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Abstra
tA dire
t derivation of the free energy and expe
tation values of Polyakov-loops inQCD2 via path integral methods is given. The 
hosen gauge �xing has no Gribov-
opies and has a natural extension to four dimensions. The Fadeev-Popov determi-nant and the integration over the spa
e 
omponent of the gauge �eld 
an
el exa
tly.It only remains an integration over the zero 
omponents of the gauge �eld in the Car-tan sub-algebra. This way the Polyakov-loop operators be
ome Vertex-operators ina simple quantum me
hani
al model. The number of fermioni
 zero modes is relatedto the winding-numbers of A0 in this gauge.
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1 Introdu
tionA long standing and yet unsolved problem is proving quark 
on�nement in QCD. Animportant �rst step in this dire
tion would be to show 
on�nement of stati
 quarks. Inthis way the problem redu
es to understanding the behaviour of ele
tri
 
ux strings in pureSU(N) gauge theories (without dynami
al quarks). The relevant observables are produ
tsof Wilson-loop operators [1℄. At �nite temperature the operators related to Polyakov-loops
an be used to dis
riminate between the 
on�ning and de
on�ning phases [2℄.A rigorous 
onstru
tion and investigation of gauge theories in (3+1) dimensions is beyondpresent days knowledge. (1+1) dimensional models are mu
h simpler and 
an be used asa testing ground to get more insight into gauge theories on a sound mathemati
al basis.In parti
ular, the unique and ambiguity-free gauge �xing des
ribed below 
an be extendto QCD4 [3℄.Pure Yang-Mills theories in (1+1) dimensions are prototypes of (almost) topologi
al �eldtheories without propagating degrees of freedom. Nevertheless they have interesting fea-tures, parti
ularly in the large N limit or/and on multiple 
onne
ted spa
e-times [4℄. Thepartition fun
tions depend on g2V , where g is the 
oupling 
onstant and V the volume ofspa
e-time, as well as invariants of the gauge group and topologi
al invariants of spa
e-time.Polyakov-loops 
an be 
omputed in both the strong and weak 
oupling phase and the twophases are related by duality. It has been shown, that the strong 
oupling expansion 
anbe rewritten as a lower dimensional string theory [7℄. When de�ned on Riemann surfa
eswith non-zero genus they have degrees of freedom related to the gauge group holonomy onthe homology 
y
les of the surfa
e. On 
ylindri
al spa
e-time they 
an be solved expli
itlyand posess quantum me
hani
al degrees of freedom 
orresponding to the eigenvalues of theWilson loop operator whi
h is winding about the 
ompa
t spa
e dire
tion [8℄. Su
h modelsare also 
onne
ted with one dimensional integrable quantum systems [9℄.The free energy e��F = Tre��H at �nite temperature T = 1=� is given by a path integralover gauge �elds on some manifolds S1�M with Eu
lidean time x0 identi�ed with x0+�.(For dis
ussion of the path integral formulation of �nite temperature gauge theory see[10℄.) Relevant gauge invariant order parameters are Polyakov-loop operatorsP (x1) = Tr�(P (�; x1)); where P(x0; x1) = P exp �i x0Z0 A0(�; x1)d��: (1.1)Here � is the representation of the gauge group whi
h a
ts on the fermioni
 �elds. Forexample, the two-point fun
tione��F (x1;y1) = hP (x1)P y(y1)i� (1.2)yields the free energy F (x1; y1) in the presen
e of a heavy quark (in the fundamental rep-resentation) at x1 and a heavy antiquark at y1. In the 
on�ning phase F (x1; y1) in
reasesfor large separations of the quark-antiquark pair and thus hP (x1)P y(y1)i ! 0. In thede
on�ning phase the free energy rea
hes a 
onstant value for large separations and thushP (x1)P y(y1)i ! 
onst 6= 0. Inferring 
lustering we see that hP i� vanishes in the 
on�ning1



