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We study the non-perturbative renormalization group flowhefnonlinear O(N) sigma model in two and three
spacetime dimensions using a scheme that combines anieffémtal Hybrid Monte Carlo update routine,
blockspin transformations and a Monte Carlo demon methotlvd dimensions our results verify perturbative
renormalizability. In three dimensions, we determine thevftliagram of the theory for variou§ and different
truncations and find a non-trivial fixed point, which indiesinon-perturbative renormalizability. It is related
to the well-studied phase transition of the O(N) univetgatlass and characterizes the continuum physics of
the model. We compare the obtained renormalization growgsfleith recent investigations by means of the
Functional Renormalization Group.
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I. INTRODUCTION

The renormalization of coupling parameters due to quantuatufhtions is a characteristic feature of any quantum fleddty
and many different methods have been developed to studynieisesting property. While most of these methods rely on
a perturbative treatment of the theories, the investigatibstrongly coupled or strongly correlated systems withsall
expansion parameter, like e.g. the theory of strong interacequires a non-perturbative approach. One non-gtive and
very flexible method is th&unctional Renormalization GroufFRG) introduced by K. Wilson [1]. In a particularly useful
implementation of the functional renormalization groupgedcstudies the flow of the effective average actignw.r.t. the
momentum scalé, which interpolates between the bare action at the UV-Eutofand the full effective action in the IR,
T'r—o0 = I' [2]. With the help of this powerful non-perturbative appchane can explore theories which are non-renormalizable
in perturbation theory, i.e. in the vicinity of a GauRian fix@oint, but are renormalizable in a non-perturbativesgitin such
asymptotically save theories the running of the couplinghé UV is controlled by a non-trivial fixed point with a finibember

of relevant directions. The most important theory where #ui-calledasymptotic safety scenaraf Weinberg [3, 4] could be
realized is general relativity where at present all ressutggest that there exists a non-trivial UV fixed point [5—7].

Here we employ an alternative and efficient non-perturkadpproach, based on numerical simulations, to study gftdval
diagrams of field theories. We apply the technique to spottrigial fixed points and to determine their properties.

In order to extract the renormalization of the couplingsiflattice computations, different methods are used to ddfmeunning
coupling such as the renormalized correlation functionerSchwinger functional [8]. In an alternative recent agjgh one
tries to directly integrate out momentum shells on thedatby using Fourier Monte Carlo simulation [9]. In the preseark

we make use of the well-knowilonte Carlo Renormalization Groumethod (MCRG) [10-13]. It is based on the idea of
blockspin transformations and can be applied to theori#s feimionic or gauge fields [14]. By applying successiveckipin
transformations, real-space RG-transformations areopedd and a renormalization trajectory is calculated. H@mesince
every RG step typically reduces the linear extent of thécktby a factor ot = 2, exponentially large lattices are needed
in order to obtain sufficiently long trajectories that gaisgd enough to the fixed point regime [15]. Even worse, a stdnda
method to determine the effective couplings relies on th&chiag of correlation functions on the initial and blockedtices
and requires expensive scanning runs for the parametdrs bfire action at the largest lattice used [16]. In ordentuaivent
these problems we employ thlemon methofil 7—19] which allows us to efficiently compute RG trajectsrat a fixed lattice
volume.

In the present work we apply the MCRG method in combinatiah wie demon method to calculate the global flow diagram of
the ubiquitous nonlinear O(N) sigma models (NLSM) whichafreterest both in condensed matter physics [20] and iriglart
physics [21]. Here they serve as toy models to test and dew® methods for models of quantum gravity. Both classes of
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theories share relevant properties. Whereas in two dimaeashe nonlinear O(N) models are perturbatively renozable and
asymptotically free this feature is lost in higher dimensio But then the smal-and1/N-expansions both point to the the
existence of non-trivial fixed points in these models [23-2Heir existence is further supported by FRG calculatioased on

a one-parameter truncation of the effective action [26] lsigtier-order truncations [27] and we will compare our cotapians
with these more recent results.

The article is structured as follows: In Sec. Il we discussagal properties of nonlinear O(N) models and in Sec. Il wsalibe
both the MCRG and the demon method. We carefully discussrtimeation of the effective action and the optimization of
the MCRG method. In Sec. IV we apply the method to the asyrigatity free two-dimensional sigma model and recover the
expected flow of couplings and fixed point structure. In Sewestudy the flow diagram of the three dimensional O(3) model.
We begin with a simple one-parameter truncation and thdndeaperators of higher order in the derivatives. We alsoate
the critical exponents and compare the obtained valueskmitivn results. In Sec. VI we continue with the flow diagramd an
critical exponents of O(N) models for different valuesiéfand study the largév limit. Our general conclusion is contained in
Sec. VII. Preliminary results of this work have been repiitethe proceedings [28].

II. THE O(N) NONLINEAR SIGMA MODEL IN d DIMENSIONS

We recall the Euclidean action of the nonlinear O(N) modéhwhie sphere as target space,

Sa ddx au¢ . aﬂgba (1)

T 22
whereg is a N-component scalar field that satisfies the consteaind = 1. The couplingy has mass dimension

2—d
9] = —— )
In two spacetime dimensions the global O(N) symmetry caitmeobroken. At strong coupling the theory is asymptotically
free and the RG flow is dominated by a fixed point at infinite dimgp which corresponds to a Gaul3ian fixed point for the
inverse coupling. Thus, the model is perturbatively reradizable. This is not surprising since in two dimensionsdbepling
is dimensionless. In higher dimensions the coupling hastiegmass dimension and perturbative renormalizab#itiost.
However, lattice simulations with the discretized action

1
S = ﬁ ; ¢m¢m+ﬂ (3)

reveal a critical point that separates a O(N) symmetric @Hiasn a broken phase by a second-order phase transitioeln t
broken phase there afé — 1 Goldstone bosons corresponding to the directions tarajeata sphere in target space. In order to
recover the continuum field theory one may use this critiedlavior to define the continuum limit of the discrete latticedel.
Much effort went into studying the properties of the modedmeriticality and in particular in calculating its criticexponents.
Thus, a large number of results are available, both from migalehigh-precision Monte Carlo methods as well as anedyti
calculations using the high-temperature expansion orrmealization group method. Even experimental data from eosdd
matter physics are available, see for example [11, 15, 1&@&®9-32].

We are particularly interested in the flow diagram of the ¢hd@nensional model that is conjectured to show a nonatrivv
fixed point, a necessary requirement for the asymptotidysatenario to be at work.

