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We study the non-perturbative renormalization group flow ofthe nonlinear O(N) sigma model in two and three
spacetime dimensions using a scheme that combines an effective local Hybrid Monte Carlo update routine,
blockspin transformations and a Monte Carlo demon method. In two dimensions our results verify perturbative
renormalizability. In three dimensions, we determine the flow diagram of the theory for variousN and different
truncations and find a non-trivial fixed point, which indicates non-perturbative renormalizability. It is related
to the well-studied phase transition of the O(N) universality class and characterizes the continuum physics of
the model. We compare the obtained renormalization group flows with recent investigations by means of the
Functional Renormalization Group.
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I. INTRODUCTION

The renormalization of coupling parameters due to quantum fluctuations is a characteristic feature of any quantum field theory
and many different methods have been developed to study thisinteresting property. While most of these methods rely on
a perturbative treatment of the theories, the investigation of strongly coupled or strongly correlated systems without small
expansion parameter, like e.g. the theory of strong interaction, requires a non-perturbative approach. One non-perturbative and
very flexible method is theFunctional Renormalization Group(FRG) introduced by K. Wilson [1]. In a particularly useful
implementation of the functional renormalization group, one studies the flow of the effective average actionΓk w.r.t. the
momentum scalek, which interpolates between the bare action at the UV-cutoff Λ, and the full effective action in the IR,
Γk→0 = Γ [2]. With the help of this powerful non-perturbative approach one can explore theories which are non-renormalizable
in perturbation theory, i.e. in the vicinity of a Gaußian fixed point, but are renormalizable in a non-perturbative setting. In such
asymptotically save theories the running of the couplings in the UV is controlled by a non-trivial fixed point with a finitenumber
of relevant directions. The most important theory where this so-calledasymptotic safety scenarioof Weinberg [3, 4] could be
realized is general relativity where at present all resultssuggest that there exists a non-trivial UV fixed point [5–7].
Here we employ an alternative and efficient non-perturbative approach, based on numerical simulations, to study globalflow
diagrams of field theories. We apply the technique to spot non-trivial fixed points and to determine their properties.
In order to extract the renormalization of the couplings from lattice computations, different methods are used to definethe running
coupling such as the renormalized correlation functions orthe Schwinger functional [8]. In an alternative recent approach one
tries to directly integrate out momentum shells on the lattice by using Fourier Monte Carlo simulation [9]. In the present work
we make use of the well-knownMonte Carlo Renormalization Groupmethod (MCRG) [10–13]. It is based on the idea of
blockspin transformations and can be applied to theories with fermionic or gauge fields [14]. By applying successive blockspin
transformations, real-space RG-transformations are performed and a renormalization trajectory is calculated. However, since
every RG step typically reduces the linear extent of the lattice by a factor ofb = 2, exponentially large lattices are needed
in order to obtain sufficiently long trajectories that get close enough to the fixed point regime [15]. Even worse, a standard
method to determine the effective couplings relies on the matching of correlation functions on the initial and blocked lattices
and requires expensive scanning runs for the parameters of the bare action at the largest lattice used [16]. In order to circumvent
these problems we employ thedemon method[17–19] which allows us to efficiently compute RG trajectories at a fixed lattice
volume.
In the present work we apply the MCRG method in combination with the demon method to calculate the global flow diagram of
the ubiquitous nonlinear O(N) sigma models (NLSM) which areof interest both in condensed matter physics [20] and in particle
physics [21]. Here they serve as toy models to test and develop RG methods for models of quantum gravity. Both classes of
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theories share relevant properties. Whereas in two dimensions the nonlinear O(N) models are perturbatively renormalizable and
asymptotically free this feature is lost in higher dimensions. But then the small-ǫ and1/N -expansions both point to the the
existence of non-trivial fixed points in these models [22–25]. Their existence is further supported by FRG calculationsbased on
a one-parameter truncation of the effective action [26] andhigher-order truncations [27] and we will compare our computations
with these more recent results.
The article is structured as follows: In Sec. II we discuss general properties of nonlinear O(N) models and in Sec. III we describe
both the MCRG and the demon method. We carefully discuss the truncation of the effective action and the optimization of
the MCRG method. In Sec. IV we apply the method to the asymptotically free two-dimensional sigma model and recover the
expected flow of couplings and fixed point structure. In Sec. Vwe study the flow diagram of the three dimensional O(3) model.
We begin with a simple one-parameter truncation and then include operators of higher order in the derivatives. We also compute
the critical exponents and compare the obtained values withknown results. In Sec. VI we continue with the flow diagrams and
critical exponents of O(N) models for different values ofN and study the large-N limit. Our general conclusion is contained in
Sec. VII. Preliminary results of this work have been reported in the proceedings [28].

II. THE O(N) NONLINEAR SIGMA MODEL IN d DIMENSIONS

We recall the Euclidean action of the nonlinear O(N) model with the sphere as target space,

Sσ =
1

2g2

∫

ddx ∂µφ · ∂µφ, (1)

whereφ is a N-component scalar field that satisfies the constraintφ · φ = 1. The couplingg has mass dimension

[g] =
2− d

2
. (2)

In two spacetime dimensions the global O(N) symmetry cannotbe broken. At strong coupling the theory is asymptotically
free and the RG flow is dominated by a fixed point at infinite coupling, which corresponds to a Gaußian fixed point for the
inverse coupling. Thus, the model is perturbatively renormalizable. This is not surprising since in two dimensions thecoupling
is dimensionless. In higher dimensions the coupling has negative mass dimension and perturbative renormalizability is lost.
However, lattice simulations with the discretized action

S =
1

2g2

∑

x,µ

φxφx+µ̂ (3)

reveal a critical point that separates a O(N) symmetric phase from a broken phase by a second-order phase transition. In the
broken phase there areN − 1 Goldstone bosons corresponding to the directions tangential to a sphere in target space. In order to
recover the continuum field theory one may use this critical behavior to define the continuum limit of the discrete latticemodel.
Much effort went into studying the properties of the model near criticality and in particular in calculating its critical exponents.
Thus, a large number of results are available, both from numerical high-precision Monte Carlo methods as well as analytical
calculations using the high-temperature expansion or renormalization group method. Even experimental data from condensed
matter physics are available, see for example [11, 15, 16, 20, 26, 29–32].
We are particularly interested in the flow diagram of the three-dimensional model that is conjectured to show a non-trivial UV
fixed point, a necessary requirement for the asymptotic safety scenario to be at work.

