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Abstra
tThe WZNW theories (for a non-
ompa
t form of the gauge groups) areredu
ed to a series of integrable theories that interpolate between WZNWtheories and the 
orresponding Toda theories. They des
ribe a set of WZNW�elds in intera
tion with ea
h other and with a two-dimensional gravitational�eld. An algorithm for 
onstru
ting the general solutions, and a formula thatrelates the Virasoro and Ka
-Moody 
entres of the redu
ed theories is given,together with a (
onformally non-invariant) extension of the redu
tion to obtainaÆne Toda theories.* permanent address: Dublin Institute for Advan
ed Studies, 10 BurlingtonRoad, Dublin 4, Ireland 1



In some previous reports it was shown that Toda �eld theories 
ould be regardedas linearly 
onstrained Wess-Zumino-Novikov-Witten (WZNW) theories, andthat, by regarding them in this way, one 
ould obtain a simple derivationof the general solutions of the Toda �eld equations [1℄ and a simple intuitivetreatment of the asso
iatedW-algebras [2℄. In the present note we wish to showthat the WZNW -Toda redu
tion generalizes naturally to produ
e a series of
onformally invariant integrable theories whi
h interpolate between the WZNWand Toda theories. These theories 
ontain WZNW �elds belonging to redu
ibleWZNW groups, with the irredu
ible pie
es in nearest neighbour intera
tion,thus providing a natural generalization of Toda theories. A remarkable featureof the theories is the emergen
e of a �eld whi
h plays the role of the two-dimensional gravitational density p�g. Further features are the ease with whi
hthe general solutions of the �eld equations in these theories 
an be obtainedfrom the well-known WZNW solution, and the formula for the 
entres of theVirasoro algebra in terms of the WZNW 
entre k, whi
h is exa
tly the sameas in the Toda 
ase, but with the redu
tion parameter re-identi�ed. A �nalfeature is that the redu
tion pro
edure 
an be extended to obtain also the(non-
onformally invariant) aÆne Toda theories.We begin by re
alling the standard WZNW theory with LagrangianSW = k2 Z d2x ���(g�1��g)(g�1��g)� 2k3 Z (g�1dg)3 ; g 2 G; (1)where G is a semi-simple Lie group and the boundary of the 3-dimensional(topologi
al) integral is just the 2-spa
e of the kineti
 term [3℄. The �eldequations for this Lagrangian are��J(x) = �+ ~J(x) = 0; (2a)where J(x) = �+g(x)g�1(x) and ~J(x) = g�1(x)��g(x); (2b)x� being 12 (x0�x1) or 12 (x0�ix1), a

ording to whether the spa
e is Minkowskianor Eu
lidean. These equations show that J(x) and ~J(x) are fun
tions of x+ andx� only, and the general solution for g(x) is g(x)= g(x+) ~g(x�), where g and ~gare arbitrary elements of G. Be
ause the 
urrent 
omponents Ja = tr (�aJ),and similiarly for ~J , where �a are the generators of G, are the Noether 
urrentsfor the invarian
e of SW with respe
t to g ! hg; gh, where h2G; h 
onstant,they satisfy Ka
-Moody (KM) algebras of the form[Ja(x+); Jb(y+)℄ = �fab
 J
(x+) + kgab=�x+�Æ(x+ � y+): (3)2



