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1 IntrodutionSupersymmetry is an important ingredient of modern high energy physis beyond the stan-dard model; sine boson masses are proteted by supersymmetry in suh theories with hiralfermions, it helps to redue the hierarhy and �ne-tuning problems drastially, and withingrand uni�ed theories, it leads to preditions of the proton life-time in agreement withpresent day experimental bounds. As low energy physis is manifestly not supersymmet-ri, this symmetry has to be broken at some energy sale. However, non-renormalizationtheorems in four dimensions ensure that tree level supersymmetri theories preserve super-symmetry at any �nite order of perturbation theory; therefore, supersymmetry has to bebroken non-perturbatively [1℄.The lattie formulation of quantum �eld theories provides a systemati tool to investigatenon-perturbative problems. In the ase of supersymmetri �eld theories, their formulation ishampered by the fat that the supersymmetry algebra loses on the generator of in�nitesimaltranslations [2℄. Sine Poinaré symmetry is expliitly broken by the disretization, oneis tempted to modify the supersymmetry algebra so as to lose on disrete translations.However, as lattie derivatives do not satisfy the Leibniz rule, supersymmetri ations forinterating theories will in general not be invariant under suh lattie supersymmetries. Theviolation of the Leibniz rule is an O(a) e�et, and supersymmetry naively will therefore berestored in the ontinuum limit. In the ase of Poinaré symmetry, the disrete remnants ofthe symmetry on the lattie are su�ient to prohibit the appearane of relevant operators inthe e�etive ation whih are invariant only under a subset of the Poinaré group and require�ne tuning of their oe�ients in order to arrive at an invariant ontinuum limit. In generilattie formulations, there are no disrete remnants of supersymmetry transformations onthe lattie; in suh theories, supersymmetry in the ontinuum limit an only be ahieved byappropriately �ne-tuning the bare ouplings of all supersymmetry-breaking ounterterms [3℄.An additional ompliation in the formulation of supersymmetri theories on the lattie isthe fermion doubling problem. Loal and translationally invariant hermitean Dira opera-tors on the lattie automatially desribe fermions of both hiralities [4, 5℄; the fermioniextra degrees of freedom are usually not paired with bosoni modes and so lead to supersym-metry breaking. Generi presriptions eliminating these extra fermioni modes also breaksupersymmetry.As a simple supersymmetri theory, the Wess-Zumino model in two dimensions has beenthe subjet of intensive analyti and numerial investigations. Early attempts inluded1



the hoie of the nonloal SLAC derivative (thereby avoiding the doubling problem) in the
N = 1 version of this model [6, 7, 8℄. This was motivated by the idea that the Fouriertransform of the lattie theory should oinide with that of the ontinuum theory. A Hamil-tonian approah where the SLAC derivative minimizes supersymmetry-breaking artifatsintrodued by non-antisymmetri lattie derivatives was disussed in [9℄. Alternatively, aloal ation with Wilson fermions was onstruted at the ost of a nonloal supersymme-try variation [10℄;3 simulations of this model [17℄ indiate that this theory with a ubisuperpotential indeed features non-perturbative supersymmetry breaking.In order to manifestly preserve some subalgebra of the N = 1 supersymmetry algebra on thelattie, the above disussion suggests to hoose a subalgebra independent of the momentumoperator. Thus, superharges Q+ and Q− an be de�ned using (non)loal derivatives on aspatial lattie. The hoie of a ontinuous time then allows for a Hamiltonian de�ned by
H := Q2

+ = Q2
− whih ommutes with the superharges [18, 19℄ and automatially ontainsa Wilson term. This strategy an be generalized to the N = 2 model on a spatial lattie;an analysis shows that a subalgebra admitting an O(2) R-symmetry an be preserved [20℄.Simulations for the N = 1 (see [21℄) and the N = 2 model [22℄ have been done using theloal Hamiltonian Monte-Carlo methods. Further simulations based on the Green funtionMonte-Carlo method for N = 1 indiate that supersymmetry is unbroken for a quartisuperpotential and has a broken and an unbroken phase for ubi superpotentials [23, 24℄.With a disrete time-oordinate, one has to resort to ation- rather than Hamiltonian-basedapproahes. The perfet ation approah was pursued for the free N = 1 theory in [25℄;a generalization for interating theories seems however problemati. A treatment of the

N = 2 Wess-Zumino model in the Dira-Kähler formalism preserves a salar supersymmetryon the lattie but leads to non-onjugate transformations of the omplex salar �eld andits onjugate. This enlarges the spae of states and presumably renders the theory non-unitary [10℄. A related [26℄ idea avoiding these problems goes bak to the idea of Niolai [27℄that (in this ase) salar supersymmetri �eld theories admit new bosoni variables with aJaobian anelling the determinant from integrating out the fermions, in terms of whih the3A similar approah with staggered fermions leads to problems in the ontinuum limit [11℄. � In thefour-dimensional model with N = 1 supersymmetry with Ginsparg-Wilson fermions, lattie hiral symmetryis inompatible with Yukawa ouplings [12, 13℄; however, the theory an be regularized by supersymmetrihigher derivative orretions, whih leads to a supersymmetri ontinuum limit within perturbation the-ory [14℄. It ould be shown that supersymmetri Ward identities are satis�ed up to order g2 in the ouplingonstant [15, 16℄. 2



bosoni ation is purely Gaussian. In general, the new variables are ompliated nonloalfuntions of the original ones; for N = 2 supersymmetry, however, loal Niolai variablesan be expeted [28℄. Starting from a disretized form of the Niolai variables found in theontinuum, one simply de�nes the bosoni part of the ation as the sum over squares of theNiolai variables; the fermioni part of the ation is adjusted so that the determinant of thefermion matrix still anels the Jaobian. This leads to an ation manifestly preserving partof the ontinuum supersymmetry on the lattie, and whih ontains improvement terms inaddition to the naive lattiization of the ontinuum ation [28, 20℄. As stated in [29, 30℄, thebreaking of some of the ontinuum supersymmetries an in this framework be traed bak tothe fat that the improvement terms are not ompatible with re�etion positivity. However,the violation of Osterwalder-Shrader positivity is an O(a2gphys) e�et and thus should benegligible at least at weak oupling [31℄. An analysis of the perturbation series shows thatthese terms in an o�-shell formulation of the theory with a ubi superpotential and Wilsonfermions lead to tadpole diagrams whih diverge linearly in the ontinuum limit [32℄. Aanellation between these would-be entral harge terms and the naive disretization ofthe ontinuum Hamiltonian has been suggested as a solution for the onundrum raisedin [29℄ that the lattie result of the number of zero-modes of the Dira operator seems todi�er vastly from the ontinuum answer [9℄.The possibility to introdue Niolai variables is losely related to the fat that the (2, 2)Wess-Zumino model is a topologial theory of Witten type, i. e., the ation is of the form
S = QΛ for a salar superharge Q, one auxiliary �elds are introdued [33, 34℄. Thisformulation manifestly preserves Q-supersymmetry on the lattie and therefore guaranteesthat the theory remains supersymmetri in the limit of vanishing lattie spaing. Lattietheories of this type in various dimensions and with di�erent degrees of supersymmetryhave been lassi�ed in [35℄. It turns out that in this formulation some remnant of the U(1)VR-symmetry whih is left unbroken by the superpotential at the lassial level but brokenby the Wilson terms is restored in the ontinuum limit even non-perturbatively [31℄; thisalso indiates that at least for the ubi superpotential under onsideration supersymmetryis not broken nonperturbatively.At a �xed point in spae, the Wess-Zumino model redues to supersymmetri quantummehanis. A naive disretization of the ation with a Wilson term for just the fermionleads to di�ering masses for fermions and bosons in the ontinuum limit [36℄. This an betraed bak [37℄ to 1-loop ontributions (of UV degree 0) of the fermion doublers to the bosonpropagator whih have to be anelled by an appropriate ounterterm that was negleted3



in [36℄. As soon as the ation is amended by a Wilson term also for the boson [36℄, anadditional diagram involving the boson doublers anels the �nite orretion of the fermiondoublers, and no ounterterms are required to ahieve the desired ontinuum limit. Inthis ase, fermion and boson masses agree in the limit of vanishing lattie spaing, andsupersymmetri Ward identities are ful�lled to great auray.As expeted for a theory with N = 2 supersymmetry, supersymmetri quantum mehanisan be formulated in terms of loal Niolai variables [28℄. However, this ation di�ers fromthe amended form of [36℄ by a further interation term whih beomes an integral over atotal derivative in the ontinuum limit.In this paper, we srutinize six di�erent lattie ations for supersymmetri quantum mehan-is based on Wilson and SLAC fermions with and without suh improvement terms. Thethree models without improvement terms are not manifestly supersymmetri in the pres-ene of interations and di�er by bosoni terms whih beome irrelevant in the ontinuumlimit as well as by the hoie of the lattie derivative; the other three models with manifestsupersymmetry di�er in the presription for the evaluation of the improvement term andalso in the hoie of the lattie derivative � they an be onstruted from three di�erentNiolai variables. We ompare the e�etive masses for interating theories with a quartisuperpotential and analyze the Ward identities of the broken and unbroken supersymmetriesat various lattie sizes and ouplings. The entral observation here is that the manifestlysupersymmetri theory with the so-alled Stratonovih presription [38℄ for the evaluationof the improvement term (whih is the disretization of a ontinuum surfae integral) leadsto far better results than the model with an Ito presription at �nite lattie spaing. Themass extration for the models with SLAC derivative is at �rst sight hampered by an os-illating behavior for nearby insertions in the bosoni and fermioni two-point funtions;however, this Gibbs phenomenon is under good analytial ontrol and an be softened bythe appliation of an appropriate �lter. With the help of this �optimal �lter�, the resultseven surpass those of the model with Stratonovih presription.Along the way, we show for whih superpotentials and derivatives one an guarantee posi-tivity of the fermion determinants. In those ases where the determinant an be omputedexatly, we analyze under whih irumstanes they onverge to the orret ontinuum re-sults; these exat results are ruial for our simulations. Again, the model with Stratonovihpresription is ahead of the one with Ito presription; the former leads to a determinant withthe orret ontinuum limit, whereas the latter di�ers from it by a fator whih depends onthe superpotential. 4



