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Abstract

We study and simulate N' = 2 supersymmetric Wess-Zumino models in one and two di-
mensions. For any choice of the lattice derivative, the theories can be made manifestly
supersymmetric by adding appropriate improvement terms corresponding to discretiza-
tions of surface integrals. In one dimension, our simulations show that a model with
the Wilson derivative and the Stratonovitch prescription for this discretization leads
to far better results at finite lattice spacing than other models with Wilson fermions
considered in the literature. In particular, we check that fermionic and bosonic masses
coincide and the unbroken Ward identities are fulfilled to high accuracy. Equally good
results for the effective masses can be obtained in a model with the SLAC derivative
(even without improvement terms).

In two dimensions we introduce a non-standard Wilson term in such a way that the
discretization errors of the kinetic terms are only of order O(a*). Masses extracted
from the corresponding manifestly supersymmetric model prove to approach their con-
tinuum values much quicker than those from a model containing the standard Wilson
term. Again, a comparable enhancement can be achieved in a theory using the SLAC

derivative.
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1 Introduction

Supersymmetry is an important ingredient of modern high energy physics beyond the stan-
dard model; since boson masses are protected by supersymmetry in such theories with chiral
fermions, it helps to reduce the hierarchy and fine-tuning problems drastically, and within
grand unified theories, it leads to predictions of the proton life-time in agreement with
present day experimental bounds. As low energy physics is manifestly not supersymmet-
ric, this symmetry has to be broken at some energy scale. However, non-renormalization
theorems in four dimensions ensure that tree level supersymmetric theories preserve super-
symmetry at any finite order of perturbation theory; therefore, supersymmetry has to be
broken non-perturbatively [T].

The lattice formulation of quantum field theories provides a systematic tool to investigate
non-perturbative problems. In the case of supersymmetric field theories, their formulation is
hampered by the fact that the supersymmetry algebra closes on the generator of infinitesimal
translations [2]. Since Poincaré symmetry is explicitly broken by the discretization, one
is tempted to modify the supersymmetry algebra so as to close on discrete translations.
However, as lattice derivatives do not satisfy the Leibniz rule, supersymmetric actions for
interacting theories will in general not be invariant under such lattice supersymmetries. The
violation of the Leibniz rule is an O(a) effect, and supersymmetry naively will therefore be
restored in the continuum limit. In the case of Poincaré symmetry, the discrete remnants of
the symmetry on the lattice are sufficient to prohibit the appearance of relevant operators in
the effective action which are invariant only under a subset of the Poincaré group and require
fine tuning of their coefficients in order to arrive at an invariant continuum limit. In generic
lattice formulations, there are no discrete remnants of supersymmetry transformations on
the lattice; in such theories, supersymmetry in the continuum limit can only be achieved by
appropriately fine-tuning the bare couplings of all supersymmetry-breaking counterterms [3].
An additional complication in the formulation of supersymmetric theories on the lattice is
the fermion doubling problem. Local and translationally invariant hermitean Dirac opera-
tors on the lattice automatically describe fermions of both chiralities [, B]; the fermionic
extra degrees of freedom are usually not paired with bosonic modes and so lead to supersym-
metry breaking. Generic prescriptions eliminating these extra fermionic modes also break
supersymmetry.

As a simple supersymmetric theory, the Wess-Zumino model in two dimensions has been

the subject of intensive analytic and numerical investigations. Early attempts included



the choice of the nonlocal SLAC derivative (thereby avoiding the doubling problem) in the
N = 1 version of this model [6, [7, B]. This was motivated by the idea that the Fourier
transform of the lattice theory should coincide with that of the continuum theory. A Hamil-
tonian approach where the SLAC derivative minimizes supersymmetry-breaking artifacts
introduced by non-antisymmetric lattice derivatives was discussed in [9]. Alternatively, a
local action with Wilson fermions was constructed at the cost of a nonlocal supersymme-
try variation [I]IMH simulations of this model [T7] indicate that this theory with a cubic
superpotential indeed features non-perturbative supersymmetry breaking.

In order to manifestly preserve some subalgebra of the AV = 1 supersymmetry algebra on the
lattice, the above discussion suggests to choose a subalgebra independent of the momentum
operator. Thus, supercharges @, and @_ can be defined using (non)local derivatives on a
spatial lattice. The choice of a continuous time then allows for a Hamiltonian defined by
H := Q% = Q* which commutes with the supercharges [I8, 19] and automatically contains
a Wilson term. This strategy can be generalized to the A/ = 2 model on a spatial lattice;
an analysis shows that a subalgebra admitting an O(2) R-symmetry can be preserved [20]].
Simulations for the N =1 (see [21]) and the N/ = 2 model [22] have been done using the
local Hamiltonian Monte-Carlo methods. Further simulations based on the Green function
Monte-Carlo method for N/ = 1 indicate that supersymmetry is unbroken for a quartic
superpotential and has a broken and an unbroken phase for cubic superpotentials [23, 24].
With a discrete time-coordinate, one has to resort to action- rather than Hamiltonian-based
approaches. The perfect action approach was pursued for the free N' = 1 theory in [23];
a generalization for interacting theories seems however problematic. A treatment of the
N = 2 Wess-Zumino model in the Dirac-Kahler formalism preserves a scalar supersymmetry
on the lattice but leads to non-conjugate transformations of the complex scalar field and
its conjugate. This enlarges the space of states and presumably renders the theory non-
unitary [T0]. A related [26] idea avoiding these problems goes back to the idea of Nicolai [27]
that (in this case) scalar supersymmetric field theories admit new bosonic variables with a

Jacobian cancelling the determinant from integrating out the fermions, in terms of which the

3A similar approach with staggered fermions leads to problems in the continuum limit [IT]. — In the
four-dimensional model with A/ = 1 supersymmetry with Ginsparg-Wilson fermions, lattice chiral symmetry
is incompatible with Yukawa couplings [12, [[3]; however, the theory can be regularized by supersymmetric
higher derivative corrections, which leads to a supersymmetric continuum limit within perturbation the-

ory [T4]. Tt could be shown that supersymmetric Ward identities are satisfied up to order g? in the coupling

constant |15} [16].



bosonic action is purely Gaussian. In general, the new variables are complicated nonlocal
functions of the original ones; for N/ = 2 supersymmetry, however, local Nicolai variables
can be expected [28]. Starting from a discretized form of the Nicolai variables found in the
continuum, one simply defines the bosonic part of the action as the sum over squares of the
Nicolai variables; the fermionic part of the action is adjusted so that the determinant of the
fermion matrix still cancels the Jacobian. This leads to an action manifestly preserving part
of the continuum supersymmetry on the lattice, and which contains improvement terms in
addition to the naive latticization of the continuum action 28] 20]. As stated in |29, B0], the
breaking of some of the continuum supersymmetries can in this framework be traced back to
the fact that the improvement terms are not compatible with reflection positivity. However,
the violation of Osterwalder-Schrader positivity is an O(a?gpnys) effect and thus should be
negligible at least at weak coupling [31]. An analysis of the perturbation series shows that
these terms in an off-shell formulation of the theory with a cubic superpotential and Wilson
fermions lead to tadpole diagrams which diverge linearly in the continuum limit [32]. A
cancellation between these would-be central charge terms and the naive discretization of
the continuum Hamiltonian has been suggested as a solution for the conundrum raised
in [29] that the lattice result of the number of zero-modes of the Dirac operator seems to
differ vastly from the continuum answer [9].

The possibility to introduce Nicolai variables is closely related to the fact that the (2,2)
Wess-Zumino model is a topological theory of Witten type, i.e., the action is of the form
S = QA for a scalar supercharge @), once auxiliary fields are introduced [33, B4]. This
formulation manifestly preserves ()-supersymmetry on the lattice and therefore guarantees
that the theory remains supersymmetric in the limit of vanishing lattice spacing. Lattice
theories of this type in various dimensions and with different degrees of supersymmetry
have been classified in [35]. It turns out that in this formulation some remnant of the U(1)y
R-symmetry which is left unbroken by the superpotential at the classical level but broken
by the Wilson terms is restored in the continuum limit even non-perturbatively [3T]; this
also indicates that at least for the cubic superpotential under consideration supersymmetry
is not broken nonperturbatively.

At a fixed point in space, the Wess-Zumino model reduces to supersymmetric quantum
mechanics. A naive discretization of the action with a Wilson term for just the fermion
leads to differing masses for fermions and bosons in the continuum limit [36]. This can be
traced back [37] to 1-loop contributions (of UV degree 0) of the fermion doublers to the boson

propagator which have to be cancelled by an appropriate counterterm that was neglected



in [36]. As soon as the action is amended by a Wilson term also for the boson [36], an
additional diagram involving the boson doublers cancels the finite correction of the fermion
doublers, and no counterterms are required to achieve the desired continuum limit. In
this case, fermion and boson masses agree in the limit of vanishing lattice spacing, and
supersymmetric Ward identities are fulfilled to great accuracy.

As expected for a theory with N/ = 2 supersymmetry, supersymmetric quantum mechanics
can be formulated in terms of local Nicolai variables [28|. However, this action differs from
the amended form of [36] by a further interaction term which becomes an integral over a
total derivative in the continuum limit.

In this paper, we scrutinize six different lattice actions for supersymmetric quantum mechan-
ics based on Wilson and SLAC fermions with and without such improvement terms. The
three models without improvement terms are not manifestly supersymmetric in the pres-
ence of interactions and differ by bosonic terms which become irrelevant in the continuum
limit as well as by the choice of the lattice derivative; the other three models with manifest
supersymmetry differ in the prescription for the evaluation of the improvement term and
also in the choice of the lattice derivative — they can be constructed from three different
Nicolai variables. We compare the effective masses for interacting theories with a quartic
superpotential and analyze the Ward identities of the broken and unbroken supersymmetries
at various lattice sizes and couplings. The central observation here is that the manifestly
supersymmetric theory with the so-called Stratonovich prescription [38] for the evaluation
of the improvement term (which is the discretization of a continuum surface integral) leads
to far better results than the model with an Ito prescription at finite lattice spacing. The
mass extraction for the models with SLAC derivative is at first sight hampered by an os-
cillating behavior for nearby insertions in the bosonic and fermionic two-point functions;
however, this Gibbs phenomenon is under good analytical control and can be softened by
the application of an appropriate filter. With the help of this “optimal filter”, the results
even surpass those of the model with Stratonovich prescription.

