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Because of the non-perturbative nature of the conventional effective potential F(~2, ~) (for 
classical Higgs potentials and volume $2) and because of the inconvenience of a Legendre 
transform for numerical computations, it is proposed to replace F(~2, ~) by a "constraint" 
effective potential U(I2, ~p), which has a direct intuitive meaning, which is very convenient for 
lattice computations, and from which/'(2f2, gp) can immediately be recovered (as the convex hull). 
In particular, F(oe, Fp) = U(oo, t~). Various properties of U(~L ~p), such as convexity properties, 
upper and lower bounds and volume dependence are established. It is computed directly for zero 
dimensions and by Monte Carlo simulations in one and four dimensions, with up to 160 and 84 
lattice sites, respectively. 

1. Introduction 

A widely used method to study the radiative corrections in a (continuum or 
lattice) quantum field theory is to use the effective potential F(& ~) [1], defined 
conventionally as the Legendre transform of the Schwinger function, i.e. 

where 

F(/2, ~)  = sup ( j ~  - W(I2, j ) ) ,  (1.1) 
J 

exp(.W(., j))= f'~ exp{- S[~] +ji~(x)dax ), 
where ~2 is the total volume, j is a constant external current, and S[q0] = f~2ZP(q~)dax 
is the classical action. It is well-known that F(12, ~) is convex [2] (whether or not the 
classical potential V(q0) which generates S[~0] is convex), and it has the property that 
if its minimum occurs at a unique point ~p = +, the point + defines the vacuum state 
of the theory, and the loop expansion around ~0 generates the one-particle-irreduci- 
ble Feynman graphs [3]. The minimum is unique if either the volume is finite, or the 
classical potential is convex (or both). When the classical potential is not convex, as 
happens in particular for spontaneously broken potentials, the minimal points + of 
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F ( t ~ ) = F ( m ,  gp) are not unique but lie on a plane in t~-space. In this case the 
vacuum is not determined by F(~) but by F(Yp) plus the direction from which a 
"trigger current" j approaches the value zero (see sect. 2). Furthermore, in this case 
the loop expansion breaks down and must be replaced by some alternative ap- 
proximation [4]. Since for/a = oe, V non-convex, the loop expansion has problems, 
a computational approach is more desirable, and in that case F may not be the best 
quantity to consider. A much more suitable quantity is the effective potential 
introduced by Fukuda and Kyriakopoulos [5]. This is defined by 

exp(-~2U(~2, Up))= f.cp 8(-~ S99 - Up)exp(-S[q~]). (1.2) 

Since the delta-function introduced into the functional integral in (1.2) constrains 
the average value of the field rp to be ~, we shall call U(YL up) the constraint effective 
potential, and denote it by U(~2, if) throughout, In any case, one sees that nothing is 
lost by considering U(/2, gp), because from (1.1) and (1.2) we have 

exp(~?W(9, j ) )  = f d~ exp{ f2(j~ - U(12, C~))}, (1.3) 

which means that W(& j )  and F(12, ~) can always be recovered from U(& ~) (and 
conversely). However, there are certain gains from using U(& if). First, one sees that 
(1.3) reduces (1.1) to a zero-dimensional (single-integral) analogue, with effective 
"classical" potential U(& ~) and this corresponds to the usual intuitive treatment of 
W(12, j )  and F($2,~) in terms of single integrals. But more importantly, 
exp(-~2U(fL C~)) relates to similar definitions in statistical mechanics and spin 
systems [6] and exp( -  ~2U(12, ~ ) ) / f d ~  exp( -  ~U(fL ~)) can be interpreted as the 
probability density for the system to be in a state of "magnetization" ~p. Note that 
the probability for the occurrence of a state whose averaged field is not a minimum 
of U(~2, ~) then becomes less and less as 12 ~ ~ and thus @(x) )a  ~ Cpm as I2 - ,  ~ ,  
where Cpm is some minimum point of U(I2, ~) (not necessarily unique). Thirdly, 
U(& ~) is a more direct quantity to compute with in Monte Carlo simulations, since 
an external current need not be introduced. 

The formal expressions in the right-hand side of (1.1) and (1.2) must, of course, be 
regularized in some standard manner in order to remove the divergences. The 
natural regularization for our purpose will be the lattice regularization, since all our 
computations will be on the lattice, and, as explained in sect. 8, the lattice 
regularization ensures that the convexity properties of F(m, ~) and U(m, Cp) are 
valid for all values of the lattice constant a, and in particular, are preserved in the 
continuum limit. 

For brevity we shall use the notation F(~) and U(ff) for the infinite-volume limits 
of F(12, ~) and U(& ~) respectively, i.e. 
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The main purposes of the present paper are: 
(i) To find the relationships between the conventional and constraint potentials 

F(S2, C~) and U(& C~). 
(ii) To investigate the convex properties of U(~2, ~). 
(iii) To obtain upper and lower bounds for U(~). 
(iv) To carry out lattice computations for U(Y2, ~p). 
The main results are: 
(a) F(~)  is the double Legendre transform of U(~) and is thus the convex hull of 

U(Up) in the infinite-volume limit. 
(b) U(Y2, ~p) is not necessarily convex for finite [L but becomes convex as $2 -~ oc. 
(c) As an immediate consequence of (a) and (b), the two potentials become 

identical as fa -~ ~ ,  i.e. 

U(~) = F ( ~ ) .  (1.4) 

(d) In zero dimensions, or equivalently in the absence of kinetic terms in any 
number of dimensions, numerical integration shows that U([2, ~) becomes convex 
very rapidly as ~2 increases (for typical models it is already convex for 5 - 7 lattice 
sites!). 

(e) In the quantum mechanical (QM) case, with non-convex classical potential, 
Monte Carlo (MC) simulations show that U(& UP) is not convex for small volumes 
but quickly becomes convex as ~2 increases. 

(f) In four dimensions, MC simulations show that U(IL~)  becomes convex 
relatively slowly as ~2 ~ m (it is still non-convex for 8 4 lattice sites). For clarity 
these three results, (d), (e), (f), are summarized in the form of a table at the end of 
sect. 7. 

(g) Reasonably good upper and lower bounds for U(~) can be found in terms of 
incoherent models, i.e., classical actions S[ep] with no kinetic terms but modified 
parameters. 