III. MONTE CARLO RENORMALIZATION GROUP

We will study the O(N) lattice model at zero temperature, i.e. on a lattice with equal temporal and spatial extentL. The physical
volume is henceV = Ld

phys = (aL)d, wherea denotes the lattice spacing. In Monte Carlo simulations a UV-cutoff at an energy
Λ = π/a is introduced naturally and the lattice sizeLphys serves as IR-cutoff at a lower energyλ = π/Lphys. On the lattice one
may calculate then-point functions

〈φx1
. . . φxn

〉 =

∫

Dφφx1
. . . φxn

exp(−ΓΛ[φ])
∫

D φ exp(−ΓΛ[φ])
(4)

from which one extracts all physical quantities like e.g. particle masses. Thereby all quantum fluctuations with scalesbetween
the upper and lower cutoff are taken into account. The physics at the IR-cutoff is fixed by choosing a lattice extentL and
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coupling constantsgi of the microscopic (bare) action at the UV-cutoff. An RG transformationRΛ7→Λ′ relates the parameter set
{gi} at the high energy scaleΛ to a parameter set{g′i} at lower energy scaleΛ′,

{gi}(Λ) 7−→ {g′i}(Λ
′) = RΛ7→Λ′ ({gi}) . (5)

Thereby the physics, i.e. then-point functions at the lower cutoffλ, remain unchanged. An important property of any such RG
transformation is that it does not depend on the details of the flow in coupling space. In particular the transformation must obey
the semigroup properties

RΛ7→Λ′ = RΛ7→Λ′′ ◦RΛ′′ 7→Λ′ , RΛ7→Λ = 1, (6)

whereΛ > Λ′′ > Λ′. This is depicted in Fig. 1. The infinitesimal change of the couplings is described by theβ-functions

momentum scalek

IR cutoff

λ = 1/(aL)

UV cutoff

Λ = 1/a Λ′ = 1/(2a) lattice simulation

momentum scalek

IR cutoff

λ = 1/(aL)

UV cutoff

Λ = 1/a lattice simulation

R
Λ 7→Λ′

FIG. 1: Sketch of the MCRG method

βi (g) = ∂tgi , t = lnΛ. (7)

The critical exponents{θi} of the theory are defined as the negative eigenvalues of the stability matrix

Sij =
∂βi

∂gj

∣

∣

∣

∣

g=g∗

(8)

at the fixed pointsg∗ of the theory defined byβi (g
∗) = 0. Positive critical exponents belong to relevant direction, negative

exponents to irrelevant directions and vanishing exponents to marginal directions, i.e.

θi > 0 relevantdirection,

θi < 0 irrelevantdirection,

θi = 0 marginaldirection.

(9)

By comparing with the scaling of singular thermodynamic observables near a critical point, one obtains relations between the
thermodynamic critical exponents and the eigenvalues of the stability matrix, for exampleν = θ−1

r for the critical exponent of
the correlation lengthν and the eigenvalueθr of the related relevant direction.
In our setup, an RG transformation consists of the two steps illustrated in Fig. 2:

1. A blockspin transformation applied to an ensemble with fixed couplings{gi}. For the blockspin transformation the
semigroup properties are fulfilled.

2. The demon method tomeasurethe effective couplings{g′i} on the blocked lattice. Since this method can only be applied
to a truncated effective action the semigroup property of the composite transformation is violated in this step.

In the following we will discuss both steps in more detail.

A. Blockspin transformation

A blockspin transformation with scale parameterb relates a field configuration{φx} on the fine lattice(N, a) to an averaged
configuration{φ′

x} on the coarser lattice(N ′ = N/b, a′ = ba) [33]. The IR-cutoff does not change and the blocked and initial
configurations describe the same macroscopic physics. In contrast, the UV-cutoffΛ → Λ′ = Λ/b is lowered and the effective
parameters{g′i} defined at the new cutoffΛ′ incorporate the effects of all quantum fluctuations with scales betweenΛ andΛ′. A
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blockspin demon methodξ/b ξ′ξ

transformation

composite transformationRb

FIG. 2: The composite transformationRb relates coupling constants on a lattice with correlation lengthξ to a coarser lattice with correlation
lengthξ′, which is obtained by using a blockspin transformation and mapping the resulting configurations onto a truncated effective action by
the demon method. Simulating the truncated ensemble may notnecessarily yieldξ′ = ξ/b due to truncation errors.

numerical simulation on the coarse lattice with couplings{g′i} yields the same distribution of averaged fields{φ′
x} as obtained

from a simulation at the fine lattice with{gi}. Each set of parameters defines a point in theory space and they are connected by
an RG trajectory.
Here we employ a blockspin transformation where one draws the averaged fields according to a normalized probability distribu-
tion,

P(φ′
x) ∝ exp

(

C(g)φ′
x·R({φx})

)

, (10)

whereR({φx}) =
∑

y∈�x

φy is the sum over all degrees of freedom within a hypercube of the fine lattice. In our computations
we choose the smallest cube of sizebd = 2d. The positive functionC(g) determines how strongly the blocked fields may
fluctuate away from the original degrees of freedom. We shalluse a function which minimizes the systematic errors induced by
the unavoidable truncation of the effective action. A detailed discussion is found in Sec. III D.

B. The demon method

With the microcanonical demon method [17] one can calculatethe couplings in an effective actionS =
∑

i giSi such that the
corresponding distribution is close to a given ensemble of lattice configurations. Hence, given a partition function

Z(β) =

∫

Dω exp{−βH(ω)} (11)

one introduces an additional degree of freedomED, thedemon energy, with the combined partition function

ZD(β) =

∫

Dω

∫

dED exp{−βH(ω)− βED} (12)

of the canonical demon ensemble. The expectation value of the demon energy can be calculated in a simulation of the micro-
canonical ensemble,

ZMCD =

∫

Dω

∫

dED δ (H + ED − E0) , (13)

and is related to the inverse temperatureβ,

〈ED〉 = 〈ED〉 (β), (14)

thus allowing tomeasurethe inverse temperatureβ corresponding to the combined ensemble. This method can be generalized
to more than one temperature or coupling constant, i.e.

ZMCD =

∫

Dω
∏

i

∫

dEi
D δ

(

Si + Ei
D − Ei

0

)

. (15)

Constraining the demon energy toEi
D ∈ (−Ei

m, Ei
m) yields

〈

Ei
D

〉

D
=

1

gi
−

Em

tanh(giEm)
≈

〈

Ei
D

〉

MCD
(16)
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where the subscript D denotes the canonical demon ensemble (12) and MCD the microcanonical demon ensemble (13). This
equation can be solved by numerical means and is used to extract the coupling constants{gi} from the mean demon energies
on the right hand side. In the microcanonical ensemble the total energy is fixed. Since we want to measure the couplings of the
blocked ensemble without interference from the demon, we demand that

∣

∣Ei
D

∣

∣ ≪
∣

∣Si
∣

∣. Then the algorithm for our MCRG setup
reads as follows:

1. Pick a configuration distributed according to the canonical ensemble with actionS = g1S1+g2S2+ . . . on the fine lattice.

