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Abstract

The WZNW theories (for a non-compact form of the gauge groups) are
reduced to a series of integrable theories that interpolate between WZNW
theories and the corresponding Toda theories. They describe a set of WZNW
fields in interaction with each other and with a two-dimensional gravitational
field. An algorithm for constructing the general solutions, and a formula that
relates the Virasoro and Kac-Moody centres of the reduced theories is given,
together with a (conformally non-invariant) extension of the reduction to obtain
affine Toda theories.
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In some previous reports it was shown that Toda field theories could be regarded
as linearly constrained Wess-Zumino-Novikov-Witten (WZNW) theories, and
that, by regarding them in this way, one could obtain a simple derivation
of the general solutions of the Toda field equations [1] and a simple intuitive
treatment of the associated W-algebras [2]. In the present note we wish to show
that the WZNW -Toda reduction generalizes naturally to produce a series of
conformally invariant integrable theories which interpolate between the WZNW
and Toda theories. These theories contain WZNW fields belonging to reducible
WZNW groups, with the irreducible pieces in nearest neighbour interaction,
thus providing a natural generalization of Toda theories. A remarkable feature
of the theories is the emergence of a field which plays the role of the two-
dimensional gravitational density \/—g. Further features are the ease with which
the general solutions of the field equations in these theories can be obtained
from the well-known WZNW solution, and the formula for the centres of the
Virasoro algebra in terms of the WZNW centre k, which is exactly the same
as in the Toda case, but with the reduction parameter re-identified. A final
feature is that the reduction procedure can be extended to obtain also the
(non-conformally invariant) affine Toda theories.
We begin by recalling the standard WZNW theory with Lagrangian
Sw=13 [ Par e 0o 00 - 3 [ geG ()
where G is a semi-simple Lie group and the boundary of the 3-dimensional
(topological) integral is just the 2-space of the kinetic term [3]. The field
equations for this Lagrangian are

0_J(xz)=04+J(z) =0, (2a)

where

J(x) = d4g(x)g~ ()  and  J(z) =g (2)d-g(x), (20)
z* being 1(2%+z') or $(«%+iz'), according to whether the space is Minkowskian
or Euclidean. These equations show that J(z) and J(z) are functions of z+ and
x~ only, and the general solution for g(z) is g(x) =g(z*) g(z~), where g and g
are arbitrary elements of G. Because the current components J¢ = tr(c?J),
and similiarly for J, where o are the generators of G, are the Noether currents
for the invariance of Sy with respect to g — hg, gh, where he€ G, h constant,
they satisfy Kac-Moody (KM) algebras of the form

[J@®), Sy )] = (F% T¢(2™) + kg /0,4 ) (2™ — y). (3)
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Furthermore, because the action (1) is conformally invariant the energy-momentum]]
density is traceless and the T, =T and T__ = T components are function of
x+ and z~ only, and satisfy Virasoro algebras of the form

("), Ty = (") +T'(@)ops + 1505) dat —y"), (4)
where ¢ is a central term (that in general depends on the KM centre k). If
one chooses for T'(z) the standard Sommerfield-Sugawara generators, which
are normal-ordered bilinears in the currents in highest weight representations,
one has

[T(2), J*(y )] = J* (=) 6" (aF =y ™), (5)

which shows that the currents are tensors (primary fields) of conformal weight
unity with respect to the conformal group generated by these T'(z*) [4].

Our reduction will require us to set some of the current-components equal
to (non-zero) constants, but as they are vectors with respect to T this cannot
be done without violating the conformal invariance generated by T'(z*) and
T(z~) (just as, in QFT, the vacuum expectation value of a tensor of non-zero
rank cannot be set equal to a non-zero constant without violating Lorentz in-
variance). Hence our procedure will be to modify the energy-momentum tensor
densities so that at least some of the currents become conformal scalars. The
modification is as follows: First we choose as gauge-group G the (maximally
non-compact) real Lie group which is generated by the real linear span of the
Cartan basis {H;, E,} of the Lie algebra. Letting &@; denote the I (=rank) simple
roots of G and #; their duals, i.e. the I fundamental coweights, satisfying

(i, ) = ij. (6)

Then choose a vector 4 in root space which is a sum of any subset of the m;,
i.e. choose

g: Zm‘“ {ma} - {mz}a (7)

(e.g. §=(1,1,0,1,0), (1,0,0,1,1) etc. in a coweight bases for I=5) and use §
to define a privileged element H = §'H; of the Cartan algebra. Because (4, ;)
is zero or unity, the element H has the property that for the simple root-vectors