Along the way, we show for which superpotentials and derivatives one can guarantee posi-
tivity of the fermion determinants. In those cases where the determinant can be computed
exactly, we analyze under which circumstances they converge to the correct continuum re-
sults; these exact results are crucial for our simulations. Again, the model with Stratonovich
prescription is ahead of the one with Ito prescription; the former leads to a determinant with
the correct continuum limit, whereas the latter differs from it by a factor which depends on

the superpotential.



Furthermore, we study three different manifestly supersymmetric discretizations of the A'=2
Wess-Zumino model in two dimensions. Instead of trying to generalize the Stratonovich pre-
scription to two dimensions, we introduce a non-standard Wilson term (corresponding to
an imaginary Wilson parameter in the holomorphic superpotential) in such a way that the
discretization errors for the eigenvalues of the free (bosonic and fermionic) kinetic operators
are only of order O(a?) instead of order O(a) for the standard Wilson term. In the simula-
tions, we study the effect of the resulting violation of reflection positivity and compare the
results with those of the model with SLAC fermions. Due to calculational constraints, we
have to restrict the computations to smaller and intermediate values of the coupling.

As a theoretical background, we show that the discretized Wess-Zumino model in two di-
mensions with the SLAC derivative has a renormalizable continuum limit.

The paper is organized as follows: In section Pl we introduce the quantum mechanical mod-
els on the lattice, with and without improvement terms, and discuss which behavior of the
interacting theories at finite lattice spacings can be gathered from their (non-)invariance
under supersymmetry transformations in the free case. In subsection X4l we give details
about the positivity of the fermion determinants and derive their respective continuum lim-
its. The results of the effective masses and the Ward identities can be found in section B In
section Bl we discuss the discretizations of the N/ = 2 Wess-Zumino model in two dimensions
and present the results of the mass extractions. Section Bl covers the algorithmic aspects of
our simulations including a derivation of the Gibbs phenomenon for the SLAC correlators
which justifies the application of the filter for the mass extraction in the quantum mechani-
cal model. Finally, section [l contains the proof that the Wess-Zumino model on the lattice
with the SLAC derivative is renormalizable to first order in perturbation theory; a technical

part of this proof is completed in appendix [Al

2 Supersymmetric quantum mechanics

In this section we introduce the action for supersymmetric quantum mechanics in a lan-
guage which can be easily generalized later on to the two-dimensional Euclidean Wess-
Zumino model. In subsections 221l and 231l we present six different lattice versions of the

continuum theory with Euclidean action

dW (¢)
do

Seont = /dT(%gﬂ)Q + %W’Q + P + @EW”¢>, where W'(¢) = (1)



The continuum model is invariant under two supersymmetry transformations,

0Wo=cy, W =-go+W),  Wyp=0,

0o =ye, Py =0, 0 = (6 —W)e @

with anticommuting parameters € and £. The lattice approximations considered below differ
by the choice of the lattice derivative and/or the discretization prescription for a continuum
surface term; in subsection 24l we argue why three of them lead to far better approximations
to the continuum theory. The results of our simulations for a quartic superpotential W (¢) =

p? + ¢ (with positive m, g) are discussed in section Bl

2.1 Lattice models

We start from a one-dimensional periodic time lattice A with real bosonic variables ¢, and
two sets of real GraRmann variables 9., 1, on the lattice sites + € A = {1,..., N}. The
integral and continuum derivative in ([Il) are replaced by a Riemann sum a ) and a lattice
derivative 0, where a denotes the lattice constant. Two different antisymmetric lattice

derivatives will be used in what follows. These are the ultralocal derivative

1

aozy == 2_a<5z+1,y - 5zfl,y) (3)

with doublersH and the nonlocal SLAC derivative without doublers, which for an odd number
N of lattice sites takes the form [39, O]

(—=1)*v /N
a sin(m(x —y)/N)

slac __
a:rsﬁy -

and 08¢ = 0. (4)

If we allow for non-antisymmetric derivatives then we may add a multiple of the symmetric

lattice Laplacian
1
Agy = ?(51«“,3/ = 202y + 0z-1y) (5)

to O to get rid of the doublers. In this way, we obtain a one-parameter family of ultralocal

derivatives with Wilson term,

5—%@7‘A, —-1<r<1, (6)

4Tt should be noted that the symmetric combination of forward and backward derivatives leading to (&)

o

yields an antisymmetric matrix (Oyy).



interpolating between the forward (or right) derivative for » = —1 and the backward (or
left) derivative for r = 1. As will be argued in subsection B4, for the quartic superpotential
W(¢) = 2¢* + 4¢* with positive parameters m and g to be considered below we shall need

the latter with matrix elements
o a 1
afy = amy - §Amy = a(ax,y - 5a:—1,y)- (7)

The backward derivative is free of doublers and not antisymmetric. For periodic boundary
conditions the derivative operators 9%, d and 9P are all given by circulant matrices which

commute with each other.

2.2 Lattice models without improvement

A straightforward discretization of the continuum action () would be

a

Snaive = 5 Z ((agb)i + W,f) +a Z @Em (8xy + ny) 77Z)y> (8)

T x,y

where we scrutinize below three possibilities for the lattice derivatives 0 as well as for
the terms W,, Wy, derived from the superpotentialH so that the theory is free of fermion
doublers. None of these models is supersymmetric under the discretization of any of the

continuum supersymmetries (&),

5(1)¢a: - 5?%, 5(1)77[)3[: = —5((8@5)35 + Wx)a 5(1)%@ = 07

5(2)¢$ = szga 5(2)77[)3[: = 07 5(2)%@ = ((a¢)x - Wx)E, (9)

however, at least for a free theory both supersymmetries are realized in two of the models
with antisymmetric matrices (9,,). Thus, we might expect a better approximation to the
continuum theory for these models. In fact, it will turn out in section B that this behavior
pertains to the interacting case, e. g., the masses extracted from these two models are much
closer to their continuum values than those from the third theory. Truly supersymmetric

(improved) lattice models will be considered in section

2.2.1 The unimproved models in detail

(i) Naive lattice model with Wilson fermions

The most naive discretization is given by the action (B) with an additional Wilson term

°In general, W, is not equal to W/(¢,). The definition for each model can be found below.
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shifting the derivative 9 as explained in @, i.e.,
S = Sive, 0=0", W, =W'(¢,) and Wy, = W"($2)0y. (10)

The Wilson term removes fermionic as well as bosonic doublers. This action has no su-
persymmetries at all, and bosonic and fermionic excitations have different masses in the
continuum limit in the presence of interactions. Even the free model has no exact super-

symmetry; this can be traced back to the fact that the derivative 9" is not antisymmetric.

(i1) Naive lattice model with shifted superpotential
An alternative way to remove the fermion doublers employed by Golterman and Petcher

and later Catterall and Gregory |10, 36] is to use the (unshifted) antisymmetric matrix (0y,)

and add a Wilson term to the superpotential,
S = Spier D=0, Wo=—2(Ad)u +W'(d), Wiy = =By + W (6,)0. (11)
1d — “naive; — Y T 9 T )y Ty — 9 Ty z)Vzy-

It should be noted that (as compared to ([I)) only the bosonic terms are changed. This
model is only supersymmetric without interaction, i.e, for W/(¢,) = m¢,. In the inter-
acting case all susy Ward identities are violated. The breaking is equally strong for both

supersymmetries.

(111) Naive lattice model with SLAC derivative
Naively, one might expect the supersymmetry breaking effect in the naive lattice action (g])
with SLAC derivative (@) to be of the same magnitude as with backward derivative 9.

Surprisingly enough, this is not so; it will turn out that the mass extraction from the model
S = Swanes 0= 0" Wy = W), Wiy =W ()0 (12)

is about as good as for the improved actions considered below. This is again related to the
fact that the derivative is antisymmetric such that the free model with SLAC derivative

admits both supersymmetries (in contrast to the model with backward derivative).

2.3 Lattice models with improvement

In order to preserve one of the two lattice supersymmetries in ({) for interacting theories
the naive discretization (B) should be amended by extra terms which turn into surface terms
in the continuum limit and reinstall part of the continuum supersymmetry on the lattice.

Such invariant lattice models may be constructed with the help of a Nicolai map ¢ — £(¢)



of the bosonic variables. In terms of the Nicolai variables &,(¢) the improved lattice actions

take the simple form
a - 0&,
Ssusy - §Z£x<¢)2+azwxaiwy (13)
z T,y Py

This is a discretization of the most general supersymmetric action in terms of a real bosonic
variable and two real Grakmann variables on the circle [27]. Tt is easily seen to be invariant

under the first type of transformations
oW, =y, §W, = —26,, §Wy, =0 (14)
For the particular choice £,(¢) = (0¢), + W, the supersymmetric action (I3) becomes
Sy = 5 I ((00) + W @D (B + Way) ¥y

x?y

= Snave +a > Wa(0) (00), (15)

and the supersymmetry transformation () is identical to 8 in (). So the improved
model ([F) is invariant under the first supersymmetry §(!) for arbitrary superpotentials. It
differs from the naive discretization (B) of the continuum action ([{l) by the improvement
term a)_ W, (0¢), which turns into an integral over a total derivative in the continuum,
and hence zero for periodic boundary conditions. The improvement term is needed for an
invariance of the lattice action under one supersymmetry transformation. For an interacting
theory the lattice action (&) is not invariant under the other supersymmetry transforma-

tion 6 with parameter e; an action preserving only this symmetry can be analogously

constructed,
Suy =5 S El0P 40 Y T 52, (16)
z T,y
It is invariant under the nilpotent supersymmetry transformations
090, = e, 6P, =0, §%y, = . (17)
To generate the same fermionic term as in Sg,s, We choose éx = —(09), + W, with antisym-

metric (9,,) and symmetric W,,. Then the supersymmetry ([7) agrees with §® in (@), and

the action takes the form

Ssusy = g Z ((a(b)x - Wx)2 + CLZ @I (azy + Wzy) wy

'T7y

= Spae— a3 Wa(6) (90), (18)

9



For periodic fields Sgusy and gsusy converge to the same continuum limit. On the lattice they

are only equal in the noninteracting case,

2.3.1 The improved models in detail

We consider three supersymmetric versions of the discretization ([Z) with improvement

term.

(iv) Supersymmetric model with Wilson fermions and Ito prescription
In order to avoid doublers and at the same time keep half of supersymmetry we use the
antisymmetric matrix (&Cy) and shift the superpotential by a Wilson term [40] H The corre-
sponding model

a

A a / "
Syg = Sasy, 0=0, W,= —§(A¢)x + W), Wy = —§Axy + W ($2)6sy  (19)

is invariant under the supersymmetry 8 [36]. Of course, the non-interacting model is also
invariant under 6.