2. Perform a blockspin transformation on this configuration.

3. Use the result as starting configuration for a microcanonical simulation of the combined system (15) and measure the
mean demon energies. The starting values for the demon energies are given by the mean demon energies extracted from
the previous microcanonical runs.

4. Repeat step one to three until a sufficient number of configurations has been generated.

5. Calculate the couplingsg′i from the mean demon energies.

A comparison of these couplings with the initial ones yieldsan approximation for the running of the coupling. It reads:

βi (g) = ∂tgi = −a
∂gi
∂a

= −(g′i − gi). (17)

Note that thegi are the dimensionless couplings on the lattice. In order to measure the critical exponents, we introduce a
hypercubic grid in coupling space with spacingsδgi and compute the matrixSij ,

Sij(g) =
∂βi

∂gj
=

βi(gj + δgj)− βi(gj − δgj)

2δgj
. (18)

The additional systematic error from discretizing the second derivative can be made arbitrarily small by choosing a finer grid in
the space of couplings. Finally we compute the matrixSij(g) and its eigenvaluesθi(g) at couplings in the vicinity of a critical
pointg∗ to obtain the critical exponents and associated thermodynamical critical exponents.

C. Truncated effective action

In general, more and more operators are generated by the repeated application of the blockspin transformations and thisyields a
trajectory in theory space. Since it is impossible to keep track of all operators we restrict our analysis to an ansatz forthe effective
action that only includes a finite number of operators. Thereby, the demon method leads to a projection of RG trajectoriesfrom
general theory space down to modified trajectories in a truncated theory space that only consists of the terms contained in the
effective action. Naturally, this procedure introduces additional systematic uncertainties which we will denote as truncation
errors. A qualitative understanding of the truncation errors is obtained by comparing different truncations. For thisreason, we
utilize a systematic derivative expansion of the effectiveaction up to fourth order. In the continuum formulation it isgiven by

S[φ] =

3
∑

i=0

giNSi[φ] +O(∂6) (19)

with operators

S0 = −

∫

ddx φ · ∂µ∂
µφ (20)

S1 =

∫

ddx φ · (∂µ∂
µ)2φ (21)

S2 =

∫

ddx (φ · ∂µ∂
µφ)2 (22)

S3 =

∫

ddx (φ · ∂µ∂
νφ)(φ · ∂µ∂νφ). (23)

Note that we have introduced an additional factorN in (19) in order to get rid of the leadingN dependence of the couplingsg.
The couplings have mass dimension

[g0] = d− 2 , [gi] = d− 4 for i = 1, 2, 3. (24)
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This is a complete set of the fourth order operators that are compatible with the symmetries of the model. Note that other
RG studies (like the one in [27]) employ an alternative parametrization of the effective action. The relation between these two
formulations is explained in Appendix A.
Now we discretize the action (19) on a hypercubic lattice,

S
(

{φx}
)

=

3
∑

i=0

giNS′
i

(

{φx}
)

, (25)

where a straightforward discretization of the continuum operators is given by

S′
0 =2

∑

x,µ

Φx · Φx+µ − 2dV (26)

S′
1 =2

∑

x,µ,ν

Φx · (Φx+µ+ν +Φx+µ−ν)− 4d
∑

Φx · Φx+µ + 4d2V (27)

S′
2 =

∑

x,µ,ν

{(Φx · Φx+µ) (Φx · Φx+ν) + (Φx · Φx−µ) (Φx · Φx−ν) + 2 (Φx · Φx+µ) (Φx · Φx−ν)}−

8d
∑

x,µ

Φx · Φx+µ + 4d2V (28)

S′
3 =

∑

x,µ,ν

{(Φx · Φx+µ) (Φx · Φx+ν) + (Φx · Φx−µ) (Φx · Φx−ν)− 2 (Φx · Φx+µ) (Φx · Φx+ν−µ)

− 2 (Φx · Φx−µ) (Φx · Φx+µ−ν) + (Φx · Φx+ν−µ) (Φx · Φx+µ−ν) + 2 (Φx · Φx+µ−ν)}

+2d
∑

x,µ

(Φx · Φx+µ) (Φx · Φx−µ)− 4d
∑

x,µ

Φx · Φx+µ + d2V. (29)

This set of lattice operators forms a basis of the space of fourth-order derivative operators, but it is not orthogonal inoperator
space. In order to improve the convergence of the demon method it is useful to reparametrize the action functional in terms of
the operatorsS′

i given by







S′
0

S′
1

S′
2

S′
3






=







2 0 0 0
−4d 2 0 0
−8d 0 1 0
−4d 0 0 1















Ŝ0

Ŝ1

Ŝ2

Ŝ3









+







−2dV
4d2V
4d2V
d2V






. (30)

For simplicity we drop the hat over lattice quantities in thefollowing.

D. Optimized blockspin transformation

In a lattice simulation we have access to observables (like e.g. the masses) which receive contributions fromall possiblelattice
operators. This information, which is in part lost if one uses a truncated effective action, allows us to extend our analysis
of truncation errors. The macro-physics is completely determined by the correlation functions and hence must agree forthe
original and blocked ensemble in Figure 2, since the blockspin transformation does not change the IR physics. Applying the
demon method leads to a truncated ensemble which is defined bythe effective action. In general, the correlation functions of
the blocked and truncated ensemble do not coincide. This discrepancy is solely due to the truncation of the effective action. In
addition to the simulation of the blocked ensemble, we also simulate the truncated ensemble in order to measure the difference
in the correlation functions and thus quantify the systematic truncation errors directly.
We reduce this difference by adjusting the blockspin transformation. The location of the renormalized trajectory depends on
the chosen renormalization scheme [10] and we aim at constructing a scheme for which the renormalized trajectory is closest
to our truncated effective action. More accurately, we haveused the improved blockspin transformation (10) and tuned the free
parameterC. In general, the optimal value depends on the coupling constants, lattice size, target space and number of RG steps.
Only in the ideal world without truncation we expect our results to be independent of the RG scheme and thus the optimization
constantC.
In order to tune the constantC in the improved blockspin transformation, we compare the correlation lengths extracted from the
two-point-functions on the fine and coarse lattice and ignore all other correlation functions. Blockspin transformations reduce
the lattice correlation lengthξ exactly by a factorb and thus we demand the correlation lengthξ′ in the truncated ensemble to be
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equal toξ/b in order to minimize truncation errors. For simplicity, we allow the optimization constant to depend linearly on the
couplings,

C(g) =
∑

i

cigi , ci = const.. (31)

It is clear from the structure of (10) that the choiceC = 0 leads to a complete loss of information and thus results in a trivial
flow diagram. In most of the following computations we find that it is sufficient to tune only the first parameterc0 since in
the vicinity of the non-Gaußian fixed points the corresponding couplingsgi are small compared tog0. Nevertheless, a small
but non-vanishing value for the otherci is necessary to improve the flow in the vicinity of the Gaußianfixed point. Finally we
note that the lattice itself together with the blockspin transformation acts as the regulator function in FRG calculations. Tuning
the ratio of correlation functions to the optimal ratio corresponds to the choice of an optimal regulator in the FRG framework.
Roughly speaking it minimizes theflow time(RG steps) from the UV to the IR.