phase but not in the de
on�ning one. In other words, it is an order parameter for 
on-�nement. If we in
lude massless dynami
al fermions, the generating fun
tional gains as afa
tor the determinant of the Dira
 operator. As a 
onsequen
e gauge �eld 
on�gurationswhi
h support fermioni
 zero modes do not 
ontribute to the partition fun
tion or to ex-pe
tation values of Polyakov-loops. Therefore, the question of the number of zero modesfor a given gauge �eld 
on�guration is an important �rst step from pure to full QCD.In this paper we examine Yang-Mills theories on two dimensional tori. They 
orrespondto �nite temperature gluodynami
s on a spatial 
ir
le. As shown by Grignani, Semeno�and Sodano in an interesting paper [11℄4, 
orrelators of Polyakov-loop operators 
an be
omputed as 
orrelators in parti
ular one dimensional models. For the 
ase of pure gaugetheories (and Polyakov-loop operators in an arbitrary representation) one 
an expli
itlysolve these quantum me
hani
al models. In 
ontrast to other approa
hes we dire
tly 
al-
ulate, after an appropriate gauge �xing, the partition fun
tion and the 
orrelation fun
tionhP (x1)P y(y1)i for arbitrary semi-simple gauge groups. This will be a starting point forfurther investigations 
on
erning QCD4 [3℄.In this paper we quantise Lie-algebra valued gauge �elds (non-
ompa
t QCD2),whereas in[4, 5℄ the group valued �elds are quantised (
ompa
t QCD2). As Hetri
k has shown [6℄, thenon-
ompa
t theory has additional spe
tral values 
onne
ted with states, whi
h lie on theboundary of a Weyl 
hamber. (Sin
e these states lie in more than one 
hamber, they mustbe added with an appropriate weight.) In the 
ompa
t version these states are proje
tedto zero-dimensional 
hara
ters and are missing in the spe
trum. If these states are addedto the partition fun
tion 
al
ulated in [4, 5℄, the results for the partition fun
tion Z andexpe
tation values of produ
ts of Polyakov loop operators agree. Due to this di�eren
ebetween 
ompa
t and non
ompa
t QCD2, the numeri
al value of the string tension for thestati
 quark potential is di�erent, but the physi
s is qualitatively the same.In addition we go beyond these results in that our approa
h leads to a simple relationbetween the winding numbers and the number of fermioni
 zero modes.In the �rst se
tion we dis
uss the gauge �xing and topologi
al questions 
onne
ted withthe de�nition of gauge theories on T 2 (the 
orresponding results in 4 dimensions are brie
ysket
hed). In the following two se
tions we 
al
ulate the partition fun
tion and the freeenergy of a stati
 quark-antiquark pair. In the last se
tion we derive a formula relatingthe number of fermioni
 zero modes to the winding numbers of the gauge-�xed A�. Inthe dis
ussion we 
ompare our results with those of [4℄ and [5℄. The appendi
es 
ontainour Lie-algebra 
onventions and a proof 
on
erning antiholomorphi
 transition fun
tionson the torus.2 Gauge FixingWe view the torus T d as Rd modulo a d-dimensional latti
e, whose points are denoted bya; b; : : : with 
oordinates a� = n�L�; n� 2 Z (no sum). Matter �elds and gauge potentials4after we 
ompleted this work, Grignani et. al revised their paper, see [12℄2



on Rd 
an be put on the torus if they are (anti)periodi
 up to gauge transformations [13℄ (x+ a) = (�1)n0�(U�1a (x)) (x);A(x+ a) = U�1a (x)A(x)Ua(x) + iU�1a (x)dUa(x); (2.1)where the fa
tor (�1)n0 enfor
es the �nite temperature boundary 
onditions for fermions(L0 = � = 1=T ). Sin
e  ((x + a) + b) =  ((x + b) + a), the transition fun
tions Ua mustobey the 
o
y
le 
onditions [13℄Ua(x)Ub(x+ a) = Ub(x)Ua(x + b)Zab; Zab = Z�1ba ;where the twists Zab are in the kernel of �, i.e. �(Zab) = 1l. This kernel is a subgroup ofthe 
enter Z of G. For fermions in the fundamental representation no twists are allowedwhereas for fermions in the adjoined representation the twists 
an be any element of the
enter of G.Performing a (not ne
essarily periodi
) gauge transformation with V (x), the new transitionfun
tions for the transformed �elds are~Ua(x) = V �1(x)Ua(x)V (x + a) (2.2)The ~Ua ful�ll the 
o
y
le 
ondition with the same Zab as the Ua. Thus the twists are gaugeinvariant. Note that the Polyakov-loop operators (1.1) transform asP (~x) �! ~P (~x) = TrfV (0; ~x)V �1(�; ~x)P(�; ~x)g; where x = (x0; ~x) (2.3)and are only invariant if V (x) is periodi
 in time. A twisted G-bundle over T d is uniquely
hara
terized by the transition fun
tions modulo gauge transformation (2.2).In the following we shall 
onsider 2-dimensional gauge theories. In 2 dimensions and forsimply 
onne
ted gauge groups G the G-bundles over T 2 are trivial 5 (all Chern 
lasses arezero [16℄). Thus, in the untwisted 
ase (Zab = 1l) the transition fun
tions 
an be 
hosen tobe the identity. With twists this is not true, but writing a twist as Z01 = Z = exp(�2�iT ),we 
an always 
hoose the transition fun
tions asU� = 1l and UL = e�2�iTx0=�; (2.4)where U� relates the �elds at x0 and x0 + � and UL those at x1 and x1 + L.In expli
it 
al
ulations we must �x the gauge. The �eld-dependent gauge transformationwhi
h transform an A� into the gauge �xed form may be non-periodi
 and thus lead tonontrivial transition fun
tions.After these general remarks we now dis
uss the expli
it gauge �xing. Sin
e Polyakov-loopsonly depend on A0, we shall 
hoose a gauge for whi
h A0 is as simple as possible. A
tually,5This is not true, for example, for U(1) or SO(3)-bundles over T 2 [15℄.3