[H,E,, ]| = E.,, and H,E,,] =0, aj # g, (8)



and since all the roots E, of G are obtained by commutation from the E,; and
E_,,, we see that H provides a natural integer grading of the Lie algebra,

where h, = (6,@) € Z and h, > 0 for positive roots and h, < 0 for negative
roots. In particular the little algebra of H (which includes at least the Cartan
subalgebra of G) has zero grade. We shall denote by B the little group of
G generated by this little algebra. The set of all possible little groups B is
characterized by the fact that their compact forms B, are just the little groups
in the adjoint representation of the compact form G. of G. (This can be seen
by noting that in the compact form of G every element of the Lie algebra
can be conjugated into the Cartan, where its little group is determined by the
number of zeros in its coweight basis). Letting {Ji(zT), J%(z*)} denote the
KM-current components in the Cartan basis, the required modification of the
energy momentum tensor may be written as

T(zT) = Lat) =T(z") — Jg(zT), where Ju(zt) =tr(J(z)H), (10)

that is where Jy (x7) is the current component in the direction H (and a similar
modification for T but with plus Ji (z~)). The subtraction of Ji; from T has
no effect on the currents belonging to the little group B of G (except for Jy
itself) since Jy commutes with all these currents, but it has a two-fold effect
on the remaining currents. First, the transformation law for .Jz itself becomes

{L(z™), Jg(y )} = Jg(x™) 6 — ktr H* 6", (11)

where k is the KM centre. This equation shows that Jxz no longer transforms
linearly, and hence not as a conformal tenor but transforms as a spin-one
connection. The second effect of the modification (10) is to change the trans-
formation law (5) for the currents J« to

{L@@™), J* (")} = (L + ha) T (2T) 8" + ha(J*) (@) 0 (12)

which shows that they transform as tensors of conformal spin (1+h,,0) instead
of (1,0). In particular the current components J¢; (we use the same notation
as earlier, i.e. the subscript denotes the grade of the root «) transform as
conformal scalars. Similarly for the J¢.
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Since the currents J%, and J& are conformal scalars they can be made
constant without violating conformal invariance, and our main constraints will
in fact be

J () = pu* and JE(xT) = v, (13)

where p®,v® are non-zero constants. However, since all the negative and
positive currents J<, and j;}, p=1,2,.. can be generated by commutation from
J, and Jg (and the currents of the little group B) respectively, we cannot
impose (13) consistently unless we also impose the constraints

Je (x1) =0 and J¥x7)=0, p=2,3,... (14)

Eqns. (14,15) represent our full set of constraints on the KM currents of the
WZNW theory and may be summarized as

Jneg(x™) =M and Jpos(x™) = M, (15)

where M and M are constant matrices of grade —1 and 1 respectively, that is
[H,M]=—-M and [H,M]=M. They are first-class constraints, and from (15)
are seen to be just special solutions of (some of) the WZNW field equations.
To obtain a more intuitive picture of their meaning let us consider for example
the case G = SL(9,R) and § = (0,0,0,1,0,1,0,0), so that the little group B
is S(GL(4,R) x GL(2,R) x GL(3,R)). Then the constrained currents are as
shown in Fig. 1. Finally we note that, like all first class constraints, the
constraints (15) generate a system of gauge transformations, and that these are
just the KM transformations corresponding to the (dimG—dimB)/2 -dimensional
nilpotent subgroups of G generated by the root-vectors E, and E_, ((§,a) > 0),
respectively. The gauge freedom can be used to gauge (dimG—dimB)/2 of the
remaining currents to zero. This leaves only dimB "true’ currents, and the gauge
can be chosen so that these are the currents j, = 9,60~ and j, = b=0_b, b € B,
of the little group B.

We now wish to show that the constraints (15) reduce the WZNW theory
for G to a theory which contains two-dimensional gravity and a set of WZNW
fields belonging to the subgroup B interacting with each other and the grav-
itational field. To show this we first note that the WZNW group G admits a
local Gauss decomposition

G =ABC, ; g=abc g €G,a€ A, etc., (16)
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where B is the little group and A and C are the nilpotent subgroups discussed
above. (Although the decomposition is only local, the whole group can be
covered by a finite number of patches with the decomposition (16) multiplied
by a constant matrix in each patch). We then show that the partial constraints
(15) for the full KM currents J and J are equivalent to the full constraints

je(w) = b~ @)Mb(x)  and  ju(x) = b(x)M b (x) (17)

for the partial currents j. and j, belonging to the subgroups C and A respec-
tively. Note that contrary to the full currents J and and J the partial currents
are not chiral since the group elements a, b and ¢ in the Gauss decomposi-
tion (16) are not chiral. To establish the equivalence of (15) and (17) let us
consider J and j. for example. In an obvious notation we have, for g = abc

J=0,997" = (abcy +abyc+aibe)c b rat

(18)

=abj.bta "t +ajpat + j,.