Furthermore, we study three di�erent manifestly supersymmetri disretizations of the N=2Wess-Zumino model in two dimensions. Instead of trying to generalize the Stratonovih pre-sription to two dimensions, we introdue a non-standard Wilson term (orresponding toan imaginary Wilson parameter in the holomorphi superpotential) in suh a way that thedisretization errors for the eigenvalues of the free (bosoni and fermioni) kineti operatorsare only of order O(a4) instead of order O(a) for the standard Wilson term. In the simula-tions, we study the e�et of the resulting violation of re�etion positivity and ompare theresults with those of the model with SLAC fermions. Due to alulational onstraints, wehave to restrit the omputations to smaller and intermediate values of the oupling.As a theoretial bakground, we show that the disretized Wess-Zumino model in two di-mensions with the SLAC derivative has a renormalizable ontinuum limit.The paper is organized as follows: In setion 2, we introdue the quantum mehanial mod-els on the lattie, with and without improvement terms, and disuss whih behavior of theinterating theories at �nite lattie spaings an be gathered from their (non-)invarianeunder supersymmetry transformations in the free ase. In subsetion 2.4, we give detailsabout the positivity of the fermion determinants and derive their respetive ontinuum lim-its. The results of the e�etive masses and the Ward identities an be found in setion 3. Insetion 4, we disuss the disretizations of the N = 2 Wess-Zumino model in two dimensionsand present the results of the mass extrations. Setion 5 overs the algorithmi aspets ofour simulations inluding a derivation of the Gibbs phenomenon for the SLAC orrelatorswhih justi�es the appliation of the �lter for the mass extration in the quantum mehani-al model. Finally, setion 6 ontains the proof that the Wess-Zumino model on the lattiewith the SLAC derivative is renormalizable to �rst order in perturbation theory; a tehnialpart of this proof is ompleted in appendix A.2 Supersymmetri quantum mehanisIn this setion we introdue the ation for supersymmetri quantum mehanis in a lan-guage whih an be easily generalized later on to the two-dimensional Eulidean Wess-Zumino model. In subsetions 2.2.1 and 2.3.1 we present six di�erent lattie versions of theontinuum theory with Eulidean ation
Scont =

∫

dτ
(1

2
φ̇2 +

1

2
W ′2 + ψ̄ψ̇ + ψ̄W ′′ψ

)

, where W ′(φ) ≡ dW (φ)

dφ
. (1)5



The ontinuum model is invariant under two supersymmetry transformations,
δ(1)φ = ε̄ψ, δ(1)ψ̄ = −ε̄(φ̇+W ′), δ(1)ψ = 0,

δ(2)φ = ψ̄ε, δ(2)ψ̄ = 0, δ(2)ψ = (φ̇−W ′)ε
(2)with antiommuting parameters ε and ε̄. The lattie approximations onsidered below di�erby the hoie of the lattie derivative and/or the disretization presription for a ontinuumsurfae term; in subsetion 2.4 we argue why three of them lead to far better approximationsto the ontinuum theory. The results of our simulations for a quarti superpotentialW (φ) =

m
2
φ2 + g

4
φ4 (with positive m, g) are disussed in setion 3.2.1 Lattie modelsWe start from a one-dimensional periodi time lattie Λ with real bosoni variables φx andtwo sets of real Graÿmann variables ψx, ψ̄x on the lattie sites x ∈ Λ = {1, . . . , N}. Theintegral and ontinuum derivative in (1) are replaed by a Riemann sum a

∑ and a lattiederivative ∂, where a denotes the lattie onstant. Two di�erent antisymmetri lattiederivatives will be used in what follows. These are the ultraloal derivative
∂̊xy =

1

2a
(δx+1,y − δx−1,y) (3)with doublers4 and the nonloal SLAC derivative without doublers, whih for an odd number

N of lattie sites takes the form [39, 9℄
∂ slac
x 6=y =

(−1)x−y

a

π/N

sin(π(x− y)/N)
and ∂ slac

xx = 0. (4)If we allow for non-antisymmetri derivatives then we may add a multiple of the symmetrilattie Laplaian
∆xy =

1

a2
(δx+1,y − 2δxy + δx−1,y) (5)to ∂̊ to get rid of the doublers. In this way, we obtain a one-parameter family of ultraloalderivatives with Wilson term,

∂̊ − 1
2
ar∆, −1 ≤ r ≤ 1, (6)4It should be noted that the symmetri ombination of forward and bakward derivatives leading to (3)yields an antisymmetri matrix (∂̊xy). 6



interpolating between the forward (or right) derivative for r = −1 and the bakward (orleft) derivative for r = 1. As will be argued in subsetion 2.4, for the quarti superpotential
W (φ) = m

2
φ2 + g

4
φ4 with positive parameters m and g to be onsidered below we shall needthe latter with matrix elements

∂b
xy = ∂̊xy −

a

2
∆xy =

1

a
(δx,y − δx−1,y). (7)The bakward derivative is free of doublers and not antisymmetri. For periodi boundaryonditions the derivative operators ∂ slac, ∂̊ and ∂b are all given by irulant matries whihommute with eah other.2.2 Lattie models without improvementA straightforward disretization of the ontinuum ation (1) would be

Snaive =
a

2

∑

x

(

(∂φ)2
x +W 2

x

)

+ a
∑

x,y

ψ̄x (∂xy +Wxy)ψy, (8)where we srutinize below three possibilities for the lattie derivatives ∂ as well as forthe terms Wx, Wxy derived from the superpotential5 so that the theory is free of fermiondoublers. None of these models is supersymmetri under the disretization of any of theontinuum supersymmetries (2),
δ(1)φx = ε̄ψx, δ(1)ψ̄x = −ε̄((∂φ)x +Wx), δ(1)ψx = 0,

δ(2)φx = ψ̄xε, δ(2)ψ̄x = 0, δ(2)ψx = ((∂φ)x −Wx)ε,
(9)however, at least for a free theory both supersymmetries are realized in two of the modelswith antisymmetri matries (∂xy). Thus, we might expet a better approximation to theontinuum theory for these models. In fat, it will turn out in setion 3 that this behaviorpertains to the interating ase, e. g., the masses extrated from these two models are muhloser to their ontinuum values than those from the third theory. Truly supersymmetri(improved) lattie models will be onsidered in setion 2.3.2.2.1 The unimproved models in detail(i) Naive lattie model with Wilson fermionsThe most naive disretization is given by the ation (8) with an additional Wilson term5In general, Wx is not equal to W ′(φx). The de�nition for eah model an be found below.7



shifting the derivative ∂̊ as explained in (7), i. e.,
S

(1)
1d = Snaive, ∂ = ∂b, Wx = W ′(φx) and Wxy = W ′′(φx)δxy. (10)The Wilson term removes fermioni as well as bosoni doublers. This ation has no su-persymmetries at all, and bosoni and fermioni exitations have di�erent masses in theontinuum limit in the presene of interations. Even the free model has no exat super-symmetry; this an be traed bak to the fat that the derivative ∂b is not antisymmetri.(ii) Naive lattie model with shifted superpotentialAn alternative way to remove the fermion doublers employed by Golterman and Petherand later Catterall and Gregory [10, 36℄ is to use the (unshifted) antisymmetri matrix (∂̊xy)and add a Wilson term to the superpotential,

S
(2)
1d = Snaive, ∂ = ∂̊, Wx = −a

2
(∆φ)x +W ′(φx), Wxy = −a

2
∆xy +W ′′(φx)δxy. (11)It should be noted that (as ompared to (10)) only the bosoni terms are hanged. Thismodel is only supersymmetri without interation, i. e, for W ′(φx) = mφx. In the inter-ating ase all susy Ward identities are violated. The breaking is equally strong for bothsupersymmetries.(iii) Naive lattie model with SLAC derivativeNaively, one might expet the supersymmetry breaking e�et in the naive lattie ation (8)with SLAC derivative (4) to be of the same magnitude as with bakward derivative ∂b.Surprisingly enough, this is not so; it will turn out that the mass extration from the model

S
(3)
1d = Snaive, ∂ = ∂ slac, Wx = W ′(φx), Wxy = W ′′(φx)δxy (12)is about as good as for the improved ations onsidered below. This is again related to thefat that the derivative is antisymmetri suh that the free model with SLAC derivativeadmits both supersymmetries (in ontrast to the model with bakward derivative).2.3 Lattie models with improvementIn order to preserve one of the two lattie supersymmetries in (9) for interating theoriesthe naive disretization (8) should be amended by extra terms whih turn into surfae termsin the ontinuum limit and reinstall part of the ontinuum supersymmetry on the lattie.Suh invariant lattie models may be onstruted with the help of a Niolai map φ 7→ ξ(φ)8



of the bosoni variables. In terms of the Niolai variables ξx(φ) the improved lattie ationstake the simple form
Ssusy =

a

2

∑

x

ξx(φ)2 + a
∑

x,y

ψ̄x
∂ξx
∂φy

ψy. (13)This is a disretization of the most general supersymmetri ation in terms of a real bosonivariable and two real Graÿmann variables on the irle [27℄. It is easily seen to be invariantunder the �rst type of transformations
δ(1)φx = ε̄ψx, δ(1)ψ̄x = −ε̄ξx, δ(1)ψx = 0. (14)For the partiular hoie ξx(φ) = (∂φ)x +Wx the supersymmetri ation (13) beomes

Ssusy =
a

2

∑

x

((∂φ)x +Wx)
2 + a

∑

x,y

ψ̄x (∂xy +Wxy)ψy

= Snaive + a
∑

x

Wx(φ) (∂φ)x (15)and the supersymmetry transformation (14) is idential to δ(1) in (9). So the improvedmodel (15) is invariant under the �rst supersymmetry δ(1) for arbitrary superpotentials. Itdi�ers from the naive disretization (8) of the ontinuum ation (1) by the improvementterm a
∑

xWx (∂φ)x whih turns into an integral over a total derivative in the ontinuum,and hene zero for periodi boundary onditions. The improvement term is needed for aninvariane of the lattie ation under one supersymmetry transformation. For an interatingtheory the lattie ation (15) is not invariant under the other supersymmetry transforma-tion δ(2) with parameter ε; an ation preserving only this symmetry an be analogouslyonstruted,
S̃susy =

a

2

∑

x

ξ̃x(φ)2 + a
∑

x,y

ψ̄x
∂ξ̃y
∂φx

ψy. (16)It is invariant under the nilpotent supersymmetry transformations
δ(2)φx = ψ̄xε, δ(2)ψ̄x = 0, δ(2)ψx = −ξ̃xε. (17)To generate the same fermioni term as in Ssusy we hoose ξ̃x = −(∂φ)x + W̃x with antisym-metri (∂xy) and symmetri Wxy. Then the supersymmetry (17) agrees with δ(2) in (9), andthe ation takes the form

S̃susy =
a

2

∑

x

((∂φ)x −Wx)
2 + a

∑

x,y

ψ̄x (∂xy +Wxy)ψy

= Snaive − a
∑

x

Wx(φ) (∂φ)x (18)9



For periodi �elds Ssusy and S̃susy onverge to the same ontinuum limit. On the lattie theyare only equal in the noninterating ase.62.3.1 The improved models in detailWe onsider three supersymmetri versions of the disretization (15) with improvementterm.(iv) Supersymmetri model with Wilson fermions and Ito presriptionIn order to avoid doublers and at the same time keep half of supersymmetry we use theantisymmetri matrix (∂̊xy) and shift the superpotential by a Wilson term [40℄.7 The orre-sponding model
S

(4)
1d = Ssusy, ∂ = ∂̊, Wx = −a

2
(∆φ)x +W ′(φx), Wxy = −a

2
∆xy +W ′′(φx)δxy (19)is invariant under the supersymmetry δ(1) [36℄. Of ourse, the non-interating model is alsoinvariant under δ(2).With these de�nitions, the improvement term is given by the well-known Ito presription

