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Abstract. We show how to bound the WKB exponent in field theory from above and below. 
The results follow from an inf-max characterisation of the Euclidian action of the bounce 
solution. For the lower bounds our method involves only some simple inequalities while 
for the upper bounds it leads to a finite dimensional extremising problem. We apply this 
method to approximate the W K B  exponent for the effective potential in 1-loop approxima- 
tion which is used in the inflationary cosmological models. 

1. Introduction 

During recent years we have seen an increasing interrelation between cosmology and 
particle physics. The recent and exciting scenarios for the very early universe are not 
thinkable without this interplay. For example, all the inflationary models presented 
up to now (Guth 1981, Linde 1982, Albrecht and Steinhardt 1982) need a scalar field 
as order parameter. Its self interaction causes the long de Sitter period in the history 
of the universe and delays the expected phase transition. This strongly first-order 
phase transition is associated with the spontaneous symmetry breakdown of a grand 
unified gauge theory. 

In spite of intensive study over the last few years (see e.g. Gunton and Droz 1983) 
the theory for the condensation of the metastable symmetric state into the stable 
asymmetric state is imperfectly understood. However, there has been some progress 
in understanding this phenomenon on a semiclassical level (Langer 1967, Coleman 
1977, Callan and Coleman 1977) using multi-instanton techniques. In the 1-loop 
approximation the decay rate per volume and time of the metastable state has been 
computed to be 

r / w =  c ~ x ~ ( - s [ ~ ~ I / w  (1) 
where S denotes the Euclidian action 

= n41+ v[4l 
and C is the 1-loop correction to the classical exponential factor. The effective 
interaction Lagrangian is formally given by integrating out the gauge- and fermionic 
fields. i.e. 

(3) eXP(-Lefi(4))=Z-' 1 exp(-L(4, A, $, $*)) d$ d$* dA. 
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For our purpose V( 4) is assumed to have somewhere a local minimum. We normalise 
V such that 4 = 0 is this local minimum and V(0) = 0 as shown in figure 1. As models 
for V(+)  we choose 

V(4) =fm242- (c /4 )44+(a /p )4p  (4) 

V ( 4 ) =  (2A- B ) u ~ + ~ + A ~ ~ +  B4'111(4~/a~) ( 5 )  

with 2 < q < p s d ,  and 

with $< Q = A / B s  1. The critical dimension d C = 2 d / ( d  -2) is the largest exponent 
in (4) up to which the corresponding theory is renormalisable. Both potentials have 
been used to force a first-order phase transition in the very early universe. 

" I  
Figure 1. 

The function $ J ~  is a solution of the classical Euclidian equation of motion 

AbB= v'(4)* ( 6 )  
Furthermore be must satisfy 

lim 4 B ( ~ )  = 0 
Ixl-rm 

and must have minimal Euclidian action. 
A lot is known about the existence and properties of the bounce solution $J~, e.g. 

it is spherically symmetric and monotonically and exponentially decaying for a large 
class of potentials with positive mass (Strauss 1977, Coleman er al 1978, see, e.g., 
Blanchard and Briining 1982). In this paper we use a variational characterisation for 
the action SB = S[&].  The advantage is that without explicit knowledge of gB(x) we 
are able to find bounds for the WKB exponent in (1). In the derivation of lower bounds 
we only need some additional simple inequalities, e.g. the Holder-Young (HY) ,  Sobolev 
and Jensen inequality. 

On the other hand the variational method naturally delivers upper bounds for SB. 
Irrespective of the application in mind the invented method is interesting in its own 
right. It is by far the most efficient algorithm for computing S[&] which is known to 
us. 

2. Inf-max principle for the bounce action 

It has been proved (Wipf 1985) that the action SB can be calculated with the help of 
a variational principle. For its formulation we introduce the set 

~ = { 4 E H l p d v t 4 1 < 0 1  ( 7 )  
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where P d  = sgn( d,) and H is some subspace of Hk which depends on the potential. 
With it the principle reads 

and is valid in all dimensions d except d = 2. Here 4t denotes the function 41(x) = 
d(x/ t ) .  Note that in one dimension the inf-max principle becomes a sup-min principle 

The equality (8)  especially holds for the admissible potentials in the sense of 

For functionals of the form (2) the maximum can be computed explicitly. Since 

for S[dIl. 

Coleman et a1 (CGM) and hence is applicable to a large variety of Higgs models. 

T[4,] = td-’T[4J and v[4,] = tdv[4,] we obtain 

Sg=Pd/d inf Pd(2T)d’2(-dcV)-d/dc. (9) 
dlsn 

It is convenient to use a dimensionless field and potential. For that purpose we 
introduce a typical field amplitude a, i.e. a point of V to which the field tunnels. By 
setting 

U[+] = 2( ma)-’ v[a+]. (10) 

(9’) 

This characterisation of SB will serve as the starting point for the following consider- 
ations. 