Since the last two terms in (18) are non-negative by the definition of A, B and
C, we then have

Tneg = (abjeb™ a™ ) peg, (19)
and thus the condition for J in (15) may be written as
(abjeb™ a™ Npeg = M. (20)
Since M is already negative, (20) can be written as
(abjeb™ta™ — M) =Q where @ >0, (21)
or, by conjugating with a, as
bjcb™r — M = (a=*Ma — M) + o~ Q. (22)

But since (a—1) and (a='—1) are strictly positive and M has grade minus one,
both expressions on the right of (22) are non-negative. On the other hand, the
expression on the left of (22) is strictly negative by definition. Hence each side
of (22) must be zero separately. Thus, the condition (15) for J(z*) implies
(17) for j.(z). Conversely, it is easy to check from (18) that (17) for j.(z)
implies (15) for J(z*). This result, together with the corresponging result for
J and j,, establishes the required equivalence of (15) and (17).
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Let us now decompose the WZNW field equations with respect to the
Gauss decomposition g = abc. After some straightforward algebra one obtains

o™t O_Ja=0_jy—[bjcb™", ja] + O (bjcb™ ") + 0 {0+ (b7 jab)} 7T =0, (23)

and similiarly for J. If we now impose the constraints in the form (17) the last
two terms in (23) vanish because M, M are constant, and we obtain

O_jy = [M,bMb™1] and Oy gy = [b~1Mb, M], (24)

where one set of field equations follow from the other by conjugation with b.
The egs. (24) are the required field equations for the fields b of the little group
B. Note that they do not involve the fields a,c of the subgroups A and C of
G, and thus are self-contained. They can be derived from the effective action

Sepr[b] = Swb] — / Az tr (MbMb™Y). (25)

This action shows that the b-fields are just a set of WZNW fields belonging to
the (reducible) WZNW group B, with a (non-derivative) coupling between the
nearest-neighbour irreducible blocks, which are linked by the non-zero grade
+ constant matrices M, M (see Fig. 1). In fact the action (25) is the natural
generalization of the Toda action for abelian fields to the case of non-abelian
WZNW fields, and in the special case when B is abelian (i.e. is the Cartan
subgroup of G) all simple roots have weight one and we have

r (MbMb~ Z Wi (B, M0 By =¥ Ha) = Y 20 V) (@@ (26)

&’2

simple «

so (25) reduces to the usual Toda action [5]. Thus in general the constraints
reduce the standard WZNW theory for the irreducible group G to an interacting
WZNW theory for the reducible little group B.

We next wish to show that the Lagrangian (25) contains also a two-
dimensional gravitational field, and that, with respect to this field it is not
only conformally, but general coordinate invariant. To show this we note that
since, by definition, the group GL(1) generated by the privileged element H is
in the centre of the little group B, the little group B may be written (locally)
as a direct product B = GL(1) x B. Hence if we write the b-fields in the form
b(z) = b(x) exp(4(x)H) the action (25) may be written as

. “ tr H?
Seff(b, h) = Sw(b) +

/ A2z 0L pO_ ¢ — / d?z @ tr(MbMb™1), (27)
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where the factor exp(¢(x)) appears in the last integral because the M, M have
H-grade £1. We then recall that the current components of j, orthogonal to H
have conformal weights one and that d..¢ transforms as a spin one connection.
It follows that b is a conformal scalar and exp(¢) has conformal weights (1,1).
On account of this it is permissible, indeed quite natural, to introduce a curved
2-manifold with metric tensor g,, defined as

gu.l/(x) - ed)(m) Ume (28)

where 17, is the 2-dimensional Minkowskian (or Euclidean) metric. Then the
action (27) may be written in the form

- 1 n o~ n -
Serr(bygu) = /dza:\/_—g{itr H?> RV2R — tr(Mbe—l)} + Sw (b, gu,)  (29)

where of course Sy (b, g,..,) means that in the kinetic term of Sy, (b), the Minkowskianfj
n*vo, .0, . is replaced by \/=gg**0, .0, .. If it is understood that the conformal
scalarity of b is extended to scalarity with respect to general coordinate trans-
formations then the general coordinate invariance of S.;; in the form (29) is
manifest. One sees, therefore, that the reduction provides us not only with a
conformally invariant self-interacting WZNW theory, but with a unified theory

of WZNW theory and (2-dimensional) gravity.