With these definitions, the improvement term is given by the well-known Ito prescription
Zx WI(¢$) (¢x - ¢x—1)-

(v) Supersymmetric models with Wilson fermions and Stratonovich prescription
Instead of the Tto prescription, we can choose the Stratonovich scheme [40)] for the evaluation
of the surface term, > W'(0,) (¢ — ¢u_1) with 0, = 3(¢ + gbx_l).h

action can be obtained from () with a Nicolai variable &,(¢) = (0°¢), + W'(0,),

a W' (o)
—A RO a2y
2 + oy

One should note that this procedure differs from the one proposed in [38], where the fermions

The corresponding

S¥) = Spys 0=10, W, =—=(A¢)y+W(0y), Wy =— (20)

a
2

are first integrated out in the continuum theory, and only then a Stratonovich interpretation
is given for the surface term — in this case, the fermionic path integral of the Euclidean evolu-
tion operator has to be defined in a non-standard way in order for the bosonic Stratonovich

Jacobian to cancel the fermion determinant.

6In order to preserve the second supersymmetry §(2) also for Ssusy in ([[3) in the absence of interactions,

its definition will have to be slightly modified only for the Stratonovich prescription to be discussed below.
"It is obvious that this is equivalent to working with a shifted lattice derivative as in (@) and an unshifted

superpotential since the action now only depends on the invariant combination &,.
8For monomial superpotentials W (¢) = ¢¥, k = 1,2, ..., this prescription is equivalent to the prescription

> (W' (¢g) + W (¢a—1)) (¢ — ¢z—1) ; in the latter case, the superpotential terms are evaluated only at

a given lattice site.

10



We will see that compared to the fermion determinant involving continuum derivatives,
the continuum limit of the fermion determinant for the Ito prescription is off by a factor
depending on the superpotential whereas the Stratonovich prescription reproduces exactly
the desired continuum result.

Since ([20) was constructed from (I3) in terms of Nicolai variables, it is manifestly super-
symmetric under 01 as given in ([d). The discretization of the second supersymmetry is
in general not preserved on the lattice, not even in the free case. This latter fact suggests a
modification of &,(¢) in () to

£:(9) = —(09)x

This changes effectively the backward- into a forward-derivative, and the derivative of the

— 5(A6), + W/(a)). (21)

superpotential is evaluated now at o, = 1(¢, + @,41). With these definitions, §® is a
symmetry of the action (20) in the absence of interactions. It is also this variation with

which we compute Ward identities in section

(vi) Supersymmetric models with SLAC derivative

In order to avoid fermion doublers, we can specialize O to be the SLAC derivative,
SO = Squys 0= 0", W, =W (¢,). (22)

In spite of its nonlocality, the fermion and boson masses extracted from two-point functions
prove to approach the continuum value quite fast; the quality turns out to be comparable
to that of the Stratonovich prescription. The interacting supersymmetric model with SLAC

derivative is only invariant under 8% in (@) by construction.

2.4 Fermion determinants

In this subsection we demonstrate which sign of the Wilson term we must choose in order
to guarantee positivity of the fermion determinant. After that, it will become clear that
as compared to the value for the continuum operator, the fermion determinant for the Ito
prescription is off by a factor depending on the superpotential whereas the Stratonovich

prescription and the SLAC derivative reproduce the desired continuum result.

2.4.1 Sign of the determinants

For a real fermion matrix 0., + W,,, complex eigenvalues A appear pairwise as A in the

determinant. Hence, the determinant can only become negative through real eigenvalues.

11



Since without loss of generality, eigenvectors v, to real eigenvalues A can be taken to be real
(otherwise, take v, + v¥) and normalized, only the symmetric part of the fermion matrix

contributes to a real \:

A= 0y Oy + Way) vy = > v, (05, + Way) vy, (23)
Y Y
For the antisymmetric SLAC derivative the symmetric part 0° is absent and no Wilson term

is required, W,, = W'(¢,)d,,, such that the real eigenvalues are given by

A=) W (¢.)vl (24)
We conclude that all real eigenvalues and thus the determinant will be positive for the
models (4ii) and (vi) in case W is nonnegative definite. For the models (i), (ii) and (iv)

with Wilson term the real eigenvalues are given by

A= —% VA pyvy + Z W ()02 (25)
zy v

Since —A is positive all real eigenvalues A and therefore the determinant will be positive
definite in case the W"”(¢,) are nonnegative and r > 0; as usual, in this paper we choose
r = 1 in this case. Vice versa, for a negative W”(¢,) we would have to change the sign of
the Wilson term (i.e., choose r = —1) for the fermionic determinant to stay positivefl In
the following subsection we shall prove by an explicit calculation that also for the model (v)
with Stratonovich prescription the fermionic determinant is positive for positive WW”.
If W is neither positive nor negative definite positivity of the fermion determinant is not
expected. In fact, for instance in the particular example of W (and W) being an odd power

of ¢ we have to expect a change of sign: From the interpretation of the Witten index
Zw = / DyDyYDpe™ = / Dé det(0 + W (p)) e vos, (26)
per.b.c.

(for the path integral with periodic boundary conditions for all fields) as the winding number
of the Nicolai map & = ¢ + W’ regarded as a map from the space of bosonic variables to
itself [42], we expect that there may be phases with broken supersymmetry for W’ even; the

Witten index vanishes. This would be impossible for a determinant with definite sign.

OEither way, this part of the action satisfies site- as well as link reflection positivity [&1].

12



2.4.2 Calculating the determinants

The fermionic determinant for the Ito and Stratonovich prescription can be computed ex-
actly. The (regularized) determinant of the continuum operator 0. + W"(¢(7)) on a circle

of radius 3 can easily be seen to be [43]

0, + W"(¢(r))\ _ sinh (§ i dr W"(¢(7)))
det ( 0r +m ) smh(2 m) 7 (27)

this is the value with which we have to compare the lattice results. Note that for a non-
negative W” the determinant is positive.
For Ito’s calculus with Wilson fermions, the ratio of the determinant of the fermion matrix

for the interacting theory

896@/ + ny = a]zoy + W”(Qbm)axy (28)
to that of the free theory is given by
0+ (Wyy) [T+ aW"(¢,)) —1
det | ———=X = . 29
¢ <8b+m11) (14+am)N —1 (29)

It is positive for positive W”(¢) and this;ﬁrees with the results in the previous section. For

N = 3/a — oo, the product converges t
O+ W)\ wee RHWCDER (o (i)
det | ——2 det 30
¢ (8b+mﬂ ) —> e2Pm/2 ¢ Oy +m (30)
since In [ (1 4+ aW"(¢;)) = > In(1 4+ aW’(¢,)) — [ dx W"(¢,). The limit B0) differs by

a field dependent factor from the continuum result.

For Wilson fermions with Stratonovich prescription the regularized determinant of the

fermion matrix
Opy + Wy = 6b W”(crx) (Oy + 0u—1,y) (31)

is again positive for positive W”. But in contrast to the determinant (Z9)) with Ito prescrip-

tion it converges to the continuum result,

01 W)\ T+ 8M) ~TI0 = 8M,) e - (8, + W(6())
det(au(mxy))sm‘ [I(1+ 2m) — [1(1— &m) *det( 5, +m ) (32

where m,, = (0, + 6,-1,) and M, = W"(o,). One can show that for N — oo the

fermionic determinant with SLAC derivative converges rapidly to the continuum result.

1°Tn a completely analogous manner, the right-derivative would lead to the inverse prefactor in front of

the continuum result.
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3 Simulations of supersymmetric quantum mechanics

We have performed high precision Monte-Carlo simulations to investigate the quality of
the six lattice approximations introduced in subsections 2211 and 231l The models with
actions S&),Sﬁl) and SS) are not supersymmetric whereas the actions SS),SS) and SS)

preserve the supersymmetry 5,

3.1 Effective Masses on the lattice

In order to determine the masses we have calculated the fermionic and bosonic two point

functions

Gil(x) = (putro) and Gl (2) = (Vuthy), (33)

in all models (n) and fitted their logarithms with a linear function. This way of determining
the masses mpos(a) and Myery (a) from the slope of the linear fit works well for all models
with ultralocal derivatives. Details on technical aspects of the extraction of effective masses
can be found in section 0.3

3.1.1 Models without interaction

The actions of the non-interacting models are quadratic in the field variables,
1 _
Sfree - 5 Z ¢xny¢y + Z wxMxy'le)y' (34)
Ty Ty

Actually, for W/(¢) = m¢ all the improvement terms vanish and only four of the six actions
introduced in the last section are different. The corresponding matrices M and K are given
in the following list:

Shoe Stee = Stee Stee Stee = Stee
M| ®+m " +m (1 -2 +m 0% +m (35)
K || =A+m?| =A+m?—amA | — (1= (2)?) A+ m? | —(9°%)? + m?
= MM = MTM — MTM

For the actions in the last three columns we have det K = (det M)? as required by su-

persymmetry. This is not true for the non-supersymmetric naive model Sf(rle)e with Wilson

fermions.

Note that 8 + (8")7 = —A and —9? + 1a2A% = —A.
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Without interactions, the masses of all models as determined by numerically inverting M
and K converge to the same continuum limit m. For the free supersymmetric models (7i)-
(vi), Mpos(a) and Mgy (a) roughly coincide even for finite lattice spacings. This is to be
expected for supersymmetric theories. In the first model, myqs(a) for finite a is already very
close to its continuum value, in contrast to Mg, (a) which for finite a is considerably smaller
(
f

than mypes(a). Since the free supersymmetric action S, Y has the same fermionic mass as

ree
Sf(rle)e and since Myos(a) & Mierm (@) for this model, we conclude that its bosonic mass for finite
a is notably smaller than its value in the continuum limit. Thus, when supersymmetrizing
the naive model with Wilson fermions we pay a price: the boson masses get worse while
approaching the fermion masses.