The development of the paper is as follows: in sect. 2 the relevant properties of the 
conventional effective potential F(~2, ~) are recalled. In sect. 3 the constraint 
effective potential U(~2, Up) is introduced and its properties are discussed. Incoherent 
models, i.e. models without kinetic terms, are introduced in sect. 4. The convexity of 
U(c~) is established in sect. 5 and in sect: 6 bounds for U(gp) are found. The results 
of the Monte Carlo simulations are presented in sect. 7. In sect. 8, the effects of 
renormalization on convexity are discussed. 

2. Conventional effective potential F(Cp) and convexity 

Consider a field theory described by a lagrangian density 5e(ep(x)), where cp(x) is 
a Higgs field which generally transforms non-trivially under the action of a symme- 
try group G. 

eg(x)-~ V(g)cp(x) .  (2.1) 
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The classical vacuum is defined by the minimum of the classical action 

= 

(2.2) 

and thus it is given by a constant field which minimizes the classical potential V(rp). 
This value is not necessarily the VEV of the quantum field (¢p(x)). 

To study the quantum corrections to the classical value one introduces effective 
potentials. Most approaches to this subject begin with the partition function 

Z(j)=f~exp(-S[~]+jfcp(x)) (2.3) 

in the presence of a constant external current j. The external current is chosen 
constant so as to preserve the translational invariance of Z(j) and thus corresponds 
to the constant effective field limit which is conventionally used to obtain the 
effective potential from the effective action. (For finite volumes I2, translational 
invariance is understood to be with respect to periodic boundary conditions.) The 
Schwinger function 

1 
W(j) = F log  Z(j) (2.4) 

is strictly convex since its second derivative 

d2W 
d ;  = (2.5) 

where M = (1/ll)f~(x)dax, is manifestly positive. Here we adopted the notation 

f N ~  O [ q0 ]exp( - S [(p] + j J ~ )  
CO)J= fNqo exp ( -  S[q0] +jf~p) (2.6) 

for the expectation value of the observable O in the presence of an external current. 
W(j) allows one to compute the effective field, defined as 

dW 
=-a - ) - .  (2.7) 

In the ordinary approach one now defines the effective potential F(~)  as the 
Legendre transform of the Schwinger function. It may be worth mentioning that one 
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Fig. 1. In the infinite-volume limit, W may have a singular point at j = 0. 

must be cautious in defining the Legendre transform. In cases where the derivative 
of  W(j) is not continuous as shown in fig. 1, the commonly used transformation 

=jep - w ( j ) ,  

where j solves ~p = dW/dj,  fails to be applicable. This happens typically when the 
classical potential that generates S[cp] is not convex and the volume is infinite. 
In order to handle the general case we use the sup-inf definition of the Legendre 
transformation [7], namely 

= = s u p  W ( j )  ) . ( 2 . 8 )  
J 

This definition coincides with the one given above for a differentiable W. 
Before discussing the various features of / '  we mention some properties of L in 

order to prepare the ground for the following sections. 
First of all, for ( L f ) ( y )  = SUpx(Xy - f ( x ) )  to be well-defined, it is only necessary 

that f ( x )  be strictly convex for large ix}, not necessarily for all x. For such f ' s  the 
transformed function is always convex and the double Legendre transform L2f is 
the convex hull of f [7]. In particular LZf = f for any convex f ,  or in other words 
L = L -~ is invertible on convex functions. Note that the definition (2.8) can be 

extended at once to vectors x, y by letting xy be the inner product (x, y). 
Let us illustrate these properties by means of the constant field approximation 

O,ep = 0 in which case the functional integral reduces to a single ordinary integral 
over constant fields exp(~2W(~2, j ) ) =  f d ~  exp(~2(jcp- V(cp)), with a potential of 
the general form 

V(cp) >~ 0 for I~1 ~ c, 

V(ep) = (tcpt - c) 2 for [cp} >/c, 

as illustrated in fig. 2a. One sees at once that 

W(j) = lim W(12, j )  = (LV) ( j )  = clj I + ~4j 2 
~2---~ oo 
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Fig. 2. LV and L 2 V for a non-convex function. 
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has a discontinuous derivative at j = 0 as shown in fig. 2b, and that the double 
transform 

xF(~3) = ( L W ) ( ~ )  = ( L 2 V ) ( ~ )  = 0 
for {C~t >t c 

for I~1 ~< c 

is linear in the interval - c  ~< ~p ~< c. Note that the discontinuity 2c in the derivative 
of L V  is equal to the length of the linear interval [ - c, c]. It is a general feature that 
when V is not strictly convex the derivative of L V  is discontinuous and L2V is 
piecewise linear, the length of the linear intervals being equal to the discontinuities 
in the derivative of LV. 

In order to consider the more relevant case of a field theory it will be convenient 
to restrict ourselves to the case in which the action S, the measure Nrp and the inner 
product  ( j ,  qo) are invariant with respect to some non-trivial group, i.e. with respect 
to transformations of the form ~ ~ U(g)q~ where U(g)  is a unitary representation of 
the group G. Then W ( j )  is also group-invariant, and since 

I'(uc~)=sup{(j ,  uc~)- w(j)}  = sup { l u g - w ( ~ ) }  =F(c~), 
J 2 

the effective potential is invariant as well. 
If we assume that the group leaves only the origin invariant, i.e. U ( g ) j  = j  for all 

g ~ G is only possible for j = 0, then the strict convexity of W implies that j = 0 is 
the unique minimum of the Schwinger function. The same reasoning can be applied 
to F (~ )  in the cases where it is strictly convex, but in the cases that it is only convex, 
but not strictly so, the argument fails, and although ~ = 0 is a minimum of F (~ )  it is 
not the unique minimum. This happens in the example of fig. 2 where the minimum 
of F ( ~ )  lies in the whole linear interval [ - c ,  c] and it happens in the field theoretic 
case in the following way: 

For  group-invariant non-convex classical potentials V(q0)>/0 and j = 0 ,  the 
steepest-descent approximation yields not a single point + for which O+/Ox = O, 

V(¢~) = 0, but one or more group orbits G / H  of such points, where H is the little 
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e aw(j) = f de  (qo)e ~(j' ~), (2.9) 

where the measure do(q0) is over the orbits (usually only one) which minimize V(q0), 
and 

~ =  f do(qo)e~(J'~°)q0 / f do(~p)e ~(j' q°' . (2.10) 

For example for the reflection-invariant potential in one-variable V(c¢) = V ( - ~ )  = 
(¢p2 _ a2)2, the formulae (2.9) and (2.10) become 

e ow(j) = 2 cosh j~2a, ~p = a tanh f l2a,  

respectively, as discussed in detail in [4], and for the same potential but with qo and j 
in the n-dimensional fundamental representation of SO(n), one sees at once that the 
formulae become 

e ~2w(j) = const B o (Ij112a), 

~p = i-~.~ B~ (IJl ~a)/Bo(IJl  I2a), 

respectively, where B 0 is the Bessel function of order zero. From these examples one 
sees that the direction of j determines the direction of ~, but that as the norm IJl of 
] ranges over the small interval 0 ~ [Jl ~< O(a- l I2-1)  the norm of ~p ranges over the 
large interval 0 ~< I~Pl ~ a + O(S2 1). In the limit of 12 ~ m, therefore, the whole 
sphere 0 ~< I~1 ~< a corresponds to j =  0 and thus within this sphere F ( ~ ) =  F(0). 
This sphere is the analogue of the interval [ - e ,  c] in the simple example above. 