I11. MONTE CARLO RENORMALIZATION GROUP

We will study the O(N) lattice model at zero temperature, @@ a lattice with equal temporal and spatial extenthe physical
volume is henc& = Lghys = (aL)?, wherea denotes the lattice spacing. In Monte Carlo simulations acutéff at an energy
A = 7/aisintroduced naturally and the lattice sizgy,s serves as IR-cutoff at a lower enerjy= 7/ L,nys. On the lattice one

may calculate the-point functions

_ Db e, - bu, exp(=Ta[¢])
Gsefa) = I D éexp(=Tal¢])

from which one extracts all physical quantities like e.grtigle masses. Thereby all quantum fluctuations with sdaddseen
the upper and lower cutoff are taken into account. The pbyaidhe IR-cutoff is fixed by choosing a lattice extdntand

(4)
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coupling constantg; of the microscopic (bare) action at the UV-cutoff. An RG stormationR,, ., 5/ relates the parameter set
{g:} at the high energy scale to a parameter sdiy;} at lower energy scala’,

{g:}(A) — {gi}(N) = Rasnr ({gi}) - ®)

Thereby the physics, i.e. thepoint functions at the lower cutoff, remain unchanged. An important property of any such RG
transformation is that it does not depend on the detailseflw in coupling space. In particular the transformatiorstrabey
the semigroup properties

Rasnr = Rasar © Ryvesnry, Rpasn =1, (6)

whereA > A” > A’. This is depicted in Fig. 1. The infinitesimal change of theglings is described by thé-functions

UV cutoff IR cutoff
} } momentum scalé
A=1/a lattice simulation A=1/(aL)
lRAHA’
UV cutoff IR cutoff

} } } momentum scalé
A=1/a A =1/(2a) lattice simulaton X =1/(aL)

FIG. 1: Sketch of the MCRG method

Bi(g9) = Orgi, t=InA. (7)
The critical exponent§d; } of the theory are defined as the negative eigenvalues ofabéist matrix
9Bi
Sy = 9" ®
95 1 g=g~

at the fixed pointg* of the theory defined by; (¢*) = 0. Positive critical exponents belong to relevant directioegative
exponents to irrelevant directions and vanishing exp@tennarginal directions, i.e.

0; >0 relevantdirection,
0; <0 irrelevantdirection, 9)
0;,=0 marginaldirection

By comparing with the scaling of singular thermodynamiceslsables near a critical point, one obtains relations behibe
thermodynamic critical exponents and the eigenvaluese§thability matrix, for example = 6,-! for the critical exponent of
the correlation lengtly and the eigenvalug. of the related relevant direction.
In our setup, an RG transformation consists of the two stepsriated in Fig. 2:

1. A blockspin transformation applied to an ensemble witledixouplings{g;}. For the blockspin transformation the
semigroup properties are fulfilled.

2. The demon method teasurehe effective coupling$g;} on the blocked lattice. Since this method can only be applied
to a truncated effective action the semigroup property efctbmposite transformation is violated in this step.

In the following we will discuss both steps in more detail.

A. Blockspin transformation

A blockspin transformation with scale parameheelates a field configuratiofi, } on the fine lattic§ N, a) to an averaged

configuration{ ¢/, } on the coarser lattic€V' = N/b,a’ = ba) [33]. The IR-cutoff does not change and the blocked andginiti
configurations describe the same macroscopic physics.nmasi, the UV-cutofi\ — A’ = A/b is lowered and the effective
parametergg;} defined at the new cutoff’ incorporate the effects of all quantum fluctuations witHesshetween\ andA’. A
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FIG. 2: The composite transformatid®, relates coupling constants on a lattice with correlationgie £ to a coarser lattice with correlation
length¢’, which is obtained by using a blockspin transformation amagping the resulting configurations onto a truncated effecction by
the demon method. Simulating the truncated ensemble mayecessarily yield’ = £/b due to truncation errors.

numerical simulation on the coarse lattice with couplifigs yields the same distribution of averaged fie{dd, } as obtained
from a simulation at the fine lattice witfy; }. Each set of parameters defines a point in theory space apdrheonnected by
an RG trajectory.

Here we employ a blockspin transformation where one draeaviraged fields according to a normalized probabilityidist
tion,

P(¢2) o exp (C(g) ¢ R({2})), (10)

whereR({¢.}) = ZyEDI ¢, is the sum over all degrees of freedom within a hypercubeefitte lattice. In our computations

we choose the smallest cube of site= 2. The positive functionC(g) determines how strongly the blocked fields may
fluctuate away from the original degrees of freedom. We slsgla function which minimizes the systematic errors induse
the unavoidable truncation of the effective action. A dethdiscussion is found in Sec. Il D.

B. Thedemon method

With the microcanonical demon method [17] one can calcutaecouplings in an effective actigh = ), ¢;S; such that the
corresponding distribution is close to a given ensemblattite configurations. Hence, given a partition function

2(9) = [ Dwexp(-5H() (12)

one introduces an additional degree of freed@p) thedemon energywith the combined partition function

20(8) = [ D [ dEp expl-8H(w) - 8Ep) (12)

of the canonical demon ensemble. The expectation valueeadéimon energy can be calculated in a simulation of the micro-
canonical ensemble,

ZMcD :/Dw/dED5(H+ED —Eo), (13)

and is related to the inverse temperattre

(Ep) = (Ep) (B), (14)

thus allowing tomeasureghe inverse temperatufgcorresponding to the combined ensemble. This method caereralized
to more than one temperature or coupling constant, i.e.

Zmcp = / Dw]] / dEL 5 (S'+ B — E}). (15)
Constraining the demon energy £y, € (—E? | E! ) yields
; 1 En i
(Ep)p = ~ (ED )meo (16)

; B tanh(giEm)
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where the subscript D denotes the canonical demon enseflaid MCD the microcanonical demon ensemble (13). This
equation can be solved by numerical means and is used t@etteacoupling constantsy; } from the mean demon energies
on the right hand side. In the microcanonical ensemble ttaé émergy is fixed. Since we want to measure the couplingsef t
blocked ensemble without interference from the demon, weaahel thal{Ej)| < |Si\. Then the algorithm for our MCRG setup
reads as follows:

1. Pick a configuration distributed according to the cangiréiasemble with actiof = ¢;.51 +g252+ . .. onthe fine lattice.
2. Perform a blockspin transformation on this configuration

3. Use the result as starting configuration for a microcatadrsimulation of the combined system (15) and measure the
mean demon energies. The starting values for the demoniesarmg given by the mean demon energies extracted from
the previous microcanonical runs.

