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Abstract

We show that a non-relativistic particle in a combined field of a magnetic monopole and
1/r2 potential reveals a hidden, partially free dynamics when the strength of the central
potential and the charge-monopole coupling constant are mutually fitted to each other. In
this case the system admits both a conserved Laplace-Runge-Lenz vector and a dynamical
conformal symmetry. The supersymmetrically extended system corresponds then to a back-
ground of a self-dual or anti-self-dual dyon. It is described by a quadratically extended Lie
superalgebra D(2, 1;α) with α = 1/2, in which the bosonic set of generators is enlarged by
a generalized Laplace-Runge-Lenz vector and its dynamical integral counterpart related to
Galilei symmetry, as well as by the chiral Z2-grading operator. The odd part of the nonlinear
superalgebra comprises a complete set of 24 = 2 × 3 × 4 fermionic generators. Here a usual
duplication comes from the Z2-grading structure, the second factor can be associated with a
triad of scalar integrals — the Hamiltonian, the generator of special conformal transformations
and the squared total angular momentum vector, while the quadruplication is generated by a
chiral spin vector integral which exits due to the (anti)-self-dual nature of the electromagnetic
background.

1 Introduction

Peculiar features of a classical or quantum system are usually associated with and reflected in its
special symmetry properties. A well-known example is the conserved Laplace-Runge-Lenz vector,
which explains the periodicity of the classical bound trajectories in the Kepler problem and the
‘accidental’ degeneracy of the bound states energy levels of the hydrogen atom [1]–[6]. A different
kind of example is provided by nonlinear integrable systems, in which soliton solutions exhibit
particle-like properties in classical scattering processes. The robustness of solitons in these field
systems is a consequence of the infinite number of conservation laws. In the inverse scatter-
ing method, solitons correspond to reflectionless potentials in the associated quantum problems
[7]. The reflectionless nature of soliton potentials can be linked, in turn, with a presence of a
nontrivial Lax-Novikov quantum integral of motion which is a higher order differential operator.
These peculiarities of the quantum mechanical soliton systems show up in a supersymmetric gen-
eralization, where they reveal a richer supersymmetry structure in comparison with that for the
non-solitonic ones [8].
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A charged particle in the field of a magnetic monopole exhibits a hidden free conical dy-
namics [9, 10]. In this aspect it resembles one-dimensional quantum mechanical reflectionless
systems with their close relation to a free particle. A charge-dyon system, on the other hand, is
characterized by the presence of the conserved Laplace-Runge-Lenz vector [11], similarly to the
Kepler problem. The study of both the charge-monopole and charge-dyon systems, as well as
their superextensions, has attracted a lot of attention in literature [9]–[33].

This paper is devoted to the investigation of the rather exotic nonlinear superconformal struc-
ture of a particle in the field of the Dirac magnetic monopole accompanied by the field of the
central 1/r2-potential. Particular aspects of this system, including the supersymmetric one, have
been investigated in earlier works [17, 18, 25]. In the present work we shall, however, emphasize
the aspects related to the hidden symmetries. Namely, we first investigate in detail the spinless
particle and show, that for a particular value of the strength of the central potential relative to
the charge-monopole coupling, the system reveals a hidden partially free dynamics. As a result,
besides the rotational and conformal symmetries, it will admit the conserved Laplace-Runge-Lenz
vector as well as the associated dynamical (explicitly depending on time) vector integral related
to the Galilei symmetry. Then we shall arrive at a related system from a different direction, by
constructing the supersymmetric extension of the particle in an electromagnetic background field
by incorporating spin degrees of freedom. We shall observe that for a (anti)-self-dual background
the system admits a chiral spin integral of motion. As a result, we obtain a supersymmetric
generalization of the original spinless system, which can be treated as a supersymmetric spinning
particle in the field of a (anti)-self-dual dyon. The supersymmetric structure we obtain is rather
unusual and unexpectedly rich. It incorporates the Laplace-Runge-Lenz and the associated dy-
namical vector integrals, the generators of conformal and rotational symmetries, and the chiral
spin vector integral. They enter the resulting partially nonlinear (quadratic) superalgebra with
24 quantum fermionic generators, which represents a certain extension of the superconformal
D(2, 1;α) symmetry [25] with a particular value of the parameter α = 1/2.

In the following section we investigate the spinless particle and in particular the special case
characterized by the presence of the conserved Laplace-Runge-Lenz vector and a partially free
dynamics. In the third section we construct the supersymmetric extension of the system, and
study its nonlinear superconformal structure both at the classical and quantum levels. The last,
fourth section includes a summary and concluding remarks.

2 Spinless case

Consider a non-relativistic particle of charge e and mass m in a combined field of a magnetic
monopole1, ~B = g~r/r3, and central potential U(r). It is described by the Hamiltonian

H =
1

2m
~Π2 + U(r), (2.1)

and Poisson brackets

{ri, rj} = 0, {ri,Πj} = δij , {Πi,Πj} = eεijkBk . (2.2)

The equations of motion for the position vector and kinetic-momentum read

~̇r =
1

m
~Π, ~̇Π = − ν

mr3
~L− U ′(r)~n , (2.3)

1We use the units c = ~ = 1.
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where ν = eg, ~n = ~r/r, ~L = ~r × ~Π. From here one finds

~̇n =
1

mr2
~L× ~n , ~̇L =

ν

mr2
~L× ~n , (2.4)

and
d

dt
~r 2 =

2

m
~Π · ~r , d

dt
(~Π · ~r) = 2H − (2U + rU ′) . (2.5)

From (2.4) it follows that the Poincaré vector

~J = ~L− ν~n , with ~J 2 = ~L 2 + ν2 ≥ ν2 , (2.6)

is an integral of motion for any choice of the central potential. It is just the angular momentum
of the system :

{Ji, Jj} = εijkJk , {Ji, nj} = εijknk , {Ji, r} = {Ji,Πr} = 0 , (2.7)

where Πr = ~Π ·~n is the radial component of the kinetic momentum and we also have {r,Πr} = 1.
In terms of the variables ~J , ~n, r and Πr the Hamiltonian takes the form

H =
1

2m

(
Π2
r +

( ~J × ~n)2

r2

)
+ U(r), with ( ~J × ~n)2 = ~J 2 − ν2 . (2.8)

The vectors ~n and ~L precess around the conserved angular momentum ~J with the same frequency,

~̇n =
1

mr2
~J × ~n , ~̇L =

1

mr2
~J × ~L . (2.9)

Hence the trajectory of the particle lies on the cone defined by ~J · ~n = −ν with vertex in r = 0
and symmetry axis oriented along the vector ~J . For U(r) = 0 the particle moves on geodesics
on the cone [9, 10], and like a free particle (ν = 0) is characterized by a conformal symmetry
[34]-[39]. This symmetry survives under switching on the inverse square potential

U(r) =
λ

r2
. (2.10)

In this case the scalar ~Π · ~r is subject to a simple dynamics, d
dt(
~Π · ~r) = 2H. As a consequence,

the dilatation generator
D = ~Π · ~r − 2tH (2.11)

is an explicitly time-dependent dynamical integral of motion: d
dtD = ∂

∂tD + {D,H} = 0. The
first equation from (2.5) implies then that another dynamical integral of motion exists:

K = 2mr2 − 4tD − 4t2H . (2.12)

It is the generator of special conformal transformations.
From now on, we shall consider the potential (2.10) characterized by the presence of the two

dynamical integrals of motion D and K, and assume that λ > 0 to avoid the problem of the fall
to the center r = 0. We shall see that the system admits an even richer symmetry structure when
the relation λ = ν2/2m between the couplings holds true. This particular choice of couplings is
also distinguished by the supersymmetric extension of the system.
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The minimal distance of the particle from the force center corresponds to the instant t0 for
which (~Π · ~r)(t0) = 0, see Eq. (2.5). Taking into account relation ~L2 = 2mr2H − (~Π · ~r)2 − µ2,
where µ2 = 2mλ, one finds that r2

min = ( ~J 2 − ν2 + µ2)/(2mH). Now we decompose the unit
vector ~n into the parts ~n|| and ~n⊥ parallel and perpendicular to the total angular momentum.

