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Abstract

We propose the integral form of Atiah-Patodi-Singer spectral boundary conditions (SBC)
and find explicitly the integral projector onto SBC for the 3-dimensional spherical cavity.
After discussion of a simple example we suggest that the relation between the projector and
fermion propagator is universal and stays valid independently of the bag form and space
dimension.

Introduction

The two principal problems of QCD are confinement and spontaneous breaking of chiral invari-
ance. Both of them take place in the strongly interacting domain where the theory becomes
nonperturbative. Most probably the two are interrelated. However, usually they were consid-
ered separately. Up to now the spontaneous chiral invariance breaking (SCIB) was discussed
mostly in the infinite space. It would be interesting to study specific features of SCIB that
appear due to localization of quarks in finite volume. In order to do that one has to confine the
quarks in a chiral invariant way.

A way to lock fermions in finite volume without spoiling the chiral symmetry is to impose the
so-called spectral boundary conditions (SBC). They were first introduced by Atiah, Patodi
and Singer (APS) who investigated anomalies on manifolds with boundaries [5]. Later these
boundary conditions were widely applied in studies of index theorems on various manifolds [6].

Originally the APS boundary conditions were formulated for compact manifolds in arbitrary
even dimension 2n. Such a manifold has a compact 2n − 1, i. e. odd-dimensional boundary.
However in physical applications one also meets odd-dimensional spatial bags evolving in Eu-
clidean or Minkowsky time. Evolution converts the spatial boundary of such a bag into an
infinite space-time cylinder. Recently it was shown [7] that in these problems instead of the
full time-dependent boundary conditions on the cylinder one may use static SBC on the spatial
boundary of the bag. Thus it turns out that the APS boundary conditions make sense both on
odd (the classical case) and even dimensional surfaces (the modified SBC).

The spectral conditions are essentially nonlocal, i. e. they are defined on the boundary as a
whole. According to the original “constructive” definition all functions are expanded in terms
of eigenfunctions of Dirac operator on the boundary and certain harmonics are required to be
zero. Thus the APS constraints are imposed not onto functions as they are but onto their
harmonics. This ensures the Hermicity of Dirac operator and charge conservation in the bag.
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However the SBC may also be written in the integral form. Summation over separate
boundary harmonics gives an integral projection operator (we call it the SBC-projector). The
APS conditions state that it must annihilate fermionic wave functions on the boundary.

In the current paper we study the modified SBC for the three-dimensional spherical bag.
Its boundary is the Riemann sphere S2 and the corresponding harmonics may be expressed
via spherical spinors. In this case the summation may be carried out and the SBC projection
operator may be found explicitly.

A remarkable feature of our result is that the SBC projection operator is immediately related
to the fermionic Green function. We claim that this relation is general and holds for arbitrary
non-spherical boundaries in any dimension.

The paper has the following structure. We shall review the spectral boundary conditions
in Section 1. In Section 2 we shall discuss the APS conditions on the 3-dimensional sphere
and calculate the SBC-projector. Then, in Section 3 we shall discuss the relation between the
SBC-projector and fermion propagator for a simple model and in general case. These will be
followed by summary and conclusions.

1 The spectral boundary conditions

1.1 Conventions

First of all we will introduce coordinates, Dirac matrices and fix a gauge that allows to define
the spectral boundary conditions. The APS boundary conditions in any even dimension are
defined similarly. Therefore we limit ourselves to the 4-dimensional case. Generalization to
higher dimensions is straightforward.

Let us consider massless fermions interacting with a gauge field Â in some Euclidean domain
B that may be either a closed 4-dimensional cavity B4 or an infinite space-time cylinder B3⊗R.
We choose the curvilinear coordinates so that near the boundary ∂B the first coordinate ξ points
along the outward normal while the three others, qi, parametrize ∂B itself. The origin ξ = 0
lies on ∂B. Following the classics we shall assume that near the surface the metric gαβ depends
only on q so that

ds2 = dξ2 + gik(q) dq
i dqk. (1)

Moreover, we choose the gauge such that on the boundary the normal component Âξ = 0.
It is crucial to fix the Dirac matrix γξ. Let I be the 2 × 2 unity matrix. Then

γξ =

(

0 iI
−iI 0

)

; γq =

(

0 σq

σq 0

)

. (2)

Matrices σq are the ordinary Pauli σ-matrices. With these definitions the Dirac operator of
massless fermions on the surface takes the form,

−i /∇|∂B4
= −iγα∇α =

(

0 M̂

M̂ † 0

)

=

(

0 I ∂ξ − i∇̂
−I ∂ξ − i∇̂ 0

)

, (3)

where ∇̂ = σq ∇q is the convolution of covariant gradient along the boundary ∇q with σ-
matrices. Note that Hermitian conjugated operators M̂ and M̂ † differ only by the sign of ∂ξ.