Note that, in the form (29), the energy momentum tensor T, defined as
1/\/—g-6S/6g" is automatically traceless due to the field equation for exp(¢) =
V=5

608 68 ogtr
0/=g dgm V=g

and it is easy to verify that the Virasoro densities L = T—d,Jy and L = T+0_Jy

—g" Ty =0, (30)

introduced earlier in order to reduce the WZNW theory coincide exactly with
the Ty, and T__ components of this energy-momentum tensor T},,. Note also
that once exp(¢4()) is identified as \/—g it defines a covariant derivative (e.g.
on vectors Vi = 93 + I'z) with Christoffel symbols I'y = 0.4, and that the
existence of this covariant derivative explains why the H-components of the
currents loose their tensorial (primary field) character under reduction. The
point is that the currents V b6~ and v='V_b formed with V. are tensors,
whereas the actual currents 0,6b~! and b=19_b are not, but since

gy =04bb" =V bb~! — HT,, (31)
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and similiarly for j;, the non-covariant pieces occur only for the H-components
of the currents.

We now turn to the general solution of the field equation (24). Since the
constraints satisfy the field equations (indeed are special solutions to some of
them) the general solution must be of the usual WZNW form [3]

g(x) =g(@")g(="). (32)

The only new feature is that g(z*) and g(z~) are no longer completely free
but are subject to the constraints on the currents. To see the effect of the
constraints, we ignore them for the moment and make a Gauss decompostion
of all the g's in (32) to obtain

a(z)b(z)c(z) = a(z™)b(zT)e(x™) - alz™)b(z™)é(z 7). (33)

From (33) one sees that the B-component b(z) of g(z) is the the B-component
in the Gauss-decomposition of b(zT)c(zt) - a(z~)b(z~). Furthermore, if

c(™) - a(a”) = a(z)f(z)y() (34)

is the Gauss decomposition of ca alone, then the required Gauss-decomposition
of beab is

[b(a)a(@)b™ (@ h)] [b(z™)B(a)b(a™)] b~ (@ )y(2)b(z )], (35)
and so the required b(x) component of g(x) is
b(x) = b(z™)B(x)b(z7). (36)
Let us now impose the constraints, which from (17) are just
dpcc™t =b"1Mb and a"t0_a=bMb, (37)

and thus determine c(z*) and a(z~) in terms of b(z+) and b(z~) respectively (up
to constant matrices which can be absorbed in b,b). Since the matrix g(z) is
determined uniquely by c¢(z*) and a(z~) from (34) we then see that the role of
the constraints is to determine the matrix g(z) in terms of the matrices b(z™)
and b(z~). Thus, the general solution of the field equation for the reduced
system is (36), where b(z*) and b(z~) are arbitrary and f(z) is determined in
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terms of b(z*) and b(z~) by (34) and (37). Eq. (36) should be compared to
the non-interacting WZNW solution for b(z) which is (36) with g=1.

From the above discussion we see that the algorithm for constructing the
general solution is to take arbitrary matrices b(z*), b(z~), solve (37) for c(zt)
and a(z~), and determine B(z) (algebraically) from (34). It might be thought
that this procedure only shifts the problem to solving another set of differential
equations, namely (37), but because of the nilpotency of the groups A and C,
these can be solved by successive integration of already known quantities. In
fact, if c(x*) is decomposed into its H-components ¢, (z*) the solution is given
by the finite series

zt

c(zt) =1+ Zch(x+) where cpy1 = /dy b~ (y)M b(y)cn(y) (38)
h 0

and similiarly for a(z~). To illustrate the algorithm in more detail let us consider
the 'Liouville’ analogue in which the little group B has only two irreducible
blocks, for definiteness G = SL(n, R) and B = S(GL(p, R)®GL(q, R)) for p+g=n.
Then

(i 4) () (2 ) ()
and the Gauss decomposition (34) is
)= (e 1) (o 7))

=<$ u(lx))<mg)_l A?@)(v(lx) ?)’

where A(z) =1+ I(z)7(z~) and (u,v) = (FA~Y, A=), Thus 8 =diag((A1)~1, A)
and the solutions for the blocks in b(z) are

(40)

bi(z) = by(z™) bi(z™) and  by(z) = by(zh)A(x) by 7). (41)