Furthermore, be
ause the a
tion (1) is 
onformally invariant the energy-momentumdensity is tra
eless and the T++ � T and T�� � ~T 
omponents are fun
tion ofx+ and x� only, and satisfy Virasoro algebras of the form[T (x+); T (y+)℄ = �2T (x+) + T 0(x+)�x+ + 
12�3x+� Æ(x+�y+); (4)where 
 is a 
entral term (that in general depends on the KM 
entre k). Ifone 
hooses for T (x) the standard Sommer�eld-Sugawara generators, whi
hare normal-ordered bilinears in the 
urrents in highest weight representations,one has [T (x+); Ja(y+)℄ = Ja(x+) Æ0(x+�y+); (5)whi
h shows that the 
urrents are tensors (primary �elds) of 
onformal weightunity with respe
t to the 
onformal group generated by these T (x+) [4℄.Our redu
tion will require us to set some of the 
urrent-
omponents equalto (non-zero) 
onstants, but as they are ve
tors with respe
t to T this 
annotbe done without violating the 
onformal invarian
e generated by T (x+) and~T (x�) (just as, in QFT, the va
uum expe
tation value of a tensor of non-zerorank 
annot be set equal to a non-zero 
onstant without violating Lorentz in-varian
e). Hen
e our pro
edure will be to modify the energy-momentum tensordensities so that at least some of the 
urrents be
ome 
onformal s
alars. Themodi�
ation is as follows: First we 
hoose as gauge-group G the (maximallynon-
ompa
t) real Lie group whi
h is generated by the real linear span of theCartan basis fHi; E�g of the Lie algebra. Letting ~�j denote the l (=rank) simpleroots of G and ~mi their duals, i.e. the l fundamental 
oweights, satisfying(~mi; ~�j) = Æij : (6)Then 
hoose a ve
tor ~Æ in root spa
e whi
h is a sum of any subset of the ~mi,i.e. 
hoose ~Æ =Xa ~ma; f~mag � f~mig; (7)(e.g. ~Æ = (1; 1; 0; 1; 0); (1; 0; 0; 1; 1) et
. in a 
oweight bases for l=5) and use ~Æto de�ne a privileged element H = ÆiHi of the Cartan algebra. Be
ause (~Æ; ~�j)is zero or unity, the element H has the property that for the simple root-ve
tors[H;E�a℄ = E�a and [H;E�j ℄ = 0; �j 6= �a; (8)3



and sin
e all the roots E� of G are obtained by 
ommutation from the E�j andE��j , we see that H provides a natural integer grading of the Lie algebra,[H;Eh�℄ = h�Eh�; (9)where h� = (~Æ; ~�) 2 Z and h� � 0 for positive roots and h� � 0 for negativeroots. In parti
ular the little algebra of H (whi
h in
ludes at least the Cartansubalgebra of G) has zero grade. We shall denote by B the little group ofG generated by this little algebra. The set of all possible little groups B is
hara
terized by the fa
t that their 
ompa
t forms B
 are just the little groupsin the adjoint representation of the 
ompa
t form G
 of G. (This 
an be seenby noting that in the 
ompa
t form of G every element of the Lie algebra
an be 
onjugated into the Cartan, where its little group is determined by thenumber of zeros in its 
oweight basis). Letting fJ i(x+); J�(x+)g denote theKM-
urrent 
omponents in the Cartan basis, the required modi�
ation of theenergy momentum tensor may be written asT (x+)! L(x+) = T (x+)� J 0H(x+); where JH(x+) = tr�J(x+)H� ; (10)that is where JH(x+) is the 
urrent 
omponent in the dire
tion H (and a similarmodi�
ation for ~T but with plus ~J 0H(x�)). The subtra
tion of J 0H from T hasno e�e
t on the 
urrents belonging to the little group B of G (ex
ept for JHitself) sin
e JH 
ommutes with all these 
urrents, but it has a two-fold e�e
ton the remaining 
urrents. First, the transformation law for JH itself be
omesfL(x+); JH(y+)g = JH(x+) Æ0 � ktrH2 Æ00; (11)where k is the KM 
entre. This equation shows that JH no longer transformslinearly, and hen
e not as a 
onformal tenor but transforms as a spin-one
onne
tion. The se
ond e�e
t of the modi�
ation (10) is to 
hange the trans-formation law (5) for the 
urrents J� tofL(x+); J�(y+)g = (1 + h�)J�(x+) Æ0 + h�(J�)0(x+) Æ (12)whi
h shows that they transform as tensors of 
onformal spin (1+h�; 0) insteadof (1; 0). In parti
ular the 
urrent 
omponents J��1 (we use the same notationas earlier, i.e. the subs
ript denotes the grade of the root �) transform as
onformal s
alars. Similarly for the ~J�1 .4