Further on we shall call the linear differential operator −i∇̂ on the boundary the boundary

operator.

B̂4 = −i∇̂ = −iσq ∇q. (4)

It is Hermitian and includes tangential gauge field Âq and the spin connection that arises from
the curvature of ∂B4.
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It is well known that since the massless Dirac operator anticommutes with γ5-matrix,

{

−i /∇, γ5
}

= 0, γ5 =

(

I 0
0 −I

)

, (5)

it preserves helicity of massless quarks. This property is called chiral invariance. In order to
retain it in finite space one needs chirally invariant boundary conditions.

1.2 The APS boundary conditions

1.2.1 The classical 4-dimensional SBC

Atiah, Patodi and Singer investigated spectra of Dirac operator −i /∇ on manifolds with bound-
aries. If we separate upper and lower (left and right) components of 4-spinors the corresponding
spectral equation will take the form

−i /∇ψΛ = −i /∇
(

uΛ

vΛ

)

= Λ

(

uΛ

vΛ

)

= ΛψΛ. (6)

The next step in the construction of SBC is to Fourier-expand u and v near the boundary. Let
2-spinors eλ(q) be eigenfunctions of the boundary operator −i∇̂:

B̂4 eλ(q) = −i∇̂ eλ(q) = λ eλ(q). (7)

Note that the form of this equation and the eigenfunctions eλ(q) depend on gauge. It is here
that the gauge condition Âξ(0, q) = 0 becomes important.

The operator −i∇̂ is Hermitian so λ’s are real. The functions eλ form an orthogonal basis
on ∂B4. In principle −i∇̂ may have zero-modes but for the sphere and convex manifolds this
is not the case.

Due to assumption (1) in the vicinity of the boundary the normal coordinate ξ separates
and the 2-spinors uΛ and vΛ may be expanded in series:

uΛ(ξ, q) =
∑

λ

fλ
Λ(ξ) eλ(q), fλ

Λ(ξ) =

∫

∂B4

e†λ(q)uΛ(ξ, q)
√
g d3q; (8a)

vΛ(ξ, q) =
∑

λ

gλ
Λ(ξ) eλ(q), gλ

Λ(ξ) =

∫

∂B4

e†λ(q) vΛ(ξ, q)
√
g d3q; (8b)

where g = det ||gik|| is the determinant of the metric on the boundary.
The APS boundary conditions may be defined in two equivalent ways: either in terms of

separate harmonics or via an integral operator.

• The traditional form of spectral boundary conditions states that on the boundary, i. e.

at ξ = 0

fλ
Λ

∣

∣

∣

∂B4

= 0 for λ > 0; (9a)

gλ
Λ

∣

∣

∣

∂B4

= 0 for λ < 0. (9b)

• Another way is to introduce integral projectors P+
4 and P−

4 onto boundary modes with
positive and negative λ (4 means the 4-dimensional case):

P+
4 (q, q′) =

∑

λ>0

eλ(q) e†λ(q′); P−
4 (q, q′) =

∑

λ<0

eλ(q) e†λ(q′). (10)

If we join two-dimensional projectors P+ and P− into the 4× 4 integral operator P4 then
the SBC for a 4-spinor ψ will look as follows:

P4 ψ(q) =

∫

∂B4

(

P+
4 (q, q′) 0

0 P−
4 (q, q′)

)(

u(q′)
v(q′)

)

√
g d3q′ = 0. (11)
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The SBC-projector P4 commutes with matrix γ5, so this boundary condition by construction
respects chiral invariance.