with our �xing A0 will de
ouple in the path integral and the expe
tation values of produ
tsof Polyakov-loops 
an easily be 
al
ulated6. Below we prove that there is a (non-periodi
)gauge transformation whi
h transforms any A� intoA0 = A
0 = 2�Hx1V + Aper0 (x1) , H 2 L� and �Z0 A
1(x0; x1)dx0 = C; (2.5)where V = �L is the volume and we have introdu
ed the following dis
rete latti
e in theCartan-subalgebra H: L� � nH 2 Hj�( exp(2�iH)) = 1lo: (2.6)In parti
ular, for the fundamental and adjoint representations � = f and � = adj we haveLf = nH 2 Hj exp(2�iH) = 1lo , Ladj = nH 2 Hj exp(2�iH) 2 Zo: (2.7)In (2.5) A
 is that part of A whi
h lies in the Cartan subalgebra, Aper0 is periodi
 in x1 andA1 periodi
 in x0. Below the 
onstant C and R dx1Aper0 are further restri
ted su
h that thegauge �xing (2.5) be
omes unique.Note that the gauged �xed �elds are not periodi
 in x1. Indeed, the transition fun
tionsfor the gauged �xed 
on�gurations are~U�(x) = 1l and ~UL(x0) = exp(�2�iH x0� ) with H 2 L�: (2.8)Hen
e, the periodi
ity property of A1 is given byA1(x0; x1 + L) = e2�ix0� HA1(x0; x1)e�2�ix0� H : (2.9)Only A
1 2 H is periodi
 in x1.To prove, that (2.5) 
an be a
hieved we perform a gauge transformation withV (x0; x1) = P(x0; x1)P�x0=�(�; x1)W (x1); (2.10)where P(x0; x1) has been de�ned in (1.1) and W diagonalizes P(�; x1), i.e.P(�; x1) = W (x1) expf2�iH(x1)gW�1(x1): (2.11)This representation allows one to take powers of P(�; x1) and (2.10) be
omesV (x0; x1) = P(x0; x1)W (x1) exp �� 2�ix0� H(x1)�: (2.12)6similar �xings have been studied in [14℄. After we dis
overed the gauge �xing used in this work J.Fu
hs pointed out to us that E. Langmann et.al. found a very similar �xing.4



Now it is easy to see that the gauge transformed A0 reads~A0 = 2�� H(x1) (2.13)and hen
e depends only on x1 and lies in the Cartan subalgebra.By 
onstru
tion the gauge transformations (2.10) are periodi
 in time so that the Polyakov-loops are un
hanged, as required, and the transition fun
tion in the time dire
tion, ~U�,remains the identity, see (2.8). To �nd ~UL we useP(x0; x1 + L) = exp(2�iT x0� )P(x0; x1) (2.14)from whi
h follows, thatexpf2�iH(x1 + L)g = expf2�i(T +H(x1)g and W (x1 + L) = W (x1) (2.15)or equivalently that H(x1 + L) = H(x1) +H with H 2 L�: (2.16)With (2.13) and the 
onsisten
y 
ondition we end up with the form (2.5) for A0. The newtransition fun
tion ~UL is easily 
al
ulated from (2.2), with UL from (2.4), V from (2.12)and V (x1 + L) from (2.14,2.15). The result is the transition fun
tion ~UL given in (2.8).We have not yet �xed the gauge freedom 
ompletely. Indeed, the residual gauge transfor-mations are V (x) = w � exp n2�i(Hper(x1) +H0x0� +H1x1L )o; (2.17)where all H's are in the Cartan subalgebra and in addition Hper is periodi
 in x1, Hi 2 Lfand w is an element of normalizer(H)=
entralizer(H) �=Weyl-group [17℄. More expli
itly,w� a
ts on a generator H� in H asw�1� H�w� = H���; (2.18)where �� is the Weyl re
e
tion related to the root �. The Hper part in (2.17) is �xed byimposing the se
ond 
ondition in (2.5). The Hi-parts are �xed if we further impose�L LZ0 Aper0 dx1 � �L ~C 2 2�H=L� and L� �Z0 A
1dx0 � L�C 2 2�H=L�: (2.19)It remains to �x the Weyl-transformations w in (2.17). This 
an be done by imposingthe 
ondition, that ~C is in the �rst Weyl-
hamber. However, the Weyl group is a �nite5