In the above examples the direction of ~p is actually parallel to j ,  but this is 
because the potential depends only on the second-order invariant I 2 = (q0, q0). More 
generally, one can only say that the direction of j determines that of ~. For 
example, if V(q0) and hence W ( j )  depends on a cubic invariant I3(j) ,  then 

d W  OW OW 013 
= d---j = 2-x-Tj + 013 Oj 

and it is well-known [8] that 013/0 j is not necessarily parallel to j.  Similarly, in 
making the large-volume approximation to (2.10) one sees that the dominant value 
of q0 is that for which (% j )  is maximal, and since q0 is constrained to lie on the 
minimizing orbits this q0 is not necessarily parallel to j. We hope to give a more 
detailed discussion of these points in a subsequent publication. 
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To sum up, therefore, when F(~p) is not strictly convex the vacuum state is not 
intrinsically determined by the system, but by the system plus the trigger. The 
direction of ~ is fixed by an external current j which acts as a trigger provided that 
limits ~2 ~ ~ ,  j ~ 0 are taken in that order (or equivalently Lts~j=~, Lti=0). Since 
the vacuum state ~ is not determined intrinsically, it is not surprising that the 
conventional loop expansion fails, as pointed out in [4]. What one then has to do is 
to make a loop expansion for each point ~ on the minimizing orbit(s) in (2.3) and 
integrate around the orbit(s). The result is the generalization of the "interpolated" 
loop expansion discussed in [4] for the reflexion group. 

Much of the foregoing discussion can be nicely illustrated by the following 
zero-dimensional toy-model 

e W J) = dq0  e¢~(#~ - v ( ~ ) )  , 

where V(qo) is the classical symmetric potential 

v(qo) = h(Iqol - 1)sgn(lqol - 1), h > 0 

depicted in fig. 3 and the volume is mimicked by ~2. Since V(q0) increases only 
linearly as Iq~l ~ ~ ,  the model can only be used for IJ[ < h but this region is 
sufficient for the previous discussion. The advantage of the model is that W(j) can 
be computed explicitly and one finds 

1 
W(j)  = ~ log{2cosh  ~ j  - e -ha } -~ 

1 2h 

log( ~2(h=- j2 )}  ' 

L 

\ \  vl~) / /  

=10 

:5 

/ / / /  

i v(,) / / /  

Fig. 3. Volume dependence of F(~2, ~p) for the W-well classical potential. 



L. O'Raifeartaigh et al. / Constraint effective potential 661 

where the second term on the right is just a multiplying factor for 2 c o s h / 2 j -  
exp( -h~2)  and carries the singularity that must appear as IJl-,h. The factor 
2 c o s h ~ 2 j - e x p ( - h I 2 )  is the interesting one. The term 2 c o sh f / j  is exactly the 
interpolated loop expansion [4] and exp(-h~2) the correction to it. This correction 
vanishes exponentially as ~2 ~ ~ as one might expect and decreases with the height 
h of the central peak. 

Furthermore,  since W'(j)= tanhl2j  + O(1/I2) converges to the signature func- 
tion in the limit ~2 ~ ~ ,  the graph of the effective potential F (~)  = supj( j~ - W(j)) 
contains a horizontal line between ~ = - 1 and ~p = 1. Fig. 3 shows the "volume" 
dependence of F(~p) for h = 1. As expected, F converges to the convex hull of the 

classical potential. 

3. The constraint effective potential 

In this section we introduce the constraint effective potential discussed in the 
introduction. One way to motivate its introduction is to consider the order parame- 
ter, which is defined as vacuum expectation value (VEV) of some functional O[ cp] of 
the fields 

(O[cPl) = N l fo[wle-St~J. (3.1) 

This suggests introducing a constraint that fixes the functional 0 [~ ]  which corre- 
sponds to the order parameter, i.e. to write 

z ( o )  = -  p)e -sI l (3.2) 

and this leads one to define alternative effective potentials as 

1 
U(O) = - ~ l o g  Z(O). 

One sees at once that 

(3.3) 

(O[q0l) = N-lfdOOe-eC'(o), (3.4) 

where N = fe -au~O) dO. We shall confine ourselves to the order parameter O[cp] = 
(1/fg)f~p(x), since its expectation value decides whether the system exhibits a 
spontaneous symmetry breakdown. The potential U(~) is then defined as 

= 8 ( M  - ~p)e -sEn°l , 
1 

M = ~ £ ~ ( x )  (3.5) 

and this is the potential which we shall call the constraint effective potential (CEP). 
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Note that from the definition (3.5) and the translational invariance of the system, 
N-lexp(-12U(~))A~p is the probability of finding a value of the Higgs field at a 
point x, qo(x), between ~ and ~p +A~. This property gives a very intuitive interpre- 
tation of U(~p). We shall now discuss some further properties of U(~). These will be 
useful not only from a theoretical but also from a computational point of view. 

Properties of U. In what follows we shall be interested not only in the infinite- 
volume limit ~2 ~ oe but also in the volume dependence of the various potentials. So 
we keep the 12 explicit to emphasize that W(12, j ) ,  U(I2, ~) and F(£2, C~) are volume 
dependent. 

First we establish the relation between the functions W(~, j ) ,  U(~ ,~)  and 
/'(12, ~p). Multiplying both sides of (3.5) by exp(~2j~) and integrating over C~, yields 

f ea~j~- u(a, ~)) d~p = e nw(a' j) (3.6) 

Hence W(~?, j )  is related to U(~2, ~) by a Laplace transformation. Note that since 
F =  LW, the function F(I2, C~) is uniquely determined by U(I2, C~). Conversely, 
W = L/" so U(I2, Cp) can be recovered from/'(~2, Cp) by an inverse Laplace transfor- 
mation. Thus there is a one-to-one correspondence between the potentials U(g2, ~) 
and F(12, ~). 

