (ϕ) with the condition that V (ϕ) is zero at the minimum ϕ0 of the potential. For

an effective potential that is bounded from below we have V (ϕ) ≥ 0 and V (ϕ0) = 0. The

zero point energy U0 simply amounts to a global shift in the energy spectrum and will be

ignored in the following discussion. We then introduce two new local functions W (ϕ) and

Y (ϕ), which are defined implicitly as

V (ϕ) =
1

2
W ′(ϕ)2 , H(ϕ) = W ′′(ϕ) + Y (ϕ). (2.3)

By construction W (ϕ) is a real valued function because V (ϕ) ≥ 0. In the new parametriza-

tion the action of the Yukawa model becomes

SY[ϕ, ψ, ψ̄] =

∫
d3x

{1

2
∂µϕ∂

µϕ+
i

2
ψ̄ /∂ψ +

1

2
W ′(ϕ)2 +

1

2
W ′′(ϕ)ψ̄ψ +

1

2
Y (ϕ)ψ̄ψ

}
. (2.4)

The new functions W (ϕ) and Y (ϕ) can be constrained by parity (2.2) to be odd functions

of the field.

Let us introduce an auxiliary field F whose purpose is to complete the fields (ϕ, ψ) into

a full supermultiplet Φ = (ϕ, ψ, F ). Using the path integral

eiS
Y[ϕ,ψ,ψ̄] =

∫
DF eiS[ϕ,ψ,ψ̄,F ], (2.5)

we define a new effective action as

S[ϕ, ψ, ψ̄, F ] =

∫
d3x

{1

2
∂µϕ∂

µϕ+
i

2
ψ̄ /∂ψ − 1

2
F 2 + FW ′(ϕ) +

1

2
W ′′(ϕ)ψ̄ψ +

1

2
Y (ϕ)ψ̄ψ

}
.

(2.6)

The new field F is a scalar field which we require to be invariant under the transformation

(2.2) in order to naturally extend any parity property of the actions (2.1) and (2.4). At

any moment, one can make use of the equations of motions F = W ′(ϕ) in the effective

action (2.6) to eliminate the auxiliary field F and return to the formulation (2.4).

The new effective action can be understood as the sum of an effective action which is

manifestly N = 1 supersymmetric

SN=1[ϕ, ψ, ψ̄, F ] =

∫
d3x
{1

2
∂µϕ∂

µϕ+
i

2
ψ̄ /∂ψ − 1

2
F 2 + FW ′(ϕ) +

1

2
W ′′(ϕ)ψ̄ψ

}
, (2.7)

and a term that breaks supersymmetry explicitly

SBR[ϕ, ψ, ψ̄] =
1

2

∫
d3xY (ϕ)ψ̄ψ . (2.8)

The off-shell N = 1 supersymmetry transformations

δϕ = θ̄ψ , δψ =
(
F + i/∂ϕ

)
θ , δF = iθ̄ /∂ψ , (2.9)
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contain an infinitesimal Majorana spinor θ as parameter. Analogously to the expectation

value of ϕ as an order parameter for parity, the expectation value of the auxiliary field F

is an order parameter of N = 1 supersymmetry.

It is important to notice that N = 1 supersymmetry is not a purely mathematical

notion that was introduced by hand with the field F . To see this let us integrate out the

field F with the path integral (2.5). Using the equation of motion F = W ′(ϕ) in (2.9) we

obtain the on-shell N = 1 supersymmetric transformations

δϕ = θ̄ψ , δψ =
(
W ′(ϕ) + i/∂ϕ

)
θ . (2.10)

The first four terms of (2.4) are invariant under this symmetry, while the last term, which

corresponds to (2.8), breaks it explicitly. This is of course in complete analogy with the

invariance property exhibited by (2.7).

Before concluding this Section it is important to discuss the mechanisms of symmetry

breaking that are induced by the action (2.8). There are in principle two different symmetry

breaking mechanisms induced by Y (ϕ): On the one hand, if Y (ϕ) is not an odd function of

ϕ then both parity and N = 1 supersymmetry are broken explicitly by (2.8). This is the

case, for example, in which Y (ϕ) is constant and we obtain a correction to the mass term

for the Majorana fermions Y (ϕ) ∼ δmψ, which is not balanced by a corresponding change

in the mass of ϕ. The correction to the mass is expected to provide a relevant deformation

to the theory’s spectrum, and thus it is a feature of the theory that is expected to become

increasingly important in the infrared (at low energies or large scales, as compared to the

energy scale provided by δmψ). On the other hand, if Y (ϕ) is an odd function of ϕ, parity

can be preserved while only N = 1 supersymmetry is broken. This can be achieved if

Y (ϕ) entails an additional Yukawa interaction Y (ϕ) ∼ yϕ on top of the supersymmetric

one produced by W (ϕ). We will see in the following that this new Yukawa interaction

contributes with a deformation of the theory’s spectrum which becomes irrelevant because

of statistical fluctuations. Differently from the mass term, an irrelevant breaking term (2.8)

is expected to be increasingly less important in the infrared.

We can draw an interesting conclusion based on the last paragraph: If a system such

as (2.1) contains massless Majorana excitations which are coupled to some scalar order

parameter with a Yukawa-type interaction, then the resulting system is expected to display

supersymmetry as an emergent feature in the infrared. The precise implications of the

emergence of supersymmetry will be clarified in the following.

3. PERTURBATIVE VS NON-PERTURBATIVE RG

We investigate the scale dependence of all the systems (2.4), (2.6) and (2.7) by means

of two different and rather complementary RG methods, one based on perturbation theory

[47] which was dubbed functional perturbative RG in [46], and another based on a non-

perturbative RG equation that goes under the name of Wetterich equation and is known

as functional RG [44]. We illustrate the most important results of the paper by means

of functional perturbation theory from Sect. 4 to Sect. 8, because it makes our discussion

much more transparent. In the conclusions of Sect. 9, we also give all numerical estimates
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obtained with the non-perturbative method, and summarize the main non-perturbative

formulas in Appendix A and Appendix B. All perturbative results given in the main

text of the paper can be derived from a standard application of perturbation theory and

dimensional regularization, but are also fully contained as the logarithmic terms of the

non-perturbative results given in the appendices. Both procedures are described in more

detail in [46].

The renormalization of the Yukawa system (2.4) can be performed using standard dimen-

sional regularization and perturbation theory. For this purpose, we analytically continue

the action to d dimensions and identify the quartic self-interaction of V (ϕ) and the Yukawa

interaction of H(ϕ) as the critical couplings of the model. The upper critical dimension

is dc = 4, so the theory’s critical properties can be computed as a systematic expansion

in the parameter ε, which represents the displacement from the upper critical dimension

d = 4 − ε. The three dimensional system corresponds to ε = 1 which is arguably outside

a reliable range of perturbation theory, but it may still give reasonable estimates for the

critical exponents. The leading order of the ε expansion of (2.4) is given in Section 6 and

agrees with [19, 21].

The Yukawa system can also be studied with functional RG methods directly in three

dimensions. The analysis of the RG with this method has been carried over extensively in

[39] and will not be reproduced here in its entirety. However, we used the results of [39]

and [48–50] to reproduce the perturbative results presented in 6, while summarizing the

non-perturbative RG beta functions in Appendix B. For this comparison it is important

to realize that the analytic continuation of one Majorana fermion in three dimensions

corresponds to Nf = 1/4 Dirac spinors in four dimensions, and therefore the representation

of the Clifford algebra of (2.1) must be modified to take this fact into account.