group and permutes transitively and freely the Weyl 
hambers, so the integration over the~C, subje
t to (2.19), is a multiple of the integration over the �rst Weyl 
hamber. If we
onsider normalised observables, this over
ounting 
an
els with that in the normalisation.For later purposes it is important to note that the transition fun
tions for the gauge�xed 
on�gurations possess abelian winding numbers. This 
an be seen as follows: Sin
e�( ~UL(x0)) = �( ~UL(x0 + �)) the mapx0 �! �(UL(x0)); (2.20)is a map from S1 to S1� : : :�S1 (r=rank(G) fa
tors) and thus allows for r integer windingnumbers.3 The fun
tional integralIn the following we de
ompose the Lie algebra valued gauge potential (for 
onventions seethe appendix) as followsA0(x) = X�2� p�(x)H� + X'2�+ a'(x)E' + X'2�+ �a'(x)E�'A1(x) = X�2� q�(x)H� + X'2�+ b'(x)E' + X'2�+ �b'(x)E�';where �;�+ and �� denote the simple, positive and negative roots, respe
tively and H�is the generator in the Cartan subalgebra H belonging to the simple root �.The gauge �xing 
onditions (2.5) readTrE'A0 = TrE�'A0 = TrH�(�0A0 � 1� Z dx0�1A1) = 0: (3.1)For the gauge �xed 
on�gurations (see (2.5)) we �nd for the �eld strengthF01 =X� ( _q � p0)�H� � iX' [M'b'E' � (M'b')�E�'℄; M' = (i�0 +X� K'�p�) (3.2)is hermitean. Correspondingly the gauge �xed a
tion readsS = 18g2 Z dx0dx1 Tr F��F �� = 14g2 Z n( _q � p0; C ( _q � p0)) +X' 4'2 (b';M2'b')o; (3.3)where C = (C��) is the symmetri
 Coxeter matrix and the r-
omponent real ve
tor �elds pand q have entries p� and q�, respe
tively. The last s
alar produ
t 
ontaining the operatorsM' is a 
omplex one, (b; 
) = �b � 
. To 
al
ulate the Fadeev-Popov determinant we observethat the gauge variation of the gauge �xings Tr(E�'A0) = 0 areÆ�TrE�'A0 = 2i'2M'�' and Æ�TrE'A0 = � 2i'2 (M'�')� (no sum). (3.4)6



Vanishing variations imply vanishing �' and then the variation of the remaining gauge�xings simpli�es toÆ�TrH���0A0 + 1V Z dx0�1A1� = �C����20 + 1� Z dx0�21)�� (3.5)Now we see, that for simply la
ed groups (for whi
h the length of all roots 
an be takento be 2) the �eld-dependent Fadeev-Popov determinant 
oming from the �' 
an
el exa
tlyagainst the fun
tional integral over the non-Cartan �elds b'. Thus we obtain the followingpartition fun
tionZ = N R Dq(x)Dp(x1) Æ(F(A)) det(C) det(��20 � 1L R dx0 �21)r� exp n 14g2 R ( _q � p0; C( _q � p0))o (3.6)with a normalization fa
tor N . Here Æ(F(A)) indi
ates the implementation of the zeromode �xings (2.19). Sin
e A
1 is periodi
 in x0 and A0 depends only on x1, the integrationover q� de
ouples 
ompletely and we end up withZ = N 0 Z Dp(x1) exp(� �4g2 Z (p0; C p0) dx1) : (3.7)For simpli
ity we restri
t ourselves to � = f (fermions in the fundamental representation),G = SU(N) with rank r = N � 1 and 
hoose the basisEi = E�i = Ei;i+1 and Hi = [E�i ; E��i ℄ for simple �i; (3.8)where Ei;j is the N�N -matrix whose only non-zero entry is a 1 in the i'th row and j'th 
ol-umn. The step-operators belonging to the non-simple roots are obtained by 
ommutationof the Ei. The 
enter 
onsists of the N 'th roots of unity and is generated by theT� = �N diag(1; 1; : : : ; 1�N); � = 0; 1; : : :N � 1: (3.9)Then C = K has 2's on the diagonal and �1 on the two o�-diagonals above and below thediagonal. We 
an de
ompose the p = (p1; : : : ; pr); pi = p�i as followsp(x) = 1� [ ~p(x) + h℄ + 2�nV x (x = x1); (3.10)where we have separated the 
onstant part h = (h1; : : : ; hr) of the periodi
 pie
e, so thatthe ~pi are periodi
 in x and integrate to zero. Sin
e �(exp[2�~n �H℄) = 1l, the ~n lie in Zrfor matter in the fundamental representation and ni 2 �=N + Z for matter in the adjointrepresentation. In the expli
it 
al
ulations below we assume that there are no twists. Weshall give the 
orresponding results for the twisted 
ase at the end of the next se
tion.7