The action S, as functional of + becomes 

SB=(  p d / d ) m 2 - d d  inf n Pd(2T)d/2(-d,/2U)-d’dc. 

3. Lower bounds 

In proving lower bounds for s[&] we apply the following strategy. First we deduce 
an inequality of the form 

2T[$13 F d ( I l $ l l p ,  II+112)=Fd[P, $1 
for some 2 < p 6 d,. Next we derive an inequality 

W$12 G(ll+ll, 114112) = G[P, 41 
such that 

Hd(p, v ) =  Fi’’(-dc/2G)-d’dc 

is a function only of v = ~ ~ + ~ ~ ~ / ~ \ 4 / ~ ~ .  Because of (9’) we get the lower bound 

S, 3 S, = ( m2-da2 /  d ) P d  min pdHd ( p ,  7) 
? € A  

where A={71pdG<0}. It requires only some simple inequalities to find Fd. By 
combining the HY inequality of the form 

II$lI&- 1 1 + 1 1 ;  * ~ ( d ‘ ” ” ‘ p - 2 ’  

which holds for 2 < p  d,, with the Sobolev inequality 

/I 11 2 ‘d 11 + /I dc 
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valid in more than two dimensions, we obtain the desired function 

II * II : l d C .  

2 4 / d ( ~ - 2 )  Fd[P, $I= c d r ]  

For d = 1 we apply the inequality 

due to Faris (1978). Setting u ( x )  = I $ ( x ) / " - ~  and applying once more the H Y  inequality 
we find 

which delivers us exactly F , [ p ,  $1 as defined in (16). With (13 ) ,  (14) and (16) we 
finally end up with 

S B ~  SL= pdPdm2-dCT2 mjIl p d ~ 2 " p - 2 ) ( 2 / ) * i I : / - d c G ) d ' d ~ .  (18)  

Using the sharpest constants in (15 )  and the result (17) 

PI = 1 for d = 1 

P d  = ( l / d ) [ v d ( d  -2)]d'21'(d/2)/r(d) f o r d > 2 .  
(19) 

The inequality (18) holds for d > 2 and 2 < p d d, or for d = 1 and p > 2. Clearly the 
functional G [ p ,  $3 depends on the chosen potential. We now apply our result to the 
models (4) and (5 ) .  

3.1. Application to the model (4) 

In order to shorten the computations we derive the bounds for c > 0 and a = 0. The 
more general case can be handled in exactly the same way by using the HY inequality 
a second time. Let U = (qm2/2c)'/'4-2' be the positive zero of V. We may choose for 
G in ( 1 1 )  

G d [ p ,  $11 11 $11: = ll*ll: = 1 - r] 

with r] = / [$ I /  ://I $11:. The corresponding &(q, r ] )  as defined in (13) looks qualitatively 
as shown in figure 2. It attains its extremum at 

r]o(d, 4 )  = 4 / h  - d(q -211 

and therefore (18 )  yields 

(21) 

It is worth recognising that S L + m  for q/*d,. This partly proves the well known 
theorem that 

2-d 2 2 / ( q - 2 )  Sg2SL=Pdm 7 0  [ ( d / 4 ) ( q - 2 ) ~ 0 1 - ~ ' ~ ' .  

A 4  = m 2 4  - cd4-' 

has no finite energy solution for q 2 d, (see, e.g., Blanchard and Bruning 1982). We 
will compare the bounds (21) with known exact results in the following section. 
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Figure 2. 

3.2. Application to the model (5) 

In order to find a bound for (12) we use the Jensen inequality 

5 d P ( x )  e"" ' rexp(  5 dP(x)f(x))  

with d P ( x )  = + 4 ( x ) / ~ ~ $ ~ ~ ~  and f = -In 4' to obtain 

a$]= 1 &log 7 7 / + 2 < 0  (22) 

where 77 = ~ ~ i , ! ~ ~ ~ / \ ~ + ~ \ ~ .  With (5) ,  (IO) and (12) we may choose 

(1 - 2Q)G[+I/ I /  $11: = d77) = 1 - 2Q+ Q77 - 77 log 77 (23) 

which, together with ( 1 8 )  delivers for d > 2 

The equation which extremises SL with respect to 77 

(4  - d ) T  log 7 - 7[(4 - d )  Q + ( d  - 2)]+ 2(2Q - 1 )  = 0, (25) 

is analytically solvable only in four dimensions. With B = ( 7 5 ~ ~ / 8 ) ~ ,  cy =& we find the 
lower bound 

SL(d =4)=f (8~ /75cy)~[Q- l - l0g (2Q- l ) ] - ' .  (26) 

In other dimensions equation (25) must be solved numerically. We computed 
min & ( 7 ) )  in three dimensions. The corresponding graph SL(d  = 3 ,  77)  is shown in 
figure 4. 

4. Upper bounds 

Clearly any trial function in (9) gives an upper bound for the bounce action. The only 
problem arises in finding suitable trial functions to get sharp bounds. We will see that 
even very simple functions give astonishingly good results. 
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As first and natural variational parameters we choose the amplitude of 4. Hence 
we replace 4 in (9') by y x and minimise with respect to the dimensionless parameter 
Y. 