The situation is much better for the other supersymmetric models with SLAC derivative
or Wilson fermions with Stratonovich prescription. The masses are equal and very close to
the continuum result already for finite a. The masses for the Stratonovich prescription are
comparable to the boson masses of the naive model without supersymmetry. The masses

for the free models and their dependence on a are depicted in figure [Il

u] o c
10 F BEEe B SEEEIEEH 0§ O 7 + + .
*
* *
*%
*
9.8 *
*
g * (1)
2 96k " x * * Meerm
z 9 NG
E * “ferm
6
g * * mi’egm
S 94r
& .
[5)
*
9.2
*
9t
*
8.8 L L L L )
0 0.005 0.01 0.015 0.02 0.025

lattice spacing a

Figure 1: The masses determined by numerically inverting the kinetic operators for the free

theories. There are only 4 different masses, cf. (BH).
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Figure 2: Boson and fermion masses for Wilson fermions without improvement (model (7))
and non-supersymmetric SLAC fermions (model (ii7)). The parameters for the linear fits
can be found in table [

From (B3) we conclude that
= (1= 2) 2 e (1~ ) o

(a) extracted from Gg’r)m is close to the continuum value m such that

G(4)

ferm

(5)

The mass my,,

am

1,2,4 24
mgerm )(a’) = ml(jos)<a’) ~m (1 - 7) ) (37)

and this simple relation explains why the linear fit through the masses m (a) marked

ferm

with red dots in figure [l has such a large negative slope.

3.1.2 Models with interaction

We have calculated the masses for the interacting models with even superpotential

W(o)= 56"+ 76" = W(0) =m’6” +2mgs" + g% (38)

Since in the weak coupling regime the results are comparable to those of the free models we

have simulated the models at strong coupling. In order to compare our results with those
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of Catterall and Gregory in [36] we have picked their values m = 10 and g = 100 for which
the dimensionless ratio g/m? equals unity. The energy of the lowest excited state has been
calculated by diagonalizing the Hamiltonian on large lattices with small @ and alternatively

with the shooting method. With both methods we obtain the continuum value
Mphys = 16.865. (39)

We now summarize the results of our MC simulations. As in the free case, mypos(a) #
Mferm (@) for the non-supersymmetric model with action Sﬁ), see figure In addition, for
g # 0 their continuum values are different and none of the two values agrees with (Bd). This
has been predicted earlier by Giedt et al. [37]. We conclude that the naive lattice model
with Wilson fermions is not supersymmetric for a — 0.

The Monte-Carlo results are much better for the second model with action Sﬁ) as given
in (). Although this model is not supersymmetric, its boson and fermion masses are
almost equal for finite lattice spacings. Linear extrapolations to vanishing a yield mfo)s(O) =
16.68 £ 0.05 and mﬁj}m(o) = 16.73 £ 0.04 which are quite close to the correct value 16.865.
The results for the non-supersymmetric model with action Sg) and the supersymmetric
model with action Sﬁ? are almost identical, similarly as for the free models. The masses
for various lattice constants between 0.005 and 0.03 for the two models are depicted in
figure Bl The corrections to the continuum value are of order O(a) and are as big as for the
corresponding free models. The slope and intercepts for the linear fits are listed in table [l
At finite lattice spacing a, the masses Muyos ferm (@) for model (v) with Wilson fermions and
Stratonovich prescription are much closer to their respective continuum limits than for
the model (iv) with Ito prescription. Furthermore, the extrapolated continuum masses,
m,(DSO)S(O) = 16.78 £ 0.04 and mgm(O) = 16.77 £ 0.02, are very close to the correct value
[B9). The data points for the supersymmetric models with Wilson fermions are depicted in
figure @l Again the slope and intercepts of the linear fits can be found in table [l Of all
lattice models with ultralocal derivatives considered in this paper this model yields the best
predictions.

The model with Stratonovich prescription for the improvement term is outperformed only
by the models (iii) and (vi) with nonlocal SLAC derivative for fermions and bosons. This
observation is not surprising, since the remarkably high numerical precision of supersymmet-
ric lattice models with SLAC derivative has been demonstrated earlier in the Hamiltonian
approach in [9]. Furthermore, this is in line with our results for the free models, see figure [l

The masses for the interacting unimproved model (ii7) are plotted in figure B and those
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Figure 3: The masses myos(a) and mgm(a) for models (ii) (shifted superpotential) and (iv)

(Ito improvement).
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Figure 4: Masses for supersymmetric models (vi) (Ito prescription) and (v) (Stratonovich

prescription). Only lattices with at least 61 sites are included in the fit.
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Figure 5: Masses for the supersymmetric model (vi) with SLAC derivative as compared to

the masses of the model (vi) with Wilson fermions and Ito prescription.

for the improved model (vi) in figure Even for moderate lattice spacings the masses
Mpos(@) X Meeym(a) are very close to their continuum limits m,(i)s(O) = 16.84 £ 0.03 and
mﬁfﬁm(O) = 16.81 £ 0.01 which in turn are off the true value 16.865 by only some tenth
of a percent. The extrapolated masses for the unimproved lattice model in table [l have a
comparable precision. But of course there is no free lunch, since for the SLAC derivative
one must smooth the two-point functions Ghes ferm () With a suitable filter for a sensible
mass extraction. Details on the filtering can be found in subsection B3l

In the following table we list the slopes & and intercepts m(0) of the linear fits
mbos(a) = kbos -a—+ mbos(o) and mferm(a) = kferm -a+ mferm(o) (40)

to the measured masses for the six lattice models considered.
The linear fits for the models with improvement (iii)- (vi) are compared in figure B Lattice

supersymmetry guarantees that the boson and fermion masses are equal for these models.
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model Ebos Mpos(0) Eferm Miferm (0)
S 1 13952 £845 12.234+0.08 | —186.25 £4.98 18.40 & 0.05
52| _136.85+5.22 16.68+£0.05 | —146.10 £3.84 16.73 & 0.04
S| 25224624 16.92+£0.07 | —33.64+£252 16.97 4 0.03
SW 113511 +£7.36 16.68 +0.07 | —138.50 +2.85 16.64 4 0.03
S| —40.40+4.46 16.78£0.04 | —37.55+£1.98 16.77 4 0.02
S 1 _17.97+£241 16.84+0.03 | —18.53+0.91 16.81 40.01

Table 1: Slope and intercepts of linear interpolations for the masses.

Figure 6: Linear fits to the masses of all three supersymmetric lattice models.

3.2

The invariance of the path integral measure under supersymmetry transformations leads to
a set of Ward identities connecting bosonic and fermionic correlation functions. Namely,

the generating functional for Green’s functions should be invariant under supersymmetry

effective mass m

17r continuum. value: 16.865
16 - = N Ti=o —
N =~
N -
15.5F N
N
N
15 RN
N
N
14.5 N
N
Wilson bos. Ito AN
14+
— — - Wilson ferm. Ito J
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13+ improved SLAC bos. N
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Ward identities

variations of the fields,

0=02[J,6,0) = / D(, ) e~ Eal bttt D) (57,66, 40,00, +6,005,) =65 ). (41)

lattice spacing a
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0.002 ¢ Ward-Identity 2: m =10,g=10
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Figure 7: Ward identities for the free theory, model (ii) (with shifted superpotential).

Ward identities are obtained from derivatives of this equation with respect to the sources.

The second derivative 82/&]1891, leads to the Schwinger-Dyson equation

(Gathy 61 S) = (00 0W1hy) + (16D ), (42)

whereas 0°/0.J,00, yields

(Batby 6P S) = (¢, 6D,) + (1, 6P ). (43)

For the improved models (iv)—(vi) in subsection ZZ31] the actions are manifestly invariant
under 5V and the left-hand side of (@) vanishes. Thus for these models the following Ward
identities hold on the lattice:

This can be confirmed in numerical checks and merely serves as a test bed for the precision of
the algorithms. The discretization of the second continuum supersymmetry transformation,
however, only leaves these lattice actions invariant in the free case. With interactions, the
term 6 S leads to a nonvanishing left-hand side in the Schwinger-Dyson identities (EZ)
which therefore measures the amount by which the second continuum supersymmetry is

broken by the discretization. Since this supersymmetry can be made manifest by choosing
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Figure 8: Ward identities for the theory at strong coupling, model (ii) (with shifted super-
potential).

different Nicolai variables €, the supersymmetry breaking terms are the difference of both
actions (@) and (I8), i.e., the discretization of the surface terms (for (iv) and (vi)).

For the actions in (i)-(7ii) all supersymmetries are broken by the discretization; the cor-
responding Schwinger-Dyson equations again can serve as a measure for the quality of the
lattice approximation to supersymmetry. Barring interactions, we expect them to hold for

both supersymmetry transformations in (45) and (7ii).

3.2.1 Ward identities of the unimproved models

The Ward identities have been simulated for models with the same superpotential as in (BS]).
Since at weak coupling similar results can be expected as in the free theory with g = 0, we
have also studied the theory at strong coupling with g = 800 and m = 10 corresponding to
a dimensionless ratio g/m? = 8.

The naive discretization (i) is not supersymmetric even without interactions, therefore we
concentrate on the other models where the supersymmetry of the free theory sets a scale for
the quality of the simulation of the broken supersymmetries in the interacting case. For the

unimproved models, we can use translation invariance and measure the right-hand sides of
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Figure 9: Ward identities for the free theory, model (iv) (Wilson fermions with the Ito

prescription).

the Ward identities ([@2) and H3J), i.e.

RV, = (u,) — (62(08),) — (6. W) (45)
and
R, = (60 (00),) — (62 W,) — (utly) (46)

as functions of z — y. It should be noted that without interactions, the first Ward identity
reduces to a matrix identity D' — (DT D)~'D* = 0 for the free Dirac operator D,, = 0y, +
mdyy if one uses that (Y,1,) = D) and (¢.¢,) = (DTD);l. The corresponding data for
the free theory in the case of the model with shifted superpotential (model (ii)) are shown in
figure[ In order to keep statistical errors small, in all situations 4 runs with 10° independent
configurations were evaluated. Within our numerical precision, supersymmetry is broken for
this model if the simulation data in the interacting case exceeds the bounds set by the free
theory. The results for (#X) and [HH) at g = 800 are displayed in figure B Remarkably, the
statistical error is much smaller than in the free theory; supersymmetry breaking is equally

strong for both supersymmetries ) and §® from (@) at strong coupling.
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3.2.2 Ward identities of the improved models

For Wilson fermions with exact supersymmetry and the Ito prescription (model (iv)), the
statistical error as measured by the free Ward identities is roughly of the same size as for the
unimproved model (i), cf. figure@ Again, this was obtained by 4 runs with 10® independent
configurations. As expected, the first supersymmetry 6V (cf. (Id)) and figure [T) is preserved
even at strong coupling; however, the supersymmetry breaking effects for 6 are about three

times as large as for the corresponding svmmetrv in the unimproved situation.

0.006
o3 Ward-Identity 1: m = 10, g = 800
¢ Ward-Identity 2: m = 10, g = 800
0.004
ko)
0.002
’_AT ko
%8
- OEIIII¥§%$Q§§I§¥§$¢III
- Koz
-0.002 -
=
-0.004 |
Kol
-0.006 L 1 L )
0 5 10 15 20

lattice point x

Figure 10: Ward identities for the theory at strong coupling, model (iv) (Wilson fermions
with the Tto prescription).