Inserting the de
omposition (3.10) we �nd for the partition fun
tionZ � Z D~p drh exp n 14g2� Z (~p;K�21 ~p)dxo � X~n2Zr exp n� �2g2V (~n;K~n)o: (3.11)Due to the �xing of the time dependent residual gauge freedom (2.17) the hi-integrationsare restri
ted to the interval [��; �℄.Using zeta-fun
tion regularisation the Gaussian integration over ~pi yields det0 "�K�22g2� #!�1=2 = det1=2 K2�L2g2 :After a Poisson-resummation in (3.11) we end up withZ � X~m2Zr expf�g2V (~m;K�1 ~m)g (3.12)with the inverse of the Cartan matrix(K�1)ij = 1N (N � j)i; for i � j; (K�1)ij = (K�1)ji: (3.13)4 Cal
ulation of Polyakov-loopsFor the gauge �xed 
on�gurations and � = f the Polyakov-loops (1.1) simplify toP (x) = Tr exp fi� p(x) �Hg = NXk=1 exp ni�[pk(x)� pk�1(x)℄o ; (4.1)where p0 � pN � 0. We get for the expe
tation value of the produ
t of two Polyakov-loopshP (x)P y(y)i= 1Z Z D~p drh X~m exp(� �2g2V (~m;K~m) + 14g2� Z (~p;K�2~p))P (x)P y(y):(4.2)After integration of the hi only the diagonal elements in the double sum (
oming from the2 Polyakov-loop operators) 
ontribute andhPP yi = 1Z NXk=1X~m exp(� �2g2V (~m;K ~m) + 2�imk� � 2�imk�1�)Z D~p exp( 14g2� Z (~p;K�2~p)dx+ i[~pk(x)� ~pk(y)℄� i[~pk�1(x)� ~pk�1(y)℄) ;where we have introdu
ed � = (x� y)=L (re
all that x � x1). To 
al
ulate the fun
tionalintegral over the ~pi we need the zero mode trun
ated Greens fun
tion of �1=2g2� � K�2whi
h isG(x; y) = K�1�(x; y); where �(x; y) = g2V ��2 � j�j+ 16� for � 2 [�1; 1℄: (4.3)8



Now we perform a Poisson resummation of the N�1 sums and 
al
ulate the Gaussian fun
-tional integral over the periodi
 ~pi. We emphasize that there are no zero mode problems,as it must be for a 
omplete gauge �xing. The result ishP (x)yP (y)i = 1Z Xk;~m exp n�g2V �mi � �[Æik � Æi(k�1)℄�K�1ij �mj � �[Æjk � Æj(k�1)℄�oexp�N � 1N [�(x; y)��(0; 0)℄� (4.4)where K�10i = K�1Ni = 0. Thus the expe
tation value of the produ
t of two Polyakov loopsreadshP (x)P y(y)i = 1Z Xk;~m exp��g2V �~m;K�1 ~m� 2�mi hK�1ik �K�1i(k�1)i+ j�jN � 1N �� (4.5)for � 2 [�1; 1℄. For SU(2) this simpli�es tohP (x)P y(y)i = 2Z Xm2Z exp(�g2V2 hm2 � 2�m+ j�ji) : (4.6)The free energy for the stati
 quark-antiquark pair in the fundamental representation isgotten from (1.2). Z is given by hP (x)P y(x)i = 1. For large separations of the pair we�nd for the free energy for SU(N)limL!1F (x; y) = g2N � 1N jx� yj: (4.7)We 
on
lude this se
tion with the analogous results for the free energy of a stati
 quark-antiquark pair in the adjoint representation, for whi
h adj[exp(2�iH)℄ = 1l. In this 
asethe gauge �xed A0 has the de
ompositionA0 =X pkHk with pk(x) = 1� [ ~pk + hk℄ + 2�V (k �N +mk)x; � = 0; : : : ; N � 1 (4.8)and the Polyakov-loop isP (x) = Tr �adj  exp i Z �0 A0(�; x)d�!! = Tr exp i Z �0 Ak0(�; x)��adj(Hk)d�! :where �� is the Lia algebra representation indu
ed by �. Now one pro
eeds as in theuntwisted 
ase. One obtains with ~m = Plmll and � 2 [�1; 1℄hP (x)P y(y)i = 1Z 24r2 + 2N rXp=1 pXj=1X~m exp8<:�g2V 0�~mK�1 ~m� 2� pXi=jmi1A9=;exp n�g2V j�j2(p� j + 1)o 1Xn=�1 ÆnN; ~m# : (4.9)9



