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tWe investigate multi-
avour gauge theories 
on�ned in d = 2n-dimensional Eu
lidean bags. The boundary 
onditions for the 'quarks'break the axial 
avour symmetry and depend on a parameter �. Wedetermine the �-dependen
e of the fermioni
 
orrelators and determi-nants and �nd that a CP -breaking �-term is generated dynami
ally.As an appli
ation we 
al
ulate the 
hiral 
ondensate in multi-
avourQED2 and the abelian proje
tion of QCD2. In the se
ond model a
ondensate is generated in the limit where the number of 
olours, N
,tends to in�nity. We prove that the 
ondensate in QCD2 de
reaseswith in
reasing bag radius R at least as � R�1=N
Nf . Finally we de-termine the 
orrelators of mesoni
 
urrents in QCD2.1 Introdu
tionPossible me
hanisms for the spontaneous breaking of the 
hiral symmetryin QCD have repeatedly been dis
ussed in the literature [1℄, but a deriva-tion from �rst prin
iples remains to be found. The broken phases 
an beprobed by 
oupling the �elds to a symmetry breaking trigger sour
e whi
his removed after the in�nite volume limit has been taken. Alternatively onemay put the system in a �nite box, imposes symmetry breaking boundary
onditions and then performs the thermodynami
 limit V ! 1. This is1



wellknown from spin models [2℄. For example, when 
oupling the Ising spinsto a 
onstant magneti
 �eld a mean magnetization remains at low tempera-ture even when the trigger has been swit
hed o�. Su
h a magnetization 
anonly arise if the ground state is Z2-asymmetri
 or in other words if the Z2-symmetry is spontaneously broken. Instead of swit
hing on a magneti
 �eldone may impose Z2-breaking, say spin-up, boundary 
onditions and again amagnetization remains after the in�nite volume limit has been taken.In QCD a great deal of e�orts have been undertaken to study the quark
ondensates in the limit of vanishing 
urrent quark masses [1℄. These 
on-densates would signal a spontaneous breaking of the axial 
avour symmetrySUA(Nf ) as it is required by the low energy phenomenology. Here one runsinto the following paradox: In the 
hiral limit the generating fun
tional forthe fermioni
 Green's fun
tions on a 
ompa
t spa
etime without boundary,Z[�; ��℄ = Z D(A; ) e�SY M+R � iD= +R �� + � �= XN Z DAN e�SYM NYk=1(��;  k)( � k; �)det0iD= eR ��S0�; (1)where the gauge �elds AN support N zero modes  1; : : : ;  N of iD= , gets
ontributions from se
tors with non-zero instanton numbers [3℄q = 132�2 Z d4xF a�� �F a�� : (2)The primes in (1) indi
ate the suppression of zero modes. If we only allowfor smooth 
on�gurations on S4 or S3 � R then q is an integer [4℄ and thenumber of zero modes [5℄N = ( Nfq for Nf -
avour QCDN
q for supersymmetri
 QCD (3)is an integer multiple of Nf or N
. Thus neither the topologi
ally trivialse
tor 
ontributes to the 
hiral 
ondensateh �  i = 1Z Æ2Æ�Æ��Zj�=��=0; (4)sin
e S0 in (1) is 
hirality 
onserving, nor the nontrivial se
tors sin
e there2



are too many zero modes. Hen
e the 
ondensate vanishes1. This 
on
lusionis 
ertainly in 
on
i
t with low energy strong intera
tion phenomenology orWard-identities whi
h predi
t a nonvanishing 
ondensate for susy QCD [6℄.Possible ways out (whi
h work if the 
enter of the gauge group is bigenough) have been suggested by t'Hooft [7℄, who introdu
ed twisted instan-tons, so
alled torons, on the 4-dimensional torus, and by Zhitnitsky [8℄,who 
onsidered singular gauge �elds on S4. Both 
onstru
tions produ
e
on�gurations with fra
tional instanton numbers and may resolve the abovementioned paradox. However, for O(N > 4) susy-YM-theories, whi
h giverise to a nonvanishing 
hiral 
ondensate [9℄, the 
enter is too small and these
onstru
tions do not work. Re
ently Shifman and Smilga have introdu
edanother type of 
on�guration, they 
alled them fra
tons, whi
h may gen-erate a 
hiral 
ondensate [10℄. By allowing for 
avour-dependent twistedboundary 
onditions they 
ould introdu
e fra
tionally 
harged instantonsand those generated a non-vanishing 
ondensate in multi-
avour QED2. Itremains to be seen whether these fra
tons solve the puzzle posed by the
hiral 
ondensate in O(N)-susy theories.Instead of quantizing gauge theories on a sphere or on a torus we proposeto quantize them in an even-dimensional (d=2n) Eu
lidean bagM [11℄ andto impose SUA(Nf )-breaking boundary 
onditions to trigger a 
hiral sym-metry breaking. In a bag the instanton number is not quantized and thesystem itself is allowed to de
ide whi
h are the dominant 
on�gurations. Weinvestigate how the various 
orrelators depend on the parameter � 
hara
-terizing the boundary 
onditions and shall see that in the models we studiedthe bag boundary 
onditions are a substitute for small quark masses andalso reprodu
e the fra
ton results.In the 
hiral limit of massless 'quarks' in the fundamental representationof SU(N
) the Eu
lidean a
tionS[A; ℄ = SYM [A℄ + SD[A; ℄; whereSYM = 14g2 ZM trF��F �� ; SD = NfXp=1 ZM  ypiD= p; (5)is invariant under global SUV (Nf ) � SUA(Nf ) rotations2 of the fermionssin
e the Dira
 operator1When swit
hing on a small quark mass one arrives at the same 
on
lusion on a 
ompa
tspa
etime without boundary, sin
e det(iD= +m) � mN .2A
tually, for N
=2 the symmetry group is SU(2Nf ) [12℄.3



D= = 
�D� = 
�(�� � iA�) (6)is the same for all Nf 
avours. We shall impose the following boundary
onditions, whi
h relate the di�erent spin 
omponents on the bag boundary,(B(�)� If � I
) =  on �M: (7)They break the SUA(Nf )-symmetry but are ve
tor-
avour and 
olour neu-tral so that the gauge invariant fermioni
 determinant is the same for all
avours. This approa
h has various advantages. First, the 
on�gurationspa
e of gauge potentials in a bag is topologi
ally trivial and hen
e thereare no dis
onne
ted instanton se
tors. Related to that is the absen
e offermioni
 zero modes whi
h would 
ompli
ate the quantization of gauge the-ories 
onsiderably [13, 14, 15℄. Se
ond, the �-dependen
e of the fermioni
determinant, whi
h appears in the measure of fun
tional integration overthe gauge �eld 
on�gurations after the fermions have been integrated out,hOi = Z d��(A) hOiA , d��(A) = 1Z e�SYM [A℄det�(iD= ) DA (8)
an be 
al
ulated expli
itly, 
ontrary to its mass dependen
e. Here hOiAdenotes the expe
tation value of O in a �xed ba
kground gauge �eld A,hOiA = 1det� iD= Z D yD O eR  yiD= : (9)In writing (8) we anti
ipated that in a bag D= possesses no zero modes andabsorbed the gauge �xing fa
tor with 
orresponding Fadeev-Popov determi-nant in DA.The results of our investigations are presented as follows: In se
tion 2we introdu
e the bag boundary 
onditions for the 'quarks'. Some simple
onsequen
es for the spe
trum of the Dira
 operator are then dis
ussed inse
tion 3. We show that D= possesses no zero modes, dis
uss the (modi�ed)parity transformation and derive a boundary Hellmann-Feynman formula.In se
tion 4 we determine the �-depen
en
e of the fermioni
 Green's fun
-tions in a (spheri
al) bag and �nd their expli
it forms when the gauge �eldis swit
hed o�. In the following se
tion we derive the �-dependen
e of thefermioni
 determinants for arbitrary 2n-dimensional bags. We shall provethat through the intera
tion of the 'quarks' with the boundary an e�e
-4



tive CP-breaking �-term is generated. In the remaining part of the paperwe investigate 2-dimensional gauge theories in the 
hiral limit. We startin se
tion 6 with applying the deformation te
hnique to evaluate the exa
tfermioni
 determinant in a bag. We prove that for U(N
)-theories the mea-sure of fun
tional integration d��(A) fa
torizes into the U(1) and SU(N
)measures. Then we gain further insight into the spe
trum of these modelsby 
al
ulating all mesoni
 