Due to (2.6) the former is time independent, ~n|| = −ν ~J/ ~J 2, and this implies ~n2
⊥ = ( ~J 2−ν2)/ ~J 2.

Thus the latter can be written as

~n⊥(t) = ~n⊥(t0) cosϕ(t) +
1

J
~J × ~n⊥(t0) sinϕ(t). (2.13)

Since ~̇n⊥ = ~̇n the first relation in (2.9) implies ϕ̇ = J/(mr2). Employing the relations 1/r2 =
2mH/[(~Π ·~r)2 + ~L 2 +µ2] and 2H = d

dt(
~Π ·~r), we obtain dϕ = Jd(~Π ·~r)/[(~Π ·~r)2 + ~L 2 +µ2]. This

yields the evolution law for the angle ϕ in the plane orthogonal to the angular momentum,

ϕ(t) =
J√

~L 2 + µ2

arctan

(
~Π · ~r/

√
~L2 + µ2

)
+ const. (2.14)

For t0 = 0 and a vanishing integration constant the angle vanishes when r is minimal, ~Π·~r = 2Ht,
and r2(t) = r2

min + 2Ht2/m , such that

ϕ(t) =
J√

J2 − ν2 + µ2
arctan

(
2Ht√

J2 − ν2 + µ2

)
, (2.15)

~n(t) = −ν 1

J2
~J + ~n⊥(t) , ~n⊥(t) = (~n(0) + ν

1

J2
~J ) cosϕ(t) +

1

J
~J × ~n(0) sinϕ(t) . (2.16)

The scattering angle of the trajectory projected onto the plane orthogonal to ~J is

∆ϕ− π =

∫ +∞

−∞
ϕ̇dt− π = π

(
J√

J2 − ν2 + µ2
− 1

)
. (2.17)

In general it depends on the value of the angular momentum J . Only in the exceptional case
when µ2 = ν2 we have ∆ϕ− π = 0 for all J2 ≥ ν2.

From now on we restrict our analysis to the special case µ2 = ν2, for which the Hamiltonian
can be presented in the two equivalent forms

H =
1

2m

(
~Π2 +

ν2

r2

)
=

1

2m

(
Π2
r +

~J 2

r2

)
. (2.18)

Only for this particular value of the parameter λ the central potential compensates exactly the
term −ν2/r2 appearing in the centrifugal term ( ~J ×~n)2/r2 of the charge-monopole Hamiltonian,
see Eq. (2.8).

The cos- and sin-functions, which enter the precession law of the unit vector, simplify (only)
in this case to elementary functions, cosϕ(t) = 1/

√
1 + τ2, sinϕ(t) = τ/

√
1 + τ2, where we

introduced the dimensionless time variable τ = 2Ht/J . The distance of the particle from the
force center varies as r(t) = J

√
1 + τ2/

√
2mH, and we get

rmin = r(0) =
J√

2mH
. (2.19)
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The evolution law for the particle’s coordinate vector can then be written as

~r(t) = ~r(0) +
J√

2mH

(
ν

J2
~J
(

1−
√

1 + τ2
)

+
1

J

(
~J × ~n(0)

)
τ

)
. (2.20)

The projected motion of the particle in the plane orthogonal to the angular momentum is that
of a free particle: it moves along a straight line with constant velocity.

Peculiar properties of a dynamical system both at the classical and quantum levels are in
many cases associated with the presence of hidden symmetries. This happens also in the special
case of the system (2.18). Indeed, consider the Laplace-Runge-Lenz-vector

~G = ~Π× ~J + κ~n , (2.21)

where κ is a constant with the dimension of a mass. In the general case with central potential
(2.8) its dynamics is given by

d

dt
~G = ~L× ~n

(
U ′ +

ν2

mr3
+

κ

mr2

)
. (2.22)

The vector is an integral of motion only for central potentials of the form

U(r) =
ν2

2mr2
+

κ

mr
, (2.23)

that is for a linear combination of the Kepler potential and the particular potential (2.10) with

2mλ = µ2 = ν2 . (2.24)

The case κ = 0 is characterized by the presence of the additional conformal symmetry associated
with dynamical integrals D and K. The particular system (2.18) therefore admits the additional
integral of motion

~G = ~Π× ~J . (2.25)

This, particularly, can easily be seen from the equation of motion

~̇Π = − ν

mr3
~J (2.26)

which holds for relation (2.24) between the couplings, see Eqs. (2.3) and (2.6).
From relations (2.25) and (2.6) one also finds

~G · ~r = J2 − ν2. (2.27)

Eq. (2.20) in particular means, that the vector ~J × ~n(0) is oriented along the integral

~G× ~J = −J2~Π− νΠr
~J . (2.28)

The conserved vectors ~J , ~G and ~G × ~J form an orthogonal basis, and in addition to (2.27), the
projections of ~r and ~Π onto these vectors are

~r · ~J = −νr , ~r · (~G× ~J) = −rΠr(J
2 − ν2) , (2.29)

~Π · ~G = 0 , ~Π · (~G× ~J) = −~G 2 , ~Π · ~J = −νΠr . (2.30)
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In addition, note that

~G 2 = 2mH(J2 − ν2) , (~G× ~J)2 = ~G 2J2 . (2.31)

The angle between the vectors ~n(t) and ~J is given by cos θ = −νJ−1. Taking into account Eq.
(2.19), one finds that relation (2.27) can be written in the equivalent form

~G · (~r(t)− ~r(0)) = 0 . (2.32)

The trajectory of the particle lies, therefore, in the plane orthogonal to ~G. We conclude that the
trajectory is given by intersection of the cone ~J · ~n = −ν with the specified plane. It has a form
of a hyperbola, whose projection onto the plane orthogonal to ~J is a straight line parallel to the
conserved vector ~G × ~J . The projected coordinate of the particle evolves with constant speed
along this line. The equation of hyperbola can be presented in the form

(~r · ~J )2

ν2J2
− (~r · (~G× ~J))2

G2J2(J2 − ν2)
=

1

2mH
. (2.33)

Since the conserved vectors ~J , ~G and ~G× ~J form the complete orthogonal set in the 3-dimensional
space, one finds

~r =
1

2mH
~G− νr

J2
~J − ~r · ~Π

2mHJ2
~G× ~J , (2.34)

where the relations

(~r · ~Π)(t) = (~r · ~Π)(0) + 2Ht , r2(t) = r2(0) +
2

m
(~r · ~Π)(0)t+

2

m
Ht2 (2.35)

finally determine the evolution of ~r(t). One obtains the same law as in (2.20).
In addition to the scalar integrals D and K, explicitly depending on time, the first equation

in (2.3) and Eq. (2.25) allow us to construct an analogous, dynamical vector integral depending
explicitly on time,

~R = ~r × ~J − t

m
~G . (2.36)

It satisfies the relations
2mH ~R = D~G+ ~G× ~J , (2.37)

and we also get
~R · ~J = 0 , ~R · (~G× ~J) = J2(J2 − ν2) , (2.38)

~R · ~G = (J2 − ν2)D , ~R
2

=
1

2m
(J2 − ν2)K . (2.39)

In the liming case ν → 0 corresponding to a free particle, one gets

~R→ D

(
~r − t

m
~p

)
− K

2m
~p . (2.40)