∑

xW
′(φx) (φx − φx−1).(v) Supersymmetri models with Wilson fermions and Stratonovih presriptionInstead of the Ito presription, we an hoose the Stratonovih sheme [40℄ for the evaluationof the surfae term, ∑

xW
′(σx) (φx − φx−1) with σx = 1

2
(φx + φx−1).8 The orrespondingation an be obtained from (13) with a Niolai variable ξx(φ) = (∂bφ)x +W ′(σx),

S
(5)
1d = Ssusy, ∂ = ∂̊, Wx = −a

2
(∆φ)x +W ′(σx), Wxy = −a

2
∆xy +

∂W ′(σx)

∂φy
. (20)One should note that this proedure di�ers from the one proposed in [38℄, where the fermionsare �rst integrated out in the ontinuum theory, and only then a Stratonovih interpretationis given for the surfae term � in this ase, the fermioni path integral of the Eulidean evolu-tion operator has to be de�ned in a non-standard way in order for the bosoni StratonovihJaobian to anel the fermion determinant.6In order to preserve the seond supersymmetry δ(2) also for Ssusy in (15) in the absene of interations,its de�nition will have to be slightly modi�ed only for the Stratonovih presription to be disussed below.7It is obvious that this is equivalent to working with a shifted lattie derivative as in (7) and an unshiftedsuperpotential sine the ation now only depends on the invariant ombination ξx.8For monomial superpotentialsW (φ) = φk, k = 1, 2, . . ., this presription is equivalent to the presription

∑

x
1
2

(

W ′(φx) +W ′(φx−1)
)

(φx − φx−1) ; in the latter ase, the superpotential terms are evaluated only ata given lattie site. 10



We will see that ompared to the fermion determinant involving ontinuum derivatives,the ontinuum limit of the fermion determinant for the Ito presription is o� by a fatordepending on the superpotential whereas the Stratonovih presription reprodues exatlythe desired ontinuum result.Sine (20) was onstruted from (13) in terms of Niolai variables, it is manifestly super-symmetri under δ(1) as given in (14). The disretization of the seond supersymmetry isin general not preserved on the lattie, not even in the free ase. This latter fat suggests amodi�ation of ξ̃x(φ) in (17) to
ξ̃x(φ) = −(∂̊φ)x −

a

2
(∆φ)x +W ′(σ′

x). (21)This hanges e�etively the bakward- into a forward-derivative, and the derivative of thesuperpotential is evaluated now at σ′
x = 1

2
(φx + φx+1). With these de�nitions, δ(2) is asymmetry of the ation (20) in the absene of interations. It is also this variation withwhih we ompute Ward identities in setion 3.(vi) Supersymmetri models with SLAC derivativeIn order to avoid fermion doublers, we an speialize ∂ to be the SLAC derivative,

S
(6)
1d = Ssusy, ∂ = ∂ slac, Wx = W ′(φx). (22)In spite of its nonloality, the fermion and boson masses extrated from two-point funtionsprove to approah the ontinuum value quite fast; the quality turns out to be omparableto that of the Stratonovih presription. The interating supersymmetri model with SLACderivative is only invariant under δ(1) in (14) by onstrution.2.4 Fermion determinantsIn this subsetion we demonstrate whih sign of the Wilson term we must hoose in orderto guarantee positivity of the fermion determinant. After that, it will beome lear thatas ompared to the value for the ontinuum operator, the fermion determinant for the Itopresription is o� by a fator depending on the superpotential whereas the Stratonovihpresription and the SLAC derivative reprodue the desired ontinuum result.2.4.1 Sign of the determinantsFor a real fermion matrix ∂xy + Wxy, omplex eigenvalues λ appear pairwise as λλ̄ in thedeterminant. Hene, the determinant an only beome negative through real eigenvalues.11



Sine without loss of generality, eigenvetors vx to real eigenvalues λ an be taken to be real(otherwise, take vx + v∗x) and normalized, only the symmetri part of the fermion matrixontributes to a real λ:
λ =

∑

x,y

vx (∂xy +Wxy) vy =
∑

x,y

vx
(

∂ s
xy +Wxy

)

vy. (23)For the antisymmetri SLAC derivative the symmetri part ∂s is absent and no Wilson termis required, Wxy = W ′(φx)δxy, suh that the real eigenvalues are given by
λ =

∑

x

W ′′(φx)v
2
x. (24)We onlude that all real eigenvalues and thus the determinant will be positive for themodels (iii) and (vi) in ase W ′′ is nonnegative de�nite. For the models (i), (ii) and (iv)with Wilson term the real eigenvalues are given by

λ = −ar
2

∑

xy

vx∆xyvy +
∑

v

W ′′(φx)v
2
x. (25)Sine −∆ is positive all real eigenvalues λ and therefore the determinant will be positivede�nite in ase the W ′′(φx) are nonnegative and r > 0; as usual, in this paper we hoose

r = 1 in this ase. Vie versa, for a negative W ′′(φx) we would have to hange the sign ofthe Wilson term (i. e., hoose r = −1) for the fermioni determinant to stay positive.9 Inthe following subsetion we shall prove by an expliit alulation that also for the model (v)with Stratonovih presription the fermioni determinant is positive for positive W ′′.If W ′′ is neither positive nor negative de�nite positivity of the fermion determinant is notexpeted. In fat, for instane in the partiular example ofW (andW ′′) being an odd powerof φ we have to expet a hange of sign: From the interpretation of the Witten index
ZW =

∫

per.b.c.

Dψ̄DψDφ e−S =

∫

Dφ det(∂ +W ′′(φ)) e−Sbos. (26)(for the path integral with periodi boundary onditions for all �elds) as the winding numberof the Niolai map ξ = ∂φ +W ′ regarded as a map from the spae of bosoni variables toitself [42℄, we expet that there may be phases with broken supersymmetry forW ′ even; theWitten index vanishes. This would be impossible for a determinant with de�nite sign.9Either way, this part of the ation satis�es site- as well as link re�etion positivity [41℄.12



2.4.2 Calulating the determinantsThe fermioni determinant for the Ito and Stratonovih presription an be omputed ex-atly. The (regularized) determinant of the ontinuum operator ∂τ +W ′′(φ(τ)) on a irleof radius β an easily be seen to be [43℄
det

(

∂τ +W ′′(φ(τ))

∂τ +m

)

=
sinh (1

2

∫ β

0
dτ W ′′(φ(τ)))

sinh(β
2
m)

; (27)this is the value with whih we have to ompare the lattie results. Note that for a non-negative W ′′ the determinant is positive.For Ito's alulus with Wilson fermions, the ratio of the determinant of the fermion matrixfor the interating theory
∂xy +Wxy = ∂b

xy +W ′′(φx)δxy (28)to that of the free theory is given by
det

(

∂ + (Wxy)

∂b +m1 )

Ito

=

∏

(1 + aW ′′(φx)) − 1

(1 + am)N − 1
. (29)It is positive for positive W ′′(φ) and this agrees with the results in the previous setion. For

N = β/a→ ∞, the produt onverges to10
det

(

∂ + (Wxy)

∂b +m1 )

Ito

N→∞−→ e
R β
0
dτ W ′′(φ(τ)) dτ/2

e
1

2
βm/2

det

(

∂τ +W ′′(φ(τ))

∂τ +m

) (30)sine ln
∏

x(1 + aW ′′(φx)) =
∑

ln(1 + aW ′′(φx)) →
∫

dxW ′′(φx). The limit (30) di�ers bya �eld dependent fator from the ontinuum result.For Wilson fermions with Stratonovih presription the regularized determinant of thefermion matrix
∂xy +Wxy = ∂b

xy +
1

2
W ′′(σx) (δxy + δx−1,y) (31)is again positive for positive W ′′. But in ontrast to the determinant (29) with Ito presrip-tion it onverges to the ontinuum result,

det

(

∂ + (Wxy)

∂b + (mxy)

)

Strat

=

∏

(1 + a
2
Mx) −

∏

(1 − a
2
Mx)

∏

(1 + a
2
m) − ∏

(1 − a
2
m)

N→∞−→ det

(

∂τ +W ′′(φ(τ))

∂τ +m

)

, (32)where mxy = 1
2
(δxy + δx−1,y) and Mx = W ′′(σx). One an show that for N → ∞ thefermioni determinant with SLAC derivative onverges rapidly to the ontinuum result.10In a ompletely analogous manner, the right-derivative would lead to the inverse prefator in front ofthe ontinuum result. 13



3 Simulations of supersymmetri quantum mehanisWe have performed high preision Monte-Carlo simulations to investigate the quality ofthe six lattie approximations introdued in subsetions 2.2.1 and 2.3.1. The models withations S(1)
1d , S

(2)
1d and S

(3)
1d are not supersymmetri whereas the ations S(4)

1d , S
(5)
1d and S

(6)
1dpreserve the supersymmetry δ(1).3.1 E�etive Masses on the lattieIn order to determine the masses we have alulated the fermioni and bosoni two pointfuntions

G
(n)
bos(x) = 〈φxφ0〉 and G

(n)
ferm(x) = 〈ψ̄xψ0〉, (33)in all models (n) and �tted their logarithms with a linear funtion. This way of determiningthe masses mbos(a) and mferm(a) from the slope of the linear �t works well for all modelswith ultraloal derivatives. Details on tehnial aspets of the extration of e�etive massesan be found in setion 5.3.3.1.1 Models without interationThe ations of the non-interating models are quadrati in the �eld variables,

Sfree =
1

2

∑

xy

φxKxyφy +
∑

xy

ψ̄xMxyψy. (34)Atually, for W ′(φ) = mφ all the improvement terms vanish and only four of the six ationsintrodued in the last setion are di�erent. The orresponding matriesM and K are givenin the following list:11
S

(1)
free S

(4)
free = S

(2)
free S

(5)
free S

(6)
free = S

(3)
free

M ∂b +m ∂b +m (1 − am
2

)∂b +m ∂ slac +m

K −∆ +m2 −∆ +m2 − am∆ −
(

1 − (am
2

)2
)

∆ +m2 −(∂ slac)2 +m2

= MTM = MTM = MTM

(35)For the ations in the last three olumns we have detK = (detM)2 as required by su-persymmetry. This is not true for the non-supersymmetri naive model S(1)
free with Wilsonfermions.11Note that ∂b + (∂b)T = −∆ and −∂̊2 + 1

4a
2∆2 = −∆.14



Without interations, the masses of all models as determined by numerially inverting Mand K onverge to the same ontinuum limit m. For the free supersymmetri models (ii)-(vi), mbos(a) and mferm(a) roughly oinide even for �nite lattie spaings. This is to beexpeted for supersymmetri theories. In the �rst model, mbos(a) for �nite a is already verylose to its ontinuum value, in ontrast to mferm(a) whih for �nite a is onsiderably smallerthan mbos(a). Sine the free supersymmetri ation S(4)
free has the same fermioni mass as

S
(1)
free and sinembos(a) ≈ mferm(a) for this model, we onlude that its bosoni mass for �nite
a is notably smaller than its value in the ontinuum limit. Thus, when supersymmetrizingthe naive model with Wilson fermions we pay a prie: the boson masses get worse whileapproahing the fermion masses.The situation is muh better for the other supersymmetri models with SLAC derivativeor Wilson fermions with Stratonovih presription. The masses are equal and very lose tothe ontinuum result already for �nite a. The masses for the Stratonovih presription areomparable to the boson masses of the naive model without supersymmetry. The massesfor the free models and their dependene on a are depited in �gure 1.