urrent 
orrelators in se
tion 7. For U(N
) gaugetheories with Nf 
avours we �nd that the spe
trum 
ontains 1 massive andN2f � 1 massless bosons, similarly as in the multi-
avour S
hwinger model,and that they de
ouple from the remaining degrees of freedom. In the lastse
tion we investigate the 
hiral symmetry breaking in 2-dimensional gaugetheories. First we derive the exa
t form of the 
hiral 
ondensate for multi-
avour QED2 in a spheri
al bag. A 
omparison with the perturbation bysmall 'quark'-masses [16℄ shows that the bag-boundary 
onditions serve astrigger similarly as small 'quark'-masses do. However, in a bag we neednot worry about instantons, torons or fra
tons. Then we derive an upperbound on the 
hiral 
ondensate in nonabelian gauge theories as a fun
tion ofthe bag-radius. As a parti
ular appli
ation we prove that for 2-dimensionalSU(N
) gauge theories with arbitrary N
 < 1 the 
ondensate vanishes inthe thermodynami
 limit. Finally we 
al
ulate the 
ondensate in the abelianproje
ted gauge theories and dis
uss the large N
-limit. We shall see thatfor 1 
avour and N
 ! 1 a 
ondensate is generated. In the dis
ussion weshow that for multi-
avour QED2, 
on�ned in a spatial bag and at �nitetemperature, the 
hiral 
ondensate agrees with that generated by fra
tonson the torus [10℄. In the appendix we derive the boundary-Seeley-deWitt
oeÆ
ient whi
h is needed in the main body of the paper.2 Bag Boundary ConditionsFor Dira
 fermions propagating in an Eu
lidean bag iD= should be selfadjoint(or at least normal) for the partition fun
tion Z to be real. A ne
essary
ondition for selfadjointness is that(�; iD= ) � (iD=�;  ) � ZM �yiD= � ZM (iD=�)y = i I�M �y
n (10)vanishes. Here 
n=n�
� is the proje
tion of the hermitean 
-matri
es onthe outward oriented normal ve
tor�eld n�(x) on the bag-boundary �M.5



We will impose lo
al linear boundary 
onditions (x) = B(x) (x) on �M; (11)sin
e nonlo
al spe
tral boundary 
ondition, as introdu
ed and dis
ussed in[17℄, respe
t the axial 
avour symmetry and probably would lead to a van-ishing 
ondensate in the multi
avour 
ase. The lo
al boundary 
onditionsmust be 
ompatible with both gauge- and ve
tor-
avour symmetry whi
hmeans that B must be a singlett under the 
orresponding transformations.Hen
e it ought to be in the 
enter of these transformations.The surfa
e integral in (10) vanishes ifBy
nB = �
n and we may assume B2 = Id: (12)We shall 
hoose the following one-parametri
 solution3 [19℄ = B� on �M with B� = i�
e��

n � If � I
: (13)Here �
 = (�i)n
0
1 � � � 
d�1 is the generalization of 
5 whi
h always existsin even dimensions. We shall 
hoose �
 = diag(1n;�1n), i.e. a 
hiral repre-sentations in whi
h the hermitean 
� are o�-diagonal. In the following weshall not spell out the trivial a
tion of B� in 
avour and 
olour spa
e as wedid in (13).When the 'quarks' are re
e
ted from the bag boundary they may 
hangetheir 
hirality [18℄ whi
h means that the boundary 
onditions break theaxial-
avour symmetry �! e�
A ; where eiA 2 SU(Nf ):We shall see that � in (13) plays a similar role as the �-parameter in QCD.Let us now derive some properties of the Dira
 operator in an arbitraryexternal gauge �eld. The results will be used later on.3Expanding B in a basis of the Cli�ord algebra the general solution in even d=2n isfound to be B�;� = i�

n exp�� ��
ei�
n� exp �� i�
n�� Cf � C
;with 
enter elements C, and depends on two real parameters � and �.
6



3 On the Spe
trum of the Dira
 Operator in a BagThe Dira
 equation for fermions 
on�ned to a bag and subje
t to the bagboundary 
onditions,iD= m(�) = �m(�) m(�); B� m(�) =  m(�)j�M; (14)possesses a dis
rete spe
trum f�ng. Unlike the non-zero eigenvalues on asphere or torus the eigenvalues do not 
ome in pairs �n;��n. The reason isthat  n and 
5 n 
an not both obey the bag boundary 
onditions. Belowwe prove that iD= possesses no zero modes, display how the eigenvaluesand -modes transform under the parity operation and derive a boundaryHellmann-Feynman formula for the �-variation of the eigenvalues.3.1 Absen
e of fermioni
 zero modes.By expli
it mode-analysis Balog and Hrasko have shown [19℄ that in a 2-dimensional spheri
al bag iD= possesses no zero modes whi
h obey the bagboundary 
onditions (13). Here we shall extend their result to arbitrarilyshaped even-dimensional bags. Indeed, if there would be a zero mode  then we would arrive at the 
ontradi
tion0 = (�
 ; iD= ) � (iD= �
 ;  ) = i I  y�

n = I  ye���
 > 0:Here we used that as elements of the Cli�ord algebra �
 andD= anti
ommute4,the identity (10) and the boundary 
onditions (13) whi
h a possible zeromode would have to obey.3.2 Parity transformations.Here we study how the eigenvalues �m(A; �) in (14) 
hange under paritytransformations of the gauge �eldA0(x) �! ~A0(x) = A0(~x) , ~x = (x0;�xi)Ai(x) �! ~Ai(x) = �Ai(~x): (15)First we noti
e that the transformed modes4This is not true on the Hilbertspa
e de�ned by (13) sin
e �
 does not 
ommute withthe boundary 
onditions. But this is not needed to arrive at the 
ontradi
tion.7



~ m(x) = �

0 m(~x) (16)solve the Dira
 equation with potential ~A and eigenvalues ��m. Se
ond, if m obeys the boundary 
ondition (13) then ~ m does, but with � repla
edby ��. In other words�m( ~A; �) = ��m(A;��) (17)and this property will 
onstrain the fermioni
 determinants and Green'sfun
tions.3.3 A boundary Hellmann-Feynman formula.The Hellmann-Feynman theorem [20℄ relates the in�nitesimal variation ofan eigenvalue with the expe
tation value of the in�nitesimal variation ofthe operator in the 
orresponding normalized eigenstate. Here we derive asimilar formula for the variation of the eigenvalues �m when the parameter� entering the boundary 
onditions is varied.To 
ontinue we 
hoose the eigenfun
tions  m(�) in (14) to be orthornor-mal for all values of �. The �-variation of the eigenvalues is then simplydd��m � �0m = ( 0m; iD= m) + ( m; iD= 0m) = i I�M  ym
n 0m; (18)where we made use of (10). The last expression depends only on the eigen-modes restri
ted to the bag boundary and there the boundary 
onditions(13) imply  0m = �
 m + B 0m. Using the boundary 
onditions on
e more,together with the �rst formula in (12), we arrive ati ym
n 0m = i ym
n�
 m + i ym
nB� 0m = i ym
n�
 m � i ym
n 0mand this 
an be solved for i ym
n 0m. Inserting the resulting expression into(18) �nally yieldsdd��m = i2 I  ym
n�
 m = ��m( m; �
 m); (19)where on
e again we made use of (10). Eq. (19) is the analog of theHellmann-Feynman formula and exhibits how �m 
hanges if the boundary
onditions are varied. 8



4 The Fermioni
 Green's Fun
tionsWhen 
al
ulating 
orrelators of 'quark' �elds in a bag one needs in an inter-mediate step the Green's fun
tion S� of the Dira
 operator in an arbitraryba
kground �eld. This Green's fun
tion must obeyiD=S�(x; y;A) = Æ(x; y) , B�(x)S�(x; y;A) = S�(x; y;A)jx2�M; (20)and the adjoint relations with respe
t to y. Sin
eD=e 12 ��
 = e� 12 ��
D= and B�e 12 ��
 = e 12 ��
B0its �-dependen
e is easily found to beS� = e 12 ��
 S0 e 12 ��
 = � e�S0++ S0+�S0�+ e��S0�� � ; (21)where the subs
ripts indi
ate the 
hiral proje
tions, for example S++ =P+SP+; P� = 12(1��
). Note that the �-dependent diagonal entries S�� leadto 
hirality violating amplitudes and may therefore trigger a 
hiral symmetrybreaking. Also note that when we parity-transform the eigenvalues andeigenmodes of the Dira
 operator in the spe
tral resolution of the Green'sfun
tion a

ording to (15-17) we 
on
lude thatS�(x; y;A) = �
0�
S��(~x; ~y; ~A)�

0: (22)This property will relate di�erent 
orrelators in the fully quantized theories.Next we derive some expli
it expressions for S� in spheri
al bags whenthe gauge �eld is swit
hed o�. These free Green's fun
tions are needed inperturbative expansions for small 
ouplings and/or small bags. For the ex-pli
it 
al
ulation it is useful to observe that in a spheri
al bag B� 
ommuteswith the total angular momentum,J�� = 1i (x����x���) + 14i [
�; 
� ℄ �M�� +��� ;so that the free Green's fun
tions are rotationally invariant,US�(Rx;Ry; 0)U�1 = S�(x; y; 0); where U
�U�1 = R(U)��
� ;and only depend on the rotationally invariant quantities (
; x); (
; y); x2; y2,(x; y) and the bag-radius R. If we 
ontinue to Minkowski spa
etime then9