For SU(2) (4.9) simpli�es tohP (x)P y(y)i = 1 + 4Z Xm exp n�2g2V �m2 � 2m� + j�j�o : (4.10)For large separations of the pair we get for the free energy in the twisted 
ase for SU(N)limL!1F (x; y) � � 1� 2Nr2 rXp=1 pXj=1 exp n�g2�jx� yj2(p� j + 1)o : (4.11)For 1g2� � jx� yj � L the free energy be
omes zero and due to the 
luster de
ompositiontheorem the expe
tation value of one Polyakov-loop operator is one in agreement with [5℄.5 Zero Modes of the Dira
-operatorIn this se
tion we 
hara
terize and 
ount the number of zero modes (in the fundamentalrepresentation) of D/ for gauge theories on T 2. We will show that the number of fermioni
zero modes for gauge �xed 
on�gurations A� with transition fun
tions (2.8) is justn0 = TrjHj: (5.1)The analogous result on S2 has been derived in [18℄. To prove (5.1) we introdu
e the
omplexi�
ation G
 of G and assign to ea
h gauge �xed A (in the gauge (2.5)) the set ofG
-valued prepotentials GA = fg(z; �z) 2 G
j Az = ig�1�zgg (5.2)with Az := 12(A0 � iA1) and z = x0 + ix1. Sin
e the G-bundles over T 2 are trivial ea
hgauge �xed A is a gauge transform of a periodi
 potential Ap,Az = V �1A ApzVA + iV �1A �zVA (5.3)and the prepotentials belonging to A areGA = ng(z; �z) = h(�z) � gA(z; �z)VAj gA(z; �z) = P exp fi 0Zz duApz(u; �z)go: (5.4)>From the periodi
ity of Ap and the known transition fun
tions (2.8) of A one 
an read o�the nonperiodi
ity of the V :VA(x0 + n�; x1 +mL) = VA(x0; x1)e�2�imHx0=� (5.5)10



Now we 
lassify the non-periodi
ity of the prepotentials g in (5.2,5.4). Sin
e Ap is periodi
it follows thatg(z + n� + imL; �z + n� � imL) = hnm(�z)g(z; �z)e�2�imx0� H (5.6)The antiholomorphi
 hnm are transition fun
tions of homomorphi
 ve
tor bundles over the2-dimensional torus7 and must obey the 
o
y
le 
onditionshnm(�z + p� � iqL)hpq(�z) = hpq(�z + n� � imL)hnm(�z): (5.7)To 
ontinue, we note that if g 2 GA has transition fun
tions hnm(�z), then h(�z)g 2 GA hastransition fun
tions ~hnm(�z) = h(�z + n� � imL)hnm(�z)h�1(�z): (5.8)Using this gauge freedom we 
an always �nd a representative in GA su
h that hn0(�z) = 1l.To see that we write the hn0 ashn0 = P exp ni �z+n�Z�z d�u a(�u)o: (5.9)Then h(�z) = P exp ni 0Z�z d�u a(�u)o (5.10)transforms the hn0 into the identity, as required.It follows from the 
o
y
le 
onditions (5.7) that the remaining nontrivial transition fun
-tions must be periodi
 in time, h0m(�z + n�) = h0m(�z): (5.11)In the appendix B we shall prove, that the h0m 
an be written ash0m(�z) = V m2L � e2�im �z�HA � P exp ni �z�imLZ�z d�u bp(�u)o; (5.12)where bp is periodi
 in x0, HA lies in the Cartan subalgebra and is quantized, exp(2�iHA) =1l, and VL = e�L�HA and [HA; bp(�u)℄ = 0: (5.13)7e.g. g = gAVA has transition fun
tion hnm(�z) = P exp�� i 1R0 Apz�� �(n� + imL); �z� � (n� + imL)d�	:11