4. Repeat step one to three until a sufficient number of cordtgns has been generated.
5. Calculate the couplingg from the mean demon energies.
A comparison of these couplings with the initial ones yiedsapproximation for the running of the coupling. It reads:

agi_ r
% — (g~ ) a7)

Note that theg; are the dimensionless couplings on the lattice. In order éasure the critical exponents, we introduce a
hypercubic grid in coupling space with spacirgs and compute the matri; ;,

0Bi _ Bilg; +9;) — Bilg; — dg;) 18
g, 209, ' (49

Bi(g) = Orgi = —a

Sij(g) =

The additional systematic error from discretizing the selderivative can be made arbitrarily small by choosing & fimil in
the space of couplings. Finally we compute the mastiX¢) and its eigenvalue (g) at couplings in the vicinity of a critical
pointg* to obtain the critical exponents and associated thermadigad critical exponents.

C. Truncated effective action

In general, more and more operators are generated by thateejagpplication of the blockspin transformations andytekis a
trajectory in theory space. Since itis impossible to keapktiof all operators we restrict our analysis to an ansatthtoeffective
action that only includes a finite number of operators. Thgrthe demon method leads to a projection of RG trajectdmnies
general theory space down to modified trajectories in a atatctheory space that only consists of the terms contamétki
effective action. Naturally, this procedure introduceditidnal systematic uncertainties which we will denote rastation
errors. A qualitative understanding of the truncation exiie obtained by comparing different truncations. For te&son, we
utilize a systematic derivative expansion of the effecéiggon up to fourth order. In the continuum formulation igisen by

3

ﬂw=§¥m&m+0wﬂ (19)
with operators i
Sy = — / d%z ¢ - 9,0"p (20)
Sy = / A%z ¢ - (0,0") ¢ (21)
5= [t (@ -0,0")" (22)
S [ d's (8-0,0°6)(0 00,9, (23)

Note that we have introduced an additional fagtdom (19) in order to get rid of the leadiny’ dependence of the couplings
The couplings have mass dimension

[go]=d—2, [g)=d—4 for i=1,2,3. (24)



This is a complete set of the fourth order operators that ampatible with the symmetries of the model. Note that other
RG studies (like the one in [27]) employ an alternative patization of the effective action. The relation betweesstiatwo
formulations is explained in Appendix A.

Now we discretize the action (19) on a hypercubic lattice,

S({¢s}) = ZgiNS;({¢m}), (25)

where a straightforward discretization of the continuurarapors is given by

Sh=2> Oy Py, —2dV (26)
T,
S1=23 Op (Puiprs + Pogpr) —4d Y Oy Bpyy +4d°V (27)
o
Sé = Z {((I):c . (I)eru) ((I)m . ‘I)IJFV) + ((I)z : (I)zf,u.) ((I)m : (I)zfl/) +2 (q)z : (I)er,u) ((I)z : (I)I,,,)} -
o
8d> Dy Dypyy + 4dV (28)
T,
Sy = {(®s Cay) (P Pugr) + (P - D) (D Pay) = 2(Dy - ) (P - Py
o
-2 ((I)I ! (I)rf,u) ((I)r : (I)rﬂhl/) + ((I)r : (I)eruf,u) ((I)r : (I)rﬂhl/) +2 (q)z : ‘I)er,u—u)}
+2dz ((I)ac . (I)ac+u) (q)m : q)m—u) - 4dz (I)m : (I)I-HL + d2V~ (29)
T, T,

This set of lattice operators forms a basis of the space offfenrder derivative operators, but it is not orthogonabperator
space. In order to improve the convergence of the demon métiwuseful to reparametrize the action functional in terwh
the operators; given by

S} 2000\ (S —2dV
sl [—4d200) 5 44>V
s —8d010]|g || azv (30)
S —4d 0 0 1/ \g, 2V

For simplicity we drop the hat over lattice quantities in thkowing.

D. Optimized blockspin transformation

In a lattice simulation we have access to observables (liketke masses) which receive contributions fralhpossiblelattice
operators. This information, which is in part lost if one sisetruncated effective action, allows us to extend our @maly
of truncation errors. The macro-physics is completely hetged by the correlation functions and hence must agre¢htor
original and blocked ensemble in Figure 2, since the blockspnsformation does not change the IR physics. Applyirg t
demon method leads to a truncated ensemble which is defindtelsffective action. In general, the correlation funcsian
the blocked and truncated ensemble do not coincide. Thisegiancy is solely due to the truncation of the effectivéoactin
addition to the simulation of the blocked ensemble, we alswlate the truncated ensemble in order to measure theeliite

in the correlation functions and thus quantify the systéertatncation errors directly.

We reduce this difference by adjusting the blockspin tramstion. The location of the renormalized trajectory defseon
the chosen renormalization scheme [10] and we aim at cantistgua scheme for which the renormalized trajectory isedbs
to our truncated effective action. More accurately, we hased the improved blockspin transformation (10) and tuhedree
parameter”. In general, the optimal value depends on the coupling eotstlattice size, target space and number of RG steps.
Only in the ideal world without truncation we expect our iésto be independent of the RG scheme and thus the optimizati
constant.

In order to tune the consta6tin the improved blockspin transformation, we compare threstation lengths extracted from the
two-point-functions on the fine and coarse lattice and igradr other correlation functions. Blockspin transforras reduce
the lattice correlation lengthexactly by a factob and thus we demand the correlation lengtin the truncated ensemble to be



7

equal tog/b in order to minimize truncation errors. For simplicity, wioa the optimization constant to depend linearly on the
couplings,

C(g) = cigi, ¢ = const. (31)

Itis clear from the structure of (10) that the choiCe= 0 leads to a complete loss of information and thus results nivial
flow diagram. In most of the following computations we findttitas sufficient to tune only the first parametey since in
the vicinity of the non-Gaul3ian fixed points the correspogdiouplingsy; are small compared tg,. Nevertheless, a small
but non-vanishing value for the otheris necessary to improve the flow in the vicinity of the Gauf3iaed point. Finally we
note that the lattice itself together with the blockspimgfrmation acts as the regulator function in FRG calooitesti Tuning
the ratio of correlation functions to the optimal ratio @sponds to the choice of an optimal regulator in the FRG freorie
Roughly speaking it minimizes tHew time(RG steps) from the UV to the IR.