IV. THE RG FLOW IN TWO DIMENSIONS

In order to test and optimize our method, we reproduce the beta function for the two dimensional O(N) sigma model, which
has already been computed using the MCRG matching method forN = 3 [16] andN → ∞ [10, 34]. The coupling constant
g0 of the standard actionS0 is dimensionless and the theory is thus perturbatively renormalizable. From asymptotic freedom
we expect that the flow diagram contains two trivial fixed points, one in the IR at vanishing coupling and the other in the UV
at infinite coupling, i.e. vanishing inverse coupling [15].However for numerical simulations only finite lattices are accessible
and the theory possesses a transition from a symmetric regime at low coupling (large physical volume) to an ordered regime at
strong coupling (small physical volume). The expectation value of the scalar field,

ϕ =

〈∣

∣

∣

∣

∣

1

V

∑

x

Φx

∣

∣

∣

∣

∣

〉

, (32)

is shown in Fig. 3 as a function of the coupling for different lattice sizes. With increasing volume the transition shiftsto
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5122

FIG. 3: The average field expectation value is shown as a function of g0 for different lattice sizes andN = 3 for S = g0NS0.

larger values of the coupling and we conclude that in the infinite volume limit the theory is in the symmetric regime for every
finite value of the coupling, as predicted by the Mermin-Wagner theorem. It is also evident that finite volume effects are more
important for large coupling. In particular, the observed behaviour might mimic an additional non-trivial fixed point of the RG
flow. In Fig. 4 we show theβ-function for the couplingg0 in the simplest truncation using only the operatorS0. We observe
that while theβ-function is independent of the lattice volume, it depends on the parameterc0 of the RG transformation. For
c0 = 1 theβ function has an IR fixed point at vanishing coupling and stayspositive even for large coupling. Tuningc0 to larger
values, theβ-function develops a further zero crossing at finite coupling. However, this additional zero of theβ-function is an
artifact of the truncation. In Fig. 5 we show the ratio of correlation lengths of the original ensemble on the642 lattice compared
to the truncated ensemble on the322 lattice. Truncation errors are assumed to be minimal forξ64/ξ32 = 2. For c0 = 1 and
c0 = 4 significant deviations are visible. We find thatc0 = 2.8 provides a good matching for a large range of couplings. The
corresponding beta function in Fig. 4 does not show an additional zero crossing, which coincides with earlier results [16]. For
largeg0 theβ function approaches a constant value corresponding to the largeN resultβ(N → ∞, g → ∞) = ln(2)/(6π)
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FIG. 4: The beta functionβ0 for the simplest possible truncation andN = 3 is almost independent of the lattice volume. Forc0 < 2.8 it
possesses only one fixed point at vanishing coupling. Forc0 = 2.8 it becomes constant forg → ∞. The dotted line represents the analytical
result forN → ∞ andg → ∞. Forc0 > 2.8 we find an additional fixed point at finite coupling which is an artifact of the truncation.
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FIG. 5: The ratio of the correlation length for a642 and322 lattice is shown for different parameters of the RG transformation.

[34]. In order to further improve on our truncation, we add a second operatorS1 and the resulting flow diagram for fixedc0 = 3
and different lattice sizes is shown in Fig. 6. The flow is no longer independent of the volume and for the smallest lattice,which
is 162, an additional fixed point in the (g0, g1)-plane emerges. However, going to larger lattice volumes,this fixed point shifts
away towards larger couplings and thus we assume that in the continuum limit no additional fixed point of the RG flow exists.
The renormalized trajectory is the single trajectory that connects the Gaußian fixed point at the origin with the trivialfixed point
at infinite coupling. The arrows plotted in Fig. 6 point towards the IR and therefore the fixed point at the origin is an IR fixed
point while the fixed point at infinite coupling is UV attractive. Again we find that the structure of the flow diagram using the
two-operator truncation matches the prediction from asymptotic freedom. The known results are very well reproduced with our
method and we proceed with the O(N) models in three spacetimedimensions.

V. FIXED POINTS OF THE RG FLOW IN THREE DIMENSIONS

As in two dimensions we first investigate the O(3) model. In Fig. 7 the order parameterϕ for the spontaneous breaking of the
O(N) symmetry is shown. The critical coupling in the thermodynamic limit is given bygc0 = 0.6862385(20)/3 = 0.2287462(7)
[30]. On a323 lattice, lattice artifacts are already sufficiently small for our purpose. Therefore most RG transformations
considered in the present work are based on a transformationfor a fine lattice with323 points to a coarse lattice with163 points.
The critical coupling on the323 lattice isgc0 = 0.22975(25).
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FIG. 6: Shown is the flow diagram forc0 = 3 andN = 3 in the two operator truncation on a162 (upper panel),322 (middle panel) and642

lattice (lower panel).

A. One-parameter effective action

We begin with the simplest truncation possible by using the one-parameter actionS = g0NS0. We denote this scheme as1 → 1
truncation, indicating the use of the one-parameter actionin both ensemble creation and effective action ansatz.
As in two dimensions, theβ function for this truncation is almost independent of the lattice size. Using different sizes, we see
that our results from83 and163 already agree within their statistical error bars and therefore we are confident that our simulations
on a lattice with323 points do not suffer from large finite size effects.
In order to determine the optimization constant in the blockspin transformation, we again consider the correlation length of the
two-point function. A perturbative calculation [10] yields cpert

0 = 2.3 for arbitrary N and a large number of subsequent RG
steps. But computing the ratio of correlation lengths (see Figure 8), we see that there exists an optimal choicec

opt
0 = 3.35 which
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FIG. 7: The average field expectation value is shown as a function of g0 for different lattice volumes.

leads to the desired value ofξ16/ξ32 = 2. This value deviates significantly fromcpert
0 = 2.3, indicating that the non-trivial

fixed point is indeed a non-perturbative feature of the theory. Already with this simple setup, we find that the dimensionlessβ
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FIG. 8: The ratio of correlation lengths obtained by blocking a323 lattice down to163 using different optimization constantsc0. A value of
ξ16/ξ32 = 2 is expected to minimize truncation errors and we read off theoptimal valuecopt

0
= 3.35 for N = 3.