Now we make a further gauge transformation withh(�z) = P exp fi 0Z�z d�u bp(�u)g: (5.14)The new transition fun
tions hnm readhnm(�z) = V n� � V m2L � e2�im �z�HA with V� = P exp ni 0Z� bp(�u)d�uo: (5.15)Setting V� = ev� we 
an fa
torize g asg(z; �z) = ev�x0=�e�HA(x1)2=V ~g(z; �z):The non-periodi
ity of ~g is simply~g(z + n� + imL; �z + n� � imL) = e2�imx0� HA � ~g � e�2�imx0� H :In terms of ~g the gauge �xed potential readsAz = ~g�1�i�z + AI�~g; where AI = �x1V HA + i2� v� (5.16)is an abelian instanton potential, [AI ; v�℄ = 0.Now it is easy to see that the Dira
-operatorD/ (A) 
an be related to the one in the instantonba
kground asD/ (A) = ~GyD/ (AI) ~G; ~G =  ~gy�1 00 ~g ! ; D/ (AI) = 2 0 �z � iAI��z � iAyI 0 ! : (5.17)It follows at on
e that  0 = ~G�1 ~ 0 (5.18)is a zero mode of D/ (A) if ~ 0 is a zero mode of D/ (AI).Let us 
al
ulate the left-handed (
5 = �1) zero modes in the instanton ba
kground AI .Comparing AI with the general gauge �xed form (2.5) we see that HA � H. The Dira
-eqation reads (�z � i�x1V H + 12�v�) ~ 0 = 0and is solved by the spinor �elds~ 0(x0; x1) = e��(x1)2H=V �iv�x1=��(�z): (5.19)12



The zero modes must ful�ll the boundary 
onditions (2.1) with transition fun
tion (2.8)so that � must be antiperiodi
 in time and�(�z � iL) = e2�iH�z=�+L(�H�iv�)=��(�z): (5.20)Thus � 
an be expanded as �(�z) =Xn e�i(2n+1)�z=�an; (5.21)where the Fourier-
oeÆ
ients an transform a

ording to the fundamental representationof G. To pro
eed we use the fa
t that H 
ommutes with the Dira
-operator and 
an bediagonalized, Han = man. Sin
e v� 
ommutes with H it leaves the subspa
e on whi
hH = m invariant. On this subspa
e (5.20) translates intoan = e�(m�1�2n)L=�e�iv�L=�an�m: (5.22)Now we see that we 
an 
hoose the ve
tors a1; : : : ; am freely, so that there arem�(degenera
yofm) normalizable zero modes ifm is positive. Repeating the same pro
edure for the right-handed zero-modes, for whi
h m must be negative, we end up with the following formulafor the number of zero-modes n0 = TrjHj: (5.23)The expli
it zero modes are given by (5.18,5.19,5.21) where the an are determined bythe re
ursion relations (5.22). This way one �nds, that the zero modes in the instantonba
kgrounds are theta-fun
tions ( similar to the abelian S
hwinger model [15℄).6 Dis
ussionIn this paper we have given a simple derivation for the expe
tation value of Polyakov-loops in QCD2 at �nite temperature. For the simplest 
ase, G = SU(2) and matter inthe fundamental representation, i.e. with untwisted gauge �elds, the intera
tion energybetween two widely separated external sour
es isF (x; y) L!1! g22 jx� yj: (6.1)If we twist the gauge �elds and thus introdu
e magneti
 
ux quanta we getF (x; y) L!1! � 4� expf�2g2�jx� yjg (6.2)A similar behaviour is found for the higher groups and maximally twisted and untwisted�elds. In the untwisted 
ase we get a 
on�ning potential, whereas in the twisted 
ase13