M be
omes the interior of a hyperboloid and all non-vanishing 
orrelatorswould be Lorentz invariant.We may 
ompute the free Green's fun
tions either by angular-momentumde
omposition or by applying the mirror 
harge method. We found thattheir 
hirality 
onserving o�-diagonal terms are just those on the in�nitespa
etime5 but also that they 
ontain 
hirality violating diagonal terms.The �nal result in d=2n dimensions readsS�(x; y; 0) = S0(x; y) + �(n)2R�n �
 e��
 R2 � (x; 
)(y; 
)(R2 � 2xy + x2y2R2 )n ; (23)where S0(x; y) = �(n)2i�n (x� y; 
)jx�yjd (24)is the free Green's fun
tion in d-dimendional Eu
lidean spa
etime. Beeingthe Green's fun
tions of a selfadjoint operator they ful�ll the reality 
ondi-tion S�y(x; y) = S�(y; x). In 2 dimensions (23) has been derived earlier in[19℄.Note that the �-dependent 
hirality violating entries S��� are regular atall interior points and vanish if the bag size tends to in�nity. For example,at the 
enter of the bagS���(0; 0; 0) = � e��2�n�(n)R1�d �! 0 for R!1: (25)They be
ome singular only if x and y both approa
h the boundary and ea
hother sin
e then the mirror 
harge 
omes 
lose to �M,S���(jxj=R; y=(1��)x; 0) � �1�d: (26)The Green's fun
tions of the squared Dira
 operator,G�(x; y;A) = hxj 1�D= 2 jyi (27)obey the same boundary 
onditions as S� and in addition5This is a parti
ular property of the spheri
al geometry. For instan
e, on the torus theo�-diagonal terms are modi�ed. 10



iD=G�(x; y;A) = S�(x; y;A): (28)They transform under the parity operation asG�(x; y;A) = 
0�
G��(~x; ~y; ~A)�

0: (29)After some manipulations we arrived at the following expli
it formulae:G�(x; y; 0) = GD(x; y)� C�(x)F (x; y)Cy� (y); (30)where the Diri
hlet Green's fun
tions GD are 
onstru
ted from the in�nitespa
etime Green's fun
tionsG0(x; y) = � 12� log�jx� yj resp. G0(x; y) = �(n� 1)4�n jx� yj2�d (31)in 2 and more than 2 dimensions, respe
tively, by the mirror 
harge methodand are found to beGD(x; y) = G0(x; y)� (R2x2 )n�1G0(x0; y) for d > 2 (32)GD(x; y) = � 12� log � Rjxj jx� yjjx0 � yj� for d = 2: (33)Here x0 =R2x=x2 denotes the mirror point of x. We have introdu
ed thefun
tions C�(x) = 1 + iR�
e��
 (
; x)x2 :andF (x; y) = i(
; x)R I�MS0(x; z)G0(z; y)d
(z) = I�MG0(x; z)S0(z; y)d
(z)(
; y)iR ;where the z-integration extends over the bag-boundary. That G� in (30)obeys the boundary 
onditions is easily veri�ed. To 
he
k (28) one needs touse the identityI S0(x; z)S0(z; y)d!(z) = �(n)2R�n R2 � (
; x)(
; y)�R2 � 2(x; y) + x2y2R2 �n :11



We have 
al
ulated F (x; y) in 2 and 4 dimensions expli
itly. In 2 dimensionsit reads F (x; y) = 14� log �1� 
x
yR2 �; (34)and in 4 dimensionsF (x; y) = 18�2(x2y2 � (x; y)(
; x)(
; y)�3=2 ar
tan p�R2 � (x; y)� 1� [R2 � (x; y)℄x2y2 � [R2(x; y)� x2y2℄(
; x)(
; y)R4 � 2R2(x; y) + x2y2 ); (35)where �=x2y2 � (x; y)2.5 The Fermioni
 Determinant in a BagIn this se
tion we shall 
ompute the �-dependen
e of the fermioni
 deter-minants. We shall see that the intera
tion of the fermions with the bag-boundary indu
es a CP -violating � term in the e�e
tive a
tion for the gaugebosons.The Dira
 operator and boundary 
onditions are both 
avour neutraland hen
e the determinants are the same for all 
avours and is suÆ
es tostudy the 1-
avour models. For the expli
it 
al
ulations we employ thegauge invariant �-fun
tion de�nition of the determinants [21℄log det�(iD= ) � 12 log det�(�D= 2) = �12 dds��(s)js=0 (36)and 
al
ulate their �-dependen
e with the help of the boundary Hellmann-Feynman formula (19). Denoting the eigenvalues of �D= 2 by �m, the �-fun
tion is de�ned by��(s) =Xm ��sm (�) = 1�(s) 1Z0 dt ts�1tr � etD= 2 , <(s) > d2 (37)and its analyti
 
ontinuation to <(s) � d=2. Using (19) and the fa
t thatiD= possesses no zero modes, so that a partial integration with respe
t to tis justi�ed, the �-variation of �� is found to be12



dd� ��(s) = 2s�(s) Z ts�1tr � etD= 2�
: (38)Now we 
an insert the asymptoti
 small-t expansion of the heat kernel of�D= 2 [25℄ to arrive at the general result [22, 23, 24℄dd� log det�(iD= ) = � 1(4�)n ZM tr an(�
)� 1(4�)n I�M tr bn(�
) (39)whi
h holds in an arbitrary 2n-dimensional bag. Here the n'th (n = d=2)Seeley-deWitt 
oeÆ
ients in the small t-expansion of the heat kernel,tr �etD= 2� � 1(4�t)n Xm tm=2 trn Z am=2(�) + I bm=2(�)o (40)showed up. Unlike the an the 
oeÆ
ients bn depend on the boundary 
on-ditions and thus on �.For the squared Dira
 operator, D= 2 = D2 + ���F�� , that part of the(�-independent) an whi
h leads to a non-vanishing �
-tra
e is known in anydimension [25℄ and inserting it we obtainlog det�iD=det0iD= = ��n!(4�)n ZM ��1:::�dF�1�2 : : : F�d�1�d � �Z0 d�0 I�M tr bn(�
); (41)and this formulae are the main results of this se
tion. We see that the �variation is proportional to the parity-odd instanton number q whi
h is notquantized in a bag. Our result is in agreement withdet iD= (A; �) = det iD= ( ~A;��) (42)whi
h immediately follows from (17) and the fa
t that the determinant ofiD= is de�ned via the spe
trum of �D= 2. This relation means that parity odd(even) fa
tors in the determinant are multiplied by fun
tions that are odd(even) in � so that the last surfa
e integral in (41) must be parity odd. Sin
ethe Yang-Mills a
tion is parity even we immediately see that the measure offun
tional integration (8) satis�esd��(A) = d���( ~A) (43)13



whi
h implies that expe
tation values of parity even (odd) operators areeven (odd) fun
tions of �.In parti
ular in 2-dimensions we havelog det�iD=det0iD= = � �2� Z trF01; (44)where we have already anti
ipated that H tr b1(�
)=0, a fa
t that is provenby the heat kernel method in the appendix. In 4 dimensions we �ndlog det�iD=det0iD= = � �2(4�)2 Z ����� trF��F�� + I f4(�;A): (45)An expli
it 
al
ulation of surfa
e 
oeÆ
ients like b2 (whi
h leads to the lastsurfa
e integral) is not an easy task [22℄. Contrary to b1 we did not 
omputeit expli
itly. However, there seems to exist no lo
al polynomial whi
h isparity odd, gauge invariant and has dimension �3 and thus may 
ontributeto b2. Thus we believe that this surfa
e term is absent as it is in 2 dimensions.Sin
e the Dira
 operator in a bag is hermitean its determinant is real andpositive. Thus, to make 
onta
t with the �-worlds in QCD [26℄ we wouldhave to 
ontinue � in (45) to i�. However, when doing this repla
ementnaively in (44,45) then then one runs into the following apparant paradox:the boundary 
onditions and thus the eigenvalues and Green's fun
tion ofiD= are un
hanged if we repla
e � by � + 2�in; n 2 Z. On the other hand,the determinant seems not to be periodi
 sin
e the instanton number is notquantized. The solution of this apparant paradox is simply that � in (44,45)should read log(e�) as is shown in the appendix.6 E�e
tive A
tion in 2-dimensional BagsIt has been realized by Polyakov and Wiegmann [28℄ and Alvarez [29℄ thatthe fermioni
 determinant on the 2-dimensional plane may be 
omputed ex-a
tly using the 
hiral anomaly. Here we shall extend their result to fermions
on�ned in a 2-dimensional bag.We shall employ the deformation te
hnique developped in [13, 22, 24℄to �nd the various 
ontributions to the fermioni
 determinant. For that were
all that an arbitrary gauge potential in a two-dimensional bag (withoutholes) 
an always be written as [24, 27℄14