[

P4, γ
5
]

= 0. (12)

Let us denote by I the unity operator on the function space spanned by the eλ. Obviously,
because of completeness,

P+
4 (q, q′) + P−

4 (q, q′) = I(q, q′) =

(

I 0
0 I

)

δ(q − q′)
∣

∣

∂B4
, (13)

where the last expression is the δ-function on the bag surface ∂B4.

1.2.2 The truncated 3+1-dimensional SBC

Now let us turn to fermions confined in a 3-dimensional spatial bag B3 that evolves in Euclidean
time and sweeps the infinite space-time cylinder B3⊗R. We will call the first three coordinates
“space” and the fourth one “time”. The boundary operator consists of spatial and temporal
parts:

B̂4 = −i∇̂∂B3⊗R = −i∇̂∂B3
− iσz∂4 = B̂3 − iσz∂4. (14)

We will call the spatial part B̂3 = −i∇̂∂B3
the truncated boundary operator. Let its

eigenfunctions be e±λ (there was no (±)-superscript in 4-dimensions):

−i∇̂∂B3
e±λ (q) = B̂3 e

±
λ (q) = ±λ e±λ (q), λ > 0. (15)

Wave functions on the space-time boundary ∂B3⊗R can be expanded in e±λ and longitudinal
(temporal) plane waves:

uΛ =
∑

λ>0

∫

dk

2π
eikt

[

f+λ, k
Λ e+λ + f−λ, k

Λ e−λ
]

; (16a)

vΛ =
∑

λ>0

∫

dk

2π
eikt

[

g+λ, k
Λ e+λ + g−λ, k

Λ e−λ
]

. (16b)

The truncated operator −i∇̂∂B3
anticommutes with σz and because of that the temporal

term in (14) mixes positive and negative spatial harmonics. This makes the full SBC: a)“future-
dependent” and b) hard to handle.

However it was shown in [7] that in this case one may use the simpler truncated APS

constraints. In terms of harmonics of the truncated boundary operator they look as follows:

f+λ, k
Λ

∣

∣

∣

∂B3

= 0; (17a)

g−λ, k
Λ

∣

∣

∣

∂B3

= 0. (17b)

These conditions are purely spatial and do not depend on time. Thus they cause no problems
with causality and may be applied both in Euclidean and Minkowski spaces.

Projectors onto positive and negative boundary harmonics in the (3+1)-case are defined in
complete analogy with (10):

P±
3+1(q, q

′) =
∑

λ>0

e±λ (q) [e±λ (q′)]†. (18)

This allows to put the truncated SBC in the integral form as follows:

P3+1 ψ(q) =

∫

∂B4

(

P+
3+1(q, q

′) 0
0 P−

3+1(q, q
′)

)(

u(q′)
v(q′)

)

√
g d2q′ = 0, (19)

where the integration runs over the 2-dimensional spatial boundary.
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1.3 The physics of SBC

It may be proved that SBC are chirally invariant, ensure Hermicity of the Dirac operator and
fermion conservation in the bag. The interesting physical property of SBC is that fermionic
wave functions may be continued out of the bag in a square integrable way.

Look how this may be shown. Let us write the eigenvalue equations for Dirac operator
near the boundary (remember that ξ is the outward spatial normal). In 3+1-dimensional case
harmonics corresponding to ±λ get mixed, therefore for each value of λ we get a set of four
linked equations (instead of two independent pairs for k = 0 in 4d):

(∂ξ + λ) g+λ, k
Λ = Λ f+λ, k

Λ + ik g−λ, k
Λ ; (20a)

−(∂ξ − λ) f+λ, k
Λ = Λ g+λ, k

Λ + ik f−λ, k
Λ : (20b)

(∂ξ − λ) g−λ, k
Λ = Λ f−λ, k

Λ − ik g+λ, k
Λ ; (20c)

−(∂ξ + λ) f−λ, k
Λ = Λ g−λ, k

Λ − ik f+λ, k
Λ . (20d)

According to conditions (17) the RHS of equations (20a, 20d) vanish on the boundary. The
behaviour of g+ and f− on the boundary is governed by homogeneous equations so that:

∂ξf
−λ, k
Λ

f−λ, k
Λ

∣

∣

∣

∣

∣

ξ=0

=
∂ξg

+λ, k
Λ

g+λ, k
Λ

∣

∣

∣

∣

∣

ξ=0

= −λ < 0. (21)

Thus the nonvanishing spinor components g+ and f− have negative logarithmic derivatives
at the boundary. Therefore the eigenfunctions may be continued exponentially out of both the
4d-bag or the (3 + 1)d-world cylinder in a square integrable way. After the continuation the
particles stay located mainly inside the bag. This proves that SBC is a quite natural physical
requirement.

