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Using supersymmetry and shape invariance the reflection and transmission coefficients for a large class of solvable potentials 
can be obtained algebraically. 

The eigenspectrum and eigenstates of a class of one- 
dimensional hamiltonians have been derived alge- 
braically using supersymmetry [ l-3 ] and shape in- 
variance [ 451. In this paper we show that the 
scattering function can be obtained algebraically as 
well using these two features. 

All one-dimensional Schrijdering equations can be 
factorized [ 6,7 1, 

H, 0:’ ’ = - -$ +v, (x,a,) @A’) 
> 

=A~A@“‘=E(‘)@~‘) 
n n 7 (1) 

where 

A’=-~+W(x,u,), A=-&+W(x,u,) (2) 

and 

v,=w’(x,a,)--&w(x,a,), (3) 

and a, are some parameters of the potential, n labels 
the states, n=O, 1, . . . . and n = 0 is the lowest state. 
The superpotential W(x, a, ) is given by 

w(x,u,)=--&ln@b”(x,u,). (4) 

The partner hamiltonian H2 =_4A+= - d2/dx2 + V2, 

v2 = W2(x, a, ) + d 
dx W(x, a, ), (5) 

gives the same spectrum as H, but with the ground 
state missing; that is, 

Ehl’ =O, EA2’ =E;:‘, . (6a) 

In addition the eigenfunctions with the same energy 
are related: 

@;:‘, (x)= (E;:‘, )-1’2A+@$2’(~) . (6b) 

This degeneracy in the two spectra is due to a su- 
persymmetry. We define a superhamiltonian H and 
supercharges Q and Qt: 

H=[: k2], Q=[; ;I, Q+=[; ;+I. 
(7) 

These operators are the two-dimensional represen- 
tation of the sl( 1 / 1) super algebra 

[Q,Hl=[Q+,Hl=O, 

{Q, Q+}=H, {Q, Q)={Q+, Q+I=o. (8) 

The fact that the supercharges commute with H gives 
the energy degeneracy ( 6 ) . 

Clearly this process can be continued; a V, can be 
determined from V,, etc. This produces a ladder of 
potentials [ 4-7 1, V,,. Furthermore, if the partner po- 
tentials are “shape invariant”, i.e., V2 has the same 
functional form as V, but different parameters ex- 
cept for an additive constant, 

v2 (4 a1 I= K(x, a2 I+ C(a,) 7 (9a) 
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then the full ladder of potentials will be shape 
invariant, 

~n(X,a,)=~~(x,~,)+~~“(~,) > (9b) 

and the energy spectrum [ 431 and eigenfunctions 
[ 4,8] of the original potential can be determined 
algebraically: 

EL’)= i: C(Q), 
k=l 

(lOa> 

@;‘)(X,U,)= k~,A'(x,a,)~6"(X,u,+,). (lob) 

In this paper we shall show that, using shape invar- 
iance, we can determine the scattering solutions al- 
gebraically as well also. There are two types of 
scattering problems that we shall consider: ( 1) scat- 
tering from a one-dimensional potential well and (2) 
scattering from a spherically symmetric three-di- 
mensional potential well. 

The asymptotic wavefunction for scattering from 
a one-dimensional potential well V, is given by 

CD(*)(k, x+ -_co)+eikX+R2e-ikX, (11) 

Qc2)(k, x-ba3)-+T2eikr. (12) 

Using (6b) we can determine the asymptotic be- 
haviour of 0” ) (k, x) in terms of the asymptotic be- 
haviour of @*) (k, x) and derive the following 
relation between the two transmission and reflection 
coefficients [ 9- 111: 

T 
W,-ikT -~ 

‘- W_-ik ” 

R 
W_ +ikR -- 

‘- W_-ik ” 

(13a) 

(13b) 

where W2 = W(x+ f co). We have assumed that 
W: = WZ for simplicity of exposition only; this as- 
sumption implies that the potential is symmetrical 
asymptotically. If we also assume shape invariance, 
(9), then we get 

(14a) 

(14b) 

Hence we find a recursion relation with W being the 
same function but with a different value of the pa- 
rameters. In particular if there is some parameter set 
uN such that the transmission and reflection coefft- 
cient is known, then we have 

N--L W, (a,)-ik 
T(k,ul)= n W_ (u )_ikT(k’u,)’ 

n=l n 
(15) 

R(k’u’)= n 
N-’ W-(‘%~)+lk~(~,~~). 

W_(a )_ik 
II=, n 

(16) 

As an example we take the PSschl-Teller poten- 
tial; W(x, u,)=atanh(x), 

V(x,u,)=u2,- 4(&z+l) 
cosh2(x) ’ 

(17a) 

where 

u,=(Y--n+1. (17b) 

If CX=N- 1, then uiy= 0 and the potential vanishes: 
hence the transmision coefficient is unity. Thus ( 15 ) 
gives 

T(k, a)= 
r( -ik-a) r( -ik+a+ 1) 

r( -ik) r( 1 -ik) (18) 

When the potential vanishes, the reflection coefft- 
cient vanishes. From ( 16) we see that the reflection 
coefficient vanishes for all integer values of (Y. This 
means that 

R(k, a)= sin(rca) Ro(k, a) . (19) 

For (Y small the potential will be small and R. (k, 

O)=(l/x)k(k, 0), where d is the derivative of R 

with respect to cr. At small (Y we can use the Born 
approximation 

k( k, 0) = J e2ikyti(y, 0) dy (20) 

and we finally get 

R(k, a)= 
isin T(k, a) , 
sinh(xk) (21) 

Next, we consider the spherically symmetric three- 
dimensional Schriidinger equation: 

(22) 
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where 

d 1+1 
Af=-d,-,fW(r,a,). (24) 

We see from the above that the partner potential will 
be a solution for angular momentum increased by 
one. 

The asymptotic radial wavefunction for partial 
wave 1 is 

-(-I) I. I+,,-lkr (25) 

where S, is the scattering function for the Ith partial 
wave. 

Using supersymmetry and shape invariance as be- 
fore, we find 

S(k a1 ) = 
ik- W(c0, a, ) 
ik+ W( 03, a, ) 

S/+, (S az). (26) 

For the Coulomb potential W= (21+2)-l which 
is shape invariant. Solving the recursion relation in 
(26) we derive the well-known result 

&+, (k) 

r(f+ 1+ (2ik)-‘) r( 1- (2ik)-‘) s (k) 
=r(1+1+(2ik)-‘)r(l+(2ik)-‘) ’ ’ 

which gives the scattering function for all 1 in terms 
of that for 1~0. The term So does not contribute to 
the angular distribution since 1 So I* = 1. &though the 
Coulomb scattering does not have the form (25 ) 
asymptotically, the result (27) still follows. 

If we identify the operators A and At with ladder 
operators of a potential group, then the recursion re- 
lations we have obtained can be given a group al- 
gebraic interpretation [ 12,13 1. 
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