IV. THERG FLOW IN TWO DIMENSIONS

In order to test and optimize our method, we reproduce tha fogiction for the two dimensional O(N) sigma model, which
has already been computed using the MCRG matching methaod fer3 [16] and N — oo [10, 34]. The coupling constant
go of the standard actiofi, is dimensionless and the theory is thus perturbativelynmaabzable. From asymptotic freedom
we expect that the flow diagram contains two trivial fixed pgjimne in the IR at vanishing coupling and the other in the UV
at infinite coupling, i.e. vanishing inverse coupling [15]lowever for numerical simulations only finite lattices aoe@ssible
and the theory possesses a transition from a symmetric eegfinow coupling (large physical volume) to an ordered regan
strong coupling (small physical volume). The expectatialug of the scalar field,

w=<§2¢w>, (32)

is shown in Fig. 3 as a function of the coupling for differeattice sizes. With increasing volume the transition shifts
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FIG. 3: The average field expectation value is shown as aifimof g, for different lattice sizes an&/ = 3 for S = go N So.

larger values of the coupling and we conclude that in theitefivolume limit the theory is in the symmetric regime for prve
finite value of the coupling, as predicted by the Mermin-Wargtheorem. It is also evident that finite volume effects aozan
important for large coupling. In particular, the observeth@viour might mimic an additional non-trivial fixed poirftthe RG
flow. In Fig. 4 we show thes-function for the couplingjy in the simplest truncation using only the operatigr We observe
that while thes-function is independent of the lattice volume, it dependgh® parameter, of the RG transformation. For
co = 1 the g function has an IR fixed point at vanishing coupling and staystive even for large coupling. Tuning to larger
values, the3-function develops a further zero crossing at finite coupliHowever, this additional zero of thefunction is an
artifact of the truncation. In Fig. 5 we show the ratio of @ation lengths of the original ensemble on @48 lattice compared
to the truncated ensemble on t#? lattice. Truncation errors are assumed to be minimakfey&ss = 2. Forcy = 1 and
co = 4 significant deviations are visible. We find that= 2.8 provides a good matching for a large range of couplings. The
corresponding beta function in Fig. 4 does not show an amditizero crossing, which coincides with earlier resul&].[For
large go the 8 function approaches a constant value corresponding tathe N result (N — oo,g — o0) = In(2)/(67)
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FIG. 4: The beta functio, for the simplest possible truncation and = 3 is almost independent of the lattice volume. FEgr< 2.8 it
possesses only one fixed point at vanishing coupling.cket 2.8 it becomes constant fagr — oo. The dotted line represents the analytical
result forN — oo andg — oo. Foreo > 2.8 we find an additional fixed point at finite coupling which is atifact of the truncation.
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FIG. 5: The ratio of the correlation length fod> and32 lattice is shown for different parameters of the RG trarsfation.

[34]. In order to further improve on our truncation, we addamnd operatof; and the resulting flow diagram for fixeg = 3
and different lattice sizes is shown in Fig. 6. The flow is nager independent of the volume and for the smallest latttéch

is 162, an additional fixed point in they§, g1)-plane emerges. However, going to larger lattice volurtiés,fixed point shifts
away towards larger couplings and thus we assume that irotitexaum limit no additional fixed point of the RG flow exists.
The renormalized trajectory is the single trajectory thatreects the Gauf3ian fixed point at the origin with the trifildd point

at infinite coupling. The arrows plotted in Fig. 6 point todsithe IR and therefore the fixed point at the origin is an IRdfixe
point while the fixed point at infinite coupling is UV attragii Again we find that the structure of the flow diagram usirg th
two-operator truncation matches the prediction from asgtipfreedom. The known results are very well reproduceti wur
method and we proceed with the O(N) models in three spacelimensions.

V. FIXED POINTSOF THE RG FLOW IN THREE DIMENSIONS

As in two dimensions we first investigate the O(3) model. Ig. Fithe order parameter for the spontaneous breaking of the
O(N) symmetry is shown. The critical coupling in the thermodmic limit is given byg§ = 0.6862385(20)/3 = 0.2287462(7)
[30]. On a32? lattice, lattice artifacts are already sufficiently smalt bur purpose. Therefore most RG transformations
considered in the present work are based on a transfornfatiarfine lattice with322 points to a coarse lattice witt6> points.
The critical coupling on tha23 lattice isg§ = 0.22975(25).
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A. Oneparameter effective action

We begin with the simplest truncation possible by using the-parameter actiosi = go N .Sy. We denote this scheme s 1
truncation, indicating the use of the one-parameter adtidooth ensemble creation and effective action ansatz.

As in two dimensions, thg function for this truncation is almost independent of thtida size. Using different sizes, we see
that our results fror? and162 already agree within their statistical error bars and tlezesve are confident that our simulations
on a lattice with323 points do not suffer from large finite size effects.

In order to determine the optimization constant in the bépih transformation, we again consider the correlatiogtieiof the
two-point function. A perturbative calculation [10] yiesldgert = 2.3 for arbitrary N and a large number of subsequent RG

steps. But computing the ratio of correlation lengths (dgar€ 8), we see that there exists an optimal cho@B‘e: 3.35 which
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FIG. 7: The average field expectation value is shown as aifimof g, for different lattice volumes.

leads to the desired value 6fs/¢32 = 2. This value deviates significantly fronﬁert = 2.3, indicating that the non-trivial
fixed point is indeed a non-perturbative feature of the theaiready with this simple setup, we find that the dimenséssf3
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FIG. 8: The ratio of correlation lengths obtained by blogka32? lattice down tol62 using different optimization constants. A value of
&16/&32 = 2 is expected to minimize truncation errors and we read ofbitemal valuecgpt =3.35for N = 3.

function, depicted in Fig. 9, exhibits the qualitative faais that were expected from other methods [22—-26]. In astito the
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FIG. 9: Theg function for thel — 1 truncation in three dimensions aid = 3 is shown for different values af.

two dimensional case, thefunction shows a non-trivial fixed poigt; with 5(g;) = 0 for every value oty. This clearly points

to the non-perturbative renormalizability of the O(3) -rebend is directly related to a second-order phase transitt@r the
optimal choicsrzgpt we obtaing; = 0.2310(5). Systems with bare coupling < gg flow to the disordered phase in the IR which
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is controlled by the GauRian fixed pointg@t = 0, while systems with bare coupling > g flow to the completely ordered
phase described hyy = oo or 1/go = 0. These two fixed points correspond to the expected low-teatpe fixed point at
infinite coupling (absolute order) and the expected highgterature fixed point at zero coupling (absolute disordéri critical
hypersurface is reduced to a single pajhin this truncation and the operatSg corresponds to eelevantdirection of the RG
flow.