function, depicted in Fig. 9, exhibits the qualitative features that were expected from other methods [22–26]. In contrast to the
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FIG. 9: Theβ function for the1 → 1 truncation in three dimensions andN = 3 is shown for different values ofc0.

two dimensional case, theβ function shows a non-trivial fixed pointg∗0 with β(g∗0) = 0 for every value ofc0. This clearly points
to the non-perturbative renormalizability of the O(3) -model and is directly related to a second-order phase transition. For the
optimal choicecopt

0 we obtaing∗0 = 0.2310(5). Systems with bare couplingg0 < g∗0 flow to the disordered phase in the IR which



11

is controlled by the Gaußian fixed point atg0 = 0, while systems with bare couplingg0 > g∗0 flow to the completely ordered
phase described byg0 = ∞ or 1/g0 = 0. These two fixed points correspond to the expected low-temperature fixed point at
infinite coupling (absolute order) and the expected high-temperature fixed point at zero coupling (absolute disorder).The critical
hypersurface is reduced to a single pointg∗0 in this truncation and the operatorS0 corresponds to arelevantdirection of the RG
flow.
Using the information provided by thermodynamical observables like e.g. the susceptibility of the order parameter, wecan
determine thecritical point gc0 where the correlation length of the system diverges at infinite volume. In general theory space, it
is the point of intersection between the critical hypersurface and the line wheregi = 0 exceptg0. A lattice simulation starting at
gc0 in the UV will flow along the critical line into the non-trivial fixed point and observables measured on this ensemble reflect the
macroscopic physics at this point. Please note thatgc0 need not be identical tog∗0 due to truncation errors that affect the value for
g∗0 . Of course, without truncation errors the fixed point is located at the critical surface. We now proceed to discuss higher-order
truncations which take additional operators into account and provide a more complete picture of the flow of the effectiveaction.

B. Higher-order truncations

In the preceding sections we have seen that near the non-trivial fixed point the operatorS0 defines a relevant direction. In this
section we include more operators in the effective action inorder to find the total number of relevant directions. Figure10 (upper
panel) shows the global flow diagram for the truncation usingtwo operatorsS = g0NS0+g1NS1, both for ensemble generation
as well as in the demon method (2 → 2 truncation). The blockspin transformation is optimized inthe same way as for the

0

0.005

0.01

0.015

0.02

0.025

0.03

0 0.05 0.1 0.15 0.2 0.25

g1

g0

HT FP

LT FP

NG FP

CL

RT

0.0156

0.0158

0.016

0.0162

0.0164

0.0166

0.0168

0.017

0.114 0.116 0.118 0.12 0.122 0.124

g1

g0

FIG. 10: The flow diagram using the2 → 2 truncation in three dimensions andN = 3 clearly shows a non-Gaußian fixed point (NG FP) in
the center of the plot in the upper panel. The critical line (CL) and renormalized trajectory (RT) intersect at the NG FP. The lower panel shows
the vicinity of the NG FP. The RG parameters for this flow diagram arec0 = 3.1 andc1 = 2.5.

action with a single parameter. Our choice for the parameters isc0 = 3.1 andc1 = 2.5 and it leads to a correlation length ratio
of around2 in the vicinity of the fixed point. Note that this choice for the parameters is not unique if we only tune the correlation
length to the desired value. In general we have to consider higher correlation functions as well. Below we will also discuss other
choices for the parameters and its influence on quantitativefeatures of the flow diagram as for example the position of thefixed
point or critical exponents. Nevertheless as in the one parameter case the choice of the parameters does not change the qualitative
flow diagram. Again, we detect a high temperature fixed point (HT FP) at zero coupling in the lower left corner as well as a low
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FIG. 11: Using a shooting technique, the RG trajectories forthe3 → 3 truncation with operatorsS0, S1 andS2 reveal an analogous structure
to the2 → 2 case. The projection on theg0-g1 axis in the upper panel shows only a single relevant direction at the non-Gaußian fixed point.
The lower panel shows that the trajectories first approach the fixed point regime and afterwards flow along the renormalized trajectory to the
respective IR fixed points.

temperature fixed point (LT FP) at infinite coupling. Also a non-trivial fixed point (NG FP) in the center of the flow diagram is
clearly visible. The values of the couplings at the fixed point, g0 = 0.119(1), g1 = 0.0164(2), can be determined from Fig. 10
(lower panel). As expected, the ‘velocity’ along a trajectory gets small in the fixed point regime. Furthermore, we find that the
position of the fixed point in this two parameter truncation is almost independent of the lattice volume. But, in contrastto the
one-parameter truncation, it depends strongly on the constantc0 and to a lesser degree on the remaining constants. A change of
c0 results in a displacement of the fixed point along the critical line.
The flow diagram is split by a separatrix which defines the critical line (CL) extending from the lower right to the upper left
corner. Trajectories that lie above this line will flow into the low temperature fixed point while trajectories below thisline flow
into the high temperature fixed point. This indicates a relevant direction analogous to the simple one-parameter truncation of the
preceding section. The second direction though is an irrelevant one and the corresponding eigenvalue of the stability matrix is
negative. The single trajectory that is identical with the critical line will flow into the non-trivial fixed point, either from below or
above. The critical line is the intersection of the criticalhypersurface in general theory space with theg0-g1 plane that constitutes
our truncation. From the traditional lattice perspective,the critical line corresponds to a fine-tuned set of bare couplings(g0, g1)
at different UV cutoffs. Starting a simulation on the critical line results in a measurement of the critical physics at the non-trivial
fixed point and is generically used to take the continuum limit, since the lattice spacing in units of the correlation length becomes
small as the critical point is approached.
There exists another interesting line which connects all three fixed points and acts as an attractor for the RG trajectories. It is
called the renormalized trajectory (RT) and singles out a unique trajectory that defines a theory that is both IR and UV complete,
starting at the non-trivial fixed point in the UV and flowing into the high temperature or low temperature fixed point in the IR.
As expected, the RT does not attract the trajectories in the vicinity of the high temperature fixed point, where the fixed point
behaviour dominates1.
Starting on theg0 axis, which corresponds to the usual lattice action of the Heisenberg ferromagnet, and integrating out all
fluctuations, one can only reach either one of the trivial fixed points or the non-trivial fixed point. In this sense, it is legitimate to

1 For this reason the matching method is not applicable in the vicinity of the high temperature fixed point since it relies onthe assumption that the trajectories
approach the renormalized trajectory within a few RG steps [34].
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FIG. 12: For higher order truncations with operators{S0, S1, S2} in the upper panel,{S0, S1, S3} in the center panel and{S0, S1, S2, S3} in
the lower panel the fixed point structure of the resulting flowdiagram remains the same as for the1 → 1 and2 → 2 truncation.