Az � A0 � iA1 = ig�1(�0 � i�1)g � ig�1�zg (46)with g from the 
omplexi�ed gauge group G
, e.g. g 2 GL(n;C) for U(n)-gauge theories6. Now it is easy to see thatD= = Gy�=G; where G = � g�1y 00 g � , �= = � 0 �z��z 0 � (47)and we made the matrix-forms in spinor spa
e expli
it. Note that if werepla
e g by gU , where U lies in the gauge group G, thenG �! GU and D= �! U�1D=U (48)and hen
e the 
orresponding gauge potential is just the gauge-transformedone. The �eld strength isF01 = �12gy ��(J�1�J)g�1y = �12g�1�(��JJ�1)g; (49)where the gauge invariant �eldJ = ggy (50)with values in the 
oset spa
e G
=G appeared. J will play an important rolesin
e all gauge invariant Green's fun
tions depend on the gauge �eld onlyvia this gauge invariant �eld. The Yang-Mills a
tion readsSYM = 18g2 Z tr ��(J�1�J)��(J�1�J): (51)Let us now introdu
e a � -dependent family g(x; �) whi
h interpolatesbetween the identity and the �eld g(x) asg(x; 0) = I , g(x; 1) = g and dd� g(�) � _g(�) = �g(�)a(�): (52)With (47) it follows at on
e that6On 
ompa
t spa
etimes without boundaries (46) needs some modi�
ations, see [24℄.
15



_�m = �m( m; (A+Ay) m) + i I  ym
nA m; A = � ay 00 �a� : (53)To get rid of the annoying surfa
e term we observe that the gauge potentialin (46) is una�e
ted by the repla
ementg �! ��1(�z)g (54)and we 
an use this freedom to get rid of this term. Indeed, we 
an al-ways �nd a unique � su
h that �(�z)�(z)y= ggy on the bag-boundary. Theequivalent g obeys thenggyj�M � J j�M = I () G�1B�G = B� on �M: (55)Imposing the �rst 
ondition for all � implies that on the bag boundarya + ay=0 or that A is the identity in spinor spa
e. Then the surfa
e termin (53) vanishes on a

ount of the bag boundary 
onditions. The se
ond
ondition is just the statement that the G-transformation (47) is 
ompatiblewith the bag boundary 
onditions so that the Green's fun
tion is related tothe free one7, (23), asS�(x; y;A) = G�1(x)S�(x; y; 0)G�1y(y): (56)In the following we assume (55) to hold for all � so that the whole deforma-tion (52) is 
ompatible with the boundary 
onditions.Now we 
an apply the wellknown deformation te
hniques for the �-fun
tion de�ned determinant [22, 24℄ and obtaindd� log det iD= = 14� ZM tr a1(A+Ay) + 14� I�M tr b1(A+Ay): (57)Here A and the Seeley-deWitt 
oeÆ
ients a1; b1 of the � -deformed Dira
operator are to be inserted. The volume 
oeÆ
ient a1 is wellknown [25℄,Z a1(�) = Z F01�
� (58)7we use the same symbol S�(x; y; 0) independently on whether the free Green's fun
tion(23) is tensored with the identities in 
avour- and/or 
olour spa
e or not. The lo
almeanings should be 
lear from the 
ontext.16




ontrary to the surfa
e 
oeÆ
ient b1. We have 
al
ulated b1 via the heat-kernel in the appendix and up to purely geometri
 terms, whi
h 
an
el inexpe
tation values, the result isI b1(�) = 12 I n1� log e�sinh(�) � e� �1�1 e�� �o�n�: (59)Note that for a 
onstant fun
tion � the surfa
e Seeley-deWitt 
oeÆ
ientb1(�) vanishes, and we have used this fa
t earlier in deriving (44). Note,however, that although A+ Ay=0 on �M the last surfa
e integral in (57)does not vanish, sin
e tr b1(�) 
ontains the normal derivatives of � at theboundary.Inserting (59) into (57) we end up with the exa
t formulalog det�iD=det�i�= = 12� 1Z0 d�n ZM trF01(a+ ay)� �2 I�M tr �n(a+ ay)o: (60)To 
ontinue we express a and F01 in terms of g and its derivatives and �ndlog det�iD=det�i�= = � 14� 1Z0 d�n ZM tr �J�1�J ��(J�1 _J)�� � I�M tr �n(J�1 _J)o:The � -integral of the volume term 
an be 
al
ulated in the same way as onthe in�nite plane8 and leads to the Wess-Zumino a
tion [24, 30℄. That ofthe surfa
e term is easily found sin
e �� tr ��(J�1�J) = 4(J�1 _J). Hen
e wearrive at the following expli
it answer for the fermioni
 determinant in abag:log det�iD=det�i�= = � 18� ZM tr�J�1�JJ�1 ��J�+ i12� ZZ tr (J�1d3J)3+ �4� ZM tr ��(J�1�J): (61)In the Wess-Zumino term in the middle on the right hand side J =J(x; �)and thus Z =M� [0; 1℄ is the �nite 
ylinder over the bag. We re
all thatthe deformation is subje
t to the boundary-, initial- and �nal 
onditions8the various partial integrations needed to arrive at the result are allowed if one takesinto a

ount that J is the identity on the bag-boundary17



J(x 2 �M; �) = I , J(x; 0) = I and J(x; 1) = J(x): (62)As for the last surfa
e term in (61) we see immediately that for semisimplegauge groups it vanishes, sin
e J�1�J lies in the 
omplexi�ed gauge algebra.Also note that this term is equal to ��=2� R trF01 so that our result is indeed
ompatible with (44). Also, for J=J1J2 it be
omes the sum of su
h terms forthe individual �elds Ji. This means that the wellknown Polyakov-Wiegmanidentity [28℄, whi
h relates the determinant belonging to J=J1J2 with thoseof J1 and J2,log det�iD= (J1J2)det�i�= = log det�iD= (J1)det�i�= + log det�iD= (J2)det�i�=� 14� ZM tr �J�11 �J1 ��J2J�12 �: (63)still holds in a bag.Let us now suppose that G = U(1) � SU(N
). The results for this par-ti
ular 
ase will be important when we 
al
ulate mesoni
 
urrent 
orrelatorsand 
hiral 
ondensates. We represent the gauge potential A= ~A + Â as in(46) and fa
torize the U(1) �eld, that is we set g=~gĝ. We parametrize theU(1)-part as ~g = e�e'�ie�, where e is the ele
tri
 
harge, and thenA� = ~A� + Â� = �e�����'+ e���+ Â� and F01 = e4'+ F̂01: (64)Repeating the above analysis for the deformationJ(x; �) = e�2e'(x)� Ĵ(x; �) with 'j�M = 0 and Ĵ(�)j�M = I;or equivalently applying the Polyakov-Wiegman identity to J = e�2e'Ĵ ,shows that the determinant (61) fa
torizes,det�iD= = e�N
2� [e2 R �'��'+�e H �n'℄ det iD̂= ; (65)where the last determinant is �-independent. The same happens then forthe fun
tional measure for the Eu
lidean gauge �eldsd��(A) = d��( ~A) d�(Â) = e���['℄~Z� D ~A e��[Â℄Ẑ DÂ: (66)Here we introdu
ed the �-dependent e�e
tive a
tion for the U(1)-gauge po-18



tential ~A and the �-independent one for the Ĝ-gauge potential Â. For theNf -
avour model with 
avour-independent U(1)-
harge e and Ĝ-
oupling
onstant g they read��['℄ = N
2 (Z (4')2 �m2� Z '4'+ e�Nf� I �n')�[Â℄ = SYM [Â℄ + Nf8� ZM tr (Ĵ�1�Ĵ Ĵ�1 ��Ĵ)� iNf12� ZZ tr (Ĵ�1d3Ĵ)3: (67)Note that due to the wellknown S
hwinger me
hanism the massm2� = Nf e2� ; (68)whi
h is the analog of the �0-mass in QCD, has been indu
ed in the abeliansubse
tor of the theory.7 Correlation Fun
tions of Mesoni
 CurrentsFermioni
 
orrelation fun
tions are gotten from the generating fun
tional(1), whi
h in a bag simpli�es toZ[�; ��℄ = Z d��(A) eR �y(x)S�(x;y;A)�(y); (69)by fun
tional di�erentiation with respe
t to the grassmann valued sour
es.Here d�� is the measure of fun
tional integration (8) and we re
all thatthe fermioni
 Green's fun
tion S� is the identity in 
avour spa
e. Let C =S 
 F 
 I
 be a numeri
al matrix whi
h a
ts trivial in 
olour spa
e. Thenwe obtain for the gauge invariant 
onne
ted two- and four-point fun
tionsin a �xed ba
kground �eldh y(x)C (x)iA = �trF trS S�(x; x;A)h y(x)C1 (x) y(y)C2 (y)iA;
= �trF1F2 tr [S1S�(x; y;A)S2S�(y; x;A)℄; (70)where it is understood that the �rst tra
es are in 
avour spa
e and these
ond ones in spinor- and 
olour spa
e.19