Using the information provided by thermodynamical obsbklea like e.g. the susceptibility of the order parameter,cae
determine theritical point g§ where the correlation length of the system diverges at tefwblume. In general theory space, it
is the point of intersection between the critical hyperacefand the line wherg = 0 exceptyg. A lattice simulation starting at
g6 in the UV will flow along the critical line into the non-trivifixed point and observables measured on this ensembletréféec
macroscopic physics at this point. Please noteghaked not be identical tg; due to truncation errors that affect the value for
gg- Of course, without truncation errors the fixed point is keckat the critical surface. We now proceed to discuss higlaer
truncations which take additional operators into accondt@rovide a more complete picture of the flow of the effectigon.

B. Higher-order truncations

In the preceding sections we have seen that near the naal-frked point the operataos, defines a relevant direction. In this
section we include more operators in the effective actiardter to find the total number of relevant directions. FiglOgéupper

panel) shows the global flow diagram for the truncation usiv@operatorss = goN.So + g1 IV S1, both for ensemble generation
as well as in the demon metho2l (+ 2 truncation). The blockspin transformation is optimizedhe same way as for the
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FIG. 10: The flow diagram using thie— 2 truncation in three dimensions aid = 3 clearly shows a non-Gauf3ian fixed point (NG FP) in
the center of the plot in the upper panel. The critical line)@nd renormalized trajectory (RT) intersect at the NG R Tower panel shows
the vicinity of the NG FP. The RG parameters for this flow déagrareco = 3.1 andci = 2.5.

action with a single parameter. Our choice for the paramésep = 3.1 andc; = 2.5 and it leads to a correlation length ratio
of around in the vicinity of the fixed point. Note that this choice foetparameters is not unique if we only tune the correlation
length to the desired value. In general we have to consigdéehnicorrelation functions as well. Below we will also disswther
choices for the parameters and its influence on quantitteateires of the flow diagram as for example the position ofikesl
point or critical exponents. Nevertheless as in the onerpetar case the choice of the parameters does not changediitatiye
flow diagram. Again, we detect a high temperature fixed péifit EP) at zero coupling in the lower left corner as well as a low
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FIG. 11: Using a shooting technique, the RG trajectoriestfeB — 3 truncation with operator§y, S1 and.S; reveal an analogous structure
to the2 — 2 case. The projection on thg-g; axis in the upper panel shows only a single relevant direaithe non-GauRian fixed point.
The lower panel shows that the trajectories first approaeliixed point regime and afterwards flow along the renormdlizajectory to the
respective IR fixed points.

temperature fixed point (LT FP) at infinite coupling. Also aroivial fixed point (NG FP) in the center of the flow diagrasn i
clearly visible. The values of the couplings at the fixed pajs = 0.119(1), g1 = 0.0164(2), can be determined from Fig. 10
(lower panel). As expected, the ‘velocity’ along a trajegtgets small in the fixed point regime. Furthermore, we firat the
position of the fixed point in this two parameter truncatisraimost independent of the lattice volume. But, in contiashe
one-parameter truncation, it depends strongly on the aotrgt and to a lesser degree on the remaining constants. A change of
co results in a displacement of the fixed point along the ciitioa.

The flow diagram is split by a separatrix which defines thaaaiiline (CL) extending from the lower right to the uppertlef
corner. Trajectories that lie above this line will flow inteetlow temperature fixed point while trajectories below tims flow
into the high temperature fixed point. This indicates a r@direction analogous to the simple one-parameter ttiorcaf the
preceding section. The second direction though is an imekeone and the corresponding eigenvalue of the stabilityirmis
negative. The single trajectory that is identical with thiéaal line will flow into the non-trivial fixed point, eithefrom below or
above. The critical line is the intersection of the critiogpersurface in general theory space withdgh; plane that constitutes
our truncation. From the traditional lattice perspectite, critical line corresponds to a fine-tuned set of bare bogp(go, g1)

at different UV cutoffs. Starting a simulation on the crtitine results in a measurement of the critical physicsatibn-trivial
fixed point and is generically used to take the continuumtligimnce the lattice spacing in units of the correlation tarigecomes
small as the critical point is approached.

There exists another interesting line which connects adidliixed points and acts as an attractor for the RG trajestoh is
called the renormalized trajectory (RT) and singles outigumtrajectory that defines a theory that is both IR and UV giete,
starting at the non-trivial fixed point in the UV and flowingarthe high temperature or low temperature fixed point in te |
As expected, the RT does not attract the trajectories in igigity of the high temperature fixed point, where the fixednpo
behaviour dominate’s

Starting on they, axis, which corresponds to the usual lattice action of thisétderg ferromagnet, and integrating out all
fluctuations, one can only reach either one of the trivialdigeints or the non-trivial fixed point. In this sense, it igitenate to

1 For this reason the matching method is not applicable in itisity of the high temperature fixed point since it reliestbe assumption that the trajectories
approach the renormalized trajectory within a few RG st8g$ [



13

0.02
0.018 |
0.016 |
0
-0.001 0.014
-0.002
92 -0.003

-0.004 0.012

0.01,

0.17
90
0.02
0.018 [
0.016 [
0
-0.001 0.014
-0.002
g3 -0.003
-0.004 0.012
0.01y, 0.17
0.02
0.018 [
0.016
0
-0.001 0.014
-0.002
g2 -0.003

-0.004

g0

FIG. 12: For higher order truncations with operatpf, S1, S2} in the upper panelSy, S1, Ss} in the center panel anfSo, S1, Sz, Ss} in
the lower panel the fixed point structure of the resulting ftbagram remains the same as for the> 1 and2 — 2 truncation.

consider them amfrared fixed points From universality arguments one expects that the non-i@adiXed point corresponds
to the well-known Wilson-Fisher fixed point of the linearsig model. We find that a similar structure to our results ee®ig
this model [35].