consider them asinfrared fixed points. From universality arguments one expects that the non-Gaußian fixed point corresponds
to the well-known Wilson-Fisher fixed point of the linear sigma model. We find that a similar structure to our results emerges in
this model [35].
But the Heisenberg ferromagnet is an effective theory that is well defined only for a finite UV cutoff, in contrast toasymptotically
safe theoriesthat are defined on all scales. Fundamental field theories correspond to theories on the renormalized trajectory and
the direction of the renormalization group flow shows that the non-trivial fixed point governs the ultraviolet physics ofthese
theories. Thus, this non-trivial fixed point acts as anultraviolet fixed pointof the RG flow.
For the asymptotic safety scenario to hold, the number of relevant directions at the non-Gaußian fixed point must be fi-
nite. Hence we proceed to determine the flow diagram for the3 → 3 and 4 → 4 truncation, which include the opera-
tors {S0, S1, S2}, {S0, S1, S3} and{S0, S1, S2, S3} respectively. An overview over the full flow diagram for the operators
{S0, S1, S2} is presented in Figure 11 and it is evident that only irrelevant directions are added to the truncation. The global
structure of the flow diagram is similar to the2 → 2 truncation and shows two trivial IR fixed points and one non-trivial
UV fixed point. Figure 12 (upper panel) shows a detailed view of the the fixed point regime. The fixed point is located
at (g0, g1, g2) = (0.13(1), 0.016(1),−0.0015(5)). In the center panel of Figure 12 the3 → 3 truncation with operators
{S0, S1, S3} is presented. The resulting flow diagram is again very similar and we find that even the position of the fixed
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point at(g0, g1, g3) = (0.13(1), 0.016(1),−0.0015(5)) matches the prior result within the resolution of the flow diagram. Fi-
nally Fig. 12 (lower panel) shows the results for the4 → 4 truncation. Again the fixed point structure remains unchanged. In this
truncation the position of the fixed point is at(g0, g1, g2, g3) = (0.13(1), 0.016(1),−0.0015(5),−0.0015(5)). In conclusion, we
observed that the fixed point structure does not change if we add further operators. We always find just one relevant direction at
the non-Gaußian fixed point. In addition the position of the fixed point is stable against including the higher derivativeoperators
S2 andS3. This clearly points to the existence of a non-Gaußian fixed point of the RG transformation and thus we are led to
believe that the asymptotic safety scenario applies to the O(3) nonlinear sigma model in three dimensions.

C. Critical exponents

Following the universality hypothesis, it is generally assumed that the linear and nonlinear O(N) models are in the sameuniver-
sality class, since they have the same range of interaction and symmetries. This assumption is supported by several computations
based on very different approximations, cf. for instance [29, 36, 37] or the overviews [38, 39].
Furthermore, critical exponents are universal, in contrast to the position of the fixed point, and this allows us to compare our
results to the functional RG studies of the nonlinear O(N) models in [27]. Here we restrict ourselves to the scaling properties
of the correlation length, described by the exponentν, since it is directly related to the relevant eigenvalue−θr of the stability
matrix byν = θ−1

r .
Using the simple1 → 1 truncation, the inverse of the thermodynamic critical exponentν corresponds to the negative slope of
the lattice beta function in the vicinity of a fixed point, depicted in Fig. 9. As expected, we find the trivial valuesν ≈ −1 and
ν ≈ 1 for the high-temperature and low-temperature fixed points,respectively. These values are almost independent ofc0. For
the non-trivial fixed point, on the other hand, the value depends on the choice forc0, and this is shown in Fig. 13. For the optimal
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FIG. 13:β function in the vicinity of the fixed point in the1 → 1 truncation for the O(3) -model and various values ofc0.

constantc0 = 3.35 we read off the critical exponentν(1 → 1) = 0.51(1) for N = 3, which is to be compared with the value
0.7112(5) in [30] obtained from a dedicated high-temperature expansion combined with a Monte Carlo simulation. In Fig. 14
the critical exponent is shown as a function ofc0. Again one sees that a careful optimization of the blockspintransformation is
important in order to extract accurate results for the critical exponents.
The next improvement is to allow 2 operators in the effectiveaction, denoted as1 → 2 truncation. The critical exponent is
determined as the negative slope of the projectedβ-function on theg0 axis at the position of the fixed point for the1 → 1
truncation. For the optimizedc0 = copt

0 we obtainν(1 → 2) = 0.55(2). This is already significantly closer to the expected value
compared with the simple1 → 1 truncation.
We can further improve our estimate by moving on to the2 → 2 truncation. Depicted in Figure 15 (upper panel) is the eigen-
valueθr of the matrix (18), which at a critical point becomes the stability matrix, and again it takes the trivial values at the high
temperature or low temperature fixed point. While the plot shows strong variations of the eigenvalue at the upper left andlower
right corner of the parameter space, it becomes smooth in thevicinity of the non-trivial fixed point, see Fig. 15 (lower panel).
From an average over the fixed point region we obtain the valueof ν(2 → 2) = 0.62(3), which already deviates less than15%
from the literature value. We stress that in the present workwe are mainly concerned with the flow diagram and fixed point
structure of non-linear O(N) -models such that our method isnot to be seen as a replacement of dedicated high-precision Monte
Carlo determination of critical exponents. It is however possible to estimate these quantities in addition to the flow diagram with
a reasonable precision.
In the2 → 2 truncation we can also extract the critical exponent corresponding to the irrelevant direction of the flow, see Fig. 16.
It takes the trivial valueθir = −1 at the high temperature fixed point andθir ≈ −0.44 at the non-Gaußian fixed point. In order
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FIG. 15: The critical exponentν is related to the eigenvalueθr of the stability matrix corresponding to the relevant direction. The RG
parameters for this flow diagram arec0 = 3.1 andc1 = 2.5.

to check for the stability of our method we calculated the critical exponent also for the RG parametersc0 = 3.4 andc1 = 1.0.
We obtained the valueν = 0.65(3). Within statistical errors this agrees with the value forν obtained before.
For the3 → 3 truncation we set the RG parameter belonging to the additional operator to zero, i.e.c0 = 3.1, c1 = 2.5 and
c2 = 0. In this truncation we obtain three critical exponents:

θr =1.57(5) ,

θ1ir =− 0.52 + 0.05i ,

θ2ir =− 0.86− 0.05i.