For the free supersymmetric model with Stratonovich prescription (model (iv)), the second
supersymmetry () is only a symmetry with the definition (ZI)) of £. The Ward identities

of both supersymmetry transformations,

(athy) = (02(09)y) — (@ W'(2E52=1)) = 0,
<¢x (a(b)y) - <¢I W/(%» - <1Ezwy> = 07 (47)

reduce in the free theory with W’(¢) = m¢ to matrix identities for the free Dirac operator

Dyy = Opy + %(dvy + 5r7y71)a
D' —(DTD)'DT = 0,
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Figure 11: Ward identities for the free theory, model (v) (Wilson fermions with the

Stratonovitch prescription).
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Figure 12: Ward identities for the theory at strong coupling, model (v) (Wilson fermions

with the Stratonovitch prescription).
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—(D'D)*'D+(D™HT = 0. (48)

Here, the second identity holds since D is circulant and therefore normal. The corresponding
plot of the left-hand sides is shown in figure [[Il This determines the mean error above
which we take supersymmetry to be broken if we switch on interactions. In figure [[2,
the first supersymmetry is preserved within a high numerical accuracy whereas the second
supersymmetry is clearly broken by effects about three times the size of the supersymmetry
violation in the model with Ito prescription.

For the supersymmetric model with SLAC derivative, the Ward identities are satisfied within
statistical error bounds, but determining the mean error in an analogous manner fails since
the contributions of the bosonic two-point functions (¢,(0¢),) in the free theory lead to

large errors which obscure the interpretation of the corresponding Ward identities. At

0.025
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0.02 F 4 ¢ Ward-Identity 2: m = 10, g = 800
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ot

Figure 13: Ward identities for the theory at strong coupling, model (vi) (supersymmetric
model with SLAC fermions).

strong coupling, however, the interaction terms dominate the action, and the fluctuations
of the bosonic propagators become increasingly less important so that we obtain rather
precise results at ¢ = 800. Within the error bounds of model (v), the first supersymmetry
is obviously preserved in the interacting theory (cf. fig. [3), whereas the supersymmetry

breaking effects of the second supersymmetry are about as large as for Wilson fermions with
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the Stratonovich prescription.

4 The N =2 Wess-Zumino model in 2 dimensions

In this section, we study different discretizations of the two-dimensional Wess-Zumino model
with (2,2) supersymmetry. The minimal variant contains a Dirac spinor field and two real
scalar fields ¢, which are combined into a complex scalar field ¢ = 1 + ipy. Also, we use
the complex coordinate z = ! +iz? and its complex conjugate z in Euclidean spacetime and
denote the corresponding derivatives by 0 = %(81 —i0y) and 0, respectively. The Euclidean
action contains the first and second derivatives W/ and W” of a holomorphic superpotential
W (¢) with respect to the complex field ¢,

_ 1 _ _
St = / (20606 + J[W'P+GMY), M =9+ WP, + WP, (19)
where Py = $(1 %+ 3) are the chiral projectors. In the Weyl basis with 7! = o1, 72 = —0
and v3 = i7'9? = o3, the complex spinors can be decomposed according to
(1 - -
1/} = w and "Lp = (1/}1,1/}2). (50)
2

In this basis, the supersymmetry transformations leaving S, invariant are

0 =Ple + eyt oYt = _%ng_l — 09y, oYt = _%ngl + g,

- - - z o1
5¢ = 1/1282 + §2w2, 51/}2 = —8¢6‘1 - %W/§2, 5’¢2 = &bsl — %W’é?g. ( )

Similarly as in quantum mechanics a naive discretization of this model breaks all four super-
symmetries. In order to keep one supersymmetry one can add an improvement term. In what
follows we shall only consider improved models; they differ by our choice of the lattice deriva-
tives. Instead of trying to generalize the Stratonovich prescription to the two-dimensional
situation, we find in subsection Bl that a non-standard choice of the Wilson term leads to
an improved behavior in the limit of vanishing lattice spacing. This is corroborated by the
results of our simulations for the case of a cubic superpotential W = $m¢?* + $g¢* which

we present in subsection

4.1 Lattice models with improvement

We start with a two-dimensional periodic N7 x Ny lattice A with complex bosonic variables

» and two complex spinors v, 1, on the lattice sites z = (z', 2?) € A. Again two different
g
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antisymmetric lattice derivatives in direction p are used. These are the ultralocal derivative

o 1
Oy = 5 (&He#,y — 5:,3,6”@) (52)
with doublers and the nonlocal SLAC derivative without doublers, which for odd Ny, Ny

reads

aslac __ aslac 5
Ly — Yzi1#y1 7 T2,92)

Q52 = 91 Gy and  E =0 (53)

2,xy 1T

(analogously to the one-dimensional SLAC derivative defined in (H)). Later we shall remove
the fermionic doublers of ’Y“éu by introducing two types of Wilson terms, both containing
the lattice Laplacian A defined by

1
(A6)(w) = = (D [0 +e,) + 6(x —e,)] — 46()). (54)
pn=1,2
As for the continuum model we use the holomorphic lattice derivative 0,, := %(817@ — 002 4y)-

The Nicolai variables of one-dimensional systems are easily generalized to two dimensions,
o =200)s + Wa, & =2(00)s + Wo; (55)

again, W, denotes terms (to be specified below) derived from the superpotential. The
bosonic part of the action is Gaussian in these variables, Sy, = % >, £,&,, and has the

explicit form
~- - 1

Shos = @ 3 (2000).(00), + Wo(00)s + WL(DD), + 5IWa?). (56)
For antisymmetric derivatives 0, the kinetic term has the standard form Zz,ﬂ:1(8u90a)i in
terms of the real fields ¢,; in particular this holds true for the ultralocal derivative 9, and
the SLAC derivative 6;1“ introduced above. The second and third term in S}, are absent in
the continuum action. In a naive discretization of the continuum model these improvement
terms do not show up. In the continuum limit they become surface terms and could be
dropped. On the lattice they are needed to keep one of the four supersymmetries intact.

Supersymmetry requires an additional fermionic term St = aQZQ/_JxMIywy for a two-

component Dirac spinor field in such a way that the determinant of the Jacobian matrix

(8&/6% 8@/6&6@,) (Ww 25;3,) oW,
= , Wey =

05,100, 06./06,)  \20, W, = 9, (57)
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for the change of bosonic variables (¢, @) — (£, €) cancels the fermion determinant det M.
Actually the fermionic operator M in ([#9) with y-matrices in the Weyl basis and continuum
derivatives replaced by lattice derivatives is identical to the Jacobian matrix. Hence we

choose as the fermionic part of the action

Sterm = a’ Z szMwy@Z)ya My = "Yuau,xy + Wy Py + nyP—
x,y

= Mo+ W"(¢2)0uy Py + W"($:)00y P . (58)

By construction the action Sgusy = Shos + Sterm With improvement terms is invariant under

the supersymmetry transformations generated by 6(\):

W, =epl, Wl =-Leg, Wyl =0,

Mg, = gq/,g, 5(1)@ — _%ggm (5(1)¢§ =0; (59)

this corresponds to a discretization of the continuum symmetry (BIl) with e; = 5 = 0 and
g1 = &y = &. The other three continuum supersymmetries are broken; for appropriately
chosen Nicolai variables ¢ an action preserving any one of the three other supersymmetries
can be constructed analogously [3()]. In this paper, we are going to use the Nicolai variable

(E9) and consider several possibilities to remove fermion doublers.

4.2 The lattice models in detail

We introduce three different lattice approximations to the continuum Wess-Zumino model
(). They are all equipped with an improvement term and thus admit one supersymmetry.
The first two models contain Wilson fermions and the third the SLAC derivative. It will
turn out that the discretization errors of the eigenvalues of the bosonic and fermionic kinetic
operators in the free case indicate how good the approximation to the continuum theory is

when we turn on interactions.

(i) Supersymmetric model with standard Wilson term
Here we choose ultralocal derivative 60H and add a standard Wilson term to the superpotential
to get rid of the doublers of 7“80H so that

S(l) — Sbos + Sferm Wlth 8;,, - éﬂ, Wx - _%<A¢>I + W/<¢33) (60)

12The corresponding Nicolai variables can be read off from the right-hand sides of §1® in @]l for e; =
+e5 = ¢ and & = 0 or from the right-hand sides of §¢)® for &, = +&, = & and € = 0.
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For later convenience we do not fix the Wilson parameter r in this section. In this lattice
model the Dirac operator M in (BS) takes the form

MY =419, — —A (61)

and we easily recognize the standard Dirac operator for Wilson fermions. The bosonic part

of the action may be expanded as

Shel = QZ(%M) FIW(0a)) + a2 Y (W'(6a) (06 — TAG), + ) (62)

x x

with the kinetic operator

K=-A+ (3 arA)?,  where A= —80M5“. (63)
The last term in (G2)) is the improvement term — a discretization of a surface term in

the continuum theory. Note that even for the free massive model with W'(¢) = m¢ the
improvement term —21(amr)a® " ¢;(A¢), is non-zero such that (€2) becomes

bos = Z ¢xK(1 with KU = K +m? — armA. (64)

The eigenvalues of the commuting operators —A and —A are % and p?, where

o 1. . 2, , 2k
Pu = —sinap, P = sin (%) with p, = ]7;”, k,e{1,2,...,N,}, (65)
I

such that the eigenvalues of the matrix K in (64 are

pp =B + (m + Sarp?)”. (66)

On the other hand, the eigenvalues of the free Dirac operator Mél)

+ m are given by
Ay =m+ sarp® +i|p). (67)

Thus, p, = )\;)\p , and the fermionic and bosonic determinants coincide for the free theory.

The discretization errors for these eigenvalues are of order a,
fy = p> +m® + (arm)p® + O(a®), Ay = =£ilp| +m + Lar p® + O(a?). (68)

It is remarkable that the bosonic part of the action in the continuum is an even function of

the mass, whereas its discretization (G2) is not. This spoils the sign freedom in the fermion
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mass term on the lattice and motivates the following second possibility.