The perturbative renormalization of the N = 1 supersymmetric model (2.7) is presented

in Sect. 5 and can be derived either from the results of [21] or from the perturbative part

of the results of [51]. The perturbative effects of the supersymmetry breaking term (2.8)

are presented in Section 8. The non-perturbative RG flow of (2.7) and (2.6) is summarized

in Appendix A.

4. PROPERTIES OF THE RG FLOW AND F -FIELD REDEFINITION

In this Section, we want to outline some general properties of the RG flow of the system

described by the effective action (2.6) containing the breaking term. These properties do

not depend on the specific RG method, and will prove crucial in what follows. Let us begin

by introducing an RG scale k and considering the RG transformation of SN=1[ϕ, ψ, ψ̄, F ]

for an infinitesimal change k → k − δk

SN=1 → SN=1 − δk

k

∫
ddx
{
β′WF +

1

2
β′′W ψ̄ψ

}
, (4.1)

where we have introduced the beta function βW ≡ k∂kW (ϕ) of the superpotential W (ϕ).

Here we implicitly assume that a supersymmetric action flows into another supersymmetric

action, a fact which is confirmed by direct observation when using MS methods [21], but
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FIG. 2. Diagrams responsible for the generation of C(ϕ) ∼ ϕ4 of (4.2) in perturbation theory.

The diagram on the right has an additional minus sign due to the fermion loop, therefore the two

diagrams tend to balance each other C(ϕ) ∝ W ′′(ϕ)4 −H(ϕ)4. In fact, if the Yukawa function

H(ϕ) satisfies the requirement of supersymmetry H(ϕ) = W ′′(ϕ), then the two diagrams sum to

zero and the RG step reduces to (4.1).

that can be proven explicitly using functional RG methods and choosing a supersymmetric

cutoff [51–55].

The situation complicates slightly when studying an RG transformation of S[ϕ, ψ, ψ̄, F ].

In general such a flow is parametrized by three functions, which we choose as

S → S − δk

k

∫
ddx
{
A(ϕ)F +

1

2
B(ϕ)ψ̄ψ + C(ϕ) + βU0

}
. (4.2)

In (4.2), we have already separated the flow of the zero point energy βU0 , which can be

neglected for the following discussion. The function C(ϕ) is thus normalized to be zero at

the ground state ϕ0 (see also the discussion of Sect. 2).

The supersymmetry breaking term (2.8) has two notable effects: On the one hand the

functions A(ϕ) and B(ϕ) are not related by a simple differentiation as in (4.1). On the

other hand the new function C(ϕ) arises as a scalar self-interaction which is not mediated

by neither F nor ψ̄ψ (compare (4.2) with (2.6)). The monomial C(ϕ) poses quite some

problem if one attempts an interpretation of the right hand side of (4.2) in terms of beta

functions, because it is not clear to what function’s flow should C(ϕ) be attributed to from

the point of view of the off-shell supersymmetric action (2.6). This problem occurs for both

perturbative and non-perturbative methods. In fact, close to the upper critical dimension

the function C(ϕ) plays the role of an additional ϕ4 interaction besides the one already

present in the superpotential: The one loop diagrams whose renormalization generates

C(ϕ) in (4.2) are shown in Fig. 2.

The physical reason for this problem is the following: while the field F is defined

at the scale k as an auxiliary field for exactly parametrizing certain boson and fermion

operators, it does no longer do so at the scale k − δk. Fluctuations have modified the

corresponding boson and fermion operators, such that the auxiliary field F has to be

adjusted accordingly. Within the functional RG, this problem can be solved by scale-

dependent field transformations [56–59]. In the present case, we can, in fact, eliminate

C(ϕ) by an appropriate redefinition of the F field along the RG. By demanding that

the structure of the path-integral (2.5) holds at any scale k instead of a given ultraviolet
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scale Λ � k, we can infer that an appropriate scale-dependent nonlinear redefinition

βF ≡ k∂kF = D(ϕ) of F should be coupled to the flow

S → S − δk

k

∫
ddx
{
A(ϕ)F +

1

2
B(ϕ)ψ̄ψ + C(ϕ)− δS

δF
D(ϕ)

}
, (4.3)

in order to cancel the contribution coming from C(ϕ). Using the explicit form of (2.6) in

(4.3), we can see that the choice

βF = D(ϕ) =
C(ϕ)

W ′(ϕ)
(4.4)

returns an RG step which agrees with the structure of (2.6) itself

S → S − δk

k

∫
ddx
{(
A(ϕ)− C(ϕ)

W ′(ϕ)

)
F +

1

2
B(ϕ)ψ̄ψ

}
, (4.5)

and which can be used to attribute beta functions to the superpotential W (ϕ) and to Y (ϕ)

as they appear in (2.6).

The nonlinearity of (4.4) is very important in protecting the auxiliary role of the field

F . To see this, let us first recall the equation of motion of F

F = W ′(ϕ) , (4.6)

and consider it at a minimum ϕ0 of the on-shell potential V (ϕ) = W ′(ϕ)2/2 . Since V (ϕ)

vanishes at its minimum ϕ0, we have W ′(ϕ0) = 0. Therefore, if we expand around the

minimum ϕ0, then the only way to have an expansion in the field F which is consistent

with 4.6 is to choose F0 = 0 as the expansion point. Using L’Hôpital’s rule on (4.4), it is

easy to check that

0 =
C ′(ϕ0)

W ′′(ϕ0)
(4.7)

ensures that the condition F = 0 is preserved along the flow at the minimum. This will

be true for both the perturbative and the non-perturbative redefinitions, which are given

in Sect. 8 and Appendix A respectively.

5. RG FLOW OF THE N = 1 MODEL

Let us now turn to the renormalization of the manifestly off-shell supersymmetric action

(2.7). It is expected that there exists a critical point for any dimension 2 ≤ d < 4, with four

being the upper critical dimension [21]. The critical point can also be understood as the

N = 1 supersymmetric generalization of the well-known Wilson-Fisher fixed point. The

non-perturbative renormalization group flow of the superpotential W (ϕ) has been studied

in [54, 55] for the three dimensional case, and it has been generalized in [51] to the whole

range 2 ≤ d < 4. The latter work contains leading order of the universal contributions to

the flow close to the upper critical dimension d = 4 − ε, which agrees with the RG flow

presented in [21] and which we shall use in our work.
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We introduce the dimensionless superpotential by measuring its dimensionful counter-

part in units of the RG scale k

w(ϕ) = k−d+1W (ϕkd/2−1Z) , (5.1)

where Z is a wave-function normalization for the superfield whose RG flow yields the

anomalous dimension η = −k∂k logZ. It should be understood that now ϕ denotes the

dimensionless field, whose scaling is corrected by η, and that the anomalous dimension can

be fixed by the requirement that the fields of the supermultiplet of (2.7) have canonically

normalized propagators. The perturbative beta function of w(ϕ) is

βw = −(d− 1)w(ϕ) +
d− 2 + η

2
ϕw′(ϕ) +

1

3(4π)2
w′′(ϕ)3

= −3w(ϕ) + ϕw′(ϕ) + ε
(
w(ϕ)− 1

2
ϕw′(ϕ)

)
+
η

2
ϕw′(ϕ) +

1

3(4π)2
w′′(ϕ)3 .