PSfrag replaements

lattie spaing a
e�etivemass

m

m
(1)
bos

m
(1)
ferm

m
(5)
ferm

m
(6)
ferm

00.10.20.30.40.50.60.70.80.91

0 0.005 0.01 0.015 0.02 0.025

00.10.20.30.40.50.60.70.80.91
8.89
9.29.49.69.810

10.2Figure 1: The masses determined by numerially inverting the kineti operators for the freetheories. There are only 4 di�erent masses, f. (35).
15



PSfrag replaements

lattie spaing a
e�etivemass

m

naive SLAC fermions

naive Wilson bosonsnaive Wilson fermionsnaive SLAC bosonsnaive SLAC fermions

00.10.20.30.40.50.60.70.80.91

0.005 0.01 0.015 0.02 0.025

00.10.20.30.40.50.60.70.80.91
1213
1415
1617
18

Figure 2: Boson and fermion masses for Wilson fermions without improvement (model (i))and non-supersymmetri SLAC fermions (model (iii)). The parameters for the linear �tsan be found in table 1.From (35) we onlude that
G

(4)
ferm(x,m) =

(

1 − am

2

)

G
(5)
ferm

(

x,m
(

1 − am

2

))

. (36)The mass m(5)
ferm(a) extrated from G

(5)
ferm is lose to the ontinuum value m suh that

m
(1,2,4)
ferm (a) = m

(2,4)
bos (a) ≈ m

(

1 − am

2

)

, (37)and this simple relation explains why the linear �t through the masses m(1)
ferm(a) markedwith red dots in �gure 1 has suh a large negative slope.3.1.2 Models with interationWe have alulated the masses for the interating models with even superpotential

W (φ) =
m

2
φ2 +

g

4
φ4 =⇒ W ′(φ)2 = m2φ2 + 2mgφ4 + g2φ6. (38)Sine in the weak oupling regime the results are omparable to those of the free models wehave simulated the models at strong oupling. In order to ompare our results with those16



of Catterall and Gregory in [36℄ we have piked their values m = 10 and g = 100 for whihthe dimensionless ratio g/m2 equals unity. The energy of the lowest exited state has beenalulated by diagonalizing the Hamiltonian on large latties with small a and alternativelywith the shooting method. With both methods we obtain the ontinuum value
mphys = 16.865. (39)We now summarize the results of our MC simulations. As in the free ase, mbos(a) 6=

mferm(a) for the non-supersymmetri model with ation S(1)
1d , see �gure 2. In addition, for

g 6= 0 their ontinuum values are di�erent and none of the two values agrees with (39). Thishas been predited earlier by Giedt et al. [37℄. We onlude that the naive lattie modelwith Wilson fermions is not supersymmetri for a→ 0.The Monte-Carlo results are muh better for the seond model with ation S
(2)
1d as givenin (11). Although this model is not supersymmetri, its boson and fermion masses arealmost equal for �nite lattie spaings. Linear extrapolations to vanishing a yield m(2)

bos(0) =

16.68 ± 0.05 and m(2)
ferm(0) = 16.73 ± 0.04 whih are quite lose to the orret value 16.865.The results for the non-supersymmetri model with ation S

(2)
1d and the supersymmetrimodel with ation S(4)

1d are almost idential, similarly as for the free models. The massesfor various lattie onstants between 0.005 and 0.03 for the two models are depited in�gure 3. The orretions to the ontinuum value are of order O(a) and are as big as for theorresponding free models. The slope and interepts for the linear �ts are listed in table 1.At �nite lattie spaing a, the masses mbos,ferm(a) for model (v) with Wilson fermions andStratonovih presription are muh loser to their respetive ontinuum limits than forthe model (iv) with Ito presription. Furthermore, the extrapolated ontinuum masses,
m

(5)
bos(0) = 16.78 ± 0.04 and m

(5)
ferm(0) = 16.77 ± 0.02, are very lose to the orret value(39). The data points for the supersymmetri models with Wilson fermions are depited in�gure 4. Again the slope and interepts of the linear �ts an be found in table 1. Of alllattie models with ultraloal derivatives onsidered in this paper this model yields the bestpreditions.The model with Stratonovih presription for the improvement term is outperformed onlyby the models (iii) and (vi) with nonloal SLAC derivative for fermions and bosons. Thisobservation is not surprising, sine the remarkably high numerial preision of supersymmet-ri lattie models with SLAC derivative has been demonstrated earlier in the Hamiltonianapproah in [9℄. Furthermore, this is in line with our results for the free models, see �gure 1.The masses for the interating unimproved model (iii) are plotted in �gure 2 and those17
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Figure 3: The masses mbos(a) and mferm(a) for models (ii) (shifted superpotential) and (iv)(Ito improvement).
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Figure 4: Masses for supersymmetri models (vi) (Ito presription) and (v) (Stratonovihpresription). Only latties with at least 61 sites are inluded in the �t.18



PSfrag replaements

lattie spaing a
e�etivemass

m

improved SLAC fermions

Wilson bosons ItoWilson fermions Itoimproved SLAC bosonsimproved SLAC fermions

00.10.20.30.40.50.60.70.80.91

0.005 0.01 0.015 0.02 0.025 0.03

00.10.20.30.40.50.60.70.80.91
1212.51313.51414.51515.51616.517
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m

(6)
ferm(0) = 16.81 ± 0.01 whih in turn are o� the true value 16.865 by only some tenthof a perent. The extrapolated masses for the unimproved lattie model in table 1 have aomparable preision. But of ourse there is no free lunh, sine for the SLAC derivativeone must smooth the two-point funtions Gbos,ferm(x) with a suitable �lter for a sensiblemass extration. Details on the �ltering an be found in subsetion 5.3.In the following table we list the slopes k and interepts m(0) of the linear �ts

mbos(a) = kbos · a+mbos(0) and mferm(a) = kferm · a+mferm(0) (40)to the measured masses for the six lattie models onsidered.The linear �ts for the models with improvement (iii)-(vi) are ompared in �gure 6. Lattiesupersymmetry guarantees that the boson and fermion masses are equal for these models.
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model kbos mbos(0) kferm mferm(0)

S
(1)
1d 139.52 ± 8.45 12.23 ± 0.08 −186.25 ± 4.98 18.40 ± 0.05

S
(2)
1d −136.85 ± 5.22 16.68 ± 0.05 −146.10 ± 3.84 16.73 ± 0.04

S
(3)
1d −25.22 ± 6.24 16.92 ± 0.07 −33.64 ± 2.52 16.97 ± 0.03

S
(4)
1d −135.11 ± 7.36 16.68 ± 0.07 −138.50 ± 2.85 16.64 ± 0.03

S
(5)
1d −40.40 ± 4.46 16.78 ± 0.04 −37.55 ± 1.98 16.77 ± 0.02

S
(6)
1d −17.97 ± 2.41 16.84 ± 0.03 −18.53 ± 0.91 16.81 ± 0.01Table 1: Slope and interepts of linear interpolations for the masses.
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Figure 6: Linear �ts to the masses of all three supersymmetri lattie models.3.2 Ward identitiesThe invariane of the path integral measure under supersymmetry transformations leads toa set of Ward identities onneting bosoni and fermioni orrelation funtions. Namely,the generating funtional for Green's funtions should be invariant under supersymmetryvariations of the �elds,
0 = δZ[J, θ, θ̄] =

∫

D(φ, ψ) e−S+
P

x(Jxφx+θxψx+θ̄xψ̄x)
(

∑

y

(Jyδφy+θyδψy+θ̄yδψ̄y)−δS
)

. (41)20
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Figure 7: Ward identities for the free theory, model (ii) (with shifted superpotential).Ward identities are obtained from derivatives of this equation with respet to the soures.The seond derivative ∂2/∂Jx∂θ̄y leads to the Shwinger-Dyson equation
〈φxψ̄y δ(1)S〉 = 〈φx δ(1)ψ̄y〉 + 〈ψ̄yδ(1)φx〉, (42)whereas ∂2/∂Jx∂θy yields
〈φxψy δ(2)S〉 = 〈φx δ(2)ψy〉 + 〈ψyδ(2)φx〉. (43)For the improved models (iv)�(vi) in subsetion 2.3.1 the ations are manifestly invariantunder δ(1), and the left-hand side of (42) vanishes. Thus for these models the following Wardidentities hold on the lattie:

〈ψxψ̄y〉 − 〈φxξy〉 = 0. (44)This an be on�rmed in numerial heks and merely serves as a test bed for the preision ofthe algorithms. The disretization of the seond ontinuum supersymmetry transformation,however, only leaves these lattie ations invariant in the free ase. With interations, theterm δ(2)S leads to a nonvanishing left-hand side in the Shwinger-Dyson identities (43)whih therefore measures the amount by whih the seond ontinuum supersymmetry isbroken by the disretization. Sine this supersymmetry an be made manifest by hoosing21



PSfrag replaements

lattie point x

R
(1

)
x

,R(2
)

x

Ward-Identity 2: ,

Ward-Identity 1: m = 10, g = 800Ward-Identity 2: m = 10, g = 800

00.10.20.30.40.50.60.70.80.91

0 5 10 15 20

00.10.20.30.40.50.60.70.80.90.001
-0.002-0.0010
0.0010.002
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Figure 9: Ward identities for the free theory, model (iv) (Wilson fermions with the Itopresription).the Ward identities (42) and (43), i. e.
R(1)
x−y = 〈ψxψ̄y〉 − 〈φx(∂φ)y〉 − 〈φxWy〉 (45)and

R(2)
x−y = 〈φx (∂φ)y〉 − 〈φxWy〉 − 〈ψ̄xψy〉 (46)as funtions of x− y. It should be noted that without interations, the �rst Ward identityredues to a matrix identity D−1− (DTD)−1DT = 0 for the free Dira operator Dxy = ∂xy+

mδxy if one uses that 〈ψxψ̄y〉 = D−1
xy and 〈φxφy〉 = (DTD)−1

xy . The orresponding data forthe free theory in the ase of the model with shifted superpotential (model (ii)) are shown in�gure 7. In order to keep statistial errors small, in all situations 4 runs with 106 independenton�gurations were evaluated. Within our numerial preision, supersymmetry is broken forthis model if the simulation data in the interating ase exeeds the bounds set by the freetheory. The results for (45) and (46) at g = 800 are displayed in �gure 8. Remarkably, thestatistial error is muh smaller than in the free theory; supersymmetry breaking is equallystrong for both supersymmetries δ(1) and δ(2) from (9) at strong oupling.23