Ve
tor 
urrents The 2-point fun
tions of the mesoni
 ve
tor- and pseu-dove
tor 
urrentsj�F =  y
�F  and j5�F =  y �

�F  = i���j�F (71)will already shed some light on the parti
le spe
trum of 2-dimensional gaugetheories. We obtain the following formal expressions for the 
onne
ted 1 and2-point fun
tionshj�F (x)iA = �trF tr 
�S�(x; x;A)hj�F1(x)j�F2(y)iA;
 = �trF1F2 tr 
�S�(x; y;A)
�S�(y; x;A): (72)In 2 spa
etime dimensions the Green fun
tion S� is given by (56) and (23).When inserting the expli
it form (56,23) of S� one noti
es that the gauge�eld and �-parameter both drop in these expe
tation values. In prin
iple onewould have to regularize the 
urrents, e.g. by a gauge invariant point split-ting pres
ription and this may reintrodu
e a gauge �eld and �-dependen
e.However, by noti
ing that the mesoni
 
urrents 
ouple to the abelian gaugepotential ~A� in (64) we 
an 
al
ulate the regularized 
onne
ted 
orrelatorsin a �xed ba
kground ashj�F (x)iA = trFe Æ log det iD=Æ ~A�(x) = N
trF� ����e��'+ �2Æ(r�R)n��;hj�F (x)j�F (y)iA;
 = trF2e2 Æ2 log det iD=Æ ~A�(x)Æ ~A�(y) = �N
trF2� P��(x; y): (73)All higher 
onne
ted 
orrelators vanish. In deriving (73) we have fa
torizedthe 
avour dependen
e by diagonalizing F so that the determinants arethose of the one-
avour model. The last equalities follow from the expli
itdependen
e of det iD= in (65) on the �eld ' and the de
omposition of ~A� in(64). P�� proje
ts onto the transversal degrees of freedom and is 
onsistentwith the boundary 
onditions,P��(x; y) = �tr 
�S�(x; y; 0)
�S�(y; x; 0) = �������x��y�GD(x; y): (74)Here GD(x; y) is the Diri
hlet Green's fun
tion of �4, see (33). Sin
e '=0on �M the 
urrent normal to �M vanishes and no U(1)-
harge is leakingthrough the boundary as required by the boundary 
onditions on the 'quark'�elds. Furthermore, our result is 
ompatible with ve
tor 
avour symmetry20



and the axial ve
tor anomaly,��hj�F iA = 0 and ��hj5�F iA = trFi� tr 
neF01 + �2Æ0(r �R)o: (75)Note that the nonabelian part Â of the gauge potential has 
ompletely disap-peared in the above formulae. Sin
e we know all 
orrelators in an arbitrarygauge �eld and sin
e those only depend on the abelian part of the gaugepotential the averaging over the gauge �elds redu
es to that in the multi-
avour S
hwinger model. Here we may use the results in [31℄, up to somemodi�
ation due to the presen
e of the bag boundary. Let us 
hoose a tra
e-orthonormal basis Ta; a = 2; 3; : : : ; N2f of SU(Nf ), together with the identityin 
avour spa
e whi
h we denote by T1. The 
orrelators of the asso
iated
urrents j�a = � 
�Ta are reprodu
ed by the generating fun
tionalhexp� Z j�a ba��i = exp(� N
2 hm2� Z b1�(x)P��m� (x; y)b1�(y)+m2�Nf N2fX2 ba�(x)P��(x; y)ba�(y) + e�Nf� Z Ie(r;R)�����b1�i); (76)where we introdu
ed the fun
tionIe(r;R) = I0(m�r)I0(m�R) : (77)The proje
tor P��m onto the transverse massive ve
tor-parti
les is derivedfrom the massive Green fun
tion GDm in (83) in the same way as P�� wasderived from GD in (74). A
tually, the generating fun
tional for the 
urrentsin the Cartan subalgebra 
an be 
al
ulated dire
tly sin
e the asso
iatedfermioni
 determinant is 
al
ulable. The identities needed to prove that thegenerating fun
tional (76) yields the 
orre
t 
urrent 
orrelators are derivedin the next se
tion, see for example (84).Now it is easy to bosonize the mesoni
 
urrents, sin
e the bosonization isidenti
al to that of the multi-
avour S
hwinger model [31℄, up to boundaryterms. One �nds that the generating fun
tional for all 
urrents 
an berewritten as hexp � Z j�a ba��i = hexp �i Z ����� 'aba��iB ; (78)21



where the Gaussian measure for the N2f -bonsoni
 �elds 'a has the a
tionB['℄ = 12N
m2� h Z '1(�4+m2�)'1 �Nf N2fX2 Z 'a4'ai+ i�e I �n'1:We re
overed the wellknown bosonization rule j�a ! i�����'a, where the�eld '1 belonging to the U(1)-
urrent � 
� has massm� and the remainingN2f � 1 pseudo-s
alar �elds are massless. What we have shown is that 2-dimensional multi-
avour U(N
) gauge theories 
ontain one massive andN2f �1 massless pseudos
alar 'mesons'. For G=SU(N
) the massive 'meson'is absent.8 Chiral Symmetry Breaking in 2d-Gauge Theo-riesWe begin with 
al
ulating the 
hiral 
ondensate of the Nf -
avour S
hwingermodel [32, 31℄ en
losed in a spheri
al bag. As an appli
ation we derive anupper bound for the 
ondensate in SU(N
) gauge theories and prove thatfor N
 <1 it vanishes in the thermodynami
 limit. On the other hand, forthe abelian proje
ted non-abelian theories we 
al
ulate the R-dependen
eof the 
ondensate expli
itly and show that in the limit N
 ! 1 a 'quark'
ondensate is generated whi
h remains when R!1.The u =  1-'quark' 
ondensate is the parti
ular 2-point-fun
tion (70)with S = P+ and Fab = Æa1Æb1. Inserting the expli
it form of the Greenfun
tion S� we arrive ath�uP+ui(x) = � e�2�R 11� r2=R2 Z d��(A) trJ(x) (79)and it remains to 
al
ulate the average of the 
olour tra
e of the gaugeinvariant �eld J . For 2-dimensional SU(N
)-gauge theories the measure d�does not depend on � and the 
ondensate is proportional to e�. On the otherhand, we shall see that for U(N
)-theories the 'quark' 
ondensates be
ome�-independent, up to exponentially small (in R) �nite size 
orre
tions.8.1 Multi-
avour QED2When one quantizes multi-
avour QED2 with massless fermions on S2 [15℄or the torus [13, 33℄ or some other Riemann surfa
e one �nds h�uP+ui =22



0. The same result is found in the geometri
 S
hwinger model [14℄ whi
his equivalent to QED2 with 2-
avours. The 
ondensate vanishes for thesame reason as it does in QCD if one only allows for gauge �elds withinteger instanton number. Only for nonzero 'quark'-masses or if one allowsfor 
avour dependent twisted boundary 
onditions does one �nd a nonzero
ondensate in �nite volumes. Here we shall show that the UA(Nf )-breakingbag-boundary 
onditions also trigger a 
hiral 
ondensate. No fermioni
 zeromodes are needed to generate it and a
tually there are none of them. The
ondensate de
reases with in
reasing bag-radius unlessNf =1 or the numberof 
olours is in�nite.As earlier we 
hoose the parametrization g=e�e'�ie� (we skip the tildein this subse
tion) for the abelian �eld so that the fun
tional integral rep-resentation for the u-'quark' 
ondensate readsh�uP+ui = � e�2�R 11� r2=R2 R DA� e�2e'(x)��� ['℄R DA� e��� ['℄ ; (80)where ��['℄ is the e�e
tive a
tion (67) for one 
olour. The Ja
obian of thetransformation (64) from the potential A� (there it was denoted by ~A�) tothe new �elds �; ' is �eld independent and we 
an repla
e DA� by D' inexpe
tation values of gauge invariant operators. Also re
all that we integrateover those �elds ' whi
h vanish on the bag-boundary.The integral (80) is Gaussian with sour
ej(y) = �2eÆ(x � y) + e�Nf2� 1ry �ry�ryÆ(ry �R)�and thus is found to beh�uP+ui = �e�2�R 11� r2=R2 expn 2�NfK(x; x) + �Z d2y4yK(x; y)o: (81)Here we introdu
edK(x; y) = hxj 1�4jyi � hxj 1�4+m2� jyi � GD(x; y)�GDm� (x; y); (82)i.e. the di�eren
e between the massless and massive Green's fun
tions withrespe
t to Diri
hlet boundary 
onditions. In a spheri
al bag with radius RGD has been given in (33) and 23