Now let us discuss what happens in the infinite-volume limit I2 ~ ~ .  For I2 ~ 
the saddle-point approximation to the integral in (3.6), fexp(jC~- U(~,~)} dC~- 
exp{ I2 sup,~(j~ - U(O, ~))) becomes exact. Then 

W(j)  = ( L U ) ( j )  = sup { j ~  - U ( ~ ) ) ,  (3.7) 

where W ( j ) =  lima_~W(~2, j )  etc. It follows that F = L W =  L2U. Thus F is the 

convex hull of U. In sect. 5 we will prove that U is convex and then 

/ ' (~)  = U(Fp). (3.8) 

Thus in the infinite-volume limit the two potentials actually become identical. 
However, in a finite volume the two potentials are not identical and U(~2, ~) need 
not necessarily be convex. For example, in a zero-dimensional field theory, U(~) is 
actually the classical potential U(~) = V(~), which need not, of course, be convex. 
From the formula (3.5) one sees at once that a G-symmetric action defines a 
G-symmetric potential U(~2, Up). Hence when the classical action is G-invariant all 
three quantities, W(12, j ) ,  U(~2, ~) and/'(82, ~) are G-invariant. 

This remark completes the comparison of the three potentials. The results are 
summarized in the following fig. 4 which shows the qualitative shape of the various 
potentials for a SO(2) symmetric theory which exhibits a spontaneous symmetry 
breakdown. 
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Fig. 4. W(I2, j) and "Mexican-hat" type of U($2, gp) for a SO(2) model. As ~2 ~ oo, W becomes 
singular at j = 0, and U develops a flat region. 

The  potent ial  U(I2, ~ )  is also useful for extracting information directly about  the 

gross propert ies  of  the system, such as whether it suffers a spontaneous breakdown 

or  whether  it has a finite correlation length. To  see this one notes that 

/~'e~<:~- "'" ~>)d~ = n,f d%... d"x,< ~(yl) . . . qo(y l) >~y]2, 
/e ~(:p- u(g, ~)) dff 

(3.9) 

i.e. that  the moments  of  N - l e x p { I ~ ( j ~  - U(~2,~))} are the averaged Schwinger 

funct ions  in the presence of an external current.  For  ! = 1 (3.9) gives the vacuum 

expecta t ion value 

< ~(  X )>J~ = N - l f ~ e  ~<j~- " ~ '  ~ '  d ~ .  (3.10) 

Fo r  any finite volume the symmetry  of  U leads to (~(x)>0  ~ = 0. To  get a non-trivial 
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result one must keep a trigger current, and only after the infinite-volume limit has 
been taken can the trigger be removed, as has already been discussed in sect. 2 for 
the potential F(12, ~p). For any non-vanishing j the saddle-point approximation to 
the integral in (3.10) picks the unique point C~ on the G-invariant minimum set of U 
which has the maximal inner product with j ,  and if this point is not zero there is a 
spontaneous symmetry breakdown. For l = 2 and j = 0 the formula (3.9) reads 

N-xf~2e -gU'g'~) dFp = 12- f d% dax2 (¢p( xl)cp (x2) )o ~ . 

The expectation value on the r.h.s, is the 2-point Schwinger function S2(x ~ - x 2 )  
which only depends on x ~ -  x 2 because of translational invariance. So we end up 
with 

f~2e-,W(sa, ~)dUp 
= f S 2 ( x  ) ddx. (3.11) X = 12 fe_~W(&~)dF p d 

(For spin systems X would be the susceptibility.) In the infinite-volume limit the 
saddle-point approximation becomes valid and one sees that 

X ~  
02U 0~-.-~ if, and onlyi f  O~ 2 ~ O. 

On the other hand, from (3.11) and the known asymptotic properties of S(x), 
namely S ( x )  - exp( -  I x l / ~ )  as Ixl ~ ~ one sees that X ~ m implies that ~ ~ m, 
i.e. that the correlation length is infinite. 

4. Lattice theory and incoherent models 

A precise definition of "sum over all fields" must be given to the functional 
integrals in the previous two sections to make sense. One way to proceed is to 
introduce a d-dimensional space-time lattice discretizing the euclidean space-time by 
a hypercubic lattice with lattice spacing a. The action (2.2) becomes 

S[~0] : E a d - 2 ~ ( ~ i - - ~ j ) Z + ~ a a V ( ~ i ) ,  
(~j) i 

(4.1) 

where I~i = 1 ~ 3 ( X i )  (i = 1,2 . . . . .  N = 12/a d) and E<ij) is the sum over all nearest- 
neighbour pairs. We take periodic boundary conditions. 

By introducing a dimensionless lattice field ~0 L=  aa/2-1% (4.1) can be rewritten 
as  

sL[  L] L 2 = = -q0) ) + ~ v L ( q ~ [ ) ,  (4.2) 
</J') i 
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where the lattice potential V L is equal to the classical potential, but with rescaled 
parameters. The masses and coupling constants are rescaled according to their 
dimensions, e.g. me=aZm etc. By using the lattice field as a new integration 
variable in the lattice version of (3.5) one easily finds 

~U(Q, ~p) = NUL(N, ~L) + const(a) ,  (4.3) 

where W E = a d / 2 - 1 ~  is dimensionless and 

(1 ) e--NUL(N'+L>=fHd  , f f  (4.4) 

For any finite a one recovers U(9, ~) from UL(N, ~L) by a trivial rescaling of U L 
and ~L. We will use the formula (4.3) for the constraint effective potential in the 
following sections. In what follows the subscript L will mostly be dropped. Note 
also, that in terms of dimensionless quantities the theory is defined only on a unit 
lattice of size N. 

For a fixed lattice constant a the volume is proportional to N. Hence, studying 
the volume dependence of U(~, ~) is equivalent to studying the N dependence of 
UL(N, ~L). 

Let us first consider models in which there are no kinetic terms, which we shall 
call incoherent models since the lattice points then behave independently. At first 
sight these models may appear to be trivial, but there are some very good reasons for 
studying them. First, they show properties which we will meet again in the full 
theory, e.g. the convergence of U(N, ~p) to a convex function. Secondly, we can 
extract the influence of the kinetic term on the effective potentials by comparing the 
incoherent models with those of the full theory. Lastly, the incoherent models deliver 
upper and lower bounds for the true effective potential, as will be shown in sect. 6. 