3.2.2 Ward identities of the improved modelsFor Wilson fermions with exat supersymmetry and the Ito presription (model (iv)), thestatistial error as measured by the free Ward identities is roughly of the same size as for theunimproved model (ii), f. �gure 9. Again, this was obtained by 4 runs with 106 independenton�gurations. As expeted, the �rst supersymmetry δ(1) (f. (14) and �gure 10) is preservedeven at strong oupling; however, the supersymmetry breaking e�ets for δ(2) are about threetimes as large as for the orresponding symmetry in the unimproved situation.
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Figure 10: Ward identities for the theory at strong oupling, model (iv) (Wilson fermionswith the Ito presription).For the free supersymmetri model with Stratonovih presription (model (iv)), the seondsupersymmetry (17) is only a symmetry with the de�nition (21) of ξ̃. The Ward identitiesof both supersymmetry transformations,
〈ψxψ̄y〉 − 〈φx(∂φ)y〉 − 〈φxW ′(φx+φx−1

2
)〉 = 0,

〈φx (∂φ)y〉 − 〈φxW ′(φx+φx+1

2
)〉 − 〈ψ̄xψy〉 = 0, (47)redue in the free theory with W ′(φ) = mφ to matrix identities for the free Dira operator

Dxy = ∂xy + m
2
(δxy + δx,y−1),

D−1 − (DTD)−1DT = 0,24
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Figure 11: Ward identities for the free theory, model (v) (Wilson fermions with theStratonovith presription).
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−(DTD)−1D + (D−1)T = 0. (48)Here, the seond identity holds sine D is irulant and therefore normal. The orrespondingplot of the left-hand sides is shown in �gure 11. This determines the mean error abovewhih we take supersymmetry to be broken if we swith on interations. In �gure 12,the �rst supersymmetry is preserved within a high numerial auray whereas the seondsupersymmetry is learly broken by e�ets about three times the size of the supersymmetryviolation in the model with Ito presription.For the supersymmetri model with SLAC derivative, the Ward identities are satis�ed withinstatistial error bounds, but determining the mean error in an analogous manner fails sinethe ontributions of the bosoni two-point funtions 〈φx(∂φ)y〉 in the free theory lead tolarge errors whih obsure the interpretation of the orresponding Ward identities. At
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the Stratonovih presription.4 The N = 2 Wess-Zumino model in 2 dimensionsIn this setion, we study di�erent disretizations of the two-dimensional Wess-Zumino modelwith (2, 2) supersymmetry. The minimal variant ontains a Dira spinor �eld and two realsalar �elds ϕa whih are ombined into a omplex salar �eld φ = ϕ1 + iϕ2. Also, we usethe omplex oordinate z = x1+ix2 and its omplex onjugate z̄ in Eulidean spaetime anddenote the orresponding derivatives by ∂ = 1
2
(∂1 − i∂2) and ∂̄, respetively. The Eulideanation ontains the �rst and seond derivatives W ′ and W ′′ of a holomorphi superpotential

W (φ) with respet to the omplex �eld φ,
Scont =

∫

d2x
(

2∂̄φ̄∂φ +
1

2
|W ′|2 + ψ̄Mψ

)

, M = /∂ +W ′′P+ + W̄ ′′P−, (49)where P± = 1
2
(1± γ3) are the hiral projetors. In the Weyl basis with γ1 = σ1, γ2 = −σ2and γ3 = iγ1γ2 = σ3, the omplex spinors an be deomposed aording to

ψ =

(

ψ1

ψ2

) and ψ̄ = (ψ̄1, ψ̄2). (50)In this basis, the supersymmetry transformations leaving Scont invariant are
δφ = ψ̄1ε1 + ε̄1ψ

1, δψ̄1 = −1
2
W̄ ′ε̄1 − ∂φε̄2, δψ1 = −1

2
W̄ ′ε1 + ∂̄φε2,

δφ̄ = ψ̄2ε2 + ε̄2ψ
2, δψ̄2 = −∂̄φ̄ε̄1 − 1

2
W ′ε̄2, δψ2 = ∂φ̄ε1 − 1

2
W ′ε2.

(51)Similarly as in quantum mehanis a naive disretization of this model breaks all four super-symmetries. In order to keep one supersymmetry one an add an improvement term. In whatfollows we shall only onsider improved models; they di�er by our hoie of the lattie deriva-tives. Instead of trying to generalize the Stratonovih presription to the two-dimensionalsituation, we �nd in subsetion 4.1 that a non-standard hoie of the Wilson term leads toan improved behavior in the limit of vanishing lattie spaing. This is orroborated by theresults of our simulations for the ase of a ubi superpotential W = 1
2
mφ2 + 1

3
gφ3 whihwe present in subsetion 4.3.4.1 Lattie models with improvementWe start with a two-dimensional periodi N1 ×N2 lattie Λ with omplex bosoni variables

φx and two omplex spinors ψx, ψ̄x on the lattie sites x = (x1, x2) ∈ Λ. Again two di�erent27



antisymmetri lattie derivatives in diretion µ are used. These are the ultraloal derivative
∂̊µ,xy =

1

2a

(

δx+eµ,y − δx−eµ,y

) (52)with doublers and the nonloal SLAC derivative without doublers, whih for odd N1, N2reads
∂ slac

1,xy = ∂ slac
x1 6=y1δx2,y2 , ∂ slac

2,xy = ∂ slac
x2 6=y2δx1,y1 and ∂ slac

µ,xx = 0 (53)(analogously to the one-dimensional SLAC derivative de�ned in (4)). Later we shall removethe fermioni doublers of γµ∂̊µ by introduing two types of Wilson terms, both ontainingthe lattie Laplaian ∆ de�ned by
(∆φ)(x) =

1

a2

(

∑

µ=1,2

[φ(x+ eµ) + φ(x− eµ)] − 4φ(x)
)

. (54)As for the ontinuum model we use the holomorphi lattie derivative ∂xy := 1
2
(∂1,xy−i∂2,xy).The Niolai variables of one-dimensional systems are easily generalized to two dimensions,

ξx = 2(∂̄φ̄)x +Wx, ξ̄x = 2(∂φ)x + W̄x; (55)again, Wx denotes terms (to be spei�ed below) derived from the superpotential. Thebosoni part of the ation is Gaussian in these variables, Sbos = a2

2

∑

x ξ̄xξx, and has theexpliit form
Sbos = a2

∑

x

(

2(∂̄φ̄)x(∂φ)x +Wx(∂φ)x + W̄ ′
x(∂̄φ̄)x +

1

2
|Wx|2

)

. (56)For antisymmetri derivatives ∂µ, the kineti term has the standard form ∑2
a,µ=1(∂µϕa)

2
x interms of the real �elds ϕa; in partiular this holds true for the ultraloal derivative ∂̊µ andthe SLAC derivative ∂ slac

µ introdued above. The seond and third term in Sbos are absent inthe ontinuum ation. In a naive disretization of the ontinuum model these improvementterms do not show up. In the ontinuum limit they beome surfae terms and ould bedropped. On the lattie they are needed to keep one of the four supersymmetries intat.Supersymmetry requires an additional fermioni term Sferm = a2
∑

ψ̄xMxyψy for a two-omponent Dira spinor �eld in suh a way that the determinant of the Jaobian matrix
(

∂ξx/∂φy ∂ξx/∂φ̄y

∂ξ̄x/∂φy ∂ξ̄x/∂φ̄y

)

=

(

Wxy 2∂̄xy

2∂xy W̄xy

)

, Wxy =
∂Wx

∂φy
, (57)28



for the hange of bosoni variables (φ, φ̄) 7→ (ξ, ξ̄) anels the fermion determinant detM .Atually the fermioni operatorM in (49) with γ-matries in the Weyl basis and ontinuumderivatives replaed by lattie derivatives is idential to the Jaobian matrix. Hene wehoose as the fermioni part of the ation
Sferm = a2

∑

x,y

ψ̄xMxyψy, Mxy = γµ∂µ,xy +WxyP+ + W̄xyP−

= M0 +W ′′(φx)δxy P+ + W̄ ′′(φx)δxy P− . (58)By onstrution the ation Ssusy = Sbos + Sferm with improvement terms is invariant underthe supersymmetry transformations generated by δ(1):
δ(1)φx = ε̄ψ1

x, δ(1)ψ̄1
x = −1

2
ε̄ξ̄x, δ(1)ψ1

x = 0,

δ(1)φ̄x = ε̄ψ2
x, δ(1)ψ̄2

x = −1
2
ε̄ξx, δ(1)ψ2

x = 0;
(59)this orresponds to a disretization of the ontinuum symmetry (51) with ε1 = ε2 = 0 and

ε̄1 = ε̄2 = ε̄. The other three ontinuum supersymmetries are broken; for appropriatelyhosen Niolai variables ξ an ation preserving any one of the three other supersymmetriesan be onstruted analogously [30℄.12 In this paper, we are going to use the Niolai variable(55) and onsider several possibilities to remove fermion doublers.4.2 The lattie models in detailWe introdue three di�erent lattie approximations to the ontinuum Wess-Zumino model(49). They are all equipped with an improvement term and thus admit one supersymmetry.The �rst two models ontain Wilson fermions and the third the SLAC derivative. It willturn out that the disretization errors of the eigenvalues of the bosoni and fermioni kinetioperators in the free ase indiate how good the approximation to the ontinuum theory iswhen we turn on interations.(i) Supersymmetri model with standard Wilson termHere we hoose ultraloal derivative ∂̊µ and add a standardWilson term to the superpotentialto get rid of the doublers of γµ∂̊µ so that
S(1) = Sbos + Sferm with ∂µ = ∂̊µ, Wx = −ar

2
(∆φ)x +W ′(φx). (60)12The orresponding Niolai variables an be read o� from the right-hand sides of δψa in (51) for ε1 =

±ε2 = ε and ε̄ = 0 or from the right-hand sides of δψ̄a for ε̄1 = ±ε̄2 = ε̄ and ε = 0.29



For later onveniene we do not �x the Wilson parameter r in this setion. In this lattiemodel the Dira operator M0 in (58) takes the form
M

(1)
0 = γµ∂̊µ −

ar

2
∆ (61)and we easily reognize the standard Dira operator for Wilson fermions. The bosoni partof the ation may be expanded as

S
(1)
bos =

a2

2

∑

x

(

φ̄x(Kφ)x + |W ′(φx)|2
)

+ a2
∑

x

(

W ′(φx) (∂̊φ− ar

4
∆φ̄)x + ..) (62)with the kineti operator

K = −∆̊ + (1
2
ar∆)2, where ∆̊ = −∂̊µ∂̊µ. (63)The last term in (62) is the improvement term � a disretization of a surfae term inthe ontinuum theory. Note that even for the free massive model with W ′(φ) = mφ theimprovement term −1

2
(amr) a2

∑

φ̄x(∆φ)x is non-zero suh that (62) beomes
S

(1)
bos =

a2

2

∑

xy

φ̄xK
(1)
xy φy with K(1) = K +m2 − arm∆. (64)The eigenvalues of the ommuting operators −∆̊ and −∆ are p̊2 and p̂2, where