GDm(x; y) = 12�nK0(mjx� yj)� 1X0 �nKn(mR)In(mR) In(mrx)In(mry) 
osn('x � 'y)o; (83)where �0=1, �n>0 = 2 and In;Kn are the modi�ed Bessel fun
tions. Usingthe expli
it form of the Green's fun
tions one 
al
ulatesZM d2y4yGD(x; y) = �1 and ZM d2y4yGDm(x; y) = � I0(mr)I0(mR) ; (84)so thath�uP+ui = � 12�R 11� r2=R2 expn�Ie(r;R) + 2�NfK(x; x)o:The fun
tion Ie in the exponent has been de�ned in (77). Inserting theexpansion of K0 for small arguments we obtain2�K(x; x) = 
 + log �m�R2 [1� r2R2 ℄�+ Fe(r;R);where 
=0:577 : : : is Euler's 
onstant and we have introdu
ed the fun
tionFe(r;R) =X �nKn(m�R)In(m�R) I2n(m�r); (85)Inserting all that we get the following exa
t formula for the 
hiral 
ondensatein multi-
avour QED2 
on�ned in a bag with radius R:h�uP+ui(x) = �m�e
4� �m�Re
2 [1� r2R2 ℄��1+1=Nf e�Ie+Fe=Nf : (86)The fun
tion Fe has the asymptoti
 expansionsFe(r;R) � ( e�m�R for 1� m�R� m�r� log 12m�Re
 [1� r2R2 ℄ for m�R� 1: (87)Thus for large and small bags or equivalently for strong and weak 
oupling
onstant e the 
ondensate simpli�es to24



h�uP+ui � 8<: �m�e
4� �12m�Re
��1+1=Nf for 1� m�R� m�r� e�2�R (1� r2=R2)�1 for m�R� 1: (88)As expe
ted, for weak 
ouplings and/or small bags the 
ondensate tends tothe 
hirality violating entry �S�++(x; x; 0) of the free Green's fun
tion (23).For one 
avour and large bags we re
over the wellknown value for the
ondensate in the S
hwinger model [34℄h�uP+ui = �m�4� e
 : (89)We stress that this result has been obtained without doing any instantonphysi
s. The 
al
ulations in a bag are a
tually mu
h simpler as 
omparedwith those on a torus [13, 14, 33℄ or sphere [15℄, where a 
areful treatmentof the di�erent instanton se
tors is required to �nd the result (89).For several 
avours the 
ondensate inside the bag, e.g. at the 
enter ofa large bag, h�uP+ui(0) = � 12�R�m�Re
2 �1=Nf (90)de
reases with in
reasing bag radius and vanishes in the thermodynami
limit.The 
luster property holds sin
e the 4-point fun
tionh�u(x)P+u(x)�u(y)P�u(y)i= hS�++(x; x;A)S���(y; y;A) � S��+(x; y;A)S�+�(y; x;A)i�! �(m�4� )2�m�2 jx� yj��2+2=Nf e2
=Nf for R!1 (91)tends to the produ
t of the left- and righthanded 
ondensates for large sep-arations jx� yj.Let us �nally prove that in the thermodynami
 limit all fermioni
 
orre-lators in multi-
avour QED2 be
ome �-independent. This follows from theexpli
it form of the fermioni
 Green's fun
tion (for �=0)S�(x; y;A) = e��
[e'(x)� 12 �℄S0(x; y; 0)e��
 [e'(y)� 12 �℄;whi
h implies that all 
orrelators are proportional toe��P�i he2eP�i'(xi)i;25



and from the formulahe2eP�i'(xi)i = e�P�i[1�I�(ri;R)℄ e2�=NfP�iK(xi;xj)�j :Thus, up to exponentially small �nite size 
orre
tions � exp(�I�) the �-dependen
e 
an
els in all fermioni
 
orrelators.Let us 
ompare our result with that of Smilga [16℄ who 
al
ulated the
ondensate in multi
avour QED2 for small 'quark' masses. Using bosoniza-tion te
hniques he found that the mass � of the lightest parti
le and the'quark' 
ondensate depend on the ele
tri
 
harge e and small 
urrent quarkmasses m as� � (m�mNf ) 1Nf+1 and h �  i � (m2��Nf�1) 1Nf+1so that h �  i � ��m�� �1=Nf : (92)Comparing with (90) we see that the bag- and small quark mass 
al
ulationsyield the same result if we identify the mass of the lightest parti
le in thespe
trum with the inverse radius of the bag. In other words, small quarkmasses and bag boundary 
onditions both trigger the same 
ondensate if �is identi�ed with 1=R.In passing we note that the left- and right-handed 
ondensates are relatedas h�uP�ui� = �h�uP+ui��: (93)This follows from the transformations (43) and (22) under the parity oper-ation. Sin
e the fun
tion Ie in (86) vanishes exponentially with in
reasingbag radius R (assuming that r�R) we 
on
lude thath�uui = h�uP+ui+ h�uP�ui = O� sinh(�e�m�R)� (94)for large bags or in the strong 
oupling limit.To summarize, up to a phase the thermodynami
 limits of the left- andright-handed 
ondensates in a bag are identi
al to the instanton indu
ed
ondensates in the 1-
avour model on the torus or sphere and to the 
on-densates in the multi-
avour models obtained via perturbative expansion inthe small quark masses. The same is true for the 
ondensate h�uui only forparti
ular values of the parameter � in the �-world.26



8.2 Multi-
avour nonabelian gauge theories.Due to the fa
torization of the measure for the gauge bosons, (66), the 
hiral
ondensate (79) in U(N
) gauge theories fa
torizes ash�uP+uiU(N
) = � e�2�R 11� r2=R2 Z d��( ~A)e�2e' Z d�(Â) tr Ĵ= �2�Re� (1� r2R2 ) h�uP+uiU(1) h�uP+uiSU(N
); (95)and thus is proportional to the S
hwinger model result times the SU(N
)
ondensate. When 
al
ulating the U(1)-
ondensate one should rememberthat ��['℄ in (66,67) is N
 times that of the multi-
avour S
hwinger model,so that (86) is modi�ed toh�uP+uiU(1) = � e�Ie2�R 11� r2=R2�m�Re
+Fe2 [1� r2R2 ℄�1=N
Nf ; (96)where the fun
tions Ie and Fe have been de�ned in (77) and (85), respe
-tively. Inserting all that into (95) we �nd the following exa
t relation be-tween the U(N
) and SU(N
) 
ondensates:h�uP+uiU(N
) = e�(Ie�1) �m�Re
+Fe2 [1� r2R2 ℄�1=N
Nf h�uP+uiSU(N
): (97)Using the asymptoti
 expansion of Fe for small arguments, (87), we see thatfor e! 0 the U(N
) result redu
es to the SU(N
) one, as expe
ted.For the 
ondensates at the 
enter of large bags (97) simpli�es toh�uP+uiU(N
) = e��[m�Re
2 ℄1=N
Nf h�uP+uiSU(N
): (98)Assuming that the U(N
) 
ondensate has a smooth thermodynami
 limit we
on
lude at on
e that for a �nite number of 
olours the quark 
ondensate inSU(N
) gauge theories tends to zero as the bag in
reases at least ash�uP+uiSU(N
) � 
onst �R�1=N
Nf : (99)Only when we take the limit in whi
h the number of 
olours tends to in�nitybefore we perform the thermodynami
 limit R!1 
an a quark 
ondensatesurvive. 27



It would be interesting to see how (99) is modi�ed for two-dimensionalQCD with adjoint Majorana fermions. Arguments based on the bosonizedrepresentation of the theory imply that a nonvanishing 
ondensate is gen-erated, even for N
 � 3 in whi
h 
ase the instantons fail to generate a
ondensate [10, 35℄.8.3 Baby-QCD2For doing expli
it 
al
ulations it is useful to parametrize the g-�eld in (46).We take a parametrization for whi
h the fermioni
 determinant be
omeslo
al and simple. The pri
e we pay for the lo
ality is that the Yang-Millsa
tion is not quadrati
 as it would be in a gauge like Ar=0. For simpli
itywe assume that G = SU(2), that is we 
onsider the baby-version of QCD2[36℄. For baby-QCD the �eld g lies in SL(2; C) and in a bag without holesany su
h g 
an globally be de
omposed as [37℄g = hU; where h = � e 12' ve 12'0 e� 12' � and U 2 SU(2): (100)Here U 
ontains the pure gauge part of the potential and 
an
els in expe
-tation values of gauge invariant operators9. The 
ondition (55) means that' and v both vanish on the bag boundary.Now we 
an apply the Polyakov-Wiegman identity (63) with J = hhyand this yields log det iD=i�= = � 14� Z �(r';r') + ����: (101)The 3-dimensional integral in (61) 
onverted into an ordinary 2-dimensionalspa
etime integral be
ause we have 
hosen a triangular h in the de
ompo-sition (100). The property that the Wess-Zumino term be
omes lo
al for atriangular h has been exploited in a di�erent 
ontext in [38℄.At this point we wish to 
omment on the �-independen
e of the fermioni
determinant. For v=0 this fa
t is easily understood as follows:In this 
ase A� = 12�����'�3 and iD= is just the tensor produ
t of two U(1)Dira
 operators, one with ' ! 12' and the other with ' ! �12'. Thismeans that the log det is just the sum of the two abelian results with the
orresponding repla
ements and in this sum the �-dependent terms 
an
el.9The gauge �eld measure is dis
ussed below28