In more detail, at g = ν = 0, the mechanical (or kinetic) momentum ~Π turns into the canonical
momentum ~p with Poisson-commuting components, {pi, pj} = 0. At the same time the angular

momentum ~J becomes the orbital angular momentum and the system transforms into a free
particle with H = ~p 2/2m. In accordance with Eq. (2.28), the integral ~G× ~J reduces to canonical
momentum vector ~p multiplied by the integral −~L2. The Laplace-Runge-Lenz vector ~G itself
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reduces to ~p × ~L = ~p 2~r − (~p · ~r)~p. Note that free particle system possesses the additional
dynamical integral ~N = ~r − ~p t/m that coincides with ~r(0), and is a generator of Galilei boosts.
It is interesting to compare the free particle relations ~N ·~p = D and 2m ~N2 = K with (2.39). The
integral ~p×~L can be written in terms of the dynamical integrals ~N and D as ~p×~L = 2mH ~N−D~p,
which can be compared with the limit relation (2.37) for the dynamical vector integral ~R. The
trajectory of the free particle is a straight line along the vector ~p that passes though the point
~r(0) = ~N and lies in the plane orthogonal to ~L. Switching on the magnetic monopole field and at
the same time the scalar potential U(r) = ν2/2mr2 results in ‘lifting’ and deforming the straight
line into the hyperbola given by the intersection of the magnetic monopole cone ~J · ~n = −ν with
a plane orthogonal to ~G and passing through the point ~r(0).

From (2.31) it follows that the Hamiltonian of the system can be presented in terms of the
angular momentum and Laplace-Runge-Lenz vector,

H =
1

2m

G2

J2 − ν2
. (2.41)

The latter satisfies the Poisson bracket relation

{Gi, Gj} = −2mHεijkJk . (2.42)

As H > 0, one defines the vector

~V =
~G√

2mH
. (2.43)

This re-scaled Laplace-Runge-Lenz vector together with ~J generate the so(3, 1) Lorentz algebra,

{Ji, Jj} = εijkJk , {Vi, Vj} = −εijkJk , {Ji, Vj} = εijkVk . (2.44)

The quantities C1 = ~V 2− ~J 2 and C2 = ~J · ~V are two independent Casimirs of the so(3, 1) algebra
(2.44), {Ca, Ji} = {Ca, Vi} = 0, a = 1, 2, which have here the values C1 = ν2 and C2 = 0. In terms
of the complex combinations L±j = 1

2(Jj ± iVj) , we have

{L+
i ,L

+
j } = εijkL+

k , {L−i ,L
−
j } = εijkL−k , {L+

i ,L
−
j } = 0 . (2.45)

In conclusion of this section, let us note that we have identified additional integrals of motion
for particular central potential by first analyzing the scattering of the particle. The acceleration
points in the direction of ~J only if U(r) = ν2/(2mr2) + const, i.e. exactly for the particular
central potential we have studied. For this potential ~G = ~Π × ~J is an integral of motion. The
acceleration of ~r, projected on the integral ~J × ~G, is zero and this reveals a hidden partially free
dynamics of the particle. The relation d3

dt3
(r2) = 0 is equivalent to the condition that K is a

dynamical integral of motion. Since ~r · ~J = −νr, this reduces to the equation d3

dt3
(~r · ~J )2 = 0.

The last relation means that the acceleration of the particle along ~J is constant, and from here
we recover the hyperbolic form of the trajectory.

Note that the system (2.18) corresponds to a spinless part of the model [17] at the “points
of higher symmetry” λ2 = ν2. It was discussed in [25], where a special hyperbolic trajectory
was also identified and associated with the presence of the Laplace-Runge-Lenz vector. However,
there the dynamical integral (2.36) was not considered. As we shall see below, both the vector
integrals ~G and ~R (more precisely, their analogs incorporating spin degrees of freedom) will play
the key role in a nonlinear supeconformal structure of the superextended version of the system.

In the next section we find a supersymmetric extension of the system (2.18) by exploiting its
particular symmetry properties.
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3 Supersymmetric extension: particle in (anti)-self-dual dyon
background

To construct a supersymmetric generalization of the system, we introduce four Grassmann vari-
ables ξa, where a = 0, i, and i = 1, 2, 3, with Poisson brackets

{ξa, ξb} = −iδab . (3.1)

Their quantum analogs are given by Euclidean gamma-matrices γa, ξ̂0 = 1√
2
γ0, ξ̂i = 1√

2
γi,

realized, for example, via two sets of the Pauli matrices,

γ0 = τ1 ⊗ 1 =

(
0 1
1 0

)
, γi = τ2 ⊗ σi =

(
0 −iσi
iσi 0

)
. (3.2)

We distinguish the values a = 0 and a = 1, 2, 3 since in the model we shall obtain the ξ0 and
ξi will have different transformation properties under the spatial rotations. The operators ξ̂a
anti-commute with

Γ ≡ γ5 = τ3 ⊗ 1 =

(
1 0
0 −1

)
, Γ2 = 1 , (3.3)

which at the quantum level is identified as a Z2-grading operator of the superalgebraic structure.
We introduce also the chiral projectors

T± =
1

2
(1± γ5) =

1

2
(1± τ3)⊗ 1 , T+ + T− = 1 , T+T− = 0 . (3.4)

In terms of the Grassmann variables ξi and ξ0, one defines the chiral spin vectors:

S±i =
1

2
(Si ± Vi) , where Si = − i

2
εijkξjξk , Vi = −iξ0ξi . (3.5)

They generate the so(4) = so(3)⊕ so(3) algebra,

{S+
i ,S

+
j } = εijkS+

k , {S−i ,S
−
j } = εijkS−k , {S+

i ,S
−
j } = 0 . (3.6)

The S+
i has the following Poisson brackets with the ξa :

{S+
i , ξj} =

1

2
(εijkξk − ξ0δij) , {S+

i , ξ0} =
1

2
ξi . (3.7)

Analogous relations for S−i are obtained from (3.7) by the change ξ0 → −ξ0.

The quantum analogs of S±i contain the chiral projectors, Ŝ±i = T±Ŝi, where Ŝi = Ŝ+
i + Ŝ−i =

1 ⊗ 1
2σi, and, particularly, the quantum analog of the third relation from (3.6), [Ŝ+

i , Ŝ
−
j ] = 0, is

just a trivial consequence of the opposite chiralities of Ŝ+
i and Ŝ−i .

Now we consider a particle with charge e propagating in an electric and magnetic fields
described by a vector potential Ai(~r) and a scalar potential A0(~r), and consider a Grassmann-
odd classical quantity

Θ0 = Πiξi + φ(~r)ξ0 , (3.8)

where φ(~r) = eA0(~r) and Πi(~r) = pi − eAi(~r) are the components of the kinetic momentum ~Π.
From here on we set 2m = 1. We have {Πi,Πj} = εijkBk and {Πi, φ} = Ei with Bi = eBi and
Ei = eEi. Here Bi = εijk∂jAk and Ei = −∂iA0 are the background magnetic and electric fields,
whose forms are not further specified at the moment.
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The Grassmann-even quantity H generated by Θ0,

{Θ0,Θ0} = −iH , (3.9)

H = Π2
i + φ2 − 2

(
S+
i (Bi − Ei) + S−i (Bi + Ei)

)
, (3.10)

is readily identified as a Pauli type, second order in pi Hamiltonian. With such an interpretation,
Θ0 can be considered as a classical analog of the stationary (∂/∂t → 0), first order in pi Dirac
operator. From the generalized, graded Jacobi identity 3{Θ0, {Θ0,Θ0}} = 0 it follows at once
that {Θ0,H} = 0, and so, Θ0 can be treated as a supercharge for the system with the Hamiltonian
H. Eq. (3.10) shows that independently from the rotational properties of potentials Ai and A0,
there are two special cases2: self-dual, when Bi = Ei, and anti-self-dual, Bi = −Ei. As follows
from the last relation in (3.6), in these two cases we have additional Grassmann-even integrals of
motion, S+

i , or S−i , respectively. Since with any anti-self-dual background one can associate the
corresponding self-dual background just by changing A0 → −A0, Ai → Ai, one can restrict the
consideration to the self-dual case. Then the Hamiltonian reduces to