◦

pµ =
1

a
sin apµ, p̂µ =

2

a
sin

(apµ
2

) with pµ =
2πkµ
Nµ

, kµ ∈ {1, 2, . . . , Nµ}, (65)suh that the eigenvalues of the matrix K(1) in (64) are
µp =

◦

p2 + (m+ 1
2
arp̂2)2. (66)On the other hand, the eigenvalues of the free Dira operator M (1)

0 +m are given by
λ±p = m+ 1

2
arp̂2 ± i| ◦

p|. (67)Thus, µp = λ+
p λ

−
p , and the fermioni and bosoni determinants oinide for the free theory.The disretization errors for these eigenvalues are of order a,

µp = p2 +m2 + (arm)p2 +O(a2), λ±p = ±i|p| +m+ 1
2
ar p2 +O(a2). (68)It is remarkable that the bosoni part of the ation in the ontinuum is an even funtion ofthe mass, whereas its disretization (62) is not. This spoils the sign freedom in the fermion30



mass term on the lattie and motivates the following seond possibility.(ii) Supersymmetri model with non-standard Wilson termAgain we hoose the ultraloal derivatives ∂̊µ but now add a non-standard Wilson term tothe superpotential to get rid of the doublers, so that the ation now is
S(2) = Sbos + Sferm with ∂µ = ∂̊µ, Wx =

iar

2
(∆φ)x +W ′(φx). (69)This hoie is equivalent to an imaginary value of the Wilson parameter inside the holomor-phi superpotential. Now the Dira operator M0 in (58) has the form

M
(2)
0 = γµ∂̊µ +

iar

2
γ3∆ (70)and ontains a non-standard Wilson term, reminisent of a momentum dependent twistedmass. It should be noted that the only di�erene between the bosoni ations (62) and

S
(2)
bos =

a2

2

∑

x

(

φ̄x(Kφ)x + |W ′(φx)|2
)

+ a2
∑

x

(

W ′(φx) (∂̊φ− iar

4
∆φ̄)x + ..), (71)is the improvement term. The modi�ed Wilson term in (69) yields an ation whih is evenin the mass m. Atually, for the free massive model with W ′(φ) = mφ the improvementterm vanishes and

S
(2)
bos =

a2

2

∑

xy

φ̄xK
(2)
xy φy with K(2) = K +m2. (72)The eigenvalues of K(2) and of the free Dira operator M (2) +m in this ase are given by

µp = m2 +
◦

p2 +
(

1
2
ar p̂2

)2 and λ±p = m± i

√

◦

p2 +
(

1
2
arp̂2

)2
. (73)Again the determinants of fermioni and bosoni operators are equal. The added advantagein this situation is, however, that the Wilson parameter an be tuned in suh a way thatthe disretization errors of the ontinuum eigenvalues are only of order O(a4). Namely, forsmall lattie spaing,

µp = m2 + p2 + κ+O(a4), λ±p = m± i(p2 + κ)1/2 +O(a4), (74)where the O(a2)-term κ = a2(3r2 − 4)/12
∑

p4
µ vanishes for 4r2 = 3. In fat we will see insetion 4.3 that the value

r2 =
4

3
(75)31



leads to the best ontinuum approximation � and this in spite of the fat that the hoie (75)violates re�etion positivity (as does the improvement term in all supersymmetri models).(iii) Supersymmetri model with SLAC derivativeThe Dira operator γµ∂ slac
µ with nonloal and antisymmetri SLAC derivatives de�nedin (53) has no doublers and no Wilson terms are required; this leads to the ation

S(3) = Sbos + Sferm with ∂µ = ∂ slac
µ , Wx = W ′(φx) (76)with Dira operator

M
(3)
0 = γµ∂ slac

µ , (77)f. (58). For the free massive model with SLAC derivative the improvement term vanishes,in partiular the bosoni part of S(3) is
S

(3)
bos =

a2

2

∑

xy

φ̄xK
(3)
xy φy with K(3) = −∆slac +m2; (78)all supersymmetries are realized. We shall see in setion 4.3 that S(3) is a very good ap-proximation to the ontinuum model and in setion 6 that the lattie model based on theSLAC derivative is one-loop renormalizable in spite of its nonloality.4.3 Simulations of the Wess-Zumino modelIn subsetion 4.1, we have formulated the model in a omplex basis, whih is natural andonvenient for models with two supersymmetries (in partiular, the simplest form of theNiolai map (55) is in terms of the omplex salar �elds φ = ϕ1 + iϕ2 and ξ = ξ1 + iξ2).On the other hand, for numerial simulations it is onvenient to have a formulation of themodel in terms of the real omponents ϕa and ξa whih are ombined to real doublets,

ϕ =

(

ϕ1

ϕ2

) and ξ =

(

ξ1

ξ2

)

. (79)As to the fermions, it is most appropriate to use a Majorana representation with real γ-matries γ1 = σ3, γ
2 = σ1 suh that γ3 = iγ1γ2 = −σ2. All simulations were done for themodel with ubi superpotential W = 1

2
mφ2 + 1

3
gφ3 with derivative

W ′(φ) = mϕ1 + u+ i(mϕ2 + v), (80)32



where we have introdued the abbreviations u = g(ϕ2
1 − ϕ2

2) and v = 2gϕ1ϕ2. The ationsontain a quarti potential
V (ϕ) = |W ′(φ)|2 = (m2 + g2ϕ2 + 2mgϕ1) ϕ2. (81)In terms of real �elds, the Niolai map (55) takes the form
ξ(n) = (M

(n)
0 +m)ϕ +

(

u

v

) for n = 1, 2, 3 (82)with model-dependent free massless Dira operators M (n)
0 as given in (61), (70) and (77).The bosoni ations for the models with standard Wilson, modi�ed Wilson and SLACfermions an now be written as

S
(n)
bos =

a2

2

∑

xy

(ϕx, K
(n)
xy ϕy) +

a2

2

∑

x

V (ϕ) + ∆(n) (83)with model-dependent kineti operators K(n) as introdued in (64), (72) and (78). In termsof the divergene and url of a vetor �eld in two dimensions, div ϕ = ∂1ϕ1 + ∂2ϕ2 andurl ϕ = ∂1ϕ2 − ∂2ϕ1, the model-dependent improvement terms
∆(1) = a2

∑

x

ux

(

(div ϕ)x −
ar

2
(∆ϕ1)x

)

− a2
∑

x

vx

(

(url ϕ)x +
ar

2
(∆ϕ2)x

)

,

∆(2) = a2
∑

x

ux

(

(div ϕ)x −
ar

2
(∆ϕ2)x

)

+ a2
∑

x

vx

(

−(url ϕ)x +
ar

2
(∆ϕ1)x

)

, (84)
∆(3) = a2

∑

x

ux(div ϕ)x − a2
∑

x

vx(url ϕ)xagain are disretizations of ontinuum surfae terms.4.3.1 Models without interationAs expeted, the masses of all models without interations onverge to the same ontinuumlimit m. Sine all free models are supersymmetri (w. r. t. two supersymmetries), bosonand fermion masses extrated from the two-point funtions oinide even at �nite lattiespaing. The masses m(a) for the models (ii) and (iii) with non-standard Wilson term(with r2 = 4/3) and the SLAC derivative, respetively, at �nite a are already very lose totheir ontinuum limits, the e�etive mass as a funtion of a for the model with standardWilson term (with r = 1) has a muh larger slope.13 This is in line with the approximationof the eigenvalues (68) and (74) to those of the ontinuum kineti operators.13This behavior is reminisent of the masses m(a) for the orresponding quantum mehanial model insetion (3.1.1). 33



4.3.2 Models with interationWe have alulated the masses for the interating models with ubi superpotential
W (φ) =

1

2
mφ2 +

1

3
gφ3 (85)for masses m = 10 and ouplings g ranging between 0 and 1. The e�etive masses atdi�erent values of the lattie spaing are determined as desribed in setion 5.3. Again, dueto supersymmetry boson and fermion masses oinide also for �nite lattie spaing. In allases, they onverge to a ontinuum value whih however annot reliably be distinguishedfrom the value mfree(a = 0) = 10 within error bounds. This is to be expeted sine inontinuum perturbation theory, the one-loop orreted mass is

m1−loop = m
(

1 − g2

4πm2

) (86)in a renormalization sheme without wave-funtion renormalization (this orresponds to aorretion less than about 0.3% with our values of m and g). Thus, signi�ant e�ets shouldonly be seen at larger values of g/m. Unfortunately, our simulations require reweightingswhih lead to rather large error bounds (whih grow as the oupling inreases). The onver-gene behavior to the expeted ontinuum value is model-dependent: The model with thenon-standard Wilson term shows the expeted improved behavior leading to good estimatesfor the ontinuum mass already at �nite lattie sizes. As in quantum mehanis, this appliesalso to the SLAC derivative.
5 Algorithmi aspetsIn this setion we brie�y outline the methods and algorithms we have used in our simulations.In partiular we have modi�ed the treatment of the fermion determinant in the well knownHybrid Monte Carlo algorithm (HMC) [44℄.Although due to the low dimensionality of the models under onsideration the numerialstudies to be arried out are muh less demanding than, e. g., four-dimensional lattie QCDwe have to fae similar problems with respet to the treatment of the fermion �elds. However,the omputational tasks at hand allow for strategies whih are more aurate and easier toimplement than what is widely used there. Sine our models do not ontain any gauge34



Lattie spaing Wilson Twisted Wilson
mB mF mB mF0.1250 6.34(4) 6.4872(1) 9.51(8) 9.95(7)0.0833 7.32(3) 7.2730(2) 10.0(1) 10.0182(1)0.0625 7.81(8) 7.768(1) 10.4(1) 9.99(1)0.0500 8.16(4) 8.07(1) 9.82(1) 9.93(3)Lattie spaing SLAC

mB mF0.0769 9.9(2) 10.0(2)0.0667 10.0(1) 10.0(1)0.0526 10.0(1) 10.00(5)0.0400 9.95(6) 9.99(2)0.0323 10.03(3) 9.98(1)0.0213 9.83(3) 9.98(1)Table 2: Comparison of extrated masses at g = 0.5
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Figure 14: E�etive mass for the two dimensional Wess-Zumino model at g = 0.5
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degrees of freedom, the resulting Dira operators have a rather simple form, a fat whihan be put to pratial use as will be shown below.Nonetheless, the mere presene of the fermion determinant in the partition funtion intro-dues a nonloality whih has to be taken into aount in the Monte Carlo algorithm. Wethus deided to base our numerial simulations on the HMC whih allows for a simultane-ous update of all bosoni �eld variables. For the quantum mehanial models disussed insetion 2 substantial improvements an be ahieved if it is possible to ompute the fermiondeterminant in losed form. For the two-dimensional models, however, omparable resultsare not available, and these theories are plagued by a strongly �utuating fermion determi-nant. Even worse, the fermion determinant may take on positive and negative values whihdrives the simulations diretly into the so-alled sign problem. To proeed we will thereforetreat the quantum mehanial models again separately from the two dimensional modelsand disuss them one at a time.5.1 Quantum MehanisOur setup for the bosoni degrees of freedom for the HMC does not di�er from the standardproedure and is formulated on an enlarged phase spae involving the real bosoni �eld φxand an additional onjugate momentum �eld πx. As usual these �elds are propagated alongthe moleular dynamis trajetory by Hamilton's equations
φ̇x =