(33)

The exponent of the correlation length is thenν(3 → 3) = 0.64(3). Within statistical errors this is almost no improvement
compared to the2 → 2 truncation.
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Our analysis of the critical exponents indicates that the high temperature fixed point has only irrelevant directions, i.e. all critical
exponents are negative. The exponents corresponding to theoperatorsS0 andS1 take the valueθ0,1 = −1. The non-Gaußian UV
fixed point has one positive critical exponent, while the other critical exponents are negative. This again verifies the asymptotic
safety scenario for the nonlinear sigma model in three dimensions. Table I summarizes our results for the critical exponents. For

Method ν ν/νMCHT

1 → 1 trunc. (c0 = 3.35) 0.51(1) ∼ 0.72

1 → 2 trunc. (c0 = 3.35) 0.55(2) ∼ 0.77

2 → 2 trunc. (c0 = 3.1, c1 = 2.5) 0.62(3) ∼ 0.87

2 → 2 trunc. (c0 = 3.4, c1 = 1.0) 0.66(4) ∼ 0.93

3 → 3 trunc. (c0 = 3.1, c1 = 2.5, c2 = 0) 0.64(3) ∼ 0.90

FRG [27] 0.704 ∼ 0.99

MCHT [30] 0.7112(5) 1

MC [40] 0.7116(10) ∼ 1

RG [31] 0.706 ∼ 0.99

HT [29] 0.715(3) ∼ 1

TABLE I: Results for the critical exponentν for different truncations andN = 3 compared to the very precise results of the Monte Carlo
estimate MC.

comparison we also show results obtained with Monte Carlo simulations (MC), high temperature expansion (HT), RG expansion
(RG) and functional RG (FRG). With increasing truncation order our results approach the very precise values obtained with other
methods, indicating that our derivative expansion converges to the correct results. For even higher truncations the computation
of critical exponents becomes very time consuming and the statistical errors become larger than the deviation from the values in
the literature. Furthermore the optimization of the blockspin transformation becomes increasingly difficult. Nevertheless results
are good enough to show that the non-Gaußian UV fixed point indeed belongs to a well-known class of second order phase
transitions.

VI. THE LARGE N LIMIT

For large values ofN we can compare our results with those from the analytical largeN and RG expansions in [41] and [31],
respectively. In Fig. 17 theβ-function in the1 → 1 truncation is shown for differentN at the optimized value forc0(N). For
every value ofN a non-trivial fixed point exists, but the slope at the fixed point changes. In order to connect to the largeN limit,
we repeat the computation of the critical exponentν in the simple1 → 1 truncation forN up to10. The results are shown in
Fig. 18. Starting fromN = 2, where the estimate deviates from the comparative RG data byν/νRG ≈ 40%, we see a significant
improvement for intermediateN < 8. However, going to even largerN , the behaviour changes and our results significantly
underestimate the correct values. It is evident that we do not reproduce the analytically known result ofν = 1 for N → ∞. This
change of behaviour is not only visible in the critical exponents but also shows up in the value of the optimization constant c0.
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FIG. 18: The critical exponentν is shown for the1 → 1 and2 → 2 truncation depending onN . We compare our data to results using the
Functional RG [27] and RG expansion [31]. In the largeN limit we expectν = 1.

From the perturbative analysis [10], we know that for largeN the RG parameter is proportional toNN−1 , i.e. we expectc0(N) to
become constant for largeN . Indeed in Figure 19 we see a plateau for intermediate valuesof N . Unfortunately, forN & 7 the
optimization constant decreases rapidly. We interpret this unexpected behaviour as a breakdown of our simple one parameter
truncation for largeN . If the effective action does not capture the relevant physics anymore, then we should not expect to find
reliable values for the critical exponents. Although we cantune the ratio of two-point functions to the desired value, higher
correlation functions should indicate that, within our truncation, the IR physics changes under the RG transformation.
We might try to improve the situation by including higher order operators. For the2 → 2 truncation we calculated the critical
exponents up toN = 9 and actually see a significant improvement over the1 → 1 truncation, see Fig. 18. It turns out that,
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FIG. 19: The optimization constantc0 in the1 → 1 truncation is shown for variousN .
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compared to the literature, we get the best results if we set the RG parameterc0 to the values obtained in the simplest truncation
for N ≤ 6 and to the plateau value forN > 6. For the second operator we choosec1 = 1.0. We checked that the ratio of the
correlation length is approximately2 in the vicinity of the fixed point for this set of parameters. In Figure 20, we show that for
differentN the general structure of the flow diagram persists. Only the non-universal location of the non-Gaußian fixed point
varies.
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FIG. 20: Flow diagram using the2 → 2 truncation in three dimensions for O(2), O(4) and O(6)-models. The global structure is the same as
for the O(3) -model. The background color encodes the eigenvalueθr of the matrix in (18), which near a critical point is related to the critical
exponent of the correlation length.

Unfortunately the fine-tuning of the RG parameter and the computation of critical exponents becomes increasingly difficult for
even largerN . We again observe that forN > 9 our truncation breaks down and additional operators are needed to obtain
reliable results for the critical exponents. Neverthelessthe fixed point structure itself remains stable. Our final results are
compiled in Table II and Figure 18.

VII. CONCLUSIONS

We have discussed and applied a method that allows to computethe global flow diagram of a model from numerical simulations.
In contrast to the MCRG matching technique, our method does not need exponentially large lattices and works even in the vicinity
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N 2 3 4 5 6 7 8 9 10

1 → 1 truncation 0.42 0.51 0.57 0.63 0.65 0.68 0.65 0.62 0.58

2 → 2 truncation 0.64(4) 0.66(4) 0.71(5) 0.78(6) 0.81(6) 0.86(7) 0.84(7) 0.89(8) -

FRG [27] - 0.704 0.833 - 0.895 - 0.912 - 0.920

HT exp. [29] 0.677(3) 0.715(3) 0.750(3) - 0.804(3) - 0.840(3) - 0.867(4)

RG exp. [31] 0.607 0.706 0.738 0.766 0.790 0.811 0.830 0.845 0.859

TABLE II: Results for the critical exponentν for different N obtained using different methods.