H = Π2
i + φ2 − 4S−i Bi , (3.11)

and in addition to the supercharge Θ0 we have the integrals of motion S+
i generating an so(3)

symmetry. As the Poisson brackets of integrals of motion are also integrals of motion, we get
three more integrals

Θi ≡ εijkΠjξk + φξi −Πiξ0 , (3.12)

where Θi = 2{S+
i ,Θ0}. Let us stress that the integrals Θi and Θ0 form the set with the same

transformation properties with respect to the so(3) generators S+
i as the set formed by the basic

Grassmann variables ξi and ξ0,

{S+
i ,Θ0} =

1

2
Θi , {S+

i ,Θj} =
1

2
(εijkΘk − δijΘ0) . (3.13)

Employing (3.13), together with the conservation of S+
i and the graded Jacobi identity

−{Θ0, {S+
i ,Θ0}} + {S+

i , {Θ0,Θ0}} + {Θ0, {Θ0,S+
i }} = 0, we find that Θi and Θ0 Poisson-

commute,
{Θ0,Θi} = 0 , (3.14)

similarly to ξi and ξ0. Once again using the Jacobi identity and relations (3.13) and (3.9), we get

{Θi,Θj} = −iδijH . (3.15)

Thus, postulating the supercharge (3.8) and choosing the (anti)self-dual electromagnetic back-
ground, we have got the second order in momenta pi system possessing the so(3) ∼= su(2) sym-
metry, whose generators S+

i give rise to the extension of the N = 1 supersymmetry (3.9) up to
the N = 4 supersymmetry (3.9), (3.14), (3.15). Note here that for the first time it was showed in
[40] that the N = 4 supersymmetry for a particle in three-dimensional space necessarily implies
the self-duality of the electromagnetic background, see also [17, 25, 26].

Up to this point we did not assume any particular properties of the background field with
respect to the spatial rotations. Suppose now that electric field is spherically symmetric and
choose φ = φ(r). Then ~E = −~rφ′(r)/r = ~B, and the Maxwell equation ∂iBi = 0 for ~r 6= 0
fixes the magnetic field to be that of the magnetic monopole, ~B = ν~r/r3. We arrive therefore at

2We are not interested here in another special case corresponding to homogeneous electric and magnetic fields.
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the electromagnetic background of the self-dual dyon characterized in general case by the scalar
potential φ(r) = κ + ν/r, where κ is a constant. Hamiltonian (3.11) is then a supersymmetric
generalization of the spinless case given by the potential (2.23). We are interested in the su-
persymmetric generalization of the special case characterized by a hidden partially free particle
dynamics. So, we put κ = 0, and the Hamiltonian of the system takes the form (3.11) with
φ = ν/r,

H = Π2
i +

ν2

r2
− 4ν

1

r3
S−i ri . (3.16)

Its Grassmann-free, spinless part coincides with the Hamiltonian (2.18), which possesses the
dynamical conformal symmetry, and one can expect that the total symmetry of (3.16) has to be
a supersymmetric extension of that of the spinless system (2.18). Having in mind this perspective,
we shall show now how an exotic nonlinear (quadratic) superconformal algebra for (3.16) appears
by exploiting our knowledge about the symmetries of the system (2.18).

First, we find that the total angular momentum Ji = Ji + Si is an integral of motion of the
system (3.16), where Ji = (~r× ~Π)i− νni. With respect to it, the ξi form a vector and ξ0 a scalar,
and the Grassmann-odd supercharges Θi and Θ0 have exactly the same rotational properties. The
S+
i is the Grassmann-even vector integral. As a result we find that the total angular momentum
Ji and the chiral spin S+

i generate the bosonic so(4) = so(3)⊕ so(3) symmetry,

{Y+
i ,Y

+
j } = εijkY+

k , {Y−i ,Y
−
j } = εijkY−k , {Y+

i ,Y
−
j } = 0 , (3.17)

where
Y+
i ≡ S

+
i , Y−i ≡ Ji − S

+
i . (3.18)

The Poisson bracket relations for the supercharges Θa with the bosonic integrals Y±i are

{Y±i ,Θ0} = ±1

2
Θi, {Y±i ,Θj} =

1

2
(εijkΘk ∓ δijΘ0) . (3.19)

As in the spinless case, the superextended system also possesses dynamical integrals corre-
sponding to scale- and special conformal transformations. The corresponding Grassmann-even
dynamical scalar integrals are

D = ~Π · ~r − 2Ht , K = ~r 2 − 4Dt− 4Ht2 . (3.20)

Indeed one finds d
dtI = {I,H}+ ∂

∂tI = 0, where I = D, K. Together with the Hamiltonian, they
generate the so(2, 1) algebra,

{D,H} = 2H , {D,K} = −2K , {K,H} = 4D . (3.21)

In terms of the standard basis

J0 =
1

4
(H+K) , J1 =

1

4
(H−K) , J2 =

1

2
D , (3.22)

the so(2, 1)-structure is manifest, {J0, J1} = J2, {J0, J2} = −J1, {J1, J2} = −J0. All three
generators Poisson-commute with the integrals Ji and S+

i , i.e.

{Y±i , Jµ} = 0 , µ = 0, 1, 2 . (3.23)

The Poisson brackets of K with Θ0 and Θi generate the Grassmann-odd dynamical integrals,

Ω0 = ρ0 − 2Θ0t , Ωi = ρi − 2Θit , (3.24)
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where
ρ0 = ~r · ~ξ , ~ρ = ~r × ~ξ − ξ0~r.

The Grassmann-odd quantities (ρ0, ~ρ ) are transformed by the chiral spin integral S+
i and total

angular momentum Ji in the same way as (ξ0, ~ξ ). The Ω0 and Ωi are, respectively, the scalar
and vector integrals with respect to Ji, {Ji,Ω0} = 0, {Ji,Ωj} = εijkΩk, while with respect to
the chiral spin vector S+

i they transform in the same way as the integrals Θ0 and Θi. Hence
the dynamical integrals Ωa have the Poisson bracket relations of the form (3.19) with the so(4)
generators Y±i . The Poisson brackets of Θa and Ωa with the so(2, 1) generators are

{D,Θa} = Θa , {D,Ωa} = −Ωa , (3.25)

{H,Θa} = 0 , {H,Ωa} = −2Θa , (3.26)

{K,Θa} = 2Ωa , {K,Ωa} = 0 . (3.27)

The Poisson bracket relations between the Grassmann-odd integrals are

{Θa,Θb} = −iδabH , {Ωa,Ωb} = −iδabK , (3.28)

and
{Θ0,Ω0} = −iD , {Θi,Ωj} = iεijk(Jk − 4S+

k )− iδijD , (3.29)

{Θ0,Ωi} = −i(Ji + 2S+
i ) , {Θi,Ω0} = i(Ji + 2S+

i ) . (3.30)

Thus, the set H, Ji, S+
i , D, K of even, and the set Θa, Ωa of odd integrals together form a closed

Lie superalgebra. To identify it, we represent the Poisson bracket relations (3.19), (3.29) and
(3.30) in a compact form:

{Y±i ,Υa} =
1

2
t±iab Υb , {Θa,Ωb} = −iDδab + 2i

(
α t−iabY

−
i − (1 + α) t+iabY

+
i

)
, (3.31)

where Υa = Θa, Ωa,
t±iab = −t±iba , t±i0j = ±δij , t±ijk = εijk, (3.32)

and α = 1/2. We conclude that the nine bosonic integrals H, K, D, Y+
i and Y−i , and the eight

fermionic integrals Θa and Ωa generate the superconformal D(2, 1;α) symmetry [41, 42, 43, 35,
44]3 with α = 1/2. The three bosonic integrals H, K, D together with a pair of fermionic integrals
Θa, Ωa with fixed a generate one of the four copies of the osp(1|2) Lie superalgebra. As a minimal
generating set one can take, for example, the odd integrals Θ0 and Ω0, and the even integrals
S+

1 and S+
2 . Their successive Poisson brackets fully reproduce the described superconformal Lie

superalgebra. The quadratic Casimir element of the Lie superalgebra D(2, 1;α) can be presented
in the form [45, 46]

C = ỸiỸi + αY−i Y
−
i − (1 + α)Y+

i Y
+
i +

i

2
ΘaΩa . (3.33)

3Superalgebra D(2, 1;α) has an automorphism associated with permutations of the three so(3) subalgebras,
which are generated by Y+

i , Y−i and Ỹi, where Ỹ1 = iJ1, Ỹ2 = iJ2, Ỹ3 = J0. At the parameter level the
automoprphism corresponds to the dihedral group D3 generated by the transformations α→ −(1+α) and α→ α−1.
As a result, the superalgebras D(2, 1;λ) with λ = α±1, −(1 + α)±1 and −( α

1+α
)±1 are isomorphic [42], and the

superalgebra we have here can be identified as the D(2, 1;α) with the parameter α taking any value from the set
{−3,−3/2,−2/3,−1/3, 1/2, 2}.
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In our case Ỹ1 = iJ1, Ỹ2 = iJ2, Ỹ3 = J0, ỸiỸi = J2
0 − J2

1 − J2
2 = 1

4(HK −D2), and one can easily
check that at α = 1/2 the C given by Eq. (3.33) Poisson commutes with all the even and odd
generators H, K, D, Y±i and Θa, Ωa.

We have here i
2ΘaΩa = (~L+ ν~n) · ~S−, and the quantum analog of the last nilpotent term in

(3.33) is
i

4
[Θ̂a, Ω̂a] = L̂σ +

3

2
, where L̂σ ≡ T−(1⊗ (~̂L+ ν~n) · ~σ).

This is a nontrivial integral for the spin-1/2 subsystem with Hamiltonian Ĥ− = T−Ĥ, see below.

It satisfies the relation L̂σ(L̂σ + 2) =
(
~̂J 2 − 3/4

)
T−. A rather natural question at this point is

whether the system possesses a fermionic type integral which (like the Grassmann-even integral

iΘaΩa/2) quantum mechanically would be the square root of the integral ~̂J 2 (possibly shifted
for an additive constant) but without a chiral projector factor. Now we shall show that such
a Grassmann-odd integral indeed exists, and that it is associated with the conserved Laplace-
Runge-Lenz vector of the superextended system.

To that end consider the Grassmann-odd scalar quantity

Ξ0 = −
(
~L+

2

3
~S
)
· ~ξ . (3.34)

One can check that it satisfies the Poisson-bracket relation

{Ξ0,Ξ0} = −i
(
~J 2 − ν2

)
, (3.35)

and that it is an integral of motion, {Ξ0,H} = 0. The Poisson bracket of (3.34) with the chiral
spin vector S+

i generates then three more integrals of motion, which form a Grassman vector
with respect to the total angular momentum,

~Ξ = ~ξ × ~L+ ξ0(~L+ 2 ~S) . (3.36)

With respect to the chiral spin vector, the integrals Ξa have properties similar to those of Θa and
Ωa,

{S+
i ,Ξ0} =

1

2
Ξi , {S+

i ,Ξj} =
1

2
(εijkΞk − δijΞ0) . (3.37)

There is, however, an essential difference in comparison with the Grassmann-odd integrals Θa

and Ωa. One can calculate the Poisson brackets of Ξ0 with Ξi by using the first relation in (3.37)
and employing the graded Jacobi identities. Since the Poisson bracket of S+

i with the right hand
side in (3.35) is nonzero, the integrals Ξ0 and Ξi possess nontrivial Poisson bracket relations,

{Ξ0,Ξi} = 2i ( ~S+ × ~J )i . (3.38)

The presence of the quadratic in integrals ~J and ~S+ expressions on the right hand sides of (3.38)
and (3.35) means that the extension of the set of generators of the superconformal Lie algebra
D(2, 1;α = 1/2) by the odd integral Ξ0 transforms it into a nonlinear superalgebra, in which the
parameter ν2 plays a role of the central charge. This is not surprising since such a nonlinearity
characterizes the symmetry algebras of systems with a conserved Laplace-Runge-Lenz vector.
The nonlinearity originates from the particular form of the integral (3.34) : it is cubic in the
phase space variables4 Πi, rj and ξa.

4A nonlinear superalgebraic structure associated with the squared total angular momentum appears also in the
supersymmetrized charge-monopole system, see [10, 19, 20, 27].
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The Poisson brackets between Ξi and Ξj can also be computed by using relations (3.37) and
employing the graded Jacobi identities. Again, we get a nonlinear (quadratic in the integrals Ji
and S+

j ) Poisson bracket relation,

{Ξi,Ξj} = iδij

(
ν2 − ( ~J − 2 ~S+)2

)
+ 4iS+

i S
+
j − 2i(S+

i Jj + S+
j Ji) . (3.39)

The scalar integral Ξ0 Poisson-commutes with two other scalar Grassmann-odd integrals,

{Θ0,Ξ0} = {Ω0,Ξ0} = 0 . (3.40)

On the other hand, we have nontrivial Poisson bracket relations

{Θi,Ξ0} = −{Θ0,Ξi} = iGi , {Ωi,Ξ0} = −{Ω0,Ξi} = iRi , (3.41)

{Ξi,Θj} = −iεijkGk , {Ξi,Ωj} = −iεijkRk . (3.42)

This provides us with a generalization of the Laplace-Runge-Lenz vector integral (2.25) and its
associated dynamical integral (2.36),

~G = ~Π× ( ~J − ~S+) + ~Π× ~S− +
2ν

r

(
~S− − ~r

r
(~r · ~S−)

)
, (3.43)

~R = ~r × ( ~J − ~S+ + ~S−)− 2~Gt . (3.44)

The supersymmetrized Laplace-Runge-Lenz vector (3.43) can be written in the form

~G = ~Π× ~Y− − i

2
~ξ × ~Θ + i

ν

2r3
~ρ× ~ρ .