the potential F (x � y) de
ays exponentially to a 
onstant, whi
h is to be interpreted ass
reening of the external 
harges. In �gure 1 we show F (x; y) for abitrary jx�yj=L 2 [0; 1℄for SU(2) in the untwisted 
ase. In �gure 2 we show F (x; y) for SU(2) in the twisted 
ase.For large volume F (x; y)=V tents to zero everywhere.The string tension (4.7) in non-
ompa
t QCD2 on the torus is di�erent from the one in
ompa
t QCD2 [4, 5, 12℄. For example, for the partition fun
tion (for SU(2)) the twoquantisations di�ers on the n = 0 
ontribution inZ =Xn n2�2ge�g2V n2In [19℄ it has been argued, that the n = 0 term is absent for g 6= 1, but on the torus thereis no way to de
ide, whi
h of the two quantisations is the 
orre
t one. Sin
e in our pathintegral quantisation we do not need to �x the Weyl symmetry, we get twi
e the resultof non-
ompa
t QCD2. Therefore the 'zero representation' of Hetri
k [6℄ must be addedto the partition fun
tion of 
ompa
t QCD2 with a fa
tor 1/2. Another argument for afa
tor 1/2 is, that the 
orresponding state lies on the boundary of the Weyl 
hamber andhen
e belongs to two 
hambers simultanously. In order to avoid double 
ounting, we needthe fa
tor 1/2. These weights are also present in the 
al
ulation of expe
ation values ofPolyakov loops.To 
he
k the 
luster de
omposition theorem one must 
ompute the expe
tation value ofone Polyakov-loop operator for the twisted and untwisted 
ase. We get hP if = 0 andhP iadj = 1. This agrees with 
al
ulations of expe
tation values of homologi
ally nontrivialWilson-loops on genus one Riemann surfa
es done in [5℄.In a se
ond part we derived an expli
it formula relating the r winding numbers of thegauge �xed 
on�gurations to the total number of zero modes. Indeed, the number of zeromodes is just the produ
t of the winding numbers. This is a nontrivial result and webelieve it is new. It goes mu
h beyond the well known index theorem, whi
h is trivial intwo dimensions.We would like to point out, that the gauge �xing introdu
ed in se
tion 2 has a naturalextension to higher dimensions. For example in 4 dimensions the generalization of (2.5)readsA0 = 2�H0 x1L0L1 + ~A
0; A1 = ~A1; A2 = 2�H2 x3L2L3 + ~A2; A3 = ~A3 (6.3)where the Cartan-pie
es of the ~A� are 
onstrained by~A
0 = C0(x1; x2; x3) , R dx0 ~A
1 = C1(x2; x3)R dx0dx1 ~A
2 = C2(x3) , R dx0dx1dx3 ~A
3 = C3: (6.4)The 
onstant parts of the C� 2 H are further restri
ted to avoid Gribov 
opies. A
tuallya slight modi�
ation of this gauge �xings 
an be a
hieved in all instanton se
tors forG = SU(N > 2) and in the se
tors with even instanton numbers for SU(2) [3℄.14
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t QCD2.AppendixA ConventionsIn se
tions 2,3 and 4 we used the Chevalley basis [17℄[H�; H�℄ = 0; 8�; � 2 � , [H�; E�℄ = K��E� 8�; � 2 �[E�; E��℄ = H�; 8� 2 � , [E�; E�℄ = E�+�; 8� + � 2 �+[H�; E�+
℄ = (K�� +K
�)E�+
 ; 8�; �; 
 2 �; � + 
 2 �+ (A.1)where � is the set of simple roots and �+ the set of positive roots. The Cartan matrixand the symmetri
 Coxeter matrix are given byK�� = 2h�; �ih�; �i and C�� = 4h�; �ih�; �ih�; �i: (A.2)In the body of this paper we used K�' for simple � and positive '. This 'extension' of theCartan matrix is de�ned as for simple roots, see (A.2). For the tra
es we getTr(H�H�) = 2�2K�� , Tr(E�E�) = 2�2 Æ�;�� and Tr(H�E�) = 0; (A.3)where Tr is the usual matrix tra
e multiplied by an appropriate normalisation 
onstantwhi
h ensures j�longj2 = 2.B Proof of (5.12)To prove (5.12) we rewrite ~h0m as a path ordered exponential. We de�ne b(�z) by~h0m(�z) = P exp ni �z�imLZ�z d�u b(�u)o: (B.1)The periodi
ity of ��zh0m in x0 translates intob(�z + p� � imL)� b(�z + q� � imL) = h0m(�z)hb(�z + p�)� b(�z + q�)ih�10m(�z) (B.2)15



for arbitrary integers p; q and m. It follows at on
e, that b must be periodi
 in x0, up to alinear term, b(�u) = b1�u+ bp(�u): (B.3)From (B.2) it follows that h0m lies in the little group of b1,h01(�z)b1h�101 (�z) = b1 (B.4)As a 
onsequen
e b1 
ommutes with bp andh0m = e�(m2L2b1=2+imLb1�z)P exp ni �z�imLZ�z d�u bp(�u)o: (B.5)Sin
e the h0m are periodi
 in x0 with period �, the 
onstant b1 has to be 2�HA=V withexp(2�iHA) = 1. ThusHA is diagonalizable and 
an take it to be in the Cartan subalgebra.Referen
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Figure 1:g2V =1: , g2V � 1: ����, g2V = 0: � � � � �Intera
tion energy of two external 
harges for SU(2), untwisted 
ase.
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Figure 2:g2V =1: , g2V � 1: ����, g2V = 0: � � � � �Intera
tion energy of two external 
harges for SU(2), twisted 
ase. F=V = 0 forg2V =1. 18