(5.2)

In the first line we distinguish the first three terms, that correspond to the scaling induced

by using k as unit, from the last two, that express the effects of quantum fluctuations of

ϕ and of the renormalization of W (ϕ). In the second line we further rewrote the result by

using d = 4− ε, so that the scaling terms are separated into the standard canonical scaling

of 4− ε dimensions and the quantum induced effects of having an anomalous dimension η.

The anomalous dimension is related to the superpotential by

η =
1

(4π)2
w′′′(0)2 . (5.3)

The third derivative of the superpotential is here evaluated at the minimum of the effective

potential: We confirm below that the critical potential has always ϕ = 0 as minimum

within perturbation theory, demonstrating self-consistency of this formula. In functional

RG computations, instead, the minimum might shift to a value ϕ0 6= 0 and it is conventional

to use this minimum when evaluating η. We refer the Reader to appendix C for a more

detailed explanation on how to derive functional perturbative RG flows and their relation

with non-perturbative flows.

The RG flow (5.2) can be understood as the generating functional of the beta functions

of the couplings to the local operators that are obtained from raising the field ϕ to an

arbitrary power [46]. To clarify the relation between (5.2) and the beta function presented

in [21], let us introduce the critical coupling λ, which is canonically dimensionless in four

dimensions, and insert the following parametrization for the critical potential w(ϕ) = λ
3!
ϕ3

in (5.2). The coupling λ governs the perturbative expansion of the system and is canonically

dimensionless at the upper critical dimension. The flow of the superpotential can then be

used to determine the beta function of λ as βw = βλ
3!
ϕ3. We end up with

βλ = − ε
2
λ+

7

2(4π)2
λ3 , η =

1

(4π)2
λ2 . (5.4)

This simple construction does not yet take into account all dimensionful couplings, which

can be included through a more general parametrization of the potential w(ϕ) = λ
3!
ϕ3 +
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∑
n6=3

λn
n!
ϕn. Since our discussion is based on perturbation theory, all λn are expected to

be zero at criticality, thus the flow (5.2) can straightforwardly be related to its critical

exponents θn through

βw =
1

3!
βλ(λ)ϕ3 −

∑
n6=3

λn
n!
θn(λ)ϕn +O(λnλn′) . (5.5)

In functional RG applications non-critical couplings might be non-zero at criticality, so

the above relation is more complicated [45] and the computation of the critical exponents

might require the diagonalization of the stability matrix. The function βλ = βλ(λ) and

the exponents θn = θn(λ) depend on the coupling λ alone and control the scaling of the

corresponding dimensionless operators.

At criticality the system exhibits scale invariance, thus it must realize βw = 0. This

condition can be achieved by fine tuning the coupling λ: The beta function (5.4) has a

nontrivial fixed point for

λ?2

(4π)2
=
ε

7
. (5.6)

The fixed point allows us to trade the λ dependence of the exponents for an epsilon ex-

pansion. We obtain the spectrum

θn = 3− n− ε− 1

7
n(n− 4)ε− 3 η δn,3 for n ≥ 0

=
{

3− ε , 2− 4

7
ε , 1− 3

7
ε ,−ε , . . .

}
.

(5.7)

The anomalous dimension is

η =
ε

7
. (5.8)

We arranged the spectrum such that the special case n = 3 includes the critical exponent

associated with the ϕ3 deformation. Its negative is sometimes denoted ω = −θ3 = β′λ(λ
?) =

ε and its value differs from what one would naively obtain from setting n = 3 in the first

terms of the first line of (5.7) because of the presence of the anomalous dimension in the

beta function (5.4). The ellipsis denotes subsequent irrelevant operators for n > 3 which

are subject to further mixing with derivative operators [46]. Therefore, our formula is

not expected to give the correct result for their leading expansion in ε. The inclusion of

such derivative operators in the analysis is, of course, possible both perturbatively and

non-perturbatively [47].

Let us carefully spell out the physical meaning of the exponents. It is possible to prove

in general that δw ∼ ϕ and δw ∼ w′(ϕ) ∼ ϕ2 are allowed deformations of (5.2) with critical

exponents θ1 = (d − η)/2 and θ2 = ∆ = (d − 2 + η)/2 respectively (see for example the

Appendix of [51]). The critical exponent θ2 is the quantum-corrected scaling dimension

of the field operator ϕ, which is sometimes denoted ∆, and is related to the anomalous

dimension by the scaling relation θ2 = (d − 2 + η)/2. The critical exponent θ1 of (5.7)

corresponds to a linear deformation of w(ϕ). and satisfies another scaling relation θ1 =
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(d−η)/2. As the leading nontrivial relevant exponent, θ1 governs the approach to criticality

and thus the onset of order parameters across the corresponding phase transition. It plays

the same role for the superpotential as does the (inverse) correlation length exponent ν−1

for the on-shell potential. Hence, let us write ν−1
W := θ1 [60]. Finally, the exponent θ0

trivially corresponds to the overall scaling k−d+1 of the superpotential, which is never

modified by quantum fluctuations and bears no physical meaning.

Together these relations prove that the spectrum of the relevant operators of the N = 1

model can be completely determined by the knowledge of a single exponent, which we

take to be the anomalous dimension η. In particular, the scaling of the deformation of the

superpotential is related to η by the so-called superscaling relation [60]

ν−1
W =

d− η
2

. (5.9)

This relation is the most important effect of supersymmetry, and marks a big difference to

what happens in the Wilson-Fisher universality class. For the latter, independent knowl-

edge about the two exponents η and ν is needed to fully characterize the relevant properties

of the spectrum. The ability to determine all relevant critical exponents from η alone is the

smoking gun of the emergence of supersymmetry. The following analysis of the Yukawa

model ultimately will lead us to the conclusion that the exponent νW can be identified

with the correlation length exponent, ν ≡ νW .

While Eq. (5.9) holds perturbatively for obvious reasons, it is nontrivial to satisfy the

scaling relation with nonperturbative methods in a truncated theory space and away from

its upper critical dimension. An important feature of the numerical estimates obtained

with non-perturbative RG methods and reported in Sect. 9 is that Eq. (5.9) can be satisfied

either exactly or with an arbitrary numerical accuracy. In fact, it is easy to prove Eq. (5.9)

within a local potential approximation (LPA) using a simple RG stability analysis and

keeping η fixed as an external parameter (see for example the appendices of [46, 51]). The

idea of keeping the anomalous dimension fixed when studying the RG stability has been

discussed also in [61] for multicritical systems. If instead the anomalous dimension is not

kept fixed, we expect that (5.9) can be satisfied with arbitrary accuracy for increasing size

of the truncation in the space of all possible operators, as has been observed in [62, 63] for

the Lee-Yang model. The accuracy with which the superscaling relation is satisfied thus

becomes a benchmark test for all our numerical estimates.

Before concluding this Section, we find convenient to give the explicit form of the de-

formations of the on-shell effective action corresponding to the critical exponents θ2 and

θ3. They are

δS ∝

{∫
x

(
ψ̄ψ + λ?ϕ3

)
with θ2 = 1− 3

7
ε ,∫

x

(
ϕψ̄ψ + λ?