But the Heisenberg ferromagnet s an effective theory thatll defined only for a finite UV cutoff, in contrastésymptotically
safe theorieshat are defined on all scales. Fundamental field theoriessjmond to theories on the renormalized trajectory and
the direction of the renormalization group flow shows tha tion-trivial fixed point governs the ultraviolet physicstbhése
theories. Thus, this non-trivial fixed point acts asutraviolet fixed poinbf the RG flow.

For the asymptotic safety scenario to hold, the number avegit directions at the non-GaulRlian fixed point must be fi-
nite. Hence we proceed to determine the flow diagram for3thes 3 and4 — 4 truncation, which include the opera-
tors {So, S1, 52}, {So,S1,S3} and{Sy, S1, 52,53} respectively. An overview over the full flow diagram for thpesators
{So, 51, S2} is presented in Figure 11 and it is evident that only irreté\directions are added to the truncation. The global
structure of the flow diagram is similar to te — 2 truncation and shows two trivial IR fixed points and one nivigl

UV fixed point. Figure 12 (upper panel) shows a detailed vidvthe the fixed point regime. The fixed point is located
at (go, 91,92) = (0.13(1),0.016(1),—0.0015(5)). In the center panel of Figure 12 tl3e — 3 truncation with operators
{So0, 51,53} is presented. The resulting flow diagram is again very sinated we find that even the position of the fixed
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point at(go, g1,93) = (0.13(1),0.016(1), —0.0015(5)) matches the prior result within the resolution of the flowgdan. Fi-
nally Fig. 12 (lower panel) shows the results for the> 4 truncation. Again the fixed point structure remains uncleahndn this
truncation the position of the fixed pointis@b, g1, g2, 93) = (0.13(1),0.016(1), —0.0015(5), —0.0015(5)). In conclusion, we
observed that the fixed point structure does not change idddwather operators. We always find just one relevant dvacit
the non-GauRian fixed point. In addition the position of tRedipoint is stable against including the higher derivatiperators
S2 andSs. This clearly points to the existence of a non-GauR3ian fix@dtmf the RG transformation and thus we are led to
believe that the asymptotic safety scenario applies to {3 @nlinear sigma model in three dimensions.

C. Critical exponents

Following the universality hypothesis, it is generally@sed that the linear and nonlinear O(N) models are in the sarniver-
sality class, since they have the same range of interaatidsymmetries. This assumption is supported by several atatipns
based on very different approximations, cf. for instan& Bb, 37] or the overviews [38, 39].

Furthermore, critical exponents are universal, in contiashe position of the fixed point, and this allows us to conepaur
results to the functional RG studies of the nonlinear O(NJeis in [27]. Here we restrict ourselves to the scaling prioge
of the correlation length, described by the exponertince it is directly related to the relevant eigenvalug. of the stability
matrix byv = 6,71,

Using the simple — 1 truncation, the inverse of the thermodynamic critical engrtt corresponds to the negative slope of
the lattice beta function in the vicinity of a fixed point, detpd in Fig. 9. As expected, we find the trivial values: —1 and

v = 1 for the high-temperature and low-temperature fixed ponetspectively. These values are almost independenit. dFor
the non-trivial fixed point, on the other hand, the value aejseon the choice fafy, and this is shown in Fig. 13. For the optimal
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FIG. 13: 3 function in the vicinity of the fixed point in thé — 1 truncation for the O(3) -model and various valueg@f

constant, = 3.35 we read off the critical exponem{1 — 1) = 0.51(1) for N = 3, which is to be compared with the value
0.7112(5) in [30] obtained from a dedicated high-temperature exgansombined with a Monte Carlo simulation. In Fig. 14
the critical exponent is shown as a functioncgf Again one sees that a careful optimization of the blockgginsformation is
important in order to extract accurate results for theaaltexponents.

The next improvement is to allow 2 operators in the effectigBon, denoted as — 2 truncation. The critical exponent is
determined as the negative slope of the proje¢tddnction on theg, axis at the position of the fixed point for tHe— 1
truncation. For the optimized) = cgpt we obtainv(1 — 2) = 0.55(2). This is already significantly closer to the expected value
compared with the simple — 1 truncation.

We can further improve our estimate by moving on to 2he> 2 truncation. Depicted in Figure 15 (upper panel) is the eigen
valued,. of the matrix (18), which at a critical point becomes the #itgtmatrix, and again it takes the trivial values at theig
temperature or low temperature fixed point. While the platghstrong variations of the eigenvalue at the upper leftiewdr
right corner of the parameter space, it becomes smooth ivitidty of the non-trivial fixed point, see Fig. 15 (lower pal).
From an average over the fixed point region we obtain the \@flu€2 — 2) = 0.62(3), which already deviates less thas%
from the literature value. We stress that in the present waglare mainly concerned with the flow diagram and fixed point
structure of non-linear O(N) -models such that our methaubido be seen as a replacement of dedicated high-precisioneM
Carlo determination of critical exponents. It is howevesgible to estimate these quantities in addition to the flagdim with

a reasonable precision.

In the2 — 2 truncation we can also extract the critical exponent cpoading to the irrelevant direction of the flow, see Fig. 16.
It takes the trivial valud,;,. = —1 at the high temperature fixed point af\gd ~ —0.44 at the non-Gaul3ian fixed point. In order
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FIG. 15: The critical exponent is related to the eigenvalug. of the stability matrix corresponding to the relevant dilmt. The RG
parameters for this flow diagram are = 3.1 andc; = 2.5.

to check for the stability of our method we calculated th&eal exponent also for the RG parametegys= 3.4 ande; = 1.0.

We obtained the value = 0.65(3). Within statistical errors this agrees with the valuefabtained before.

For the3 — 3 truncation we set the RG parameter belonging to the additioperator to zero, i.eco = 3.1, ¢; = 2.5 and
ce = 0. In this truncation we obtain three critical exponents:

The exponent of the correlation length is thef3 — 3) = 0.64(3). Within statistical errors this is almost no improvement

compared to th@ — 2 truncation.

0, =1.57(5),
0;. = —0.52 + 0.05i,
02 = — 0.86 — 0.05i.

(33)
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FIG. 16: The critical exponent corresponding to the irraféwdirection is negative at the high temperature and nam3@a fixed point. The
RG parameters for this flow diagram ate= 3.1 andc; = 2.5.