In se
tion 6 we have shown that this 
an
ellation between the various 
olourdegrees of freedom takes a
tually pla
e for arbitrary gauge potentials andsemi-simple gauge groups.With the parametrization (100) there is a
tually a mu
h qui
ker way toarrive at (101). When we repla
e '; v in (100) and inF01 = �12 � 4'+ ��� ���� ���'� ��� ���' �4'� ���� ; where � = �v + v�'by the deformed �elds �'; �v, then F01 anda+ ay = �� ' v(1 + �')�v(1 + �') �' �in (60) both be
ome polynomial in � and the � -integral 
an easily be per-formed.Similar as the fermioni
 determinant the Yang-Mills a
tionSYM = 12g2 ZM trF 201 = 14g2 Z n(� ��'+ ���)2 + j���� ���'j2o (102)depends on v only via the �-�eld and this suggests that we should 
hangevariables Aa� ! ('; �; ��;U). To �nd the Ja
obian of this transformation wenote that, up to a gauge transformation,Az = i� 12�' �0 �12�'�+ i�UU�1and parametrize the gauge transformations asU = U(�)) ��UU�1 = Nab�a���b; where Nab = 2tr ��U��bU�1�a�and the �a are half of the Pauli-Matri
es. Then the transformation to thenew variables is given by�Aa0Aa1 � = 0BBBBBBB� 0 0 �10 �1 0 N�0�1 0 00 �1 00 0 1 N�1��0 0 0
1CCCCCCCA0BBBBBBB� '����1�2�3

1CCCCCCCA29



and we 
on
lude that the Ja
obian of this transformation depends only onU , DA = J(U)D'D�D��DU , J(U)DU � det4d�(U): (103)When 
al
ulating expe
tation values of gauge invariant operators the fa
tordet4 und the integrations over the Haar measure d�(U) in the numeratorand denominator 
an
el.In parti
ular for the 
hiral 
ondensate (79) in Nf -
avour baby-QCD we�ndh�uP+ui(x) = �S�++(x; x; 0)R D('; �; ��) tr J e�SYMdetNf (iD= )R D('; �; ��) e�SYMdetNf (iD= ) (104)or after inserting the expli
it expressions we are left with the non-Gaussianfun
tional integralh�uP+ui = � e�2�R 11� r2=R2 R D(:)ne'(1 + v�v) + e�'o e��R D(:) e��; (105)with e�e
tive a
tion� = SYM + Nf4� Z n(r';r') + ���o: (106)Thus we have redu
ed the task of 
al
ulating the 'quark' 
ondensate to
omputing the fun
tional integral (105) over the gauge invariant variables 'and �. For an evaluation of the integral it maybe relevant to de
ide on theboundary 
onditions for the gauge �elds. For the abelian models it makesno di�eren
e whether we take free boundary 
onditions or impose the gaugeinvariant bag boundary 
onditions [11℄n�F�� j�M = 0;but for the non-abelian theories this 
hoi
e may a�e
t the �nal results for
orrelators.The formula (106) immediately leads to a gauge invariant perturbationexpansion for the 
ondensate and similarly for other expe
tation values.Note that if we perturb about the quadrati
 part of the e�e
tive a
tion thenwe obtain an in�nite resummation of the ordinary perturbative expansionin the gauge 
oupling 
onstant. We hope to report on the 
orresponding30



results elsewhere. Here we shall trun
ate the nonabelian theories and shallinvestigate their abelian proje
tions.8.4 Abelian proje
tion of SU(N
) gauge theories.Here we 
al
ulate the 
ondensate in the approximation where the 'gluons'are 
on�ned to the Cartan subalgebra of SU(N
). Hen
e only N
�1 gluonspropagate around a 'gluon' loop and there are no 3 or 4-gluon verti
es inthis approximation. In other words, we assume that g in Az = ig�1�zg liesin the maximal abelian subgroup of SL(N
), i.e.g = N
�1Yi=1 e�g('i+i�i)Hi (107)with tra
e-orthonormal Hi in the Cartan subalgebra of SU(N
). The Ja-
obian of the transformation (A�) ! ('i; �i), where A lies in the Cartansubalgebra, is �eld independent and 
an
els in expe
tation values of gaugeinvariant observables. Thus in the abelian proje
ted theory the 'quark' 
on-densate (79) simpli�es toh�uP+uiSU(N
) = � e�2�R 11� r2=R2 tr N
�1Yi=1 R D'i e�2g'iHi e��0['i℄R D'i e��0['i℄ ; (108)where �0 is the e�e
tive a
tion �� in (67) without boundary term (�=0),with e repla
ed by g and with N
=1. The N
�1 fun
tional integrals 
anbe 
al
ulated by using thatR D'e�2g'He��0R D'e��0 = � ~mRe
+Fg2 [1� r2R2 ℄�H2=Nf ;where now ~m2=Nfg2=� and Fg is the fun
tion (85) with the ele
tri
 
harge erepla
ed by the gauge 
oupling g or equivalentlym� by ~m. Sin
e N
PH2i =(N
�1)I
 we arrive at the following expression for the 
hiral 
ondensate inthe proje
ted theoriesh�uP+uiSU(N
) = � e�2�R N
1� r2=R2� ~mRe
+Fg2 [1� r2R2 ℄�(N
�1)=N
Nf :(109)In the one-
avour model the 
ondensate depends on the bag-radius as �R�1=N
 and therefore saturates the upper bound (99).31



The U(N
)-
ondensate is related to the one in SU(N
) gauge theories asin (97) and thus is found to beh�uP+uiU(N
) = � e�Ie2�R N
1� r2=R2 (eg�1=N
Nf e(Fe�Fg)=N
Nf�� ~mRe
+Fg2 [1� r2R2 ℄�1=Nf : (110)Let us now dis
uss the various limiting 
ases in turn.Large N
 limit. The large N
 limits of the ablian proje
ted theories aredi�erent from the same limits in the full theories sin
e there is no suppressionof fermioni
 loops relative to the bosoni
 ones. But as in the full theories a
ondensate remains in the thermodynami
 limit in the one-
avour models.Indeed, when N
 !1 the 
ondensates at the 
enter of a large bag simplifyto h�uP+uiSU(N
) = e�h�uP+uiU(N
) = �e�N
2�R � ~mRe
2 �1=Nf : (111)For Nf =1 a 
ondensate remains for in�nite volume and its limiting valueis just 1N
 h�uP+uiSU(N
) = e�N
 h�uP+uiU(N
) = �e�+
g4�3=2 : (112)Weak 
ouplings. For a small ele
tri
 
harge e the fun
tion Ie in the �rstfa
tor in (110) tends to 1 and inserting the asymptoti
 expansion (87) forsmall m
R we see that for e ! 0 the U(N
)-
ondensate 
onverges to theSU(N
) one, as expe
ted.When the gauge 
oupling g is weak the SU(N
)-
ondensate be
omes equalto �N
 times the 
hirality violating entry S�++ of the free Green's fun
tion(23) and thus vanishes in the thermodynami
 limit. The U(N
)-
ondensatesimpli�es to N
 times the U(1) 
ondensate (96).Strong 
ouplings. When both 
ouplings e and g be
ome strong, or equiv-alently the bag very large, then the 
ondensates at the bag 
enter are just
32



h�uP+uiSU(N
) = �e�N
2�R � ~mRe
2 �(N
�1)=N
Nfh�uP+uiU(N
) = � N
2�R ( eg )1=N
Nf� ~mRe
2 �1=Nf : (113)9 Dis
ussionIn this paper we have investigated Eu
lidean gauge theories with masslessDira
 fermions en
losed in a bag. We have imposed UA(Nf )-breaking bound-ary 
onditions to trigger a breaking of the 
hiral symmetry. In the �rst partof the paper we 
onsidered gauge theories in arbitrary 2n-dimensional bags.We found the expli
it �-dependen
e of the fermioni
 Green's fun
tions anddeterminants in arbitrary ba
kground gauge �elds. In 
ontrast to the situ-ation on a sphere or torus the Dira
 operator possesses no zero modes in abag and this property simpli�es the quantization 
onsiderably. In the se
ondpart of the paper we investigated 2-dimensional gauge theories. We foundthe mesoni
 