2
ϕ4
)

with θ3 = −ε .
(5.10)

As already discussed above, the first deformation breaks chirality manifestly, while the

second is invariant. Both of them are, of course, invariant under supersymmetry.
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6. RG FLOW OF THE YUKAWA MODEL

For the renormalization of (2.1) we will follow a similar procedure as in the previous

Section. Since the self-interaction potential and the Yukawa function are generally inde-

pendent, we have that (2.1) can describe a number of critical points, but only one displays

non trivial functions for both interactions. As in the previous Section, the RG flow of

U(ϕ) and H(ϕ) can be studied in a multitude of ways. We conduct our manipulations here

using the perturbative flow, which can be either obtained by renormalizing the theory with

critical ϕ4 and Yukawa couplings below four dimensions, or by extracting the universal

part of the functional RG flow. These two approaches give the same results.

We define the dimensionless potential and Yukawa function

u(ϕ) = k−dU(ϕkd/2−1Zϕ) ,

h(ϕ) = k−1Z−1
ψ H(ϕkd/2−1Zϕ) ,

(6.1)

where Zϕ and Zψ are separate wave-function normalizations for the fields ϕ and ψ, which

are related to the anomalous dimensions ηϕ = −k∂k logZϕ and ηψ = −k∂k logZψ. Since in

the general Yukawa model the fields ϕ and ψ are not members of a single supermultiplet,

they might have different anomalous dimensions.

The perturbative beta functions of the two functions in d = 4− ε are

βu = −4u+ ϕu′ + ε
(
u− 1

2
ϕu′
)

+
ηϕ
2
ϕu′ +

1

2(4π)2
(u′′)2 − 1

2(4π)2
h4 ,

βh = −h+ ϕh′ − ε1
2
ϕh′ + ηψh+

ηϕ
2
ϕh′ +

2

(4π)2
h(h′)2 .

(6.2)

A single Majorana field in three dimensions relates to Nf = 1/4 Dirac spinors in four di-

mensions [21, 39]. This has the important consequence that the two anomalous dimensions

actually coincide

ηψ = ηϕ =
1

(4π)2
h′(0)2 , (6.3)

and therefore they can in principle be part of the same superfield multiplet.

It is straightforward to repeat the steps of the previous Section that lead to the non-

trivial fixed point with corresponding spectrum. Using the notation of [21], let us define

the critical couplings g1 and g2 as

h(ϕ) = g1ϕ , u(ϕ) =
g2

4!
ϕ4 . (6.4)

Their beta functions βg1 and βg2 can be easily extracted from those of the dimensionless

potentials (6.2) and agree with the one loop part of [21]

βg1 = − ε
2
g1 +

7

32π2
g3

1 , βg2 = −εg2 +
3

16π2
g2

2 +
1

8π2
g2g

2
1 −

3

4π2
g4

1 . (6.5)

They have the following fixed point

g∗1
2

(4π)2
=
ε

7
,

g∗2
(4π)2

=
3ε

7
. (6.6)
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The computation of the spectrum is slightly more involved than in the previous Section

because of the mixing between the operators of u(ϕ) and h(ϕ). There are two sets of

critical exponents, θn,1 for n ≥ 0 and θn,2 for n ≥ 3. Exponents corresponding to the same

value of n result from the mixing of the operators ϕn and ϕn−3ψ̄ψ. We find

θn,1 = 4− n− ε− 3

14
n (n− 3) ε , for n ≥ 0 ,

=
{

4− ε , 3− 4

7
ε , 2− 4

7
ε , 1− ε ,−13

7
ε , . . .

}
;

θn,2 = 4− n− 1

7
nε− 3 η δn,4 , for n ≥ 3 ,

=
{

1− 3

7
ε ,−ε , . . .

}
.

(6.7)

The anomalous dimensions are

ηϕ = ηψ = η =
ε

7
. (6.8)

To better understand this spectrum let us consider the associated operators: For n =

0, 1, 2 the deformations ϕ0, ϕ1 and ϕ2 do not mix and have exponents θn,1 with n = 0, 1, 2.

The first mixing occurs for n ≥ 3 among the operators ϕn and ϕn−3ψ̄ψ and results in the

θn,i exponents for i = 1, 2. The tower of operators corresponding to θn,1 is aligned with

ϕn, while for n ≥ 3 the tower of operators corresponding to θn,2 is a genuine mixture of ϕn

and ϕn−3ψ̄ψ because the mixing matrix is triangular.

Before comparing the spectrum with (5.7) we must factor out the scaling relations

and parity breaking operators. We can prove the two scaling relations θ1,1 = (d + 2 −
η)/2 = 3 − 4/7ε and θ3,2 = (d − 2 + η)/2 = 1 − 3/7ε. The exponent θ3,1 = 1 − ε

corresponds to the operator ϕ3 and, using the equations of motion, can be shown to

correspond to the parity and supersymmetry breaking deformation. In Sect. 2, we have

associated this to a displacement of the masses of ϕ and the Majorana excitations. Ensuring

that parity is preserved, we can disregard this deformation. Having factored out the

scaling relations, we are therefore left with two critical exponents in the relevant part of

the spectrum, ηϕ = ηψ = η = ε/7 and θ2,1 = ν−1 = 2 − 4/7ε. Here, we have introduced

the correlation length exponent ν corresponding to the leading relevant deformation of

the order parameter potential. We observe that η and ν coincide with η and νW of the

supersymmetric model in the previous section. This observation is key to understanding

the emergence of supersymmetry, as we shall further explore in the next Section.

Let us also comment on the near marginal critical exponents. The mixing of the opera-

tors ϕ4 and ϕ ψ̄ψ is expected to result in two directions: one that respects the constraints

of supersymmetry, and another that breaks it. It is clear that the exponents θ4,1 = −ε
corresponds to the former class as we have seen it in the supersymmetric spectrum, while

θ4,2 = −13/7ε corresponds to the latter. At this stage, it is an interesting observation

that we can conjecture not only that supersymmetry is emergent in the infrared, but also

that the first irrelevant deviation from supersymmetry is subleading compared to the first

irrelevant supersymmetric deformation! The supersymmetry breaking exponent ω̃ ≡ −θ4,2

is expected to be larger than the supersymmetric one ω = −θ4,1. We anticipate now that
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it will be an important feature of our approach to reproduce this fact correctly also in the

three dimensional case.

As for Section 5, let us conclude by providing the explicit form for some of the the

deformations of the effective action. As previously stated, the critical exponents θn,1 are

associated to deformations of the form ϕn, therefore the scaling operators for θ3,1 and θ4,1

are purely in the bosonic potential

δS ∝

{∫
x
ϕ3 for θ3,1 = 1− ε ,∫

x
ϕ4 for θ4,1 = −13

7
ε .

(6.9)

The operators corresponding to the critical exponents θ3,2 and θ4,2 are instead

δS ∝


∫
x

(
ψ̄ψ + g?1ϕ

3
)

for θ3,2 = 1− 3
7
ε ,∫

x

(
ϕψ̄ψ +

g?1
2
ϕ4
)

for θ4,2 = −ε .
(6.10)

Using the explicit for of the fixed points (5.6) and (6.6), it is easy to see explicitly that

the system (6.10) coincides with the supersymmetric deformations (5.10). This fact is

further investigated in the next Section. The system (6.9) instead provides the mechanism

for supersymmetry breaking of the Yukawa system and will be reflected in the analysis of

Sect. 8.

