Volume 129, number 3

PHYSICS LETTERS A

16 May 1988

DERIVATION OF THE S-MATRIX USING SUPERSYMMETRY

Fred COOPER, Joseph N. GINOCCHIO and Andreas WIPF
Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA

Received 7 March 1988; accepted for publication 22 March 1988

Communicated by D.D. Holm

Using supersymmetry and shape invariance the reflection and transmission coefficients for a large class of solvable potentials

can be obtained algebraically.

The eigenspectrum and eigenstates of a class of one-
dimensional hamiltonians have been derived alge-
braically using supersymmetry [1-3] and shape in-
variance [4,5]. In this paper we show that the
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scattering function can be obtained algebraically as
well using these two features.
All one-dimensional Schrédering equations can be
factorized [6,7],
d2
H oM = (- o2 +Vi(x,a )> oL

=ATAD =ELDL (1)

where
A*——i+W(x a) A—i+W(x a,) (2)
- d.x s 1 /s _d.x s 4]
and
V=W (x,a)— = W(xa,) (3)
b d_x 3 b

and a, are some parameters of the potential, n labels

the states, n=0, 1, ..., and n=0 is the lowest state.

The superpotential W(x, a,) is given by

W(x,a|)=—9—1n¢6"(x,a1). (4)
dx

The partner hamiltonian H,=AA'= —d?/dx?+V,,

d
V,=W2(x, @)+ o Wix ah), (3)

gives the same spectrum as H, but with the ground
state missing; that is,

E§V =0, EY=EY; . (6a)

In addition the eigenfunctions with the same energy
are related:

B, (x) = (BSD)) 241 P (x) . (6b)

This degeneracy in the two spectra is due to a su-
persymmetry. We define a superhamiltonian H and
supercharges Q and Q:

H 0 0 0 0 At
H=[0 HJ’ Q=[A 0]’ QT:[O 0]'
7)

These operators are the two-dimensional represen-
tation of the sl(1/1) super algebra

[Q’ H]= [QTaH]=O,
{0, 0" =H, {0, 0}={0"Q"}=0. (8)

The fact that the supercharges commute with H gives
the energy degeneracy (6).

Clearly this process can be continued; a V; can be
determined from V5, etc. This produces a ladder of
potentials [4-7], V,. Furthermore, if the partner po-
tentials are “‘shape invariant™, i.e., ¥, has the same
functional form as ¥, but different parameters ex-
cept for an additive constant,

Va(x,a1)=Vi(x,a)+C(a)) , (9a)
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then the full ladder of potentials will be shape
invariant,

Vn(x,al)=Vl(x,an)+E$ll)(al)5 (gb)

and the energy spectrum [4,5] and eigenfunctions
[4,8] of the original potential can be determined
algebraically:

EQ= Y Clar), (10a)
k=1
B0 (x, a)= [] A1(x% @) P (X, @rsr).  (10b)
k=1

In this paper we shall show that, using shape invar-
iance, we can determine the scattering solutions al-
gebraically as well also. There are two types of
scattering problems that we shall consider: (1) scat-
tering from a one-dimensional potential well and (2)
scattering from a spherically symmetric three-di-
mensional potential well.

The asymptotic wavefunction for scattering from
a one-dimensional potential well V5 is given by

DD (k, x> —00)>e*+ Rye~ikx | (11)
D) (k, x>00) > Toe*, (12)

Using (6b) we can determine the asymptotic be-
haviour of @’ (k, x) in terms of the asymptotic be-
haviour of @@ (k, x) and derive the following
relation between the two transmission and reflection
coefficients {9-111]:

W, —ik

Tl“‘ W__—lkTZ s (133)
W_+ik

Ri= 7R, (130)

where W.=W{(x— *oo). We have assumed that
W2 =Ww?2 for simplicity of exposition only; this as-
sumption implies that the potential is symmetrical
asymptotically. If we also assume shape invariance,
(9), then we get

W, (a)—ik

T(k,a )= W (@) —ik T(k,a,), (14a)
W_(a,)+ik
Rk a)= o e Rk a) - (14b)

146

PHYSICS LETTERS A

16 May 1988

Hence we find a recursion relation with W being the
same function but with a different value of the pa-
rameters. In particular if there i1s some parameter set
ay such that the transmission and reflection coeffi-
cient is known, then we have

N W (a,)—ik

T an= T1 3 (=g Tk an), (15)
N—1 4
R(ka)= T 2L ok an). (16)

a1 W_(a,)—ik

As an example we take the Poschl-Teller poten-
tial; W(x, a;)=atanh(x),

_ 2._a,,(a,,+l)
V(x,a,)=an “cosh2(x) (17a)
where
a,=a—n+1. (17p)

If a=N—1, then ay=0 and the potential vanishes:
hence the transmision coefficient is unity. Thus (15)
gives

I'(-ik—a) I'(—ik+a+1)
Ttk )= ——F T Td<ik)

(18)

When the potential vanishes, the reflection coeffi-
cient vanishes. From (16) we see that the reflection
coefficient vanishes for all integer values of «. This
means that

R(k, o) = sin(na) Ry (k, a) . (19)

For « small the potential will be small and R,(k,
0)=(1/x)R(k, 0), where R is the derivative of R
with respect to «. At small @ we can use the Born
approximation

R(k,0)= JeZikyW(y, 0) dy (20)

and we finally get

isin(na)

R(k )= G

Tk, o). (21)
Next, we consider the spherically symmetric three-
dimensional Schridinger equation:

d | I(I+1)

H=--—+
! dr? r?

+V, =A%, (22)



o d | (+1)(+2) ot RN

H2=_ a? rz - s (“))

where

A*=_i—l—+—l+W(ra1). (24)
dr r

We see from the above that the partner potential will
be a solution for angular momentum increased by
one.

ML~ soxrsmmmdndin mmdial cronvrafiimatinm fae senstial
10€ asympioliC radiar waveiuiicCiion i10r paruadi
wave / is
¥ r 1, a)—> AN a) e
_(_1)I+1e——ikr] . (25)

where S, is the scattering function for the /th partial
wave.

Using supersymmetry and shape invariance as be-
fore, we find

ik— W(oo, a )
ik+ W(co, a,)

For the Coulomb potential W= (2/+2)~! which

is shape invariant. Solving the recursion relation
(26) we derive the well-known result

Si+1 (k)
_ TU+1+ (2ik)~!) I(1 = (2ik) )
=T+ 1+ (2ik) - Y T(1+ (2ik) 1)

o o1 N

DK, A )=

(N £1- o~ \ LN
+1\R, U2 ) (<)
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which gives the scattering function for all / in terms
of that for /=0. The term .S, does not contribute to
the angular distribution since |S,|?= 1. Although the

L Y3

Couiomb scauerlng does not have the form (£D0)
asymptotically, the result (27) still follows.
If we identify the operators 4 and AT with ladder

operators of a potential group, then the recursion re-
lations we have obtained can be given a group al-
gebraic interpretation [12,13].
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