It Poisson-commutes with the chiral spin vector and supercharges Θa,

{Gi,S+
j } = {Gi,Θa} = 0 , (3.45)

while the brackets with the conformal symmetry generators are

{H,Gi} = 0 , {D,Gi, } = Gi , {K,Gi, } = 2Ri . (3.46)

For the dynamical vector integral Ri we have

{Ri,S+
j } = {Ri,Ωa} = 0 , (3.47)

and in addition

{H,Ri} = −2Gi , {D,Ri, } = −Ri , {K,Ri, } = 0 . (3.48)

We also have Lie type Poisson bracket relations

{Ω0,Gi } = Ξi , {Ωi,Gj , } = εijkΞk − δijΞ0 , (3.49)

{Θ0,Ri } = −Ξi , {Θi,Rj , } = −εijkΞk + δijΞ0 . (3.50)

It is worth noting here, that although in (3.49) the Ξa are generated via Poisson brackets of the
dynamical odd integrals Ωa and the true integrals Gi, they are true Grassmann integrals. This
happens since the time-dependent term −2tΘa in Ωa Poisson-commutes with Gi.
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The Poisson brackets of Gi and Ri with Ξa are quadratic polynomials in the integrals,

{Ξ0,Gi} = ( ~J × ~Θ)i , {Ξ0,Ri} = ( ~J × ~Ω)i , (3.51)

{Gi,Ξj} = δij( ~J − 2 ~S+) · ~Θ−Θ0εijkJk + 2S+
i Θj −ΘiJj , (3.52)

{Ri,Ξj} = δij( ~J − 2 ~S+) · ~Ω− Ω0εijkJk + 2S+
i Ωj − ΩiJj . (3.53)

The Poisson brackets between the integrals Gi and Ri are also quadratic,

{Gi,Gj} = −HεijkJk −
i

2
εijk

(
~Θ× ~Θ

)
k
, (3.54)

{Ri,Rj} = −KεijkJk −
i

2
εijk

(
~Ω× ~Ω

)
k
, (3.55)

{Gi,Rj} = δij

(
ν2 − 2 ~J 2 + 4 ~J · ~S+ + i~Ω · ~Θ

)
+
i

2
(ΘiΩj + ΘjΩi) + JiJj − 2(S+

i Jj + S+
j Ji)

− εijk
(
DJk +

i

2
(~Θ× ~Ω)k

)
. (3.56)

With these relations we obtain a closed, nonlinear (quadratic) superconformal algebra extended
by the Laplace-Runge-Lenz vector ~G, the associated Grassmann-even dynamical vector integral
~R, and by the Grassmann-odd integrals Ξa.

Let us now discuss shortly some aspects of the quantum version of the described supersym-
metric structure, in which the Poisson brackets between the Grassmann-odd generators become
anticommutators of the corresponding quantum fermionic operators, while the brackets between
the Grassmann-even with Grassmann-even or Grassmann-odd generators become commutators
between their quantum counterparts.

The quantum analog of the Hamiltonian (3.16) is the matrix 4× 4 operator having a block-
diagonal form,

Ĥ = ~̂Π2 +
ν2

r2
− 2ν

r3
T−(1⊗ ~σ · ~r ) =

(
Ĥ+ 0

0 Ĥ−

)
, (3.57)

where the 2 × 2 Hamiltonians are Ĥ+ = ~̂Π2 + ν2/r2 and Ĥ− = ~̂Π2 + ν2/r2 − 2ν(~σ · ~r )/r3. Note
that the chiral operator Ĥ+ is proportional to the 2× 2 identity matrix. This can be attributed

to the self-duality of the dyon field. The conserved total angular momentum operator ~̂J = ~̂J+ ~̂S,

contains the spinless part ~̂J = ~r × ~̂Π − ν~n and the spin operator ~̂S = 1 ⊗ 1
2~σ. By standard

arguments, the parameter ν undergoes the Dirac quantization: at the quantum level it can take
only integer or half-integer values, i.e. ν = n/2, n ∈ Z [9, 47].

The operator Ĥ+ represents two identical copies of the Hamiltonian operator of the spinless
system discussed in the previous section, and the integral nature of the chiral spin operator

~̂S+ = T+(1 ⊗ 1
2~σ) is then obvious. The diagonal operator Ŝ+

3 distinguishes the upper and lower

components of this doubled spinless system, while the operators Ŝ+
1 ±iŜ

+
2 transform them one into

another in an obvious way. The operator Ĥ− can be interpreted as the Pauli type Hamiltonian
of the charged spin-1/2 particle of gyromagnetic ratio 4 in the combined field of the magnetic
monopole and scalar potential ν2/r2.
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The scalar and vector quantum supercharges for the extended system (3.57) have a block-
antidiagonal form

Θ̂a =
1√
2

(
0 Q̂a
Q̂†a 0

)
, (3.58)

where
Q̂0 = −i~σ · ~̂Π +

ν

r
, ~̂Q = −i~σQ̂0 = −i

(
~̂Π× ~σ +

ν

r
~σ
)
− ~̂Π . (3.59)

They commute with the Hamiltonian (3.57) and anticommute with the diagonal grading operator
Γ in (3.3), which itself is an additional quantum integral of motion of the bosonic nature. Note

that Q̂a and Q̂†a are the Darboux intertwining operators :

Q̂aĤ− = Ĥ+Q̂a , Q̂†aĤ+ = Ĥ−Q̂
†
a . (3.60)

These relations are equivalent to the condition of commutativity of supercharges Θ̂a and iΓΘ̂a

with Ĥ. As in the case of the one-dimensional supersymmetric quantum mechanics, they allow us
to relate the eigenstates ψ+ and ψ− of the Hamiltonians Ĥ+ and Ĥ− of the quantum subsystems,
ψ+ ∝ Q̂aψ−, ψ− ∝ Q̂†aψ+.

The superconformal generators Ω̂a have a block-antidiagonal form similar to that in (3.58),

with Q̂0 replaced by −i~σ ·~r−2Q̂0t, and ~̂Q replaced by −i~r×~σ−~r−2 ~̂Qt. The quantum analogs Ξ̂a
of the supercharges (3.34) and (3.36) have the same block-antidiagonal form, but with the scalar

operator Q̂0 replaced by i(~σ · ~̂L+ 1), and the vector operator ~̂Q replaced by −(~̂L+ ~σ)− i~̂L× ~σ,

where ~̂L = ~r × ~̂Π. Note that in the anticommutator [Ξ̂0, Ξ̂0]+ = ~̂J 2 − ν2 + 1/4, there appears a
quantum correction term ~2/4.

The Laplace-Runge-Lenz vector operator of the supersymmetric quantum system is

~̂G = ~̂G+ T− · 1⊗
(
~̂Π× ~σ +

ν

r
(~σ − ~n(~σ · ~n))

)
, (3.61)

where ~̂G is a Hermitian spinless Laplace-Runge-Lenz vector,

~̂G =
1

2

(
~̂Π× ~̂J − ~̂J × ~̂Π

)
= − ~̂J × ~̂Π + i~̂Π .

It commutes with the supercharges Θ̂a, and thus with the Hamiltonian Ĥ. The quantum analog
of the related, dynamical vector integral (3.44) is

~̂R =
1

2

(
~r × ~̂J − ~̂J × ~r

)
− T−

(
1⊗ ~σ × ~r

)
− 2 ~̂Gt . (3.62)

In correspondence with the classical properties, it satisfies the commutation relation [ ~̂R, Ĥ] = 2i ~̂G.

4 Summary, concluding remarks and outlook

Let us summarize the obtained nonlinear superalgebraic structure of the spinning charged particle
in the background of the self-dual dyon.

A very particular role in the supersymmetric structure is played by the chiral spin vector
~S+, whose origin is rooted in the self-dual nature of the background electromagnetic field. This
bosonic, Grassmann-even vector integral commutes with all other basic bosonic integrals, except
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the total angular momentum vector ~J . On the other hand, all the fermionic, Grassmann-odd
integrals are grouped into the three irreducible representations with respect to the Poisson bracket
action, or, commutator in the quantum case, of ~S+ on them. The rotational symmetry associated
with ~J is due to a spherical symmetry of the magnetic and dual to it electric fields of the dyon.
The sets of the integrals Y−i = Ji − S+

i and Y+
i = S+

i generate the so(3) ⊕ so(3) = so(4) Lie
subalgebra.