7. RELATIONS BETWEEN YUKAWA AND SUPERSYMMETRIC FLOWS

Now we want to explore the relation between the two RG systems (5.2) and (6.2) while

being guided by our approach in Sect. 2. Let us naively use (2.3) and neglect the function

Y (ϕ) and the zero point energy in order to identify u = (w′)2/2 and h = w′′. This implies

the following relation among the couplings

g1 = λ , g2 = 3λ2 , (7.1)

which is consistent with their values at criticality (5.6) and (6.6), and agrees with [15, 21].

It is a trivial exercise to use the explicit form of the effective potentials and (7.1) in (5.3)

and (6.3) to prove

η = ηϕ = ηψ . (7.2)

We can proceed further by substituting the identifications u = (w′)2/2 and h = w′′

directly into the system (6.2). The flow of the scalar potential becomes

βu = w′
{
−2w′ +

1

2
(2 + η)ϕw′′ +

1

2
ε (w′ − ϕw′′) +

1

16π2
w′′′(w′′)2 +

1

32π2
w′(w′′′)2

}
' w′

{(
−2 +

η

2

)
w′ +

1

2
(2 + η)ϕw′′ +

1

2
ε (w′ − ϕw′′) +

1

16π2
w′′′(w′′)2

}
(7.3)

= w′ (k∂kw
′) = k∂k

(w′)2

2
= β(w′)2/2 ,
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In the second line, we have used the fact that the superpotential is cubic near criticality

w′′′(ϕ)2

16π2
' w′′′(0)2

16π2
= η

and therefore its third derivative can be used to complete the scaling terms of k∂kw
′.

Equation (7.3) demonstrates that the flows of the on-shell potential u and that of the

superpotential w carry identical information near criticality. Therefore, also the exponents

governing the approach to criticality have to be the same. We are thus lead to conclude

that the correlation length exponent ν and the leading exponent of the deformation of the

superpotential νW have to be identified, ν ≡ νW , as is confirmed by the explicit calculation

above.

Similarly the flow of the Yukawa function becomes in the same limit

βh = (−1 + η)w′′ − 1

2
εϕw′′′ +

1

2
ϕ(2 + η)w′′′ +

1

8π2
w′′(w′′′)2

= k∂kw
′′ − 1

16π2
(w′′)2w(4) ,

' k∂kw
′′ = βw′′ ,

(7.4)

for which we have again used the fact that the critical superpotential is cubic and therefore

its fourth derivative is zero near criticality. We observe that this near-criticality approx-

imation does not affect the relevant operators of the physical spectrum and thus leaves

the universality class intact; however, we observe that this approximation may modify the

spectra of the irrelevant operators of the two systems. More evidence of this fact is give

in the next Section.

The above considerations prove that the critical points of the Yukawa and supersym-

metric models are the same near the upper critical dimension. The RG flow of the two

models are related at least in the vicinity of the critical points, because we explicitly used

near-critical properties. More specifically they explain the recurrent critical exponents η

and ν in the spectra of the two models. In fact, the relations u = (w′)2/2 and h = w′′

could be interpreted as a non-linear redefinition of the couplings of the systems, and there-

fore the two systems are expected to be physically isospectral on general grounds. As we

have already seen, that the spectra must be compared once the scaling relations have been

factored out, because they depend on the operator parametrization; the use of the scaling

relations is reminiscent to the process of going on-shell which is expected to remove any

parametrization dependence of the coupling space.

8. SUPERSYMMETRY-BREAKING FLOW

In this Section we turn our attention to the renormalization of (2.6). The system

presented here should be understood as the breaking of (5.2) of Sect. 5 which is induced

by the term (2.8). As discussed in Sect. 4, when the breaking function Y (ϕ) is present

a generic RG step conflicts with the auxiliary nature of the field F in that it creates an

additional functional structure as shown in (4.2). We shall handle this conflict with the
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scale-dependent redefinition of F described in (4.4), which restores the auxiliary nature of

F at each scale, but changes the RG step as shown in (4.5).

The dimensionless superpotential is defined as in (5.1), but it is important to recall

that this system potentially has different anomalous dimensions for ϕ and the Majorana

fermion. We also need to define the dimensionless counterpart of the breaking function:

w(ϕ) = k−d+1W (ϕkd/2−1Zϕ) ,

y(ϕ) = k−1Z−1
ψ Y (ϕkd/2−1Zϕ) .

(8.1)

Despite having formulated the system using the function y(ϕ), it is convenient to give

the results in terms of the function h(ϕ) = w′′(ϕ) + y(ϕ) rather than y(ϕ). The RG flow is

βw =− 3w(ϕ) + ϕw′(ϕ) + ε
(
w(ϕ)− 1

2
ϕw′(ϕ)

)
+
ηϕ
2
ϕw′(ϕ) +

1

3(4π)2
w′′(ϕ)3

+

∫ ϕ

0

dx
w′′(x)4 − h(x)4

2(4π)2w′(x)
,

βh =− h(ϕ) + ϕh′(ϕ)− ε

2
ϕh′(ϕ)− ηψh(ϕ) +

ηϕ
2
ϕh′(ϕ) +

2

(4π)2
h(ϕ)h′(ϕ)2 .

(8.2)

The flow of w(ϕ) is divided in two notable parts: The first line displays the supersymmetric

invariant flow that characterizes the N = 1 model of (5.2). The second line includes the

effect of the scale-dependent F field redefinition; in practice it contains the ϕ integration of

the function multiplying F in RG step (4.5). For a simple illustration of why the numerator

of the F field redefinition is the difference of two terms we refer the reader to Fig. 2. The

flow of h(ϕ) is equal to the flow of the same Yukawa function of the Yukawa model in (6.2),

which is the reason why we use here the function h(ϕ) instead of y(ϕ).

The anomalous dimensions are

ηϕ =
3

16π2
w′′′(0)2 − 1

8π2
h′(0)2 , ηψ =

1

16π2
h′(0)2 . (8.3)

It is easy to see that if y(ϕ) = 0 then h′(0) = w′′′(0), as expected at the critical point.

Then the two contributions of ηψ partly cancel, such that ηϕ = ηψ = η with η being the

anomalous dimension of the N = 1 system.

Despite its nonlocal nature, the last term of βw in (8.2) is essential in establishing

the relation of this system with the Yukawa system (6.2). As we have already seen, the

beta function βh is identical in (8.2) and (6.2), so it only remains to establish that we

can reconstruct βu of (6.2) from (8.2) using the identification u = (w′)2

2
. In order to do

so, we begin by taking a derivative of βw with respect to the field. This manipulation is

very similar to the one shown in Sect. 7, so it will not be reproduced in it entirety here.

Following a logic similar to (7.3) and including the new term, we see that

βw′ '− 2w′ +
1

2
(2 + η)ϕw′′ +

1

2
ε (w′ − ϕw′′) +

1

16π2
w′′′(w′′)2 +

1

32π2
w′(w′′′)2 +

(w′′)4 − h4

2(4π)2w′
.

(8.4)
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We can now multiply by w′(ϕ) both sides and rediscover βv in the limit u = (w′)2

2
to prove

that our identification is consistent

w′βw′ ' βu . (8.5)

As with the results of Sect. 7, the approximate equality means equality for the relevant part

of the spectrum, but the two systems may differ with respect to their irrelevant operators.

With hindsight and in view of (8.4) and (8.5), the origin of the nonlocal contribution

to βw appearing in (8.2) is clear: it is necessary to balance out the actions of taking a field

derivative and multiplying by w′(ϕ). We find the steps leading to the identification between

the systems (8.2) and (6.2) rather interesting, and they serve as strong justification for the

procedure described in Sect. 4 and particularly for the scale-dependent redefinition of the

field F .