In order to factorize the functional integral (4.4) for the incoherent models we 
replace the constraint 8 ( M -  ~p) by ( 2 ~ r ) l f d p  exp( - ip (M - ~)). As a consequence 

N 
e -uv°(u'~) = ~ fdp e N(ip~p~l°gf(p)) , (4.5) 

where f (p)=fexp(- iprp-V(cp))d% For large N this integral approaches its 
saddle-point value. The saddle point of ip~ + log f (p )  in the complex p-plane is the 
point p = i -j, where j is a solution of Cp = dW° /d j  and exp(W°(j))  = fdrp exp(jq~ 

- V(qv)). Hence we find that in the limit N ~ oe 

V°(~p) = ( LW°)(~) ,  (4.6) 

where W ° is the Schwinger function of the zero-dimensional theory with potential V, 
i.e. 

e w°<+) = feJ  v<+>dq~. (4.7) 
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Since W ° is not only strictly convex but also analytic in this case the constraint 
potential U°(Cp) is strictly convex as well. 

In order to obtain an intuitive feeling for the manner in which U°(N, C~) converges 
to the convex U°(~)  as N ~ oe, we compute U°(N, ~p) for the toy model [9] 

V(~p) = ¢p2 _ log(1 + Xcp2). (4.8) 

This potential is non-convex for ~ > 1. After a tedious but straightforward calcula- 
tion one obtains for U°(N, C~) the explicit expression 

1 
UO(N, ~) = ~p2 _ F l o g  pu(~2) + C, (4.9) 

where PN is the polynomial of degree N, 

PN(~P2)= ~ ~ k ( k + q ) ( k + q } ( 2 k + 2 q - l ) " ( ( 2  X ) N )  
k=0 q=0 k + 

[ 2 ~ 2  ] k 1 
X ~ 2 - - ~ }  ( 2 k -  1)!! (4.10) 

and C is the constant 

1 
On the other hand, the limiting potential U ° is derived by (4.6) through the formula 
(4.7) which yields 

wO(j) = ¼j2 q_ log{1 + ½• + ~}kj 2 } + ½log rr. (4.12) 

In fig. 5 we show the potentials U°(N, ~) for different numbers of lattice sites and 
the limiting function U°(~).  It is remarkable how fast the potentials converge to U °. 

In passing, it may be of interest to note that the functional integral for the toy 
model (4.8) may be written as 

f  exp(-f (v )2+ 2+log(l+ X¢)) 

which shows that the logarithmic potential (4.8) for the bosonic variable qv may be 
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U*(N,$) 
U*($) 

Fig. 5. Volume (N) dependence of the incoherent constraint effective potential U°(N,~p) for the 
classical potential (4.8). 

derived from a Yukawa-like interaction of the boson field with a fermion field (in 
the limit when the fermion field is constant, 0,qJ = 0). This derivation of the 
logarithmic potential (4.8) is rather similar to the derivation of the well-known 
Coleman-Weinberg potential [10]. 

5. Convexity of the constraint potential in the infinite-volume limit 

We now return to the realistic models with kinetic terms. In this section we will 
show that in the infinite-volume limit the constraint effective potential must be 
convex, i.e. that 

U(~p) ~< #U(~PA) + (1 -#)U(~PB),  (5.1) 

or equivalently 

where 

e -  NU(~) >1 e-~NU(~A)e-(1-tONU(~B) , (5.2) 

Cp = ~ A  + (1 - # )~8 ,  0 ~</~ ~ 1. (5.3) 

For that purpose we divide a lattice with N sites into two sub-lattices, say A and B, 
with NA = # N  and NB = (1 - ~)N sites, respectively. L e t / A  ( IB)  denote the sites 
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A 

NA=pN 
sites 

r;1 I r~7 I1 i 

m , i x l  
I× l i  I 
,,< l , x "  
i i!~ 
l× 

I A i  !i 1 I B  
L _ ~  L _  

B 

NB=(1-p) N 
sites 

Fig. 6. A lattice with N sites is divided into two 
sites, respectively. 1,4 and IB denote the sites 

sub-lattices A and B with NA = #xN and NB = (1 ~ ) N  
in A and B, respectively on the boundary' between A 
and B. 

in A (B)  nearest to the interface I between A and B (fig. 6). 
By applying the inequalities 

, _ ~< ~2 + ¢p] (5 .4 )  0 • 2(fPi  qOj) 2 '~ 

to the kinetic energy of the nearest neighbour pairs whose connecting line intercepts 
I, one obtains 

s~ . [ ~ ]  + s~,[~.]  .< s~[~] 

<. s~A[~] + s~.[~.]  + Er~ + E ~ ,  (5.5) 
IA IB 

where q~A (CPB) stands for the restriction of the configuration ~0 to the sub-lattice 
A (B). With M A = ( 1 / N A ) E A % ,  M B = ( 1 / N B ) ) ~ B %  and therefore ~tM A + (1 - 
I~) M B  = M ,  one sees at once that 

~(M- ~) =fdo~(MA- ~ +(1 - - t . t ) a ) 3 ( M B - - ~ - - I . t a  ) (5.6) 

and hence 

where 

/" " j d a  expt - N ( J ( N ,  l~, a ,  9)) 

> e×p(-UU(U, ~)) 

f do {fH 

xS~dcPiS(Me--gP--.a)exp(--SuB[cPn]--~2)). 
U ( N , I~ , a ,  gp ) = I~ U ( N A , Up - (1 - / ~ ) a )  + (1 - I~ ) U ( N B , gp + l~ o 0 . 
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To get rid of the boundary terms ZtAq0~ and ZtBq0~ we use Jensen's inequality 
fd/~ exp( f )  >/exp( .[d8 f / f  d# }fd/~ with f =  - Zcp~ and d/~ = H d %  8( . )exp(-  S) 
and find 

f d a  exp( - N/~( N, / t ,  a,  ~ )) >/exp( - NU( N, ~)) 

>~ fdaexp(-N(/.)(N,/~, a, ~ ) +  B(N,/~, a, ~}) .  