of a Gaußian fixed point, where the renormalized trajectory no longer acts as an attractor for the RG flow. Furthermore, we have
shown that systematic uncertainties from a truncation of the effective action can be mitigated efficiently by an optimization of
the RG transformation.
The nonlinear sigma model is asymptotically free in two dimensions and we have reproduced the expected structure of the flow
diagram, showing two trivial fixed points corresponding to the behaviour at very low and very high temperature, already using
the simplest possible truncation that only includes a nearest-neighbor interaction. Using a two-operator truncation, we have
clarified the role of the finite volume behaviour on the flow diagram and argued that an additional non-trivial fixed point isa
lattice artifact.
It has long been known that the three-dimensional O(3) -model shows a second-order phase transition that separates a phase of
broken O(N) symmetry and a symmetric phase. We have shown that this phase transition corresponds to an ultraviolet fixed
point with onerelevant direction by using a truncation that includes all (allowed by symmetry) operators up to fourth order in
the momentum. It is possible to define a theory along the renormalized trajectory that is IR- and UV-complete. We concludethat
the asymptotic safety scenario is fulfilled and the model is renormalizable in a non-perturbative setting.
While the general structure of the flow diagram does not depend on the specific RG scheme the critical exponents vary since the
systematic error depends on the specific optimization constant. We find that our method is able to predict the critical exponents
within a reasonable accuracy but can not compete to designated high precision MC-techniques that are free of truncationerrors
[30]. We find that our estimates for the critical exponents improve for larger truncations but fail to reproduce the exactN → ∞
limit.
Using functional renormalization group techniques, the full flow diagram for the present model was obtained already in an earlier
publication [27]. We find that the qualitative structure of the flow diagrams are the same. However, the MCRG method is more
stable than the FRG method and leads to more robust results for different truncations. In particular, we do not find a sudden
disappearance of the non-trivial fixed point for a certain truncation including the operatorS2 (28). Furthermore, we stress that
lattice techniques provide the opportunity to obtain additional information beyond the chosen truncation by a direct measurement
of the Green’s functions. We have used this knowledge to determine the optimal constants in the improved RG transformation.
In addition we compared the location of the critical point, determined by the susceptibility of the order parameter, to the location
of the fixed point, determined by the zero crossing of the betafunction and hence amendable to truncation errors. We find that
these points do not coincide in general. For the simplest truncation we observe a small deviation even for the optimal value of
the RG constant. For higher truncations, the fixed point location matches the critical surface within statistical errors. Another
interesting observation is that theβ function in the lowest truncation for two and three dimensions does not depend on the lattice
size.
Our method can be generalized to other systems, especially including fermionic degrees of freedom, and thus allows to determine
the more complex flow diagrams of e.g. the Thirring model [42]. The method might also be used to study lattice quantum
gravity [43, 44] where it is difficult to define observables that capture the infrared physics of the theory. In contrast tothe
matching technique, the method used in the present work doesnot rely on the computation of correlation functions but only on
an appropriate RG transformation that acts directly on the spacetime triangulations used.
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Appendix A: Two Alternative Formulations of a Fourth-Order Derivative Expansion

In this article we study the full fourth order derivative expansion of the theory, formulated in terms of explicitly constrained
variablesφ ∈ R

N with φ · φ = 1. In order to compare the results with previous studies of thesame system by means of
the Functional Renormalization Group (FRG) [27], one has toknow the relation between both parametrizations of the action
functional. The FRG computations in [27] were performed forthe covariant formulation

Γ[ϕ] =
1

2

∫

d3x ζhab∂µϕ
a∂µϕb

+ αhab(∇µ∂
µϕ)a(∇ν∂νϕ)

b

+ L1(hab∂µϕ
a∂νϕ

b)2

+ L2(hab∂µϕ
a∂µϕb)2 ,

(A1)

in terms of unconstrained fieldsϕ ∈ R
N−1, where(∇µ∂

µϕ)a = ∂2ϕa + Γa
bc∂µϕ

b∂µϕc andΓa
bc is the Christoffel symbol

corresponding to the metrichab(ϕ). In order to determine the relation between (A1) and (19), one can choose stereographic
coordinates,

hab =
δab

(1 + ϕ2)2
with ϕ2 =

N−1
∑

a=1

ϕaϕa , (A2)

for an unconstrained parametrization of (A1) and apply an inverse stereographic projection,

ϕa =
φa

1 + φN
for i = 1, .., N − 1 , (A3)

such that

Γ[ϕ(φ)] =
1

2

ζ

4
∂µφ∂

µφ+
1

2

α

4
∂2φ∂2φ

+
1

2

L1

16
(∂µφ∂νφ)

2

+
1

2

L2−4α

16
(∂µφ∂

µφ)2 .

(A4)

A comparison with (19) yields

g0 =
ζ

4
, g1 =

α

4
, g2 =

L1

16
, g3 =

L2 − 4α

16
. (A5)

Appendix B: The LHMC algorithm

In the case of nonlinear sigma models with only the standard interaction termS0, cluster algorithms have proven to be the most
efficient way to update the scalar field in Monte-Carlo simulations. In its original version, the cluster algorithm assumes that
only nearest neighbor interactions are present and hence isnot directly applicable in the presence of higher derivative operators.
Thus we employ a local version of the hybrid Monte-Carlo algorithm (LHCM) where single site variables are evolved in an
HMC algorithm. This ansatz relies on local interactions andis applicable theories without dynamical fermions. The formulation
is given entirely in terms of SO(N) -Lie-group and Lie-algebra elements, see also [45]. To update the normalized scalar field we
set

Φx = OxΦ0 with Ox ∈ SO(N) (B1)

and constantΦ0. The change of variablesΦx → Ox converts the induced measure onSN−1 ⊂ RN into the Haar measure of
SO(N) . Without interaction the rotation matricesOx will evolve freely on the group manifold SO(N) . Thefree evolutionon a
semisimple group is the Riemannian geodesic motion with respect to the Cartan-Killing metric

ds2 ∝ tr
(

dOO−1 ⊗ dOO−1
)

. (B2)
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The LHMC dynamics may be naturally derived from a Lagrangianof the form

L = −
1

2

∑

x

tr
(

ȮxO
−1
x

)2

− S[O], (B3)

where ‘dot’ denotes the derivative with respect to the fictitious time parameterτ . The Lie-algebra valued pseudo-momenta
conjugated to the site variableOx are given by

Px =
∂L

∂
(

ȮxO
−1
x

) = −ȮxO
−1
x . (B4)

The Legendre transform yields the following pseudo-Hamiltonian

H = −
1

2

∑

x

trP2
x + S[O]. (B5)

Note that forOx ∈ SO(N) the momenta are antisymmetric such that the kinetic term is positive. The equations of motion for the
momenta are obtained by varying the Hamiltonian,

δH = −
∑

x

trPx

{

Ṗx − Fx

}

and Fx = δS[O]. (B6)

In the simplest case of only nearest neighbor interactions the force is given by

Fx = g0Φx

(

∑

x,µ

Φx+µ

)T

. (B7)

The variational principle implies that the projection of the terms between curly brackets onto the Lie-algebraso(N) vanishes,

Ṗx = Fx

∣

∣

so(N)
. (B8)

There is a freedom of choice ofF and we determine it by a projection on a trace-orthonormal basis{Ta} of so(N). Then the
LHMC equations read

Ȯx = −PxOx and Ṗx =
∑

b

tr (FxTb)Tb . (B9)

To solve these equations of motion numerically, we employ a time reversible leap frog integrator which uses the integration
scheme

Px(τ + 1
2δτ) = Px(τ) +

1
2δτ Ṗx(τ)

Ox(τ + δτ) = exp
{

−δτ Px(τ + 1
2δτ)

}

Ox(τ)

Px(τ + δτ) = Px,µ(τ + 1
2δτ) +

1
2δτ Ṗx(τ + δτ) .

(B10)
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