Our analysis of the critical exponents indicates that tiyh lémperature fixed point has only irrelevant directiosms,all critical
exponents are negative. The exponents correspondingdpératorsS, andsS; take the valué, ; = —1. The non-GauRian UV
fixed point has one positive critical exponent, while theeottritical exponents are negative. This again verifies iyengtotic
safety scenario for the nonlinear sigma model in three déioes. Table | summarizes our results for the critical exquds. For

Method v I//VMCHT
1 — 1trunc. o = 3.35) 0.51(1) | ~0.72
1 — 2trunc. o = 3.35) 0.55(2) | ~0.77
2 — 2trunc. (o = 3.1, ¢1 = 2.5) 0.62(3) | ~0.87
2 — 2trunc. (o = 3.4, ¢1 = 1.0) 0.66(4) | ~0.93
3 — 3trunc. o = 3.1, c1 = 2.5, c2 = 0)| 0.64(3) | ~0.90
FRG [27] 0.704 ~ 0.99
MCHT [30] 0.7112(5) 1

MC [40] 0.7116(10)| ~1
RG [31] 0.706 ~ 0.99

HT [29] 0.715(3) ~1

TABLE I: Results for the critical exponent for different truncations and&v = 3 compared to the very precise results of the Monte Carlo
estimate MC.

comparison we also show results obtained with Monte Camaukitions (MC), high temperature expansion (HT), RG exjmms
(RG) and functional RG (FRG). With increasing truncatioderour results approach the very precise values obtairtadbttier
methods, indicating that our derivative expansion coreetg the correct results. For even higher truncations thgatation

of critical exponents becomes very time consuming and tiesstal errors become larger than the deviation from #iaes in

the literature. Furthermore the optimization of the blggksransformation becomes increasingly difficult. Neletéss results
are good enough to show that the non-Gauf3ian UV fixed poirgeddelongs to a well-known class of second order phase
transitions.

VI. THELARGE N LIMIT

For large values ofV we can compare our results with those from the analyticgelaf and RG expansions in [41] and [31],
respectively. In Fig. 17 thé-function in thel — 1 truncation is shown for differenv at the optimized value fofy (V). For
every value ofV a non-trivial fixed point exists, but the slope at the fixedpcohanges. In order to connect to the lafgdéimit,

we repeat the computation of the critical exponeim the simplel — 1 truncation forNV up to10. The results are shown in
Fig. 18. Starting fromV = 2, where the estimate deviates from the comparative RG datdiby: ~ 40%, we see a significant
improvement for intermediat® < 8. However, going to even largéy, the behaviour changes and our results significantly
underestimate the correct values. It is evident that we doaproduce the analytically known resultof= 1 for N — oco. This
change of behaviour is not only visible in the critical expots but also shows up in the value of the optimization consta
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We compare our data to results using the

From the perturbative analysis [10], we know that for laig¢he RG parameter is proportional;-\é\l—, i.e. we expecty(N) to
become constant for larg€. Indeed in Figure 19 we see a plateau for intermediate valuds Unfortunately, forV > 7 the
optimization constant decreases rapidly. We interpretdinexpected behaviour as a breakdown of our simple one ptgam
truncation for largeV. If the effective action does not capture the relevant ptsyanymore, then we should not expect to find
reliable values for the critical exponents. Although we tame the ratio of two-point functions to the desired valughlr
correlation functions should indicate that, within ourtcation, the IR physics changes under the RG transformation

We might try to improve the situation by including higher eraperators. For the — 2 truncation we calculated the critical
exponents up t&V = 9 and actually see a significant improvement overthe> 1 truncation, see Fig. 18. It turns out that,

35

opt
€

3

2.5

FIG. 19: The optimization constang in thel — 1 truncation is shown for varioud'.
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compared to the literature, we get the best results if weheeRG parameter, to the values obtained in the simplest truncation
for N < 6 and to the plateau value fé&¥ > 6. For the second operator we choese= 1.0. We checked that the ratio of the
correlation length is approximatelyin the vicinity of the fixed point for this set of parametens.Higure 20, we show that for
different V the general structure of the flow diagram persists. Only theumiversal location of the non-Gauf3ian fixed point
varies.

0.0155 .
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FIG. 20: Flow diagram using th& — 2 truncation in three dimensions for O(2), O(4) and O(6)-nted&he global structure is the same as
for the O(3) -model. The background color encodes the eajaa¥, of the matrix in (18), which near a critical point is relatedthe critical
exponent of the correlation length.

Unfortunately the fine-tuning of the RG parameter and themdation of critical exponents becomes increasingly diffior

even largerN. We again observe that fa¥ > 9 our truncation breaks down and additional operators ardetet obtain
reliable results for the critical exponents. Neverthelgsfixed point structure itself remains stable. Our finalultssare
compiled in Table Il and Figure 18.

VIlI. CONCLUSIONS

We have discussed and applied a method that allows to cortiputgobal flow diagram of a model from numerical simulations
In contrast to the MCRG matching technique, our method doesaed exponentially large lattices and works even in tbi@ity
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| N | 2 | 3 | 4 | 5] 6 | 7] 8 | 9 [ 10]
1 — 1truncation] 0.42 0.51 0.57 0.63 0.65 0.68 0.65 0.62 0.58
2 — 2 truncatior] 0.64(4) | 0.66(4) | 0.71(5) |0.78(6)] 0.81(6) [0.86(7)] 0.84(7) [0.89(8)| -
FRG [27] - [ o704 083 ] - Joses | - [o912] - | o092
HT exp. [29] [0.677(3)]0.715(3)[0.750(3)] - o0.804(3)] - [o8403)] - [0.867(4)
RG exp. [31] | 0.607 | 0.706 | 0.738 | 0.766 | 0.790 | 0.811 [ 0.830 | 0.845 | 0.859

TABLE II: Results for the critical exponent for different N obtained using different methods.

of a GauRlian fixed point, where the renormalized trajectoripnger acts as an attractor for the RG flow. Furthermore,ave h
shown that systematic uncertainties from a truncation efeffiective action can be mitigated efficiently by an optiatian of
the RG transformation.

The nonlinear sigma model is asymptotically free in two disiens and we have reproduced the expected structure obthe fl
diagram, showing two trivial fixed points correspondingtie behaviour at very low and very high temperature, alreaitygu
the simplest possible truncation that only includes a retareighbor interaction. Using a two-operator truncatiee have
clarified the role of the finite volume behaviour on the flowgtam and argued that an additional non-trivial fixed poird is
lattice artifact.