urrent 
orrelators and 
al
ulated the 
hiral 
ondensates bothfor abelian and non-abelian gauge theories. Our results are in full agree-ment with earlier instanton-type or small 'quark'-mass 
al
ulations. We
on
lude that the bag boundary 
onditions are a substitute for introdu
-ing small quark masses to drive the breaking of the 
hiral symmetry. Of
ourse, for several 
avours the 
ondensate dissappears when the volume ofthe bag tends to in�nity, in a

ordan
e with general theorems. Only whenthe number of 
olours is sent to in�nity before the thermodynami
 limit isperformed there remains a 'quark'-
ondensate.On a sphere or torus one �nds that in the 
hiral limit only 
on�gurationswith vanishing topologi
al 
hargeq = e2� Z d2xF01 resp. q = g232�2 Z d4x �����trF��F��
ontribute to the partition fun
tions in 2 resp. 4-dimensions [39℄. For U(N
)gauge theories 
on�ned in a 2-dimensional bag we 
an �nd the expe
tationvalues of arbitrary powers of the topologi
al 
harge by di�erentiating thepartition fun
tion suÆ
iently often with respe
t to �. The 
orrelators arereprodu
ed by the following Gaussian distribution for the topologi
al 
harge:33



d�(q) = sN
Nf�� e�N
Nf�[q+�=2�℄2 dq , � = I0(m�R)m�RI1(m�R) : (114)The expe
tation value of the instanton number vanishes for vanishing �, butits 
u
tuation does not. Only for very small volumes and/or weak 
oupling(for whi
h the semi
lassi
al approximation makes sense) is the instantonnumber distribution sharply peaked about q=0 as 
an be seen by inspe
tionfrom (114) or fromhjqji = ( 0 for m�R! 0q eR�N
 (�Nf )�1=4 for m�R!1: (115)For big volumes and/or strong 
oupling, whi
h would 
orrespond to smallquark masses, 
on�gurations with q2 � 1=pNf dominate the fun
tionalintegral.In this paper we have regarded the bags as mathemati
al 
onstru
tsrather than real obje
ts in spa
etime. For example, to be a model for ahadron at �nite temperature,M must be a bag in spa
e and hen
e [0; �℄�Ma subspa
e of the Eu
lidean spa
etime. The gluon (quark) �elds must thenbe periodi
 (antiperiodi
) in the Eu
lidean time with period � = 1=T . In[40℄ we have studied multi-
avour QED2 at �nite temperature en
losed ina spatial bag [0; L℄. Besides the �nite temperature boundary 
onditionswe imposed the bag boundary 
onditions B� =  at x1 = 0 and x1 = L.By applying the methods developped in this paper we found for the 
hiral
ondensate in the low temperature limit T � 1=L� m� [40℄h�uP+ui = � 14L e
=Nf�m�L� �1=Nf (116)In parti
ular, for 2 
avours this readsh�uP+ui = ��e
m�16�L�1=2 (117)and this result is identi
al to that of Shifman and Smilga [10℄ when theyallowed for fra
ton 
on�gurations.The 
ondensate in an d-dimensional Eu
lidean bag obeys the s
alingrelation [41℄ 34



h � P+ i(�R; �x; g) = �1�d Z(�)h � P+ i(R; x; �2�d=2g(�)); (118)where Z(�) and g(�) are the wave-fun
tion renormalization of the 
on-densate and running gauge 
oupling 
onstant, respe
tively10. The rela-tive size � of the two bags plays the role of the inverse energy s
ale inthe Callan-Symanzik equation. For example, the 
ondensates in the multi-
avour S
hwinger models, (86), obey this s
aling relation with g(�)=g andZ(�)=1 and this agrees with the wellknown fa
t that the �-fun
tion vanishesand that there is no wave fun
tion renormalization in these theories. In 4-dimensions g(�) be
omes weak in small bags be
ause of asymptoti
 freedomand the 
hiral 
ondensate should again tend to the 
hirality violating entryS�++ of the free Green's fun
tion. The 
hange of the 
ondensate at x= 0,when the size of the bag is in
reased, is then determined by the nonpertur-bative beta-fun
tion and anomalous dimension of the 
ondensate. Thus we
ould extrapolate the QCD-
ondensate to large volumes if we would knowits anomalous dimension and the QCD beta-fun
tion. Conversely, we mayput bounds on the fun
tions g(�); Z(�) sin
e a 
ondensate must remain inthe in�nite volume limit.A
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h for pointing our attention to Ref. [2℄.A AppendixIn this appendix we �ll the gaps in the 
al
ulation of the fermioni
 de-terminants 
on�ned in 2-dimensional bags in se
tion 6. What remains isto 
al
ulate the surfa
e Seeley deWitt 
oeÆ
ent b1 in (59) whi
h enters in(41,57).First we note that H tr bn(�) has the expansionI tr bn(�) = d�1X0 I tr 
p(F�� ;R; �) �pn�; (119)where 
p is a gauge- and Lorentz-invariant lo
al polynomial in the �eld-10up to possible runnings of the surfa
e 
oupling 
onstants35



strength and its 
ovariant derivatives, the extrinsi
 and intrinsi
 
urva-tures of the bag boundary and their 
ovariant derivatives and has length-dimension 1 � d + p. Here �pn is the p'th derivative normal to the bagboundary. In parti
ular in two dimensions we need b1 whi
h is the sum oftwo terms (again negle
ting purely geometri
 
ontributions)I tr b1(�) = I tr f1(�)��+ I tr f2(�) �n�: (120)Here we are not interested in the term 
ontaining f1. In (57) it would not
ontribute sin
e A+Ay vanishes on the bag boundary and in (41) it wouldyield an uninteresting 
onstant whi
h 
an
els in expe
tation values11 Theinvarian
e of the fermioni
 determinant under parity, (�;A; x)! (��; ~A; ~x),restri
ts the form of the free fun
tion f2. To determine this fun
tion itsuÆ
es to 
al
ulate the heat kernel expansion for free fermions 
on�ned tothe halfplaneM = fx0; x1jx1 � 0g and subje
t to bag boundary 
onditionsat x1=0.Besided the wellknown properties the heat kernel must obey the bound-ary 
onditions B�K(t; x; y)jx1=0 = K(t; x; y)jx1=0B��= xK(t; x; y)jx1=0 = �= xK(t; x; y)jx1=0: (121)After some algebra we have found the following expli
it formulaK(t; x; y) = 14�te�(�20+�21)=4t+ 14�t � e� sinh � � 
osh �� 
osh � �e�� sinh �� e�(�20+�2)=4t+ iP sinh �8tp�t � e� �1�1 e�� � e�P2=4t"1 + erf�i�0 sinh � � � 
osh �2pt �#;(122)where ��=x� � y�; �=x1 + y1 and P = �0 
osh � + i� sinh �. To determinethe relevant Seeley-deWitt 
oeÆ
ient we need to 
al
ulateZM K(t; x; x)f(x) �ZM K(t; x; x)�f(x0; 0)� x1�1f(x0; 0) + ::�; (123)11It would 
ontribute to the free energy or to the Casimir e�e
t [42℄.36



where we anti
ipated that the integrand is sharply peaked at x1 = 0 andthus expanded the test fun
tion f about x1=0. On the diagonal (x=y) wehave �=0 and �=2x1 and we are left with 
al
ulating the integralsZx1�0 dx1 e�x21=t�f(x0; 0) + x1�1f(x0; 0) + ::�Zx1�0 dx1 x1 ex21 sinh2 �=th1� erf(x1 
osh �pt )i�f(x0; 0) + x1�1f(x0; 0) + ::):(124)The �rst integral is easily evaluated by using thatZx�0 dx e�x2=t = 12p�t ; Zx�0 dxxe�x2=t = t2 :For evaluating the se
ond integral we need the formulae1Z0 dx [1� erf(�x)℄ e�x2 x = � 12��1� �p�2 � ��1Z0 dx [1� erf(�x)℄ e�x2 x2 = 12�p�� ��2 � � + 12p� log � �p�� +p�� (125)whi
h apply if � > 0 and <(�) < <(�2). Using these results one �nds thefollowing small-t expansion for the integral (123)Z d2xK(t; x; x)f(x) = 14�t ZM d2xf(x)+ 18p�t Z dx0(� e� �1�1 e�� �� I) f(x0; 0)+ 18� Z dx0( log e�sinh � � e� �1�1 e�� �� I) �1f(x0; 0) +O(t1=2): (126)
The �rst term on the right yields the wellknown a0 
oeÆ
ient, the se
ondterm b1=2 and the third one is the b1-
oeÆ
ient (59) (after noting that �1=��n) we have been aiming at. We see that the small t-expansion of K isinvariant under �! � + i2�n; n 2 Z, as required.37
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