(i1) Supersymmetric model with non-standard Wilson term
Again we choose the ultralocal derivatives 60H but now add a non-standard Wilson term to

the superpotential to get rid of the doublers, so that the action now is
@ _ ) N _tar ,
S - Sbos + Sferm with 8# - 8#7 W:v - 7<A¢>I + w <¢£B) (69)
This choice is equivalent to an imaginary value of the Wilson parameter inside the holomor-
phic superpotential. Now the Dirac operator My in (E8) has the form
2 ar
MéQ) — ,Yﬂau + 773A (70)
and contains a non-standard Wilson term, reminiscent of a momentum dependent twisted
mass. It should be noted that the only difference between the bosonic actions (62) and
S = C3 (301 + W) +0* 3 (W) (B0 - “0A3), +0c), (1)
bos 2 - T T T - T 4 z .C. |,
is the improvement term. The modified Wilson term in (69) yields an action which is even
in the mass m. Actually, for the free massive model with W/(¢) = m¢ the improvement

term vanishes and

2

(2 _ @ T (2 . 2) _ 2

Shos = > 0. KD¢, with K® =K 4+m’ (72)
xy

The eigenvalues of K® and of the free Dirac operator M + m in this case are given by

py = m* + p* + (%arﬁ2)2 and AS =m+i\/p®+ (%a’r’ﬁ2)2. (73)

Again the determinants of fermionic and bosonic operators are equal. The added advantage
in this situation is, however, that the Wilson parameter can be tuned in such a way that
the discretization errors of the continuum eigenvalues are only of order O(a?). Namely, for

small lattice spacing,
pp=m? +p* +r+0(a), N =mEi(p?+ k)7 +0(d), (74)

where the O(a®)-term x = a*(3r* — 4)/12 )" p;, vanishes for 47> = 3. In fact we will see in
section that the value A
2
_ 75
2= (7



leads to the best continuum approximation — and this in spite of the fact that the choice (7))

violates reflection positivity (as does the improvement term in all supersymmetric models).

(i1i) Supersymmetric model with SLAC derivative
The Dirac operator 7“8;1“ with nonlocal and antisymmetric SLAC derivatives defined

in (B3)) has no doublers and no Wilson terms are required; this leads to the action
S® = Shos + Sterm With 0, = 05, W, = W'(¢,) (76)
with Dirac operator
MO(3) = azlac’ (77)

cf. (E8). For the free massive model with SLAC derivative the improvement term vanishes,

in particular the bosonic part of S® is

S — Z%K(?’ ¢, with K& = _Asec 4 mp2, (78)

all supersymmetries are realized. We shall see in section that S©® is a very good ap-
proximation to the continuum model and in section [l that the lattice model based on the

SLAC derivative is one-loop renormalizable in spite of its nonlocality.

4.3 Simulations of the Wess-Zumino model

In subsection EZIl we have formulated the model in a complex basis, which is natural and
convenient for models with two supersymmetries (in particular, the simplest form of the
Nicolai map (B5) is in terms of the complex scalar fields ¢ = ¢ + ips and £ = & + i&s).
On the other hand, for numerical simulations it is convenient to have a formulation of the

model in terms of the real components ¢, and &, which are combined to real doublets,

(2) ()

As to the fermions, it is most appropriate to use a Majorana representation with real -
matrices 7! = o3, 72 = oy such that 3 = iy'4? = —0,. All simulations were done for the

model with cubic superpotential W = img¢? + gggb?’ with derivative

W' (p) = mep1 + u + i(mps +v), (80)
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where we have introduced the abbreviations u = g(©? — 3) and v = 2gp1p,. The actions

contain a quartic potential

Vip)=|W'(@)]° = (m” + g°¢” + 2mgep1) . (81)

In terms of real fields, the Nicolai map (B3) takes the form
) — (Al u
£ = (My" +m)p + for n=1,2,3 (82)
v

with model-dependent free massless Dirac operators M. as given in (BI), (Z0) and (7).
The bosonic actions for the models with standard Wilson, modified Wilson and SLAC
fermions can now be written as
o2
Sbos - 2 Z(Saxu Ty QOy Z V A(n) (83)
zy
with model-dependent kinetic operators K™ as introduced in (64)), (7Z) and (Z8). In terms
of the divergence and curl of a vector field in two dimensions, div ¢ = 01 + Japo and

curl ¢ = 019 — 01, the model—dependent improvement terms
ar
AD = ¢ Zuz < (div @), — — Agol ) —a va < (curl @), ?<Ag02)x> ,
@ _ ; _a 2 _ ar
A¥ = aqa Zuz < (div @), 5 (Agog)x> +a sz < (curl ¢), + 5 (Agpl)x> , (84)
AB) = 42 Z ug(div @), — a® Z vz (curl @),

again are discretizations of continuum surface terms.

4.3.1 Models without interaction

As expected, the masses of all models without interactions converge to the same continuum
limit m. Since all free models are supersymmetric (w.r.t. two supersymmetries), boson
and fermion masses extracted from the two-point functions coincide even at finite lattice
spacing. The masses m(a) for the models (ii) and (ii7) with non-standard Wilson term
(with 72 = 4/3) and the SLAC derivative, respectively, at finite a are already very close to
their continuum limits, the effective mass as a function of a for the model with standard
Wilson term (with » = 1) has a much larger slope. This is in line with the approximation
of the eigenvalues (E8) and () to those of the continuum kinetic operators.

13This behavior is reminiscent of the masses m(a) for the corresponding quantum mechanical model in

section (BIT)).
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4.3.2 Models with interaction

We have calculated the masses for the interacting models with cubic superpotential
Lo, 1
W(¢) = 5mé™ + 594 (85)

for masses m = 10 and couplings g ranging between 0 and 1. The effective masses at
different values of the lattice spacing are determined as described in section Again, due
to supersymmetry boson and fermion masses coincide also for finite lattice spacing. In all
cases, they converge to a continuum value which however cannot reliably be distinguished
from the value mge(a = 0) = 10 within error bounds. This is to be expected since in

continuum perturbation theory, the one-loop corrected mass is

2

Mi—toop = m(l ~ 9 ) (86)

4m?

in a renormalization scheme without wave-function renormalization (this corresponds to a
correction less than about 0.3% with our values of m and ¢). Thus, significant effects should
only be seen at larger values of g/m. Unfortunately, our simulations require reweightings
which lead to rather large error bounds (which grow as the coupling increases). The conver-
gence behavior to the expected continuum value is model-dependent: The model with the
non-standard Wilson term shows the expected improved behavior leading to good estimates
for the continuum mass already at finite lattice sizes. As in quantum mechanics, this applies
also to the SLAC derivative.

5 Algorithmic aspects

In this section we briefly outline the methods and algorithms we have used in our simulations.
In particular we have modified the treatment of the fermion determinant in the well known
Hybrid Monte Carlo algorithm (HMC) [44].

Although due to the low dimensionality of the models under consideration the numerical
studies to be carried out are much less demanding than, e. g., four-dimensional lattice QCD
we have to face similar problems with respect to the treatment of the fermion fields. However,
the computational tasks at hand allow for strategies which are more accurate and easier to

implement than what is widely used there. Since our models do not contain any gauge
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Lattice spacing Wilson Twisted Wilson
mp mg mpg mg
0.1250 6.34(4) | 6.4872(1) | 9.51(8) 9.95(7)
0.0833 7.32(3) | 7.2730(2) | 10.0(1) | 10.0182(1)
0.0625 7.81(8) | 7.768(1) | 10.4(1) 9.99(1)
0.0500 8.16(4) | 8.07(1) | 9.82(1) 9.93(3)
Lattice spacing SLAC
mp mp
0.0769 9.9(2) 10.0(2)
0.0667 10.0(1) | 10.0(1)
0.0526 10.0(1) | 10.00(5)
0.0400 9.95(6) | 9.99(2)
0.0323 10.03(3) | 9.98(1)
0.0213 9.83(3) | 9.98(1)

Table 2: Comparison of extracted masses at g = 0.5

105
10+ i os of  a % % i il
E3
9.5
- i standard Wilson boson
% O standard Wilson fermion
s 851
= +  SLAC boson
E sb & +  SLAC fermion
558 8 non-standard Wilson boson
o
75k O non-standard Wilson fermion
(S]
7 |-
6.5 e
6 1 1 1 1 1 J
0.02 0.04 0.06 0.08 0.1 0.12 0.14

lattice spacing a

Figure 14: Effective mass for the two dimensional Wess-Zumino model at g = 0.5
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degrees of freedom, the resulting Dirac operators have a rather simple form, a fact which
can be put to practical use as will be shown below.

Nonetheless, the mere presence of the fermion determinant in the partition function intro-
duces a nonlocality which has to be taken into account in the Monte Carlo algorithm. We
thus decided to base our numerical simulations on the HMC which allows for a simultane-
ous update of all bosonic field variables. For the quantum mechanical models discussed in
section Pl substantial improvements can be achieved if it is possible to compute the fermion
determinant in closed form. For the two-dimensional models, however, comparable results
are not available, and these theories are plagued by a strongly fluctuating fermion determi-
nant. Even worse, the fermion determinant may take on positive and negative values which
drives the simulations directly into the so-called sign problem. To proceed we will therefore
treat the quantum mechanical models again separately from the two dimensional models

and discuss them one at a time.

5.1 Quantum Mechanics

Our setup for the bosonic degrees of freedom for the HMC does not differ from the standard
procedure and is formulated on an enlarged phase space involving the real bosonic field ¢,
and an additional conjugate momentum field m,. As usual these fields are propagated along

the molecular dynamics trajectory by Hamilton’s equations

. oH . OH
¢$ = aﬂ'x’ Ty = _%7 (87)
where .
H= §Zw§+5[¢]. (88)

Since on the lattice the fermions are already integrated out the expression to be used in
eq. (BY) is given by
S[¢] = Sp[¢] + Indet M[g]. (89)

In the standard approach one would now introduce a pseudofermion field x to obtain a
stochastic estimate for det M[¢] which however will necessarily introduce additional noise
to later measurements. Hence it would be clearly favorable to take the fermion determinant
exactly into account. While a direct computation of the fermion determinant at each step
of a trajectory is also feasible in these one-dimensional theories one can do even better due

to the simple structure of the Dirac operator. Despite their differences in the bosonic part
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of the action the models involving an antisymmetric derivative matrix and a Wilson term,
namely the models (i), (ii), and (iv), share the same fermion Matrix My [¢]. For these cases

a closed expression for the determinant with Wilson parameter r = 1 is given by (29),

det Miy[¢] = [ (1+ m + 3g¢2) — 1. (90)

xT

It should be noted that with this ‘diagonal’ nonlocal form of the determinant even local
algorithms could have been used. A similar expression for the Stratonovich prescription as
given in (B2) also allows for a quick computation of the fermion determinant in model (v).
For the SLAC derivative, it is easier to again exploit the local structure of the interaction

terms in the fermion matrix by varying
B(trIn Mg]) = tr(3M[6]M"[4]) (91)

in order to determine the contribution of Indet M[¢] = trin M[¢] to the equations of mo-
tion (B7). Since we only consider Yukawa couplings, the variation dM|[¢] enters (@) as

s — 890.0.0, (92)
This holds true if the derivative of the superpotential appears in M only on the diagonal,;
this means that only a single matrix element of M ~1[¢] has to be computed for each site
(;Sz. Obviously, we cannot avoid an inversion of M[¢] in order to update all sites.
Finally let us briefly mention some details of our simulation runs. Since the physical value
of m as well as the physical volume of the box L were kept fixed at L = 10-m™! =
Na, the lattice spacing a was varied with the number of points N in the lattice. The
lattice sizes we have considered range from N = 15 to N = 243 corresponding to a =
0.06...0.004. We have checked that the measurements were insensitive to finite size effects.
For all lattice sizes we generated between 250000 and 400 000 independent configurations
for the mass extraction; in order to improve the signal to noise ratio for the Ward identities,
10° independent configurations were used (with 4 independent runs in order to minimize

statistical errors).