We continue this Section providing the full analysis of the spectrum. The critical po-

tentials can be parametrized as

w(ϕ) =
λ

3!
ϕ3 , h(ϕ) = (λ+ y1)ϕ , (8.6)

where we have introduced the new Yukawa coupling y1, which is related to g1 as of g1 =

λ+ y1. The beta functions are

βλ = − ε
2
λ+

λ

32π2
(7λ2 − 12λy1 − 6y2

1) ,

βy1 = − ε
2
y1 +

y1

32π2
(27λ2 + 18λy1 + 4y2

1) .
(8.7)

The fixed point that we are interested in is

λ?2

(4π)2
=
ε

7
, y? = 0 . (8.8)

It is trivially seen to lie in the supersymmetric hypersurface and generalizes the one of

Sect. 5 and matches the one of Sect. 6. At the fixed point, the spectrum of deformations

displays some mixing

θn,1 = 3− n− 1

7
(3 + n2)ε− 6 η δn,3 , for n ≥ 0

=
{

3− 3

7
ε, 2− 4

7
ε, 1− ε, −18

7
ε, . . .

}
,

θn,2 = 3− n− 1

7
(n+ 1)ε− 3 η δn,3 , for n ≥ 2

=
{

1− 3

7
ε, −ε, . . .

}
.

(8.9)

This spectrum should be compared with (6.7) once all scaling relations are factored out.

The relevant parts of the two spectra coincide as they are characterized by the exponents

θ1,1 = ν−1 = 2− 4/7ε and η = ε/7. The first irrelevant exponent θ3,2 = −ω = −ε also co-

incides, but the second irrelevant exponent ω̃ differs. This makes our observation manifest
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that the near-criticality approximation, denoted above by the “'” symbol, preserves the

relevant part of the spectrum but may affect the irrelevant part.

The difference can be seen also at the level of the scaling operators. In fact, the defor-

mations of the effective on-shell action corresponding to the critical exponents θ2,1 and θ3,1

are

δS ∝


∫
x

(
λ?ϕ3

)
for θ2,1 = 1− ε ,∫

x

(
3ϕψ̄ψ + 7

3
λ?ϕ4

)
for θ3,1 = −18

7
ε ,

(8.10)

in which it is easy to see that the first operator coincides with (6.9), while the second one

does not. The deformations of the effective on-shell action corresponding to the critical

exponents θ2,2 and θ3,2 are instead

δS ∝


∫
x

(
ψ̄ψ + λ?ϕ3

)
for θ2,2 = 1− 3

7
ε ,∫

x

(
ϕψ̄ψ + λ?

2
ϕ4
)

for θ3,2 = −ε .
(8.11)

which coincide with both the deformations (5.10) and (6.10), and therefore are manifestly

supersymmetric scaling operators.

9. CONCLUSIONS

We have investigated the emergence of N = 1 supersymmetry in the long-range be-

havior of three-dimensional parity-symmetric Yukawa systems. Our functional approach

to the renormalization group confirms that a non-trivial interacting fixed-point is within

the supersymmetric hypersurface of the general model class. The essential new aspect of

our work is that we have also access to the flow outside the supersymmetric hypersur-

face. Thus, it becomes possible to answer the question as to whether this hypersurface of

higher symmetry is attractive. We answer this question in the affirmative and find that the

supersymmetric fixed point has only one relevant direction which is fully inside the super-

symmetric hypersurface. All other perturbations within this model class are RG irrelevant

and thus suppressed in the long-range limit. Provided that the microscopic interactions are

in the vicinity of this fixed point, the long-range observables exhibit supersymmetry – even

if the microscopic interactions are not supersymmetric. This is the essence of emerging

supersymmetry driven by fluctuations.

These results have been facilitated by a functional renormalization approach that man-

ifestly preserves supersymmetry whenever such symmetry is realized. For this, a formu-

lation using an auxiliary field F similar to off-shell supersymmetry is useful even for the

non-supersymmetric models. We have amended the existing supersymmetric functional

RG approach with scale-dependent field transformations of the field F in order to keep

track of the symmetry status on all scales.

In the main text, we have used the techniques of the functional perturbative RG which

are most convenient for an analytical and transparent analysis of the RG equations, making

contact with standard ε-expansion techniques near the upper critical dimension. On the
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FRG
n=1

FRG
n=2 ε2 ε3 [2/1] FRG

Yukawa [39] CB [65]

η 0.174 0.167 0.184 0.162 0.185* 0.164

ν−1 1.385 1.395 1.408 1.419 1.29 1.418*

ω 0.765 0.782 0.700* 0.885* 0.796 –

ω̃ 0.809 0.831 0.909* 1.407* 1.09 –

TABLE I. Anomalous dimension η, inverse correlation length exponent ν−1, and the corrections-

to-scaling exponents ω (supersymmetric) and ω̃ (non-supersymmetric). The first two columns

represent our functional RG results for two different regulators n = 1, 2. For comparison, we

list results from the ε expansion [24], a functional RG study of the Yukawa system [39] and a

conformal bootstrap estimate [65]. Numbers quoted with an asterisk are not directly given in the

literature, but have been deduced by us from the available literature information, see main text

for details.

basis of the full functional RG (see Appendices), we can work directly in three dimensions

and obtain quantitative results of higher numerical significance. For this, we have con-

sidered the functional flows to leading-order in the derivative expansion (so-called LPA’),

constructed the fixed-point functions and studied perturbations in the critical regime. In

addition to a regulator of type n = 1 in the notation of [51], we have also studied the

n = 2 regulator. We consider the n = 2 results as superior, as this regulator provides for a

more pronounced gap in the propagators regularizing the IR behavior in agreement with

optimization concepts [64].

Our quantitative results for the anomalous dimension η, the correlation length exponent

ν and two corrections-to-scaling exponents ω and ω̃ are summarized in Tab. I. In agreement

with our observations using the functional perturbative RG, we find that the exponent ω̃

characterizing a supersymmetry-breaking perturbation is larger than the supersymmetry

preserving one ω. This implies that supersymmetry emerges even faster than the general

feature of universality at long ranges.

We also list several results taken from the literature including the ε expansion up to

third order [24], a functional RG study of the Yukawa model [39] corresponding to an

on-shell formulation in the context of supersymmetry, and estimates from the conformal

bootstrap [65–67]. The numbers quoted with an asterisk, have not been given in these

papers, but are deduced by us: for instance, we have estimated the numbers for ω and ω̃

from the ε expansion [24] to second and third order. We observe that a meaningful result

for the corrections-to-scaling exponents requires a Padé resummation already at order ε2

where we have used a [1/1] approximant. At order ε3, the results for ω and ω̃ depend

strongly on the choice of the Padé approximant, and only the [2/1] approximant appears

to be meaningful. This fits to the observation made in [24] that the superscaling relation

is preserved at order ε3 using the [2/1] Padé approximant. Within the functional RG

method of this paper, it can be satisfied with arbitrary accuracy. The functional RG study

of the Yukawa model in [39] uses a non-supersymmetric regularization scheme which for

the N = 1 model contaminates the anomalous dimension such that ηψ 6= ηϕ. For our

comparison, we use the arithmetic mean of their rather different values ηϕ = 0.14 and
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ηψ = 0.22. From the conformal bootstrap, only an estimate of η is available [65, 66]. We

have added the estimate for the correlation length exponent using the superscaling relation

(5.9).