One can distinguish the three entangled supersymmetry substructures in the system, each of
which can be related to its corresponding basic bosonic integral.

i) The Hamiltonian H is a supersymmetric generalization of the spinless Hamiltonian (2.18),
which possesses conformal symmetry and reveals a hidden partially free dynamics. The peculiar
dynamics of the spinless system is encoded in the presence of the conserved Laplace-Runge-
Lenz vector ~G and the associated dynamical integral ~R, which can be related to the deformed
Galilei symmetry. Quantum mechanically, the square root of Ĥ is the scalar supercharge Θ̂0,
whose classical Grassmann-odd analog Θ0 Poisson-commutes with itself for −iH. The Poisson
bracket of Θ0 with the chiral spin vector integral ~S+ generates three more integrals, Θi, which
form a vector ~Θ with respect to the total angular momentum integral ~J . Each Θi, like Θ0, is
a square root of H: together these four supercharges Θa generate the N = 4 supersymmetry:
{Θa,Θb} = −iδabH, {Θa,H} = 0. The Poisson bracket of Θi with S+

j is a linear combination of
Θ0 and Θk. On the quantum level the interplay between self-duality and extended supersymmetry
has been emphasized in a more general context (without further assumptions) in [48], see also
[40] and [26].

ii) The dynamical integral K, which explicitly depends on time, generates the special confor-
mal transformations. Its bracket with the Hamiltonian H produces the generator of dilatations
D as a further dynamical integral. The integrals H, K,D Poisson-commute with the integrals Ji
and S+

i , and generate a so(2, 1) symmetry. The classical analog of the square root of the quantum

operator K̂ corresponds to the Grassmann-odd dynamical scalar integral Ω0. The Poisson brack-
ets of Ω0 with the integrals S+

i generate three more dynamical integrals Ωi, which form a vector

with respect to ~J . The set Ωa, a = 0, i, has the same transformational properties with respect
to S+

i as the Grassmann odd integrals Θa. The Grassmann-odd dynamical integrals Ωa Poisson
commute with K, and together they generate the sub-superalgebra, similar to that generated by
Θa and H: {Ωa,Ωb} = −iδabK, {Ωa,K} = 0.

The dynamical integrals Ωa are eigenstates of D with eigenvalue −1, which means {D,Ωa} =
−Ωa. Similarly K is an eigenstate with eigenvalue −2 and H is an eigenstate with eigenvalue +2.
Accordingly one finds that the conserved supercharges Θa are eigenstates of D of eigenvalue +1.

The superalgebraic structures outlined in i) and ii) are entangled via via Poisson brackets.
The bracket of H with the dynamical integrals Ωa produces the integrals Θa, while the bracket
of K with the integrals Θa generates Ωa. The Poisson brackets between the supercharges Θa and
superconformal charges Ωa produce linear combinations of D, Ji and S+

i , from which these even
integrals can be completely reconstructed.

The usual integrals H, Y±i , Θa (which do not depend explicitly on time) together with the
dynamical integrals K, D, and Ωa generate the exceptional simple Lie superconformal algebra
D(2, 1;α) with α = 1/2. This Lie superalgebra of order 17 has the quadratic Casimir C =
1
4(HK−D2) + 1

2
~Y−2 − 3

2
~Y+2 + i

2ΘaΩa. To the last Grassmann-even nilpotent term corresponds

the quantum operator i
4 [Θ̂a, Ω̂a] = L̂σ + 3/2 with L̂σ ≡ T−[1⊗ (~̂L+ ν~n) · ~σ] which is a nontrivial

integral for the spin-1/2 subsystem Ĥ−. The quantum bosonic integral L̂σ satisfies the quadratic
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relation L̂σ(L̂σ + 2) = T−
(
~̂J 2 − 3/4

)
.

iii) Similarly as for Ĥ and K̂, there exists a anti-diagonal fermionic square root for the

conserved operator ~̂J 2. Its classical analog is the Grassmann-odd scalar integral Ξ0, which
satisfies the Poisson bracket relation {Ξ0,Ξ0} = −i( ~J 2 − ν2). The bracket of Ξ0 with the chiral
spin vector ~S+ produces the Grassmann odd vector integral ~Ξ, and the set Ξa is transformed by
S+
i in the same way as the integrals Θa and Ωa. However, Ξi has nonzero Poisson brackets with

Ξ0, and the brackets of Ξa with Ξb turn out to be quadratic in the total angular momentum Ji
and the chiral spin vector S+

i . On the other hand, in contrast with the Grassmann-odd integrals
Θa and Ωa, the integrals Ξa, like Ji and S+

i , Poisson-commute with the so(2, 1) generators K
and D, which means that they are so(2, 1) scalars.

The Poisson brackets of Ξa with Θb generate the Laplace-Runge-Lenz vector integral Gi.
Analogously, the brackets of Ξa with Ωb produce the dynamical vector integral Ri associated with
Gi, ∂

∂tRi = Gi. In correspondence with this, Gi and Ri are eigenvectors of D with eigenvalues
+1 and −1, respectively. The Poisson bracket of Gi with K leads to Ri, while Ri Poisson-
commutes with K. The Hamiltonian H acts on these vector integrals in the opposite way: it
Poisson-commutes with Gi, and its bracket with the dynamical integral Ri yields the integral Gi.
These bosonic vector integrals Poisson-commute with the chiral spin vector S+

i . At the same
time, the vector Gi Poisson-commutes with Θa, while its brackets with Ωa produce integrals Ξa.
Analogously, the dynamical integralRi Poisson commutes with Ωa, and generates the Grassmann-
odd integrals Ξa via the brackets with Θa. The Poisson brackets of Gi and Ri with Ξa, and
between Gi and Ri yields quadratic expressions of the other integrals. So, the extension of the
set of the generators of the superconformal symmetry D(2, 1;α = 1/2) by the Grassmann-odd
and Grassmann-even integrals Ξa and Gi,Ri transforms the Lie superalgebra into a nonlinear,
quadratic superalgebra.

It is worth noting that starting with any one of the set of the ten integrals Ξa, Gi and Ri,
one can generate the complete set of integrals by taking Poisson brackets with the generators of
D(2, 1;α = 1/2), for instance,

Ξ0
S+i7−−−→ Ξi

Θj7−−→ Gi
K7−−→ Ri

Θj7−−→ Ξ0,Ξi .

Then, as the minimal set of the integrals generating all the quadratic superalgebra via the Pois-
son brackets one can take one of the Grassmann-odd integrals Θa, one of the Grassmann-odd
dynamical integrals Ωb, two components of the chiral spin vector ~S+, and finally one of the odd
or even integrals Ξa or Ji,Ri.

Quantum mechanically the system has the additional integral Γ = γ5 = −γ0γ1γ2γ3 = τ3⊗1. It
commutes with quantum analogs of all the Grassmann-even integrals, but anticommutes with the
quantum analogs of all the Grassmann-odd integrals. It is identified as the Z2-grading operator
of the quantum supersymmetric structure. The multiplication of any of the fermionic Hermitian
generators Φ̂µ from the set (Θ̂a, Ω̂a, Ξ̂a) by iγ5 gives a new Hermitian fermionic integral, and
in an algebraic way doubles the set of them. As a result, instead of the nonlinear, quadratic
superalgebra consisting of 12 fermionic integrals, we end up with a superalgebra with 24 fermionic
generators satisfying the commutation relations [Γ, Φ̂sµ] = −2iεss′Φ̂s′µ, where s, s′ = 1, 2, Φ̂1µ =

Φ̂µ and Φ̂2µ = iΓΦ̂1µ. The linear combinations Φ̂±µ = 1
2(Φ̂1µ∓iΦ̂2µ) = T±Φ̂µ with (Φ̂+µ)† = Φ̂−µ,

define chiral fermionic generators, see Eq. (3.58), and the integrals Ξ̂±a are Darboux generators
that intertwine the spin-independent (doubled) Schrödinger operator Ĥ+ and spin-dependent
Pauli operator Ĥ−. This property has a natural explanation if one views Ĥ± as parts of a
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squared Euclidean Dirac operator for selfdual background fields [48]. Analogously, the Ω̂±a are
Darboux intertwiners for the operators K̂+ and K̂−, K̂± = T±K̂, which are generators of the
special conformal symmetries of the corresponding spinless and spin-1/2 quantum subsystems.