141f this method was to be applied to the Stratonovich prescription (where we can alternatively use (E2)),
two matrix elements would have to be computed since the interaction is off-diagonal by one unit in the

fermion matrix.
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5.2 The two-dimensional Wess-Zumino model

For the two-dimensional models, the fermion determinant is not positive definite, in contrast
to the situation in one dimension. Indeed a numerical experiment shows that the determi-
nant has large fluctuations at strong coupling and changes its sign if g/m is larger than a
certain threshold value of order O(1). This value depends on the lattice spacing (and on
m). A closer look at the spectrum of the fermion matrix reveals a second related problem,
namely the existence of very small eigenvalues. They increase the condition number of the
fermion matrix by several orders of magnitude and prevent a straightforward application
of the pseudofermion method. In addition, the bosonic potential [WW’(¢)|> possesses two
separate minima; this might lead to complications with respect to ergodicity. In order to
check at which values of the coupling the standard HMC breaks down, we have performed
simulations in the weakly coupled regime where the aforementioned contributions from the
fermionic fluctuations can be taken into account via reweighting quenched ensembles. An
added advantage is that with this approach, field generations can be generated very quickly;

on the other hand, larger ensembles are used since reweighting requires higher statistics.

2.5 T T T T
g=0.1 ——
g=0.2 —»—
9 | =05 —=— ]
g=1 —=—
g=2
1.5 —
=
ISH
1 |- -
0.5 F .
0 | 1 ] i A L
-25 -20 -15 -10 -5 0 5

Figure 15: Probability distribution of R = In (det M/ det M,). The stronger pronounced
the peak the better the statistical errors are under control. The failure of the reweighting
technique is visible for ¢ > 1. The plotted data was generated from 20000 configurations

for the model (iii) on a 31 x 31 square lattice.
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Figure 16: Comparison of the bosonic two-point function Gs(t) for the quenched and full
theory at g = 0.5 for the model with standard Wilson term (i) on a 32 x 16 lattice. Similar

results hold for the other models as well.

Trial runs indicate that for the volumes considered the reweighting method should work for
g < 1. Figure [[A shows that for these moderate couplings the fluctuations of the fermion
determinant are within two orders of magnitude. For g = 2 the fluctuations span more than
ten orders of magnitude and the number of relevant configurations becomes ridiculously
small.

As pointed out in section EE32], for ¢ = 0.5 the perturbation of the mass is about 0.3%, an
effect which is clearly not visible in our simulations. However, we can compare quenched
with reweighted expectation values and check whether they are sensitive to the inclusion
of dynamical fermions at all. We have found that even in this weakly coupled regime
the effective masses of bosonic and fermionic superpartners coincide only if the fermion
determinant is properly taken into account. Otherwise, the two-point functions (and hence
the masses) deviate considerably from their values in the full theory, as can bee seen in
figure [[6l Clearly, in order to simulate at larger couplings an improved algorithm is needed.
For example, a comparison with the results in [30] would require a ratio of g/m ~ 0.3, which

obviously is not feasible with the reweighting method used in this paper.
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5.3 Measurements and determination of masses

In this subsection we expand on the extraction of effective masses in our quantum mechanical
models. They are determined by the asymptotic behavior of the (bosonic or fermionic) two-
point functions G(z) ~ Y, cie”FimFo)z: For g far away from the midpoint N/2 of the
lattice, the asymptotic expression for the bosonic two-point function is dominated by a
single mass state with E; — Fy = meg, and as a symmetric function it is proportional to
cosh(meg(x — N/2)); the fermionic two-point function as a superposition of symmetric and
antisymmetric parts (w.r. t. the midpoint) [30] is for small 2 proportional to e”™<#*. Thus,
the masses can be extracted by exponential fits from the corresponding simulation data

meg = log (7G<x) ) , G=ag"

(n)
Gl t ) bos O G

ferm*

(93)
The z-region for the fit should be chosen in such a way that

(i) the contribution of higher energy states with F; > F; in the asymptotic expression
G(x) =3, cie”BimFo)z ig negligible,

(ii) the effect of the improvement terms, which violate reflection positivity (i.e., the ¢; are
not necessarily positive) and therefore damp the two-point function for small values

of x below the continuum value, better not influence the result,

(iii) the errors (which are larger for smaller values of the two-point function) should be

minimized,

(iv) and in the case of bosons, the influence from the second exponential tail in cosh(meg (z—
N/2)) = &(emen(@=N/2) 4 e=men(@=N/2)) should not interfere with the exponential fit to
the first.

Thus, we are supposed to choose a region for z in between the left boundary (z > 0 by
(i) and (ii)) and the midpoint (x < N/2 by (iii) and (iv)). This works reasonably well
for Wilson fermions (the results are presented in section Bl), but for SLAC fermions, we
observe an oscillating behavior of the two-point functions near the boundaries which requires
a more careful investigation.

In order to understand the nature of this phenomenon, we compute the propagator of a free

massive fermion in the continuum,

Gferm('r) = Z wv (94)
A
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where the sum runs over the nonzero part of the spectrum of the differential operator 0+ m,
and 1, are the eigenfunctions of 9 + m with eigenvalue \. If we impose periodic boundary
conditions with ¥y (z) = ¥\ (z + N), we have ¢, (z) = \/—%e%kx with A = &'k +m for all
integer k. Inserting this into (@4]), we obtain

27T7,k$

Gferm = Z 27”]€ +m (95)
k

for the two-point function on the circle. If we discretize the circle (and so introduce a
momentum cutoff), the sum in ({@3) is truncated to a finite number of terms and reduces
just to the propagator of the SLAC derivative. This cutoff in momentum space leads to the

Gibbs phenomenon which is in fact what we observe, e. g, in figure [

09 r
—o— fermionic twopointfunction (N = 61, m = 10, g = 0)

0.8 *\“\ —<— filtered fermionic twopointfunction
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Figure 17: The free fermionic two-point function (gpnys = 0, mpnys = 10) before and after

the application of the filter.

The error made by an approximation to a continuous and periodic function by n of its
Fourier modes decreases exponentially with n. For a discontinuous function, the error is

)

proportional to some power n~° away from the discontinuities. This can be improved by a

filter which increases the convergence rate ¢ or even recovers the exponential approximation
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Figure 18: This plot shows one example of a fermionic two-point function of the interacting
theory (mphys = 10, gpnys = 100) in a logarithmic representation before and after the
application of the filter. A linear fit of the filtered function yields the effective mass m. In

the last part of the graph a large numerical error can be observed.

of a continuous function. For our computations, we have used the “optimal filter” proposed
in [45]; the filter has compact support in a region away from the discontinuities and is optimal
in the sense that it balances the competing errors caused by localizing it either in physical
or in momentum space. Its effect in the interacting case is illustrated in figure [8 In this
logarithmic plot, it extends the range from which one can extract the masses nearly up to
the midpoint of the lattice. The rather large deviations from the unfiltered data beyond
that point are irrelevant for our purposes.

For the two-dimensional models we have extracted the masses from the two point correla-

tors [30]
1

N, N2 ZZ(%(tht',x) oot ")) (96)

xT t

Gbos <t> =

z,x’

15Tn higher dimensions, these Fourier approximation errors away from the discontinuities are negligible in

comparison to other errors.
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and

L 2 )y ! I
N, N2 ZZZWa(t%—t,x)wa(t,x)) (97)

T a=1 t z2

with N; = Ny, N, = N,. Both correlation functions are proportional to cosh(m(t — N;/2)).

Gferm <t> =

The mass can be extracted via a linear fit in the logarithmic representation in analogy to

the one-dimensional case.

6 Renormalizibility of the WZ model with SLAC fermions

Kartens and Smit have demonstrated in [46] that the SLAC derivative induces a nonrenor-
malizable one-loop diagram in four-dimensional quantum electrodynamics on the lattice.
Therefore, theories involving the SLAC derivative were generally believed to be nonrenor-
malizable. But it can be shown that the two-dimensional N' = 2 Wess-Zumino model is in
fact renormalizable at least to one-loop order.

As usual the calculations of lattice perturbation theory are carried out in the thermodynamic
limit where the number of lattice points tends to infinity and the lattice momentum becomes
continuous. In momentum space the finite lattice spacing a is translated into a finite cutoff
A = Z. It has to be shown that the diagrams can be renormalized when this cutoff is
removed. The BPHZ renormalization scheme is used to prove that the renormalized integrals
tend towards their continuum counterparts, and the counterterms can be identified with
similar quantities of continuum perturbation theory. The argumentation employed here is
closely related to the renormalization theorem of Reisz [47]. This theorem does however
not apply in its original form because the integrands are not smooth functions of the loop
momentum.

In the following, we will determine an upper bound for the boson propagator in momentum
space which will be used later on to argue that parts of the integrals in lattice perturbation
theory are going to vanish in the continuum limit. For the SLAC derivative, the momentum

space representation of the propagators

1 —iP(k) +m
- - q >\
P2 +m2 " P+ m? (98)
for bosons and fermions contains the saw tooth function
P,k) =k, —2IA where (21—1)A<k, <20+ 1)A. (99)

16In fact, the discussion can easily be extended to prove renormalizability also for the A" = 1 model.