We finally choose a family of normalised trial functions x m ( x )  depending on s 
variational parameter {a1,. . . , as}. It is convenient to introduce 

4 Y ,  a) = Y - 2 w Y  * X m I ,  t ( 0 )  = z-txul (27) 

in terms of which the upper bound becomes 
m 2 - d  2 

U 
SgSSu=- min y2(2t)d/2(-d,/2 u ) - ~ / ~ c  

d 6  

where S = { ( y ,  a) E R'+'ly * xu E A}. Sometimes it is possible to find the minimising y ,  
which obeys 

4~ = ( d  - 2)y du/dy (29) 
explicitly. 

and (28) becomes 
(i) For the potential V = i m 2 4 *  - ( c /  q)+¶ this equation yields y q - 2  = vo( q, d ) /  77 

SU = P d S L  min P d  (2r (a ) /  F d [ q ,  (30) 

where SL is given in (21). 

four dimensions. We find y 2  = (2Q- l ) / v  and using S,(d =4)  in (26) 
(ii) Equation (29) can be solved analytically for the effective potential (4) only in 

Q - 1 -log(2Q - 1) 
S,( d = 4) = pdSL( d = 4) min P d  

It is worthwhile noticing that (30) and (31) together with (11) and (22) again give the 
lower bounds (21) and (26). 

5. Numerical results 

Depending on the value of E = - U (absolute minimum) we choose different trial 
functions. For E = 1 we use 

xu(x) = exp(-rU/2) (32) 

I 
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and in the ‘thin wall’ region (Coleman 1977) E << 1 

i f r G a  
if r >  a exp[t( r - a)’] 

xa(x) = (33) 

This choice is suggested by the interpretation of the field equation (6) for a spherically 
symmetry field 

$ B + [ ( d  - l ) / r ] d B =  v’(+B) 

as the equation of motion for a point particle in the potential -V which suffers a 
friction force. 

Next we compare the variational bounds with known exact results. In one dimension 
SB = 1; ( 2  V ( x ) ) ” ’  dx is explicitly known. For V ( + )  = $m’4’( 1 - +/U) we obtain SB = 
0.5333 mu’. On the other hand, using (21) and (30) wherein we take the trial function 
(32) we find the bounds S ,  = 0.2862ma2, and S ,  = 0.5346mu2 respectively. Note that 
with only a 1-parametric trial function the relative error ( S ,  - S , ) / S ,  = 0.002 is astonish- 
ingly small. 

For the potential V (  4) = $m’4’( 1 - 4’/u2) the bounce action in three dimensions 
is known to be S,=18.90u2/m (Brezin and Parisi 1978). Again using the function 
(32) we obtain Su = 19.27u2/m or (Su- SB)/SB=O.O19. These two (and some others) 
examples show that we developed a very simple and accurate approximation scheme 
for computing the minimal action S,. 

With the cosmological application in mind we computed Su and S ,  for the effective 
potential (5) in three and four dimensions. The calculation of S,( Q )  has been carried 
out with the two trial functions (32) and (33). Figures 4 and 5 show for each Q E  (f, 1) 
the lower of these two values. 

We also calculated and plotted the thin wall approximation S,, (Coleman 1977, 
Wipf 1985) to SB. For 2~ = (1 - Q ) / ( 2 Q  - 1 ) 1 0  or Q P  1 where this approximation is 
valid, S ,  and S,,  approach each other. 

I 
0 5  0 6  0 7  0 8  0 9  

0 

Figure 4. Plots of the lower bound S,, upper bound S, and thin-wall result S,, for the 
action of the bounce solution in three dimensions. S,, and S, were computed with the 
help of the inf-max principle (9’). 
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0 5  0 6  0 7  0 8  0 9  
Q 

Figure 5. Plots of the lower bound S,, upper bound Su and thin-wall result S, ,  for the 
action of the bounce solution in four dimensions. S ,  is obtained with the variational 
principle in which the trial functions (32) and (33) were used. SL is given in (26). 

6. Concluding remarks 

In QM the variational method is known to be a powerful tool for the approximate 
determination of the ground-state energy (see, e.g., MacDonald 1933). In this paper 
we generalised the Rayleigh-Ritz method to the analogue nonlinear problem of finding 
the action of the bounce solution. The resulting variational characterisation (9) and 
(9’) give us immediately lower and upper bounds for SB. Our main results are given 
in (18) and (28). We applied this method to theories with potentials (4) and (5). In 
comparing our results with known exact ones one sees that the computed upper bounds 
are astonishingly good. 

It is also worthwhile noting that (9) allows a short and elegant proof that & is 
spherically symmetric for a large class of potentials (Wipf 1985). 

We believe that (8) also holds for actions on curved spacetimes M. If M is a G 
manifold and S a G invariant functional then it may help to show that the bounce 
solution is G invariant. 
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