(5.7) 

The boundary term B(N, #, a, ~) = (1/N)Y~IA@p~) A + (1/N)E18{q~])8 is of order 
O ( N -  t/a), since by translational invariance 

I1AI ~ IIBI 2 
B( N, ~,, ,~, ~) = ---U-(,pz)A + -K-('~J 5~ = O( cN " /d ) '  

where IIAI ([IBI) denotes the number of sites of 1A (1B). Hence, for large N we 
may neglect the boundary term in the r.h.s, of (5.7) and then the upper and lower 
bounds become the same. In the limit N ~ oo the integral is equal to its saddle-point 

N - - *  o0 

value and for U(N, ~), U(NA, Up), U(NB, ~) --, U(~p) one therefore has 

U ( ~ ) =  inf { I x V ( ~ - ( 1 - p . ) a ) + ( 1 - g ) U ( ~ + l z a ) } .  (5.8) 
c¢ 

In particular, for a = FFB - ~,~ one finds 

U(~)  < p.U(~A ) + (1 - / ~ ) U ( ~ . ) ,  

which establishes the convexity of the constraint potential in the infinitelVolume 
limit, as required'*. The quantity on the r.h.s, of (5.8) is actually the convex hull of U 
(see appendix) so that (5.8) could be written as U(~) = (L2U)(C~). 

6. Properties of U(~) useful for computations 

Before proceeding to compute U(~) it will be convenient to obtain some of its 
general properties that are useful for computations. These take the form of lower 
and upper bounds, and of a differential (Ehrenfest) equation for U(~). The lower 
bound is fairly trivial as it is obtained by simply neglecting the kinetic terms to 
obtain 

U(~)  >i U°(Cp), (6.1) 

* For a qualitative discussion of the convexity of U, see [11l. 
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where U°(~)  is the constraint effective potential (CEP) for the corresponding 
incoherent model. Next we derive an upper bound for U. With (5.4) one finds 

Y [ q o ]  = 1 E (COl- ~ j ) 2  = r [ q o  - 9 1  ~< 2dEqg/2 - 4dupZcpi-k 2dNup 2 , 

where we have taken into account that in d dimensions every site has 2d nearest 
neighbours. By inserting this inequality into (4.4) one obtains 

e -NU(N'~) >t e~aNe~fS(M - C~)e- vq~l, 

where va[cp] -~ 2dEep 2 + ZiV(~i). This yields the upper bound 

U(UP) ~< -2dC~ 2 + Ud(UP), (6.2) 

where Uu(C~) is the incoherent CEP which corresponds to Va[q)]. However since 
U(Up) is known to be convex, (6.2) actually implies that 

U(UP) ~ n2( -2dup  2 q- u d ( ~ ) ) ,  (6.3) 

where L2(-2dUp2 + Ua(F~)) is the convex hull of -2dup2 + Ud(UP). Eq. (6.3) is the 
required upper bound. 

In fig. 7 we show these bounds for the Higgs model 

(6.4) 

in various dimensions using the values X = 10 and 02 = 0.375 for the parameters. It 
is remarkable that the upper bound in (6.3) is much better than those given in (6.2) 
in the dimensions d = 3, 4, for which one expects to have spontaneous symmetry 
breakdown. In sect. 7 we will compare these bounds with the results obtained by 
Monte Carlo (MC) simulations. 

We conclude this section by deriving for U(UP) an Ehrenfest equation which turns 
out to be very useful for MC simulations. For that purpose we return to (3.5) and in 
that equation shift the field by a constant, cp(x)~ ep(x)+ Up. Because of the 
translational invariance of the measure Nqo we obtain 

= f 3 ( M ) e  - s ~ + ~  . 

Since only the potential term in S is affected by the shift, one then obtains 

d 1 
- -  V '  d~ U(UP) = ~ (  [q~])~, (6.5) 
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Fig. 7. Upper and lower bounds, U u, U~ for U in dimensions d = 1 (a), d = 3 (b) and d = 4 (c). V is the 
classical potential; V(~p) = X(q02 - g2 )2 with X = 10 and o 2 = 0.375. 

whe re  (O[ep]}e=N- l f~p3(M-gp)O[ep]e  -sI~l. This is the requi red  Ehrenfes t  

equa t ion .  To  ob t a in  a feeling for its conten t  let us app ly  it to two s imple  models ,  
1 9 n a m e l y  the free model ,  with potent ia l  V(cg) = 7m-q0- and  the Higgs mode l  (6.4). F o r  

the  free m o d e l  (6.5) reduces  to U ' ( { )  = rnZ(M}~ = mZUp. Hence  the CEP becomes  

U(~) ~- ~rrt2~ 2 -'~ COnSt. (6.6) 

Of  course  the  cons tan t  is not  de te rmined ,  W e  can use the bounds  in (6.1) and  (6.3) 

to  l imi t  i ts  poss ib le  values. F o r  the free model  

Ua(N, Tp) = ½(m 2 +  4 d ) ~  2 -  
N - 1  21r 1 

2 N  l o g - -  + N (6.7) m 2 + 4 d  2 N  l°g  

a n d  there fore  

m 2 m 2 + 4 d  
~ml 2-2~0 t-- ±12 og ~2rr 4 U(Up) ~< km2~2_ + ½log 2~r 
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For the Higgs model (6.4) eq. (6.5) reads 

o ee }, (6.8) 

where we have used the translational invariance, i.e. (fq03)e = ~2(q03(x))e. For the 
Higgs model equation (6.8) actually serves as a starting point for the MC simulations 
(see next section), and in general turns out to be an extremely useful equation in 
making MC simulations for the constraint effective potential. 

7. M o n t e  Car lo  s imula t ions  

From the discussion of the previous sections we know that the conventional 
effective potential F(I2, ~) is convex for any volume and that in the spontaneously 
broken case it develops a range R of ~ for which it is flat (constant) in the infinite 
volume limit, i.e., with suitable normalization F ( ~ ,  ~) = 0 for ~ ~ R. We also know 
that the CEP U(B, ~) is not necessarily convex for finite 12, but that as I2 ~ ~ ,  
U(~2,~)--* F(~p), and therefore U($?,Cp) becomes convex for all C~ (and in the 
spontaneously broken case flat for C~ ~ R) in the infinite-volume limit. It is therefore 
interesting to study U(~, ~) for finite volumes, to see for example for which volume 
it is not convex, and how it approaches F(~p) in the infinite-volume limit. 

As is well known, the Monte Carlo (MC) simulations are very useful in the 
computation of various non-perturbative quantities in statistical physics and field 
theories [12]. Hence to study U(~2, ~p) for finite volumes we shall carry out the MC 
simulations for a quantum mechanical (QM) system and a four-dimensional scalar 
field theory with the non-convex classical potential. From the computational point 
of view, the advantage of computing U rather than F is that it is more direct [13]. It 
is not necessary to introduce external currents j and to construct Legendre trans- 
forms. It is enough to simulate the system just by taking the constraint into account. 
In practice we take the constraint into account by integrating over one of the site 
variables, say the Nth one ~N to get rid of the constraint. 