43



The momentum integration is always restricted to the first Brillouin zone, BZ = {(k,)| |k,| <
A}. The internal lines in the one-loop diagrams carry either the internal momentum k or
a sum k + ¢ of internal and external momenta where ¢ denotes a linear combination of the
external momenta (using momentum conservation, there are n — 1 such linear combinations
¢; in a diagram with n vertices). Integrations over loop momenta k, can be split into
integrations over a square D = {(k,)||k,| < Z=} for an arbitrary ¢ < 3 and the rest of
the Brillouin zone, BZ\D. We will argue below that the integral over D converges to the
continuum value of the integral whereas the integral over BZ\ D is shown to vanish as a goes
to zero.

Namely, for a given set of external momenta {g;}, one may choose n = max, ;{|q;,|} with

ao small enough such that 0 < n <e < 3. For (k,) € D, we can then read off from
alk, £ q,| <a(lk,| +|qul) <m(e+n) foral a<ag (100)

that |k, £q,| < Ae’ withe' :=e+n < 1,1i.e, (k,£q,) is also inside the first Brillouin zone.
On the other hand, if (k,) € BZ\D,

m(e—n) < a(|ku| - |QM|) < a|k5u +QM| < a(|ku| + |QM|) <m(1+mn) (101)

for such lattice spacings a. The latter inequality may be used in order to find an upper
bound for the propagator,
1 1
< < Cd?
Plhtq?+m? ~ Plktq? ¢
with C' = ((e — n)v/2m) >
It can be easily seen that in the Wess-Zumino model, only two different types of integrals

(102)

contribute at one-loop level. A typical integral of the first type is

A2k 1
Leb= [ @) (PR & m) (PO T @) ) - (PO g ? o) 0%

d?k 1
L= [ T e e T

. / &k 1
" pz\p (2m)% (K2 +m?)(P(k + q)? +m?) ... (P(k + gn)? + m?)

A’k 1 272
< 2\n—1 — 2 nfll 1 )
= (Ca ) /;Clgﬂﬂ,/a (27T)2 <k2 _'_ m2) (Ca ) Og < _'_ a2m2)

Here, we have applied () in order to find an upper bound for the integrand in I, and

then enlarged the integration domain to a full disk including the first Brillouin zone. Thus,
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I, vanishes in the continuum limit if n > 1. Therefore, the integral I. tends to the contin-
uum value of the integral as a goes to zero (and the corresponding continuum integral is
convergent by power counting), so as long as we are considering diagrams with more than
one vertex, this type of integrals does not spoil renormalizability.

Another class of integrals is

o a2k Pu(k)P,(k+ ) ... Pk + @)
el = / @n) (P 1 nB)(P(k + i + ). (Pl g vy 0
o= / d*k p (@),
€ p 2m)2 (B2 +m?)((k+q)?2+m?)...((k+ ¢.1)>+m?)’
oo / 42k Pu(k)... Pk + )
"7 Jawn @02 (R + ) (Plk+ 01)? +m2) . (P(k + gn 1)+ m?)
g / @2k (k)] [ Py(k + @)
= Jonn @2 R+ m) (Pl + )2 +m?) . (P(k+ gu1)® + m2)
1 1 d?k 1 el 2n—1—3 272
= (5) (Ca’) /k|§\/§7r/a (2m)? (k? +m?) = log (1 N a2m2>'

The ¢; are taken from the ¢;, so [ < n — 1. The same arguments as above show that the
continuum limit is correct for any n > 2 (again, all continuum integrals are convergent by
power counting).

Therefore, renormalizability only remains to be shown for two kinds of integrals. The first
consists of diagrams with n = 1, e. g., tadpole diagrams. In this case, the loop momentum
is independent of the (vanishing) exterior momentum so that the argument of P,(k) is
restricted to the first Brillouin zone (where P,(k) = k,). The boundary of the integration
region behaves as a finite cutoff that is removed in the continuum limit so that the integral
approaches its continuum counterpart. In the BPHZ renormalization scheme these diagrams
are just subtracted and do not contribute to the renormalized quantities.

The second kind of integrals (with n = 2 and [ = 1 in ([04))) requires a more careful investi-
gation which may be found in appendix [Al This demontrates that lattice discretizations of
the two-dimensional N' = 2 Wess-Zumino model based on the SLAC derivative are renor-
malizable at first order in perturbation theory and yield the correct continuum limit. It
seems however problematic to use the BPHZ renormalization scheme to renormalize the
corresponding diagrams in higher-dimensional cases since this would require a differentia-
tion of the integrands with respect to external momenta. The discontinuity of the saw tooth

functions in this case would lead to singular terms.
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7 Summary and outlook

In this paper, we have studied supersymmetric A/ = 2 Wess-Zumino models in one and
two dimensions. The six quantum mechanical models under consideration differ by the
choice of lattice derivatives and improvement terms. The latter can be used to render the
theory manifestly supersymmetric on the lattice; in distinction to previous works on this
subject, our simulations of the broken Ward identities at strong coupling prove that only
one supersymmetry can be preserved. We have demonstrated to a high numerical precision
that by far the best results for bosonic and fermionic masses can be obtained from a model
with Wilson fermions and Stratonovich prescription for the evaluaton of the improvement
term and from a model based on the SLAC derivative. It is interesting to note that for
SLAC fermions no improvement term is needed to recover supersymmetry in the continuum
limit.

As a key result of this paper for two-dimensional Wess-Zumino models, we propose a non-
standard Wilson term giving rise to an O(a*) improved Dirac operator

L 4
M =48, + %%A with 2= 2. (105)

The masses extracted from this model approach the continuum values much faster than those
for the model with standard Wilson-Dirac operator (&Il). Again, results of a comparably
good quality can be obtained with nonlocal SLAC fermions. In our case, the common
reservation that the SLAC derivative leads to non-renormalizable theories (as originally
shown in [46] for the case of four-dimensional gauge theory) does not hold; we have proven
that the Wess-Zumino model in two dimensions with this derivative is renormalizable to
one-loop order.

Motivated by the fact that the masses for the N' = 2 Wess-Zumino lattice model with
ultralocal Dirac operator ([IH) are quite close to the continuum values already for moderate
lattices we plan to study the model at strong couplings where we will see deviations from
the free theory. We are about to implement the PHMC algorithm [48| as a possibility to
deal with the small eigenvalues of the fermionic operator. We believe that the N = 2
Wess-Zumino model as a simple and well-understood theory without the complications of
gauge fields has the potential to become a toy-model for developing efficient algorithms for
systems with dynamical fermions, similar to the ubiquitous Schwinger model which serves
as toy model for more complex systems with a chiral condensate, instantons, confinement

and so forth.
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Wess-Zumino models are the flat-space limits of Landau-Ginzburg models. A related project
might be to study another limit of Landau-Ginzburg theories, namely sigma models in non-
trivial Kdhlerian without a superpotential. Such sigma-models admit two supersymmetries;
typically they have instanton solutions and chiral condensates may be generated. If there
exist local Nicolai variables which give rise to improved lattice models with one quarter of
supersymmetry, contact could be made with our investigations of Wess-Zumino models in
a much broader physical context. Clearly these interesting field theories deserve further
attention, both from the algebraic and from the numerical side.

A further obvious problem is to study the nonperturbative sector of the two-dimensional
N = 1 Wess-Zumino model. This model shows a richer phase structure than the model
with two supersymmetries. The sign problem for the Pfaffian seems unavoidable. It is
interesting to note that in conventions with hermitean gamma matrices, a nonvanishing
Wilson term for Majorana fermions has to enter the Dirac operator as in ([I). Nevertheless,
the discretization errors in this case will be of order O(a); this can in principle be improved
to O(a*) by a slightly less natural substitute for the Wilson term. In general, for the N' = 1
model, no local Nicolai variables can be constructed which would suggest a supersymmetric
completion of the naive lattice action. However, one might expect (as in quantum mechanics)
that such improvement terms for the two-dimensional NV = 1 model with SLAC fermions

are in fact dispensable.
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A Renormalization of the fermion loop

In section Bl we have demonstrated which kinds of integrals are potentially dangerous for
the one-loop renormalizability of the N' = 2 Wess-Zumino model. The missing integral in

this proof was given by () with n = 2 and [ = 1; it appears for fermion loops with two
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internal lines,

k
/""“\\ A2k Pu(k’)P“(/{:—q)
T\,/_» " /Bz (2m)? (P?(k) +m*)(P*(k — q) +m?)’ (106)

Depending on the superpotential more than two external lines may appear; in this case ¢
denotes the sum of all incoming external momenta. In order to facilitate the evaluation of
this integral, we add (and subtract) a term with a finite continuum limit; apart from that,
the integral needs to be regulated in this limit. On the lattice with finite lattice spacing,
BPHZ regularization means to subtract the (as yet finite) value of the integral with vanishing

exterior momenta. Thus, we consider

/ L2k P.(k)PP(k — q) / &2k m?
Bz (2m)? (P2(k) + m?)(P*(k —q) +m?) * Jpz (27)% (P?(k) +m?)(P*(k — q) +m?)
— (value at ¢ = 0)
_ / @k Pk —q)(k, — Pu(k — q))
7 (2m)? (P?(k) +m?)(P(k — q) + m?)
B / L2k P, (k — q)
- (2m)% (k2 + m?)(P(k — q)* +m?)

N Ndky,  PA(k—qg)
‘QAE:/ [ G ey 00

In the last step, we have chosen ag in such a way that for all a = 7/A < ao, shifting k, € BZ

by —q,, one winds up either in the same or in an adjacent Brillouin zone, i.e.,
Pu(k —q) =k — ¢+ 2MO(=A =k + qu) — O(ky — g — A)). (108)

The first term on the right-hand side of ([0) can be easily seen to converge to the value
of its continuum counterpart by similar arguments as in ([03)) and (I04)). In order to prove
that the second term does not give rise to any corrections in the continuum limit, we make

use of ([00) and ([I02) and observe that an upper bound for its modulus is given by
“AMa A g Pr(k —

oy D I —
A —a (2m)% (K2 4+ m?)(P(k — q)* +m?)

—A+q dk, A dks 1
20%2/_/\ o _Agm—i_((thz,le]%)

IA

A
= — 9 -1 > —
= 3 ’/A dky arctan (w(kg) A AQw(kg)_1>w(k2) ' + (@1 = g2, k1 < k)
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q1 i
m2+k§—Aq1+A2

C A
< _
< 2/_Ad/€2

with w(k) = vVm? + k?; here, we have also used that |arctan(z)| < |z|. It is obvious that
this upper bound converges to zero in the limit where the lattice cutoff is removed.
This completes the proof that the discretization of the N' = 2 Wess-Zumino model based

on the SLAC derivative is one-loop renormalizable.

(1 < qo, k1 ko) (109)
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