Sin
e the 
urrents J��1 and ~J�1 are 
onformal s
alars they 
an be made
onstant without violating 
onformal invarian
e, and our main 
onstraints willin fa
t be J��1(x+) = �� and ~J�1 (x�) = ��; (13)where ��; �� are non-zero 
onstants. However, sin
e all the negative andpositive 
urrents J��p and ~J�p , p=1; 2; :: 
an be generated by 
ommutation fromJ��1 and ~J�1 (and the 
urrents of the little group B) respe
tively, we 
annotimpose (13) 
onsistently unless we also impose the 
onstraintsJ��p(x+) = 0 and ~J�p (x�) = 0; p = 2; 3; ::: : (14)Eqns. (14,15) represent our full set of 
onstraints on the KM 
urrents of theWZNW theory and may be summarized asJneg(x+) = M and ~Jpos(x�) = ~M; (15)where M and ~M are 
onstant matri
es of grade �1 and 1 respe
tively, that is[H;M ℄ =�M and [H; ~M ℄ = ~M . They are �rst-
lass 
onstraints, and from (15)are seen to be just spe
ial solutions of (some of) the WZNW �eld equations.To obtain a more intuitive pi
ture of their meaning let us 
onsider for examplethe 
ase G = SL(9; R) and ~Æ = (0; 0; 0; 1; 0; 1; 0; 0), so that the little group Bis S�GL(4; R) � GL(2; R) � GL(3; R)�. Then the 
onstrained 
urrents are asshown in Fig. 1. Finally we note that, like all �rst 
lass 
onstraints, the
onstraints (15) generate a system of gauge transformations, and that these arejust the KM transformations 
orresponding to the (dimG�dimB)=2 -dimensionalnilpotent subgroups of G generated by the root-ve
tors E� and E�� ((~Æ; ~�) > 0),respe
tively. The gauge freedom 
an be used to gauge (dimG�dimB)=2 of theremaining 
urrents to zero. This leaves only dimB 'true' 
urrents, and the gauge
an be 
hosen so that these are the 
urrents jb = �+b b�1 and ~jb = b�1��b, b 2 B,of the little group B.We now wish to show that the 
onstraints (15) redu
e the WZNW theoryfor G to a theory whi
h 
ontains two-dimensional gravity and a set of WZNW�elds belonging to the subgroup B intera
ting with ea
h other and the grav-itational �eld. To show this we �rst note that the WZNW group G admits alo
al Gauss de
ompositionG = ABC; ; g = ab
 g 2 G; a 2 A; et
.; (16)5



where B is the little group and A and C are the nilpotent subgroups dis
ussedabove. (Although the de
omposition is only lo
al, the whole group 
an be
overed by a �nite number of pat
hes with the de
omposition (16) multipliedby a 
onstant matrix in ea
h pat
h). We then show that the partial 
onstraints(15) for the full KM 
urrents J and ~J are equivalent to the full 
onstraintsj
(x) = b�1(x)M b(x) and ~ja(x) = b(x) ~M b�1(x) (17)for the partial 
urrents j
 and ~ja belonging to the subgroups C and A respe
-tively. Note that 
ontrary to the full 
urrents J and and ~J the partial 
urrentsare not 
hiral sin
e the group elements a; b and 
 in the Gauss de
omposi-tion (16) are not 
hiral. To establish the equivalen
e of (15) and (17) let us
onsider J and j
 for example. In an obvious notation we have, for g = ab
J = �+gg�1 = (ab
+ + ab+
+ a+b
)
�1b�1a�1= abj
b�1a�1 + ajba�1 + ja: (18)Sin
e the last two terms in (18) are non-negative by the de�nition of A;B andC, we then have Jneg = (abj
b�1a�1)neg; (19)and thus the 
ondition for J in (15) may be written as(abj
b�1a�1)neg = M: (20)Sin
e M is already negative, (20) 
an be written as(abj
b�1a�1 �M) = Q where Q � 0; (21)or, by 
onjugating with a, asbj
b�1 �M = (a�1Ma�M) + a�1Qa: (22)But sin
e (a�1) and (a�1�1) are stri
tly positive and M has grade minus one,both expressions on the right of (22) are non-negative. On the other hand, theexpression on the left of (22) is stri
tly negative by de�nition. Hen
e ea
h sideof (22) must be zero separately. Thus, the 
ondition (15) for J(x+) implies(17) for j
(x). Conversely, it is easy to 
he
k from (18) that (17) for j
(x)implies (15) for J(x+). This result, together with the 
orresponging result for~J and ~ja, establishes the required equivalen
e of (15) and (17).6