It has long been known that the three-dimensional O(3) -hslt®@vs a second-order phase transition that separatesa pha
broken O(N) symmetry and a symmetric phase. We have showrhisgohase transition corresponds to an ultraviolet fixed
point with onerelevant direction by using a truncation that includes alofved by symmetry) operators up to fourth order in
the momentum. It is possible to define a theory along the realized trajectory that is IR- and UV-complete. We concltics
the asymptotic safety scenario is fulfilled and the modetigrmalizable in a non-perturbative setting.

While the general structure of the flow diagram does not deperthe specific RG scheme the critical exponents vary shee t
systematic error depends on the specific optimization eomstVe find that our method is able to predict the criticalangnts
within a reasonable accuracy but can not compete to desidihégh precision MC-techniques that are free of truncatioars
[30]. We find that our estimates for the critical exponentpriave for larger truncations but fail to reproduce the exédct> oo
limit.

Using functional renormalization group techniques, tHeflimw diagram for the present model was obtained alreadyieaxlier
publication [27]. We find that the qualitative structure loé flow diagrams are the same. However, the MCRG method is more
stable than the FRG method and leads to more robust resultiffierent truncations. In particular, we do not find a sudde
disappearance of the non-trivial fixed point for a certaimtation including the operaték (28). Furthermore, we stress that
lattice techniques provide the opportunity to obtain ddddl information beyond the chosen truncation by a diresasurement
of the Green'’s functions. We have used this knowledge torohéte the optimal constants in the improved RG transforomati
In addition we compared the location of the critical poirgtetmined by the susceptibility of the order parametehédacation

of the fixed point, determined by the zero crossing of the hatation and hence amendable to truncation errors. We fiad th
these points do not coincide in general. For the simpleatation we observe a small deviation even for the optimalevalf
the RG constant. For higher truncations, the fixed pointtlonanatches the critical surface within statistical estoAnother
interesting observation is that t¥gunction in the lowest truncation for two and three dimensidoes not depend on the lattice
size.

Our method can be generalized to other systems, espedcialiiding fermionic degrees of freedom, and thus allows tereine
the more complex flow diagrams of e.g. the Thirring model [4Zhe method might also be used to study lattice quantum
gravity [43, 44] where it is difficult to define observablestlitapture the infrared physics of the theory. In contraghéo
matching technique, the method used in the present workrmitagly on the computation of correlation functions butyoorh

an appropriate RG transformation that acts directly on glaestime triangulations used.
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Appendix A: Two Alternative Formulations of a Fourth-Order Derivative Expansion

In this article we study the full fourth order derivative exgsion of the theory, formulated in terms of explicitly coasmed
variables¢ € R™ with ¢ - ¢ = 1. In order to compare the results with previous studies ofstmae system by means of
the Functional Renormalization Group (FRG) [27], one hakrtow the relation between both parametrizations of theoacti
functional. The FRG computations in [27] were performedtfar covariant formulation

1
Plpl = [ @ Chudyieons!
+ ahap(V,u0"9)" (Vo Do)’ (A1)
+ Ll(habau()oaau(pb)2
+ LQ(haba,uWaaMQOb)z )
in terms of unconstrained fields € RY~1, where(V,0¢)* = 9%p® 4+ I'%_9,0"0"¢° andT% . is the Christoffel symbol

corresponding to the metric,, (). In order to determine the relation between (Al) and (19§ cen choose stereographic
coordinates,

N-1
605 H a, a
hab:m with * = Z‘P 2 (A2)
a=1

for an unconstrained parametrization of (A1) and apply &erige stereographic projection,

o_ 9 - _
%) =118 forir=1,.,N—-1, (A3)
such that
1¢ " 2, 02
Llp(e)] =5 4 o0 ¢+ 5 P09
1L
50 mam) (A4)
1 Lg 4o wo\2
5 15 (Ousd"0)*.
A comparison with (19) yields
- £ - g L1 - Lg — 40(
=73 =7, 215 B (A5)

Appendix B: TheLHM C algorithm

In the case of nonlinear sigma models with only the standdegtaction ternt, cluster algorithms have proven to be the most
efficient way to update the scalar field in Monte-Carlo sirtiafes. In its original version, the cluster algorithm asssnthat
only nearest neighbor interactions are present and hemo @rectly applicable in the presence of higher derivatiperators.
Thus we employ a local version of the hybrid Monte-Carlo &lpon (LHCM) where single site variables are evolved in an
HMC algorithm. This ansatz relies on local interactions esrapplicable theories without dynamical fermions. Therfalation

is given entirely in terms of SO(N) -Lie-group and Lie-algalelements, see also [45]. To update the normalized scaldwmie
set

o, = 0,8y with O, € SO(N) (B1)

and constan®,. The change of variableB, — O, converts the induced measure §fi—' ¢ R" into the Haar measure of
SO(N) . Without interaction the rotation matric€s will evolve freely on the group manifold SO(N) . THieee evolutioron a
semisimple group is the Riemannian geodesic motion witheetsto the Cartan-Killing metric

ds* o tr (dOO™' @ dOO™). (B2)
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The LHMC dynamics may be naturally derived from a Lagrangifithe form
__1 5y -1\’
L——igtr ((91(91 ) — 5[0, (B3)

where ‘dot’ denotes the derivative with respect to the famii$ time parameter. The Lie-algebra valued pseudo-momenta
conjugated to the site variabt, are given by

oL

L T— YOI
¥ 9(0,0z") (B4)
The Legendre transform yields the following pseudo-Hamikin
1 2
H:—§;trmm+5[(’)]. (B5)

Note that forO, € SO(N) the momenta are antisymmetric such that the kinatic i& positive. The equations of motion for the
momenta are obtained by varying the Hamiltonian,

0H ==Y P {B. - F} and F, =65[0). (B6)

In the simplest case of only nearest neighbor interactioafotceis given by

Fr=g0® () <I>W)T. (87)
x,p

The variational principle implies that the projection oétterms between curly brackets onto the Lie-algeb(&/) vanishes,

mm:Fm

so(N)" (B8)

There is a freedom of choice @f and we determine it by a projection on a trace-orthonormsis&?, } of so(N). Then the
LHMC equations read

Or = —%.0, and P, =Y tr(F.T)7T,. (B9)
b

To solve these equations of motion numerically, we employne treversible leap frog integrator which uses the intégnat
scheme

mw(T + %67_) = mw(T) + %573%(7)
O (7 +67) = exp { =67 P (7 + 167)} O (1) (B10)
Bao(T +07) = Po (7 + 307) + 367 P (T + 67).
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