On the other hand, at the classical level the quantity −2ξ0ξ1ξ2ξ3 = 1
3
~S+2 corresponds to the

operator γ5. This, however, is an Grassmann-even integral, whose quantum analog includes a
multiplicative factor ~2 in contrast with the quantum analog of ξa to be proportional to

√
~. A

multiplication of this nilpotent Grassmann-even integral by any of the classical Grassmann-odd
integral produces zero, and we have no classical analog for the quantum fermionic integrals Φ̂2µ.
Alternatively, as a classical analog of γ5, one could try to introduce an independent Grassmann
scalar variable ξ5 with the only nontrivial Poisson bracket {ξ5, ξ5} = −i. In this case multipli-
cation of classical integrals Θa, Ωa and Ξa by iξ5 will give new classically nontrivial integrals.
However, they will be of the Grassmann-even, bosonic nature. The described problems associated
with the introduction of the classical analog for the matrix γ5 are well known and were discussed
in a different context in the literature [49].

Based on relations (2.43) and (2.44) for the spinless bosonic case, one could assume that by
a suitable nonlinear (non-local at the quantum level) redefinition of the even, Gi and Ri, and
the odd, Ξa, generators of the nonlinear superconformal symmetry it can be reduced to some
linear superextension of the D(2, 1;α = 1/2). Let us show that such a linearization, however, is
impossible.

Nonlinear (quadratic) algebraic relations (3.54) and (3.55) are linearized by a redefinition
Gi → Ği, Ri → R̆i,

Ği =
1√
H
Gi +

1

2H
(~Θ× ~Θ)i , R̆i =

1√
K
Ri +

1

2K
(~Ω× ~Ω)i . (4.1)

These vectors satisfy, particularly, the Lie-Poisson algebraic relations

{Ği, Ğj} = −εijkJk , {Ği,Θj} = iεijkΘk , {Ği,H} = {Ği,D} = {Ği,Θ0} = 0 , (4.2)

and

{R̆i, R̆j} = −εijkJk , {R̆i,Ωj} = iεijkΩk , {R̆i,K} = {R̆i,D} = {R̆i,Ω0} = 0 . (4.3)

One can also redefine Ξa → Ξ̆a,

Ξ̆0 =
Ξ0√
~J 2 − ν2

, Ξ̆i =
Ξi√
~J 2 − ν2

− 2Ξ̆0

~J 2 − ν2
( ~J × ~S+)i . (4.4)

These integrals satisfy with the S+
i the same relations as the initial odd integrals Ξa, {S+

i , Ξ̆0} =
1
2 Ξ̆i, {S+

i , Ξ̆j} = 1
2(εijkΞ̆k − δijΞ̆0), but instead of the nonlinear Poisson bracket relations (3.35),

(3.38) and (3.39) we get
{Ξ̆a, Ξ̆b} = −iδab . (4.5)

These last Poisson brackets can be treated as a superalgebraic relation with central charge 1.
The brackets

{Θi, Ξ̆0} = −{Θ0, Ξ̆i} = i
Gi√
~J 2 − ν2

− ( ~J × ~Θ)i
~J 2 − ν2

Ξ̆0 (4.6)

together with Eq. (4.1) show nevertheless that the redefined integrals generate a more com-
plicated, non-polynomial superalgebra (which is of a non-local nature at the quantum level).
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Analogous non-polynomial structures appear in the Poisson brackets of Θa and H with R̆i, and
in those of Ωa and K with Ği. The brackets of Ği with R̆j are also of a non-polynomial form
in other integrals. This shows the impossibility of the linearization of the obtained quadratic
extension of the superconformal symmetry D(2, 1;α = 1/2).

The model we considered possesses only the continuous spectrum with E > 0. It is known that
in the quantum Kepler problem the hidden symmetry associated with the dynamical Laplace-
Runge-Lenz vector integral not only determines the energy levels completely, but also the phase
shifts [50]. One could naturally expect that the hidden supersymmetry we discussed here may
also be helpful for analyzing the scattering characteristics of the quantum system. Investigation
of this problem is outside of the scope of the present work and deserves a separate consideration.

The dynamics of the boson (spinless) sector of the system we studied corresponds to the
special bosonic dynamics of the D(2, 1;α) model with α2 = 1/4 investigated by Ivanov, Krivonos
and Lechtenfeld in [25]. The approach of [25] is completely different, however, that allowed the
authors to obtain the general D(2, 1;α) models. Namely, in [25] the N = 4 superconformal
mechanics realizing the D(2, 1;α) symmetry with arbitrary values of the parameter α was con-
structed in the N = 4, d = 1 superspace. It was shown then that after a series of essentially
nonlinear transformations of the dynamical variables, the bosonic sector of the system describes
a conformally invariant nonlinear sigma model, which at the two particular values α = +1/2
and α = −1/2 reduces to the system (2.18)5. We have shown that the superextension of the
system, which corresponds to an (anti)self-dual dyon background, is described by a qudratically
extended Lie superalgebra D(2, 1;α) with the parameter α = 1/2. This belongs to the set of the
values {−3,−3/2,−2/3,−1/3, 1/2, 2}, which can be related by the superalgebra automorphism
D3, see footnote 3. The case of α = −1/2, also appearing in special bosonic dynamics in [25],
is not included in the indicated set. As it is clear, particularly, from the form of the D(2, 1;α)
Casimir (3.33), the case α = −1/2 (related by the D3 automorphism to the cases α = −2 and
α = 1) is essentially different. For this value of the parameter α the Casimirs of the two so(3)
subalgebras enter with the same “weight” into the D(2, 1;α) Casimir. Therefore, it seems to be
very interesting to investigate another special case α = −1/2 of the D(2, 1;α) model [25] from
the viewpoint of nonlinear extension of superconformal symmetry associated with a presence in
the bosonic sector of the Laplace-Runge-Lenz vector and its dynamical integral counterpart.

As it was already noted in the introduction, for one-dimensional quantum systems with soliton
potentials the hidden free nature of the systems reveals itself in two related ways. Namely, such
systems are characterized by zero reflection coefficient, and they possess the Lax-Novikov higher
order differential operator as a nontrivial integral. The latter is a Darboux-dressed form of
the free particle momentum operator, and its differential order is fixed by the number of solitons
‘hidden’ in the potential. The hidden free nature also shows up in a supersymmetric extension of a
reflectionless system. Instead of the two supercharges which we have in ordinary, superextended
systems with two superpartner Hamiltonians, the solitonic superextended systems admit four
supercharges. Together with the two bosonic integrals associated with the Lax-Novikov integrals,
they generate a nontrivial nonlinear superalgeba [8]. The 3D quantum system we studied here
also reveals a hidden, partially free dynamics. The system (2.18) is characterized by a vanishing
scattering angle for all values of J , J2 ≥ ν2, and this property is reminiscent of the vanishing
reflection coefficient in 1D solitonic systems. Thus it may be interesting to investigate whether the

5Special bosonic dynamics is interpreted in [25] by means of Eq. (5.2) there as that describing electrically
charged particle in spherically symmetric electric and magnetic fields of the (non-(anti)self-dual) form Ei = ν2ri/r

4

and Bi = −νri/r3, cf. [40, 17] and our discussion in Section 3.

19



system we studied here possesses yet an additional hidden nonlinear supersymmetric structure
associated with a partially free nature of its dynamics. This is suggested by the property of
the 1D conformal quantum mechanical model with a/x2 potential. It has a hidden, bosonized
supersymmetric structure for special values of the strength a [51].
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