2 The SBC-projector for sphere

In this section we are going to calculate explicitly the integral SBC-projector for the boundary
shaped as an ordinary 3-dimensional Riemann sphere S2. First we will introduce the spe-
cial “work” representation of spinors that greatly simplifies the task, then outline the actual
computation and, finally, present the result in covariant form.

2.1 The transformation of Dirac operator

The form of Dirac operator, boundary operator and SBC-projector depend on choice of γ-
matrices. There exists a coordinate-dependent transformation of spinors that converts the
eigenfunctions of the boundary operator on the sphere into conventional spherical spinors. We
call this the work representation.

Let us start from standard Cartesian coordinates xµ, µ = 1, . . . 4. The corresponding γ-
matrices are:

γa =

(

0 σa

σa 0

)

, γ4 =

(

0 iI
−iI 0

)

or γµ =

(

0 σµ

σ†µ 0

)

, (22)

with σµ = (σa, iI), σ
†
µ = (σa, −iI). The conventional rotation generators for 4-spinors are (for

spatial rotations it is convenient to use generators with one index).

Σµν = − i

2
[γµ, γν ] and Σa =

1

2
ǫabc Σbc. (23)

The Cartesian Dirac operator is:
−i /∇Cart = −iγµ∂µ. (24)
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Transformation to the work representation consists of two independent π
2 -turns. The spatial

turn about the radius simplifies the boundary operator but leaves untouched the γr = γana

matrix (~n = ~r
r
). The rotation in (r x4)-plane interchanges the γ4 and γr matrices so that γ4

points along the radius as required by APS boundary conditions. The product of the two
rotations is:

VW = exp
iπ

4
~Σ~n exp

iπ

4
Σa4 na =

(

1+i~σ~n√
2

0

0 1+i~σ~n√
2

)(

1−i~σ~n√
2

0

0 1+i~σ~n√
2

)

=

(

I 0
0 i~σ~n

)

; (25)

The result of the transformation on matrices γ4 and γr is:

V †
W ~γ~nVW = γ4; V †

W γ4 VW = −~γ~n; (26)

After rotation to the work frame the Dirac operator takes the form:

−i /∇W = −iV †
W /∇Cart VW =





0
(

∂r + 1
r

)

+ B̂W

r

−
(

∂r + 1
r

)

+ B̂W

r
0



+ i~γ~n ∂4, (27)

But to the 1
r

that accompanies ∂r-derivative (it may be eliminated by redefining the wave
function ψ → ψ/r) this operator has exactly the required form (γ4 is aligned with the radius).
Therefore we may project solutions of the Dirac equation onto eigenfunctions of B̂W and impose
on them the modified APS-boundary conditions.

2.2 The boundary operator

For convenience let us introduce (3+1) cylindrical coordinates:

x1 = r sin θ cosφ; x2 = r sin θ sinφ; x3 = r cos θ; x4 = t. (28)

After the spinor rotation (26) the boundary operator in (27) takes the following form:

B̂W =

(

−i∂φ + 1 −e−iφ(∂θ − i cot θ ∂φ)
eiφ(∂θ + i cot θ ∂φ) i∂φ + 1

)

= 1 + 2L̂a
W Ŝa

W . (29)

Thus eigenfunctions of the boundary operator are classified according to the value of scalar
product L̂a

W Ŝa
W . The operator Ŝa

W looks like the nonrelativistic spin,

Ŝa
W =

1

2
σa, (30)

and ~̂LW is the 3-dimensional angular momentum in spherical coordinates (in Cartesian frame
it would be L̂a

W = L̂a = −iǫabcxb∂c).

Note, that despite the apparent resemblance ~̂SW is not the physical spin. Rotation (26)
affects only the lower (right) components of 4-spinors and makes the actual spin operators for
left and right fields look differently1.