It remains therefore only to compute I(z*) and r(z~) from the finite series (38).
It is easy to see that the series terminates after one step and thus

zt

l(x+):/dyb2_1(y)mb1(y) and r(x—):/dyél(y)mégl(y). (42)

0

10



Accordingly, (41) and (42), where A(z) = 1+1(z*)r(z™) is the general solution
for the two-block case. Note that the solution (41) for b,(x) generalizes the
general solution

bi(w) = 04l(a™®) [1+1(aF)F(27)] 7 0-7(a7) (43)

of the Liouville equation, and reduces to it for G = SL(2, R). Note also that
when p=gq the two-block system admits the reflexion symmetry

by < (BH)™Y M +— (MH)7? (44)

and that if one identifies b; with (b%)~! one obtains a simple WZNW field in
self-interaction (or, more precisely a WZNW field b in interaction with itself
and with the gravitational Liouville field exp(¢)).

As a first step toward quantization of the reduced theories we compute their
Virasoro centres in terms of the KM centres &, assuming only that quantization
requires the use of highest-weight (Fock-space) representations. There are
two main contributions. First, there is the direct contribution of the modified
energy-momentum tensor L(zt), namely,

_dimG
1+g/k

cr — 12ktr H?, (45)
where g is the dual Coxeter number of the group G, the first term is the well
known centre of the Sommerfield-Sugawara energy-momentum tensor [4], and
the second term comes from the J, (z*)-modification. Second there is the
contribution from the BRST ghost-pairs due to the constraints (15) or (17)
and the corresponding gauge-fixing constraints. As is well known the ghost-
contribution takes the form

con = =23 [1+6j(j ~ 1), (46)

where j is the conformal weight of the ghosts [6]. But since these are just the
weights of the corresponding constrained currents, (46) may be written as

con = —(dimG — dimB) — 6 tr(adj H)* + 12 (d,9)
a>0 (47)

=

=dimB — dimG — 12trH? + 24(7,9),
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where 7 is half the sum of the positive roots. Adding (47) and (45), and using
the Freudenthal-deVries formula ¢dimG = 1252, we obtain finally

_;2

P 2 > 2
—12(g+ k)trH” 4 24(p, o

tg (g ) (7,9)

_di 7 )

— dimB — 12(\/m - \/k+g<5> .
This generalizes the formula obtained previously for the Toda theory [2], and
reduces to it for B=Cartan (dimB = I) and §=sum of all the fundamental

c=cp+cgp =dimB — 12k
(48)

coweights=half the sum of the positive coroots. Note that for the simply-
laced Toda case the formula reduces to ¢ =1-125%(8—1/8)%, where % =k +g,
which is reminiscent of the general formulae for decenerate conformal field
theories. But the formula (48) was obtained only under the assumption that
the representations were highest weight, and, until some other conditions such
as unitarity or rationality are added, the value of (& + g) is unknown. It could
even be negative, in which case the two negative signs in (48) would be replaced
by positive one, a result that has been obtained using a completely different
quantization procedure in ref. [7].

Finally, we consider the possibility of generalizing the reduction process
even further. For this we note that the reduction of the WZNW field equations
in (23) is actually valid for the decomposition g = abc of g € G into any three
a,b and ¢ and for any choice of constant matrices M M, not merely when B is a
little group, A4, C are nilpotent, and M, M have grade 1. The only difference is
that, in the general case, the reduction is not necessarily conformally invariant,
there is no analogue of the gravitational field exp(¢(z)), and the constraints

je=b"*Mb and j,=0bMb" L, (49)

are not, in general, expressible as linear constraints for the full WZNW currents
J(zt) and J(z7).
For example, if we choose B as in the usual Toda theory, but choose the
matrices M, M in (49) as
M= Y u*E_o + pE, and M= Y v*E, +vE_,, (50)
a simple a simple
where 7 is the highest root, then the field equations for the fields ¢ belonging
to the diagonal subgroup B (b=exp(¢*H,)) are, from (24),
. .2 .2 . 20
Vip = — Z de (@) 4 3¢ ~(3:2) where o = Z e o, (51)

: a2
simple
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and we have set 2u°v*=d 2 and 2ur=72. These are just the (non-conformally-
invariant) equations of affine Toda field theory [8]. In particular for G = SL(2, R)
we have

V2¢ = —sinh ¢, where b =D/V2, (52)

which is just the sinh-Gordon equation.
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Figure 1:
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Figure caption:
Fig. 1. The special element H of the Cartan subgroup, the constant Matrix M
of H-grade —1, the little group B and the contrained current J for the group

SL(9,R) and §=(0,0,0,1,0,1,0,0).
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