The effective theory we obtain is then 

N - 1  

e-UU(N'e'----f l-I drhexp 
1 

- E v( N) 
i ~ n n  of N 

- ½ E '  (¢&- ¢pj)2 _ E V(gi)  , (7.1) 

where ~0 N = N~ _)~N1 t9~i and E<i,j)' is the sum over all nearest-neighbour pairs 
except those which contain q0 N. The Metropolis algorithm is then applied to this 
theory. The trial variable ¢?i in the updating process is taken to be 

cp~ = q0 i + 6 ,  (7 .2 )  
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where % is the variable of the old configuration, and 8 is a random number between 
- A  and Z~, i.e. 8 = {2. (uniform random number) - 1} • 3.  The factor A is adjusted 
so that the acceptance rate in the procedure becomes reasonable (about 50%). The 
updating hits the sites successively from i = 1 to N -  1. This induces at the same 
time the updating of the Nth  site 

qo% = q~N -- ~, (7.3) 

i.e., the two site variables q0 i and q0 N are updated by the same amount but with 
different signs. The total sum Z ~  is thus kept at N~. This procedure is carried out 
until only the last pair (cpN_t, q~U) is left. Then the sweep is finished and the next 
sweep starts again with qg~. Actually we take 5 updatings per sweep for each pair 
(q% q0U) to obtain a faster convergence to the equilibrium state. 

The Ehrenfest differential equation (6.5) derived in the previous section is very 
useful for computing U(~) since (V'[Cp])e of the right-hand-side is an expectation 
value of a local quantity. For the potential of a form V(q0)= X(cp 2 -  02) 2, the 
differential equation is given in (6.8), from which one sees that it is sufficient to 
compute the expectation value (¢p3)e of ¢p3 to obtain U(~). Fig. 8 shows how fast 
(q)3)~ converges to its equilibrium value in the four-dimensional scalar field theory, 
starting from the ordered initial configuration, i.e. q)z = Cp for all i with the 
parameters X = 10, o z-- 0.375 and C~ = 0.2. The expectation value (q~3)e is com- 
puted using 

1 h 
= (w /cp , (7.4) (~3)UP ½It ~ ~3\(I)  

l= t t /2  + 1 

where (q)3)~l~ =(1/N)~.,~(q~l,))3 is the arithmetic mean of {rp~) in the lth sweep 

- . 2  

- . 4  

dU 

=10 ,~ = o. 2 

6~0.37s N= 4" 

. . . . .  I, ; i__ -I  i 

2 0 400 

Fig. 8. Plot of dU/d~ versus number of sweeps I L for a 4 4 lattice at Cp = 0.2. 
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(½It + 1 <~ l <~ It for even integers lt ). The first ~_It configurations are discarded. The 
figure shows that  it is reasonable to consider a relaxation " t ime"  .~lt as 100 - 150 

sweeps. 

Since U ( ~ )  = U ( - ~ ) ,  one computes  U only for positive values of  ~. We start the 

s imulat ions  with ~ = 1 which is larger than the value of  the classical min imum 

(o  = 0.612), so that the semiclassical approximat ion is expected to be valid. I n  other  

words,  the fluctuations of  q~3(x) are expected to be small. After the computa t ion  of  

(q03)~ at ~ = 1, the final configurat ion is stored in the memory  as the initial 

conf igura t ion  for the next run, in which the value ~ is chosen to be slightly smaller 

than  unity, ~ = 1 -A~p. This is justified since the equilibrium states for these two 

values of  ~ are close to each other if a ~  is small enough. In fact we took ~ p  = 0.05. 

This procedure  is repeated until ~ comes to zero. Finally, of course, the obtained 

U ' ( ~ )  mus t  be integrated to find U(~).  

Quantum mechanics. Let us first s tudy a quan tum mechanical  system or 1- 
d imensional  scalar theory. It is known that  there is no spontaneous symmetry  

breaking  in such a theory. What  we then expect is that  U(N, ~) converges to F ( ~ )  

which  is strictly convex as the volume goes to infinity. The result of  the M C  
simulat ions shows that U(N, ~) is convex for a finite volume as well. Fig. 9 shows 

the behaviour  of  U(N,~)  and that of  the corresponding F(N,  ~)  for different 

volumes ( N  = the number  of  sites) N = 20, 80 and 160. I'(N, ~) is computed  using 

\ 
'\ 
'\ 

a dim= I 
N ~ 20 

2 -  

/ 
/ 

I '  t \\ 
i \ 

/ \ 

1' t \\ / \ 

/ ',.\ 

I 
i xv i 

\ 

- 0.5 0.5 

Fig. 9. U and F for the classical potential V with the parameters X = 10 and 02 = 0.375 for a quantum 
mechanical system. The number of sites are N = 20 (a), 80 (b) and 160 (c). In fig. 9c the upper and lower 
bounds U, and U I for U are also shown. The normalization of U and F is fixed in fig. 9c since Uu and U / 

approach each other for large values of [ ~ I- 
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the data of U(N, ~p). For its computation we first use the Laplace transform (3.6) to 
obtain W(N, j) from U(N,~) and then the Legendre transform (2.8) to obtain 
F(N,~p) from W(N, j). These two convex potentials approach each other as N 
increases. For N = 80, they are already almost equal. In Fig. 9c, the lower and upper 
bounds (6.1) and (6.3) for U are also shown. 

4-dimensional scalar theory. We now turn to the more interesting case, the 
4-dimensional Higgs scalar theory. We find that U(N, ~) is non-convex for the finite 
volumes considered in this case. Fig. 10 shows U(N, ~) and the corresponding 
I'(N, ~) for three different volumes N = 2 4, 4 4 and 8 4. U(N, ~p) is clearly non-con- 
vex, while F(N, C~) develops the flat region, which signals a SSB. 