However, one still may profit from the formal similarity of SW to spin. Let us introduce a
fictitious operator of “total angular momentum” ĴW = L̂W + ŜW ,. Then the boundary operator
in the work representation (29) may be written as

B̂W = 1 + 2L̂a
W Ŝa

W = 1 + Ĵ2
W − L̂2

W − Ŝ2
W . (32)

1The true 4d spin operator in Cartesian frame is 1

2

~Σ. After the rotation to work representation it becomes:

~ΣW = V
†

W
~ΣVW =

(

~σ 0
0 2~n(~σ ~n) − ~σ

)

(31)
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This beautiful formula is one of our main results and the key element of the further cal-
culation. The reduction of spherical Dirac operator to momentum operators greatly simplifies
all spectral expansions including that of the SBC-projector. Obviously the eigenfunctions of
the operator (32) are conventional spherical spinors Ωj, l, m and the corresponding eigenvalues

of B̂W are (see eqn. (15)),

λ = j(j + 1) − l(l + 1) +
1

4
=

{

l + 1, for j = l + 1
2 ;

−l, for j = l − 1
2 .

(33)

Explicit expressions for spherical spinors will be given in the next section.

2.3 Calculation of the projector

Now we are going to the calculate the 3-dimensional projectors P±
3+1(q, q

′) defined by formu-

lae (18). The eigenfunctions of the boundary operator B̂W are the standard spherical spinors.
In terms of the conventional spherical harmonics Yl, m they look as follows:

e+l+1 = Ωl+ 1

2
, l, k =





√

j+k
2j

Yl, k− 1

2
√

j−k
2j

Yl, k+ 1

2



 and e−l = Ωl− 1

2
, l, k =





−
√

j−k+1
2j+2 Yl, k− 1

2
√

j+k+1
2j+2 Yl, k+ 1

2



 . (34)

Substituting them into equations (18) we get for projectors in work representation (here m =
k − 1

2 and clm =
√

(l −m)(l +m+ 1)):

P+
W (x̂, ŷ) =

∞
∑

l=0

l
∑

m=−l−1

1

2l + 1
×

(

(l +m+ 1)Yl, m(x̂)Y ∗
l, m(ŷ) clm Yl, m(x̂)Y ∗

l, m+1(ŷ)

clm Yl, m+1(x̂)Y
∗
l, m(ŷ) (l −m)Yl, m+1(x̂)Y

∗
l, m+1(ŷ)

)

; (35a)

P−
W (x̂, ŷ) =

∞
∑

l=1

l−1
∑

m=−l

1

2l + 1
×

(

(l −m)Yl, m(x̂)Y ∗
l, m(ŷ) −clm Yl, m(x̂)Y ∗

l, m+1(ŷ)

−clm Yl, m+1(x̂)Y
∗
l, m(ŷ) (l +m+ 1)Yl, m+1(x̂)Y

∗
l, m+1(ŷ)

)

. (35b)

The summation is a purely technical problem. At the end we get for the full 4-component
projector (19):

PW (x̂, ŷ)|x̂, ŷ∈S2 =
1

2
δS2(x̂− ŷ) − i γ4 SW (x̂, ŷ), (36)

where SW is the propagator of massless fermions in work representation.
After rotating γ-matrices back to Weyl representation (22) and substituting the fermion

propagator S we get the explicit form of APS boundary condition for sphere of radius R:

P ψ(~x)||x|=R =

∮

S2

[

1

2
δS2(~x− ~y) +

/̂nx (/~x− /~y)

4π |~x− ~y|3
]

ψ(~y) d2y =

∮

S2

[

1

2
δS2(~x− ~y) +

(R2 − /~x/~y)

4π R |~x− ~y|3

]

ψ(~y) d2y = 0 (37)

This completes the calculation in 3-dimensional case.
Now we are going to illustrate the mechanism that causes the appearance of fermionic Green

function by an example.
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3 The two-mode model

Here we will demonstrate how the relation between the SBC-projector and fermion propagator
arises at the level of a separated boundary harmonic. This may be done by studying the simple
model with almost trivial boundary operator.