∂H

∂πx
, π̇x = − ∂H

∂φx
, (87)where

H =
1

2

∑

x

π2
x + S[φ]. (88)Sine on the lattie the fermions are already integrated out the expression to be used ineq. (88) is given by

S[φ] = SB[φ] + ln detM [φ]. (89)In the standard approah one would now introdue a pseudofermion �eld χ to obtain astohasti estimate for detM [φ] whih however will neessarily introdue additional noiseto later measurements. Hene it would be learly favorable to take the fermion determinantexatly into aount. While a diret omputation of the fermion determinant at eah stepof a trajetory is also feasible in these one-dimensional theories one an do even better dueto the simple struture of the Dira operator. Despite their di�erenes in the bosoni part36



of the ation the models involving an antisymmetri derivative matrix and a Wilson term,namely the models (i), (ii), and (iv), share the same fermion MatrixMW [φ]. For these asesa losed expression for the determinant with Wilson parameter r = 1 is given by (29),
detMW [φ] =

∏

x

(

1 +m+ 3gφ2
x

)

− 1. (90)It should be noted that with this `diagonal' nonloal form of the determinant even loalalgorithms ould have been used. A similar expression for the Stratonovih presription asgiven in (32) also allows for a quik omputation of the fermion determinant in model (v).For the SLAC derivative, it is easier to again exploit the loal struture of the interationterms in the fermion matrix by varying
δ(tr lnM [φ]) = tr(δM [φ]M−1[φ]) (91)in order to determine the ontribution of ln detM [φ] = tr lnM [φ] to the equations of mo-tion (87). Sine we only onsider Yukawa ouplings, the variation δM [φ] enters (91) as

∂M [φ]xy
∂φz

= 3gφzδxzδyz. (92)This holds true if the derivative of the superpotential appears in M only on the diagonal;this means that only a single matrix element of M−1[φ] has to be omputed for eah site
φz.14 Obviously, we annot avoid an inversion of M [φ] in order to update all sites.Finally let us brie�y mention some details of our simulation runs. Sine the physial valueof m as well as the physial volume of the box L were kept �xed at L = 10 · m−1 =

Na, the lattie spaing a was varied with the number of points N in the lattie. Thelattie sizes we have onsidered range from N = 15 to N = 243 orresponding to a =

0.06 . . . 0.004. We have heked that the measurements were insensitive to �nite size e�ets.For all lattie sizes we generated between 250 000 and 400 000 independent on�gurationsfor the mass extration; in order to improve the signal to noise ratio for the Ward identities,
106 independent on�gurations were used (with 4 independent runs in order to minimizestatistial errors).14If this method was to be applied to the Stratonovih presription (where we an alternatively use (32)),two matrix elements would have to be omputed sine the interation is o�-diagonal by one unit in thefermion matrix.
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5.2 The two-dimensional Wess-Zumino modelFor the two-dimensional models, the fermion determinant is not positive de�nite, in ontrastto the situation in one dimension. Indeed a numerial experiment shows that the determi-nant has large �utuations at strong oupling and hanges its sign if g/m is larger than aertain threshold value of order O(1). This value depends on the lattie spaing (and on
m). A loser look at the spetrum of the fermion matrix reveals a seond related problem,namely the existene of very small eigenvalues. They inrease the ondition number of thefermion matrix by several orders of magnitude and prevent a straightforward appliationof the pseudofermion method. In addition, the bosoni potential |W ′(φ)|2 possesses twoseparate minima; this might lead to ompliations with respet to ergodiity. In order tohek at whih values of the oupling the standard HMC breaks down, we have performedsimulations in the weakly oupled regime where the aforementioned ontributions from thefermioni �utuations an be taken into aount via reweighting quenhed ensembles. Anadded advantage is that with this approah, �eld generations an be generated very quikly;on the other hand, larger ensembles are used sine reweighting requires higher statistis.
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5.3 Measurements and determination of massesIn this subsetion we expand on the extration of e�etive masses in our quantum mehanialmodels. They are determined by the asymptoti behavior of the (bosoni or fermioni) two-point funtions G(x) ≃ ∑

i cie
−(Ei−E0)x: For x far away from the midpoint N/2 of thelattie, the asymptoti expression for the bosoni two-point funtion is dominated by asingle mass state with E1 − E0 = meff , and as a symmetri funtion it is proportional to

cosh(meff(x−N/2)); the fermioni two-point funtion as a superposition of symmetri andantisymmetri parts (w. r. t. the midpoint) [30℄ is for small x proportional to e−meffx. Thus,the masses an be extrated by exponential �ts from the orresponding simulation data
meff ≡ log

(

G(x)

G(x+ a)

)

, G = G
(n)
bos or G

(n)
ferm. (93)The x-region for the �t should be hosen in suh a way that(i) the ontribution of higher energy states with Ei > E1 in the asymptoti expression

G(x) =
∑

i cie
−(Ei−E0)x is negligible,(ii) the e�et of the improvement terms, whih violate re�etion positivity (i. e., the ci arenot neessarily positive) and therefore damp the two-point funtion for small valuesof x below the ontinuum value, better not in�uene the result,(iii) the errors (whih are larger for smaller values of the two-point funtion) should beminimized,(iv) and in the ase of bosons, the in�uene from the seond exponential tail in cosh(meff(x−

N/2)) = 1
2
(emeff (x−N/2) + e−meff (x−N/2)) should not interfere with the exponential �t tothe �rst.Thus, we are supposed to hoose a region for x in between the left boundary (x ≫ 0 by(i) and (ii)) and the midpoint (x ≪ N/2 by (iii) and (iv)). This works reasonably wellfor Wilson fermions (the results are presented in setion 3.1), but for SLAC fermions, weobserve an osillating behavior of the two-point funtions near the boundaries whih requiresa more areful investigation.In order to understand the nature of this phenomenon, we ompute the propagator of a freemassive fermion in the ontinuum,

Gferm(x) =
∑

λ

ψλ(x)ψ
∗
λ(0)

λ
, (94)40



where the sum runs over the nonzero part of the spetrum of the di�erential operator ∂+m,and ψλ are the eigenfuntions of ∂ +m with eigenvalue λ. If we impose periodi boundaryonditions with ψλ(x) = ψλ(x + N), we have ψλ(x) = 1√
N
e

2πi
N
kx with λ = 2πi

N
k + m for allinteger k. Inserting this into (94), we obtain

Gferm(x) =
1

N

∑

k

e
2πi
N
kx

2πi
N
k +m

(95)for the two-point funtion on the irle. If we disretize the irle (and so introdue amomentum uto�), the sum in (95) is trunated to a �nite number of terms and reduesjust to the propagator of the SLAC derivative. This uto� in momentum spae leads to theGibbs phenomenon whih is in fat what we observe, e. g, in �gure 17.PSfrag replaements
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Gbos(t) =

1

NtN2
x

∑

t′

∑

x,x′

〈ϕ2(t+ t′, x)ϕ2(t
′, x′)〉 (96)15In higher dimensions, these Fourier approximation errors away from the disontinuities are negligible inomparison to other errors.
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and
Gferm(t) =

1

NtN2
x

2
∑

α=1

∑

t′

∑

x,x′

〈ψ̄α(t+ t′, x)ψα(t
′, x′)〉 (97)with Nt ≡ N1, Nx ≡ N2. Both orrelation funtions are proportional to cosh(m(t−Nt/2)).The mass an be extrated via a linear �t in the logarithmi representation in analogy tothe one-dimensional ase.6 Renormalizibility of the WZmodel with SLAC fermionsKartens and Smit have demonstrated in [46℄ that the SLAC derivative indues a nonrenor-malizable one-loop diagram in four-dimensional quantum eletrodynamis on the lattie.Therefore, theories involving the SLAC derivative were generally believed to be nonrenor-malizable. But it an be shown that the two-dimensional N = 2 Wess-Zumino model is infat renormalizable at least to one-loop order.16As usual the alulations of lattie perturbation theory are arried out in the thermodynamilimit where the number of lattie points tends to in�nity and the lattie momentum beomesontinuous. In momentum spae the �nite lattie spaing a is translated into a �nite uto�

Λ = π
a
. It has to be shown that the diagrams an be renormalized when this uto� isremoved. The BPHZ renormalization sheme is used to prove that the renormalized integralstend towards their ontinuum ounterparts, and the ounterterms an be identi�ed withsimilar quantities of ontinuum perturbation theory. The argumentation employed here islosely related to the renormalization theorem of Reisz [47℄. This theorem does howevernot apply in its original form beause the integrands are not smooth funtions of the loopmomentum.In the following, we will determine an upper bound for the boson propagator in momentumspae whih will be used later on to argue that parts of the integrals in lattie perturbationtheory are going to vanish in the ontinuum limit. For the SLAC derivative, the momentumspae representation of the propagators

1

P (k)2 +m2
and −i /P (k) +m

P (k)2 +m2
(98)for bosons and fermions ontains the saw tooth funtion

Pµ(k) = kµ − 2lΛ where (2l − 1)Λ ≤ kµ ≤ (2l + 1)Λ. (99)16In fat, the disussion an easily be extended to prove renormalizability also for the N = 1 model.43



The momentum integration is always restrited to the �rst Brillouin zone, BZ = {(kµ)| |kµ| ≤
Λ}. The internal lines in the one-loop diagrams arry either the internal momentum k ora sum k + q of internal and external momenta where q denotes a linear ombination of theexternal momenta (using momentum onservation, there are n−1 suh linear ombinations
qj in a diagram with n verties). Integrations over loop momenta kµ an be split intointegrations over a square D = {(kµ)| |kµ| ≤ πε

a
} for an arbitrary ε < 1

2
and the rest ofthe Brillouin zone, BZ\D. We will argue below that the integral over D onverges to theontinuum value of the integral whereas the integral over BZ\D is shown to vanish as a goesto zero.Namely, for a given set of external momenta {qj}, one may hoose η = maxµ,j{a0π |qjµ|} with

a0 small enough suh that 0 < η < ε < 1
2
. For (kµ) ∈ D, we an then read o� from

a|kµ ± qµ| ≤ a(|kµ| + |qµ|) < π(ε+ η) for all a < a0 (100)that |kµ± qµ| ≤ Λε′ with ε′ := ε+ η < 1, i. e., (kµ± qµ) is also inside the �rst Brillouin zone.On the other hand, if (kµ) ∈ BZ\D,
π(ε− η) ≤ a(|kµ| − |qµ|) ≤ a|kµ + qµ| ≤ a(|kµ| + |qµ|) ≤ π(1 + η) (101)for suh lattie spaings a. The latter inequality may be used in order to �nd an upperbound for the propagator,

1

P (k ± q)2 +m2
<

1

P (k ± q)2
< Ca2 (102)with C = ((ε− η)