We observe a comparatively mild dependence of our results on the regularization scheme

for η and ν and a slightly bigger dependence for ω and ω̃, providing a naive error estimate.

The agreement with the ε expansion and with the conformal bootstrap is rather satisfactory

for η and ν, also being in line with our expectation that our results for the n = 2 regulator

are superior. The agreement is less quantitative for the subleading exponent ω̃. On the

functional RG side, we expect more substantial corrections from higher-order operators,

while the absence of apparent convergence and the stronger dependence of the ε expansion

on the choice of the Padé approximants indicates that higher-orders are needed here as

well.

In summary, we consider the understanding of the emergence of supersymmetry in the

present model class as rather comprehensive on the qualitative side with some more room

for quantitative improvement left on the side of the corrections-to-scaling exponents.

Appendix A: N = 1 and broken-supersymmetric non-perturbative flows

In this Appendix we shall list the non-perturbative beta functions and anomalous dimen-

sions for the systems (2.7) and (2.6), which include both the physical degrees of freedom ϕ

and ψ of the original system (2.1), as well as the auxiliary F field. These non-perturbative

RG functions have been computed using the functional RG methods formulated in terms

of a flow equation for the 1PI effective action [44]. Using a manifestly off-shell super-

symmetric regularization [52, 53], the functional RG equations for the present model have

been derived and analyzed in [54, 55] and were extended to arbitrary dimension 2 < d ≤ 4

in [51]. These methods allow for the construction of an RG which is manifestly off-shell

supersymmetric at any scale and in any dimension as long as the supersymmetry imposed

on the level of the action. We here present all results using an optimized cutoff function

known as “n = 1” cutoff in the notation of [51], and refer to this latter paper both for

further details and for explicit formulas involving the “n = 2” cutoff. The results for both

cutoffs are presented in Table I. We refer the reader to the discussion of Sect. 4, which we

shall follow throughout this Appendix.

The nonperturbative flow of the N = 1 model is

βw = −(d− 1)w +
d− 2 + η

2
ϕw′ − 1

2(4π)d/2Γ(1 + d/2)(d− 1)

d− η
1 + (w′′)2

w′′,

η =
d(1− η

d−1
)

(4π)d/2Γ(1 + d/2)(d− 2)

1− (w′′)2

(1 + (w′′)2)3
w′′′2.

(A.1)

This RG step corresponds to (4.1), which is the one that preserves off-shell supersymmetry.

All the fields ϕ, ψ and F of the supermultiplet share the same anomalous dimension η.

Following the procedure described in appendix C of this paper and in Appendix C of

[46], it is straightforward to isolate the contributions of the RG flow (A.1) coming from

logarithmic terms in d = 4− ε, and deduce the one loop perturbative flow (5.2).
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Let us reserve η to denote the anomalous dimension of the field F , which can be com-

puted from the running of its two point function, and use ηϕ and ηψ to denote the anomalous

dimensions of the two physical fields as in the main text. Under the influence of the break-

ing term (2.8), the RG step is modified to (4.2) and to (4.5). From the coefficient of the F

and F 2 terms we determine the corrections to the system (A.1)

βw =− (d− 1)w +
d− 2 + ηϕ

2
ϕw′ − 1

4(4π)d/2Γ(1 + d/2)(d− 1)

{2d(1− η+ηϕ
2d

)

1 + (w′′)2
w′′

+ (ηϕ − η) arctan (w′′)
}

+ δβw,

η =
d

(4π)d/2Γ(1 + d/2)(d− 2)

{ 1− ηϕ
d−1

(1 + (w′′)2)3
w′′′2 −

1− η
d−1

(1 + (w′′)2)3
(w′′)2w′′′2

}
.

(A.2)

In (A.2), the beta function of w splits into two parts: all the terms that are shown explicitly

are evaluated at fixed F field, and therefore do not include any field redefinition as in (4.2).

Conversely, the contribution δβw arises from the field redefinition of (4.5) and is discussed

below. The breaking term generates a flow for the function H(ϕ)

βh =− (1− ηψ)h+
d− 2 + ηϕ

2
ϕh′ +

1

(4π)d/2Γ(d/2)(d− 1)

{ 4
(
1− ηψ

d

)
h(h′)2

(1 + h2)(1 + (w′′)2)2

+
[(

1− η

d

)
w′′2 −

(
1− ηϕ

d

)] (1 + h2)h′′ − 2h(h′)2

(1 + h2)(1 + (w′′)2)2

}
.

(A.3)

This is read off from the ψ̄ψ term of (4.2), and is consequently also given at fixed F field.

The anomalous dimension ηϕ and ηψ can be written down implicitly as

ηψ =
d

(4π)d/2Γ(1 + d/2)(d− 2)

{1− 2ηψ−ηϕ
d−1

+
(
1− η

d−1

)
w′′

(1 + w′′2)(1 + h2)2

}
(1− h2)h′2

ηϕ =
d

(4π)d/2Γ(1 + d/2)(d− 2)

{
2

(
1− ηψ

d− 1

)[1− 10h2 + 5h4

(1 + h2)5
(h′)2

]
+ 2

(3− (w′′)2)
((

1− η
d−1

)
(1 + (w′′)4) + 6

(
1− η+2ηϕ

3(d−1)

)
(w′′)2

)
(1 + (w′′)2)5

(w′′′)2
}
.

(A.4)

Isolating the logarithmic contributions from formulas (A.2), (A.3) and (A.4) one can isolate

the leading one loop perturbative flow (8.2) and (8.3).

As discussed in Sect. 4, the breaking term (2.8) generates the contribution C(ϕ) in

the RG step (4.2) which is not present in the manifestly supersymmetric step (4.1). The

dimensionless counterpart c(ϕ) of this function can be considered as a beta function and

perturbatively describes the generation of an additional ϕ4-like interaction through the

diagrams of Fig. 2. We compute it as

c(ϕ) =
1

(4π)d/2Γ(1 + d/2)

{1− η+ηϕ
2(d+1)

1 + (w′′)2
−

1− ηψ
d+1

1 + h2

}
. (A.5)

Following the reasoning of Sect. 4, the generation of this self-interaction can be compen-

sated by a scale-dependent redefinition of the F field along the flow for each RG step (4.3).
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The dimensionless beta function of the F field redefinition is then

βF = c(ϕ)/w′(ϕ) . (A.6)

When including the beta function of the F redefinition it is important to carefully treat

potential singularities that are due to the presence of the inverse power of w′(ϕ). This

typically means subtracting a double pole in ϕ = 0 when considering the perturbative flow

(because w′ ∼ ϕ2), or a single pole when considering the non-perturbative one (because

the minimum of the on-shell potential is non-zero). In practice, this means that in the

computation of the spectrum the fixed point limit has to be taken carefully and paying

special attention to the first two couplings of the expansion of w(ϕ). Recall from the

discussion of Sect. 2 that the zeroes of w′(ϕ) are in one-to-one correspondence with the

minima of the on-shell potential. The redefinition of F enters linearly in the flow of w′(ϕ)

according to (4.3), therefore it contributes to the flow of w(ϕ) as an integral

δβw = −
∫ ϕ

ϕ0

dx
c(x)

w′(x)
. (A.7)

Our convention is to choose the boundary of the integration to be ϕ0, so that the contri-

bution δβw does not affect the location of the minimum (even though the remainder of βw
does). With this convention we ensure that the only change in the scaling properties of

the zero point energy can come from βU0 of (4.2), which we decided to neglect in the first

place. If a zero point energy were to be reinstated as βU0 , even though it would serve as

an order parameter for supersymmetry breaking, it would only contribute to our spectra

by including the critical exponent 4− ε whenever it is missing.