Let us consider two-dimensional massless fermions living in half-plane ξ < 0. Suppose that
the boundary operator has a single eigenvalue λ > 0 (actually this means that we consider an
individual mode of the boundary operator). Then the “Dirac operator” Λ̂ is:

Λ̂ = −iγξ∂ξ + λ̂ =

(

0 ∂ξ

−∂ξ 0

)

+

(

0 λ
λ 0

)

. (38)

The Dirac equation Λ̂ψ = 0 has two solutions:

ψ(ξ) = c− ψ−(ξ) + c+ ψ+(ξ) = c− exp−λξ
(

0
1

)

+ c+ expλξ

(

1
0

)

. (39)

Projectors onto positive and negative modes and unity operator are simple 2 × 2 matrices:

P+ =

(

1 0
0 0

)

; P− =

(

0 0
0 1

)

; I = P+ + P− =

(

1 0
0 1

)

. (40)

The APS boundary condition in this case kills the positive mode that grows at +∞ and has
the form

P ψ(ξ) = P+ ψ(ξ) =

(

1 0
0 0

)

ψ(ξ) = 0. (41)

Now let us turn to the Green function of operator (38). It is easy to check that

Λ̂−1 = S(ξ, η) =

(

0 θ(η − ξ) eλ(ξ−η)

θ(ξ − η) eλ(η−ξ) 0

)

; Λ̂S(ξ, η) = I δ(ξ − η). (42)

In order to establish a connection between the fermion propagator and SBC-projector we put
both points ξ, η onto the boundary, ξ = η = 0, as it was done in (36), and multiply S by −iγξ:

−iγξS(ξ, η)
∣

∣

∣

ξ=η=0
=

(

θ(0) 0
0 −θ(0)

)

= θ(0)(P+ − P−) =
P+ − P−

2
. (43)

Here we used the symmetric regularization and set θ(0) = 1
2 . Comparison with (40) demon-

strates that projector onto APS boundary conditions (41) may be expressed as

P+ =
1

2

(

I −iγξS(ξ, η)
∣

∣

∣

ξ=η=0

)

, (44)

that is exactly the one-dimensional version of Eq. (36).
We see that the result for the model is similar to that obtained by exact calculation in

the more realistic case. Actually the situation is quite general and the relation between SBC-
projector and fermionic Green function stays valid regardless of dimensionality of space, shape
of the boundary and spinor representation. Indeed, the only simplification of our example is
that the boundary operator had a sole eigenvalue. Although real spectra of boundary operators
are much richer our analysis remains true for every single isolated eigenfunction. Being valid
for each of spectral harmonics it must stay true for the functions as a whole.
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4 Conclusion

Here is the brief summary of results. We proposed the integral form of SBC for static even-
dimensional bags and truncated SBC for odd-dimensional bags evolving in time. Then we
performed the explicit calculation of SBC-projector for the 3-dimensional sphere. The projector
has a simple and compact expression in terms of the massless fermion propagator. The analysis
of a simple two-mode model of APS boundary conditions led to the similar relation between
the projector and propagator.

The covariant form of our result may be obtained by transforming (36) to Weyl representa-
tion. Then the projector onto APS boundary conditions becomes:

P(x̂, ŷ) = VW PW (x̂, ŷ)V †
W =

1

2
δ∂B(x̂− ŷ) − i (γ̂ n̂x)S(x̂, ŷ), (45)

where vectors x̂, ŷ ∈ ∂B and n̂x is the outward normal to the boundary at point x̂. Here
S is the conventional propagator of massless fermions. This expression does not depend on
parametrization of γ-matrices and choice of coordinates.

The relation between the SBC-projector and massless fermion propagator (45) is covariant
and does not depend on representation of spinors. Therefore the integral formulation of spec-
tral boundary conditions looks more practical than the original “constructive” definition that
required the special choice of coordinates γ-matrices etc. Moreover, the result (45) appears to
be universal and suitable for boundaries of arbitrary shape in any dimension. It is not difficult
to prove this in general starting from the two-mode example of Section 3.

In conclusion the speaker (AA) would like to express his gratitude for the DAAD spon-
sorship that made possible the present collaboration. The participation in the Seminar was
supported by the Organizers. The work was partially supported by RFBR grants 05–02–17464
and 06–02–16905.
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