√
2π)−2.It an be easily seen that in the Wess-Zumino model, only two di�erent types of integralsontribute at one-loop level. A typial integral of the �rst type is

Iε + Iπ =

∫

BZ

d2k

(2π)2

1

(P (k)2 +m2)(P (k + q1)2 +m2) . . . (P (k + qn−1)2 +m2)
, (103)

Iε =

∫

D

d2k

(2π)2

1

(k2 +m2)((k + q1)2 +m2) . . . ((k + qn−1)2 +m2)
,

Iπ =

∫

BZ\D

d2k

(2π)2

1

(k2 +m2)(P (k + q1)2 +m2) . . . (P (k + qn−1)2 +m2)

≤ (Ca2)n−1

∫

|k|≤
√

2π/a

d2k

(2π)2

1

(k2 +m2)
= (Ca2)n−1 log

(

1 +
2π2

a2m2

)

.Here, we have applied (101) in order to �nd an upper bound for the integrand in Iπ andthen enlarged the integration domain to a full disk inluding the �rst Brillouin zone. Thus,44



Iπ vanishes in the ontinuum limit if n > 1. Therefore, the integral Iε tends to the ontin-uum value of the integral as a goes to zero (and the orresponding ontinuum integral isonvergent by power ounting), so as long as we are onsidering diagrams with more thanone vertex, this type of integrals does not spoil renormalizability.Another lass of integrals is
I ′ε + I ′π =

∫

BZ

d2k

(2π)2

Pµ(k)Pν(k + q̃1) . . . P̺(k + q̃l)

(P (k)2 +m2)(P (k + q1)2 +m2) . . . (P (k + qn−1)2 +m2)
, (104)

I ′ε =

∫

D

d2k

(2π)2

kµ . . . (k + q̃l)̺
(k2 +m2)((k + q1)2 +m2) . . . ((k + qn−1)2 +m2)

,

I ′π =

∫

BZ\D

d2k

(2π)2

Pµ(k) . . . P̺(k + q̃l)

(k2 +m2)(P (k + q1)2 +m2) . . . (P (k + qn−1)2 +m2)

≤
∫

BZ\D

d2k

(2π)2

|Pµ(k)| . . . |P̺(k + q̃l)|
(k2 +m2)(P (k + q1)2 +m2) . . . (P (k + qn−1)2 +m2)

≤
(π

a

)l+1

(Ca2)n−1

∫

|k|≤
√

2π/a

d2k

(2π)2

1

(k2 +m2)
= Cn−1a2n−l−3 log

(

1 +
2π2

a2m2

)

.The q̃i are taken from the qj , so l ≤ n − 1. The same arguments as above show that theontinuum limit is orret for any n > 2 (again, all ontinuum integrals are onvergent bypower ounting).Therefore, renormalizability only remains to be shown for two kinds of integrals. The �rstonsists of diagrams with n = 1, e. g., tadpole diagrams. In this ase, the loop momentumis independent of the (vanishing) exterior momentum so that the argument of Pµ(k) isrestrited to the �rst Brillouin zone (where Pµ(k) = kµ). The boundary of the integrationregion behaves as a �nite uto� that is removed in the ontinuum limit so that the integralapproahes its ontinuum ounterpart. In the BPHZ renormalization sheme these diagramsare just subtrated and do not ontribute to the renormalized quantities.The seond kind of integrals (with n = 2 and l = 1 in (104)) requires a more areful investi-gation whih may be found in appendix A. This demontrates that lattie disretizations ofthe two-dimensional N = 2 Wess-Zumino model based on the SLAC derivative are renor-malizable at �rst order in perturbation theory and yield the orret ontinuum limit. Itseems however problemati to use the BPHZ renormalization sheme to renormalize theorresponding diagrams in higher-dimensional ases sine this would require a di�erentia-tion of the integrands with respet to external momenta. The disontinuity of the saw toothfuntions in this ase would lead to singular terms.45



7 Summary and outlookIn this paper, we have studied supersymmetri N = 2 Wess-Zumino models in one andtwo dimensions. The six quantum mehanial models under onsideration di�er by thehoie of lattie derivatives and improvement terms. The latter an be used to render thetheory manifestly supersymmetri on the lattie; in distintion to previous works on thissubjet, our simulations of the broken Ward identities at strong oupling prove that onlyone supersymmetry an be preserved. We have demonstrated to a high numerial preisionthat by far the best results for bosoni and fermioni masses an be obtained from a modelwith Wilson fermions and Stratonovih presription for the evaluaton of the improvementterm and from a model based on the SLAC derivative. It is interesting to note that forSLAC fermions no improvement term is needed to reover supersymmetry in the ontinuumlimit.As a key result of this paper for two-dimensional Wess-Zumino models, we propose a non-standard Wilson term giving rise to an O(a4) improved Dira operator
M = γµ∂̊µ +

iar

2
γ3∆ with r2 =

4

3
. (105)The masses extrated from this model approah the ontinuum values muh faster than thosefor the model with standard Wilson-Dira operator (61). Again, results of a omparablygood quality an be obtained with nonloal SLAC fermions. In our ase, the ommonreservation that the SLAC derivative leads to non-renormalizable theories (as originallyshown in [46℄ for the ase of four-dimensional gauge theory) does not hold; we have proventhat the Wess-Zumino model in two dimensions with this derivative is renormalizable toone-loop order.Motivated by the fat that the masses for the N = 2 Wess-Zumino lattie model withultraloal Dira operator (105) are quite lose to the ontinuum values already for moderatelatties we plan to study the model at strong ouplings where we will see deviations fromthe free theory. We are about to implement the PHMC algorithm [48℄ as a possibility todeal with the small eigenvalues of the fermioni operator. We believe that the N = 2Wess-Zumino model as a simple and well-understood theory without the ompliations ofgauge �elds has the potential to beome a toy-model for developing e�ient algorithms forsystems with dynamial fermions, similar to the ubiquitous Shwinger model whih servesas toy model for more omplex systems with a hiral ondensate, instantons, on�nementand so forth. 46



Wess-Zumino models are the �at-spae limits of Landau-Ginzburg models. A related projetmight be to study another limit of Landau-Ginzburg theories, namely sigma models in non-trivial Kählerian without a superpotential. Suh sigma-models admit two supersymmetries;typially they have instanton solutions and hiral ondensates may be generated. If thereexist loal Niolai variables whih give rise to improved lattie models with one quarter ofsupersymmetry, ontat ould be made with our investigations of Wess-Zumino models ina muh broader physial ontext. Clearly these interesting �eld theories deserve furtherattention, both from the algebrai and from the numerial side.A further obvious problem is to study the nonperturbative setor of the two-dimensional
N = 1 Wess-Zumino model. This model shows a riher phase struture than the modelwith two supersymmetries. The sign problem for the Pfa�an seems unavoidable. It isinteresting to note that in onventions with hermitean gamma matries, a nonvanishingWilson term for Majorana fermions has to enter the Dira operator as in (105). Nevertheless,the disretization errors in this ase will be of order O(a); this an in priniple be improvedto O(a4) by a slightly less natural substitute for the Wilson term. In general, for the N = 1model, no loal Niolai variables an be onstruted whih would suggest a supersymmetriompletion of the naive lattie ation. However, one might expet (as in quantum mehanis)that suh improvement terms for the two-dimensional N = 1 model with SLAC fermionsare in fat dispensable.AknowledgementsWe thank F. Brukmann, S. Catterall, S. Duerr, C.-P. Georg, J. Giedt, K. Jansen andC. Wozar for disussions. T. Kaestner aknowledges support by the Konrad-Adenauer-Stiftung and G. Bergner by the Evangelishes Studienwerk. This work has been supportedby the DFG grant Wi 777/8-2.A Renormalization of the fermion loopIn setion 6, we have demonstrated whih kinds of integrals are potentially dangerous forthe one-loop renormalizability of the N = 2 Wess-Zumino model. The missing integral inthis proof was given by (104) with n = 2 and l = 1; it appears for fermion loops with two
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internal lines,
q

k

∝
∫

BZ

d2k

(2π)2

Pµ(k)P
µ(k − q)

(P 2(k) +m2)(P 2(k − q) +m2)
. (106)Depending on the superpotential more than two external lines may appear; in this ase qdenotes the sum of all inoming external momenta. In order to failitate the evaluation ofthis integral, we add (and subtrat) a term with a �nite ontinuum limit; apart from that,the integral needs to be regulated in this limit. On the lattie with �nite lattie spaing,BPHZ regularization means to subtrat the (as yet �nite) value of the integral with vanishingexterior momenta. Thus, we onsider

∫

BZ

d2k

(2π)2

Pµ(k)P
µ(k − q)

(P 2(k) +m2)(P 2(k − q) +m2)
+

∫

BZ

d2k

(2π)2

m2

(P 2(k) +m2)(P 2(k − q) +m2)

− (value at q = 0)

=

∫

BZ

d2k

(2π)2

P µ(k − q)(kµ − Pµ(k − q))

(P 2(k) +m2)(P 2(k − q) +m2)

=

∫

BZ

d2k

(2π)2

qµPµ(k − q)

(k2 +m2)(P (k − q)2 +m2)

− 2Λ
∑

µ

∫ −Λ+qµ

−Λ

dkµ

∫ Λ

−Λ

dkν 6=µ
(2π)2

P µ(k − q)

(k2 +m2)(P (k − q)2 +m2)
. (107)In the last step, we have hosen a0 in suh a way that for all a = π/Λ < a0, shifting kµ ∈ BZby −qµ, one winds up either in the same or in an adjaent Brillouin zone, i. e.,

Pµ(k − q) = kµ − qµ + 2Λ(Θ(−Λ − kµ + qµ) − Θ(kµ − qµ − Λ)). (108)The �rst term on the right-hand side of (107) an be easily seen to onverge to the valueof its ontinuum ounterpart by similar arguments as in (103) and (104). In order to provethat the seond term does not give rise to any orretions in the ontinuum limit, we makeuse of (100) and (102) and observe that an upper bound for its modulus is given by
2Λ

∑

µ

∫ −Λ+qµ

−Λ

dkµ

∫ Λ

−Λ

dkν 6=µ
(2π)2

|P µ(k − q)|
(k2 +m2)(P (k − q)2 +m2)

≤ 2Cπ2

∫ −Λ+q1

−Λ

dk1

2π

∫ Λ

−Λ

dk2

2π

1

k2 +m2
+ (q1 ↔ q2, k1 ↔ k2)

=
C

2

∣

∣

∣

∣

∫ Λ

−Λ

dk2 arctan
( q1
ω(k2) − q1Λω(k2)−1 + Λ2ω(k2)−1

)

ω(k2)
−1

∣

∣

∣

∣

+ (q1 ↔ q2, k1 ↔ k2)48



≤ C

2

∫ Λ

−Λ

dk2

∣

∣

∣

q1
m2 + k2

2 − Λq1 + Λ2

∣

∣

∣
+ (q1 ↔ q2, k1 ↔ k2) (109)with ω(k) =

√
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