Appendix B: Non-perturbative flow of the Yukawa system

The non-perturbative beta functions of the two potentials appearing in a truncation of

the effective average action of the form (2.1) have been considered in [48–50] and studied

extensively in [39] for arbitrary number and type of spinors and in general d dimensions,

see also [35–38, 40, 41]. We are interested in the case involving one Majorana fermion in

d = 3, which can be achieved by considering Nf = 1/4 Dirac spinors in d = 4. In the

notation of [39], this latter limit corresponds to set Xf = 1, because Xf counts the number

of fermionic degrees of freedom. Using an optimized cutoff [64, 68], the beta functionals

are

βu =− du+
1

2
(d− 2 + ηϕ)ϕu′ +

1

(4π)d/2Γ(1 + d/2)

{1− ηϕ
d+2

1 + u′′
−

1− ηψ
d+1

1 + h2

}
,

βh =− (1− ηψ)h+
1

2
(d− 2 + ηϕ)ϕh′ +

1

(4π)d/2Γ(1 + d/2)

{2
(
1− ηϕ

d+2

)
(h′)2h

(1 + u′′)2(1 + h2)

+
2
(
1− ηψ

d+1

)
(h′)2h

(1 + u′′)(1 + h2)2
−

1− ηϕ
d+2

(1 + u′′)2
h′′
}
.

(B.1)
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The anomalous dimensions of scalar and Majorana fields can be expressed implicitly as

ηϕ =
1

(4π)d/2Γ(1 + d/2)

{ 2

(1 + h2)4
− h2

(1 + h2)4
+

1− ηψ
(d− 2)(1 + h2)3

−
1
2

+
1−ηψ
(d−2)

2(1 + h2)2

}
(h′)2

+
1

(4π)d/2Γ(1 + d/2)

(u′′′)2

(1 + u′′)4
,

ηψ =
1

(4π)d/2Γ(1 + d/2)

2
(
1− ηψ

d+1

)
(h′)2

(1 + h2)(1 + u′′)2
.

(B.2)

The above RG system depends on the chosen cutoff through the several threshold functions

that parametrize the decoupling of higher modes from the flow and characterize the cutoff

scheme dependence. There are, however, some key contributions to the flow which do not

depend by the cutoff in d = 4, and are thus universal. More specifically, all the universal

one loop contributions contained in (B.1) and (B.2) have been given in (6.2) and (6.3)

and have been the main tool to illustrate the results of Sect. 6. It is a straightforward

computation to check the universal flow of of Sect. 6 from (B.1) and (B.2) in d = 4− ε. A

more detailed discussion on the role of universality in functional renormalization and its

relation with perturbation theory can be found in [46].

Appendix C: On the perturbative RG

The functional perturbative flows for the potentials that are used in the main text can

all be obtained by applying the methods of [46, 47] to renormalize the bare actions shown in

Sect. 2. As discussed in [46], the functional perturbative RG methods fully reproduce the

standard methods of perturbation theory, but also allows the determination of additional

important quantities, such as the coefficients of the operator product expansion of the

critical quantum field theory. The non-perturbative flows given in appendices A and B seem

very different from their perturbative counterparts that appeared in the main text, but we

can use the former to derive the latter. This is possible, since, even within our truncation,

the non-perturbative flows contain all the universal leading perturbative contributions; for

the examples of this paper, these occur at one-loop order. In this appendix, we give a

simple procedure to determine the one-loop perturbative universal RG flow starting from

the non-perturbative ones of appendices A and B. We illustrate the procedure using the

flow of the N = 1 superpotential.

Recalling the relation (5.1) between the dimensionless superpotential w(ϕ) and the di-

mensionful bare superpotentialW that appears in (2.7), it is easy to use (A.1) to reconstruct

the non-perturbative flow of the dimensionful superpotential

βW = − Z(d− η)

2(4π)d/2Γ(1 + d/2)(d− 1)

kdW ′′

(k2Z2 + (W ′′)2)
,

η =
Zd(1− η

d−1
)

(4π)d/2Γ(1 + d/2)(d− 2)

k2Z2 − (W ′′)2

(k2Z2 + (W ′′)2)3
(W ′′′)2 .

(C.1)
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We are interested in isolating the logarithmic scaling terms, which are known to correspond

to the 1/ε poles of dimensional regularization and which are responsible for the RG flow

in the MS scheme. This scaling analysis can be simplified by first expanding the flow in

powers of W ′′. We begin by expanding βW ,

βW = − d

(4π)d/2Γ(1 + d/2)

W ′′

2(d− 1)Z
kd−2 +

d

(4π)d/2Γ(1 + d/2)

(W ′′)3

2(d− 1)Z3
kd−4 +O(kd−6) .

(C.2)

The same procedure can be applied to η

η =
d

(4π)d/2Γ(1 + d/2)

(W ′′′)2

(d− 2)Z3
kd−4 +O(kd−6) . (C.3)

The logarithmic scaling in d = 4 corresponds to the second term of (C.2) and the first of

(C.3). If integrated over the scale k in d = 4, these terms produce the familiar logarithmic

singularities ∫ Λ

0

dk

k
kd−4 ∼ log Λ.

These are known to be in one-to-one correspondence with the 1/ε poles of dimensional

regularization. The four dimensional MS perturbative flow of the superpotential and the

anomalous dimension can be obtained by specializing to d = 4 and dropping all scaling

terms with the exception of the logarithmic ones (this step removes both infrared and

ultraviolet relevant contributions). The result is

βW =
1

3(4π)2

(W ′′)3

Z3
, η =

1

(4π)d/2
(W ′′′)2

Z3
. (C.4)

Returning to dimensionless renormalized quantities it is easy to use this latter result to

prove the perturbative flow given in (5.2) with which we illustrated the results of Sect. 5.

An interesting final point to discuss involves the first term of (C.2) which describes a

logarithmic scaling in d = 2. Using the same reasoning as in the last appendix of [46], the

corresponding RG system appears to describe an N = 1 supersymmetric generalization of

the Sine-Gordon universality class. We hope to return to this topic with a more detailed

discussion in the future.
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[62] X. An, D. Mesterházy, and M. A. Stephanov, JHEP 07, 041 (2016), arXiv:1605.06039

[hep-th].

[63] L. Zambelli and O. Zanusso, Phys. Rev. D95, 085001 (2017), arXiv:1612.08739 [hep-th].

[64] D. F. Litim, Phys. Lett. B486, 92 (2000), arXiv:hep-th/0005245 [hep-th].

[65] L. Iliesiu, F. Kos, D. Poland, S. S. Pufu, D. Simmons-Duffin, and R. Yacoby, JHEP 03, 120

(2016), arXiv:1508.00012 [hep-th].

[66] D. Bashkirov, (2013), arXiv:1310.8255 [hep-th].

[67] L. Iliesiu, F. Kos, D. Poland, S. S. Pufu, and D. Simmons-Duffin, (2017), arXiv:1705.03484

[hep-th].

[68] D. F. Litim, Phys. Rev. D64, 105007 (2001), arXiv:hep-th/0103195 [hep-th].