From the discussion of the previous section, we know that U(N, ~) finally 
converges to £(~).  Such a tendency can be seen in the figure, but the rate of the 
convergence is rather slow compared to the one-dimensional case. This is because in 
higher dimensions the contributions of the kinetic terms become more important and 
they slow down the convergence. The slowdown due to the kinetic terms can be 
exhibited more explicitly by comparing these results with those for the correspond- 
ing "incoherent" CEP U°(N, C~) derived from the same classical action, but without 
kinetic terms. Fig. 11 shows the behaviour of U°(N, ~p) of the truncated model for 
different values of N. One sees that U°(N, Up) converges to its limit U°(~)  
remarkably quickly. We also note that the upper bound (6.3) for U, which is shown 
in Fig. 10c, is astonishingly good. 

dim: 4 

a N :  2 4 

I 
V 

/ . \ 
/ \ 

/ \ 
/ \ 

\ / l \ / 
'\ / I \ ' ,\ u ,I 

-0 .5  \ [" 0.5 

l 
, 

i 

/ 

Fig. 10. U, £ and  V for a four dimensional scalar field theory for N = 2 4 (a), 4 4 (b) and 8 4 (c). The 
upper  and lower bounds  Uu, U t for U are also shown in fig. 10c, and the normalization of U and £ are 

fixed by U u and U t in the same way as in the quantugl  mechanical case. 
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N= 1 
3 

. . . . . . .  5 

1 

- O.S 

U°(N'~) 

t7 
t ' /  

~-. f i  l 
\ / /  

0.5 

Fig .  11. V o l u m e  dependence  of  U°(N, ~) for V =  )k(qo 2 - 0 2 )  2 with  X = 10 a n d  02 = 0.375. 

It may be worth remarking that the F(N, Up)'s obtained here are in agreement 
with that of Creutz-Freedman [14] for the quantum mechanical case and that of 
Callaway-Maloof [15] for the 4-dimensional scalar field theory (N---44). Both of 
these sets of authors carried out the Legendre transform of W ( N ,  j )  to obtain 
F(N,  UP) by introducing the external current j. 

It may be convenient to summarize the results of our computations and also of 
earlier analytical results in the form of a table. First we note that if the classical 
potential is strictly convex all of the effective potentials considered, F(~?, Up), 
U°(12, C~) and U(I2, Up) are strictly convex for all ~2 including f2 = ~z. Second we 
note that U°(IL Up) is actually independent of the space dimensions, because in the 
absence of a kinetic term there is no distinction between an L a and an ( L  x L 

× . . .  X L ) a  lattice. Taking these points into account, we depict the alternatives in 
the form of a table. 

TABLE 1 

S u m m a r y  of  convex  properties  of  F,  U and U ° for n o n - c o n v e x  classical  potent ia ls  

V n o n - c o n v e x  
but  no  SSB 

( d =  1) 

~ < o e  

~ 2 = o o  

strictly 
c o n v e x  

becomes  strictly 
convex  ( fa i r ly  

quickly)  as ~2 ---, oo 

V n o n - c o n v e x  ~g < oo n o n - c o n v e x  
but  SSB c o n v e x  
( d = 4) 12 = ~ but not  strictly so ( F = U ) 

becomes 
strictly 

c o n v e x  very 

qu ick ly  as 
~2 --~ oo 



L. O'Raifeartaigh et al. / Constraint effectit,e potential 679 

8.  P r e s e r v a t i o n  o f  c o n v e x i t y  p r o p e r t i e s  u n d e r  l a t t i c e  r e n o r m a l i z a t i o n  

In the preceding sections we have not introduced any explicit renormalization, 
since on a finite lattice this is not necessary for finiteness. However, the bare 
quantities we have considered have to be related to physical quantities by renormal- 
ization and we have to consider whether this renormalization affects the convexity 
properties. Consider for example the following conventional renormalization scheme. 
First introduce a dimensionless lattice length e (a = eA 1, where A is a scale 
parameter with a mass dimension) and rescale the various quantities in the manner 
that is suggested naturally by dimensional considerations, i.e. define 

U*(~, too, go) = e-aV*='( e(d 2)/2~, too(e), go(t) ) (8.1) 

and define a "physical" mass mp and coupling constant gp in terms of U ~ by some 
typical equations such as (for d = 4) 

where 

A 2 1 
- , , = - - ,  ( 8 . 2 )  (eP2)~ mp (~O4)E --  ({p2)2 gp 

f d ~ O ( ~ ) e  - w  
= ( 8 . 3 )  

f d ~ e  -v~ 

Of course, mp and gp as defined in (8.2) will not necessarily be the physical mass 
and the quartic coupling constant for the q~ field, but just some related physical 
quantities. (Indeed because of its association with (¢p2) and therefore the width of 

2 is more closely associated with the masses of any the classical Higgs potential, m p 
gauge fields that may interact with qg.) 

Now the lattice renormalization consists in letting the bare mass and coupling 
constant m 0, go depend on e in such a way that the physical constants rap, gp 
defined in (8.2) do not depend on e. Given the dependence of U ~ on e, m o, go and 
given m o o  ) = too, g0(1)= go the functional dependence mo(e), go(e) is then de- 
termined implicitly by (8.2). In other words the renormalization consists of con- 
structing an e-dependent map from (rap, gp) tO (m0, go) by means of (8.2). Of 
course, the domain D (e, gp, rap) of mp and gp which, for each e, will produce a real 
finite mo(e ) and a real, finite, positive go(e), may be limited. In particular, if q0 4 

theory in d = 4 dimensions really is trivial then gp --+ 0 as e --+ 0 and D(e, gp, rap) 
shrinks to D(0, 0, rap) in this limit. The important point, for us, however, is that for 
every finite e each choice of mp, gp in the permitted domain D(e, mp, gp) defines an 
acceptable mo(e), go(t) and since the convexity is with respect to gp and not the 
parameters, for this acceptable pair of values corresponding to the physical pair of 
values mp, gp, the constraint effective potential U~(~, mo, go) has the convexity 
properties discussed. 
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Appendix 

We wish to show that the expression 

inf { t~ f (x -  ( 1 - # ) a )  + ( 1 - / , ) f ( x + / t a ) }  
~t 

O~<,u~<l 

occurring in (5.8) is the convex hull of f (x )  for any function f (x )  which is strictly 
convex as I xl ~ ~ .  

First we recall that the definition of the convex hull of a function f i x )  is the 
boundary of the convex hull of the set of points above f ix) ,  i.e. of all (x, y)  such 
that y >/f(x)[16]. Then if we note that such a set is just the set of points 

(x, y) = (x, l t f ( x -  (1 - ~t)a) + (1 - I~)f(x + l~a)) 

for any real a and 0 ~</~ ~< 1, we see that the boundary is just the inf. of the r.h.s., as 
required. 
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