Let us now de
ompose the WZNW �eld equations with respe
t to theGauss de
omposition g = ab
. After some straightforward algebra one obtainsa�1 ��J a = ��jb � [bj
b�1; ~ja℄ + ��(bj
b�1) + b f�+(b�1~jab)g b�1 = 0; (23)and similiarly for ~J . If we now impose the 
onstraints in the form (17) the lasttwo terms in (23) vanish be
ause M; ~M are 
onstant, and we obtain��jb = [M; b ~Mb�1℄ and �+~jb = [b�1Mb; ~M ℄; (24)where one set of �eld equations follow from the other by 
onjugation with b.The eqs. (24) are the required �eld equations for the �elds b of the little groupB. Note that they do not involve the �elds a; 
 of the subgroups A and C ofG, and thus are self-
ontained. They 
an be derived from the e�e
tive a
tionSeff [b℄ = SW [b℄� Z d2x tr (Mb ~Mb�1): (25)This a
tion shows that the b-�elds are just a set of WZNW �elds belonging tothe (redu
ible) WZNW group B, with a (non-derivative) 
oupling between thenearest-neighbour irredu
ible blo
ks, whi
h are linked by the non-zero grade� 
onstant matri
es M; ~M (see Fig. 1). In fa
t the a
tion (25) is the naturalgeneralization of the Toda a
tion for abelian �elds to the 
ase of non-abelianWZNW �elds, and in the spe
ial 
ase when B is abelian (i.e. is the Cartansubgroup of G) all simple roots have weight one and we havetr (Mb ~Mb�1) =Xi;j �i�j tr(E��ie�pHpE�je��qHq) = Xsimple � 2(�; �)~�2 e(~�;~�); (26)so (25) redu
es to the usual Toda a
tion [5℄. Thus in general the 
onstraintsredu
e the standard WZNW theory for the irredu
ible group G to an intera
tingWZNW theory for the redu
ible little group B.We next wish to show that the Lagrangian (25) 
ontains also a two-dimensional gravitational �eld, and that, with respe
t to this �eld it is notonly 
onformally, but general 
oordinate invariant. To show this we note thatsin
e, by de�nition, the group GL(1) generated by the privileged element H isin the 
entre of the little group B, the little group B may be written (lo
ally)as a dire
t produ
t B = GL(1)� B̂. Hen
e if we write the b-�elds in the formb(x) = b̂(x) exp(�(x)H) the a
tion (25) may be written asSeff (b̂; h) = SW (b̂) + trH22 Z d2x �+����� Z d2x e�(x)tr(Mb̂ ~Mb̂�1); (27)7



where the fa
tor exp(�(x)) appears in the last integral be
ause the M; ~M haveH-grade �1. We then re
all that the 
urrent 
omponents of jb orthogonal to Hhave 
onformal weights one and that ��� transforms as a spin one 
onne
tion.It follows that b̂ is a 
onformal s
alar and exp(�) has 
onformal weights (1; 1).On a

ount of this it is permissible, indeed quite natural, to introdu
e a 
urved2-manifold with metri
 tensor g�� de�ned asg��(x) = e�(x) ��� ; (28)where ��� is the 2-dimensional Minkowskian (or Eu
lidean) metri
. Then thea
tion (27) may be written in the formSeff (b̂; g��) = Z d2xp�gn12trH2 Rr�2R� tr�Mb̂ ~Mb̂�1�o+ SW (b̂; g�� ; ) (29)where of 
ourse SW (b̂; g��)means that in the kineti
 term of SW (b̂), the Minkowskian����� : �� : is repla
ed by p�gg���� :�� : . If it is understood that the 
onformals
alarity of b̂ is extended to s
alarity with respe
t to general 
oordinate trans-formations then the general 
oordinate invarian
e of Seff in the form (29) ismanifest. One sees, therefore, that the redu
tion provides us not only with a
onformally invariant self-intera
ting WZNW theory, but with a uni�ed theoryof WZNW theory and (2-dimensional) gravity.Note that, in the form (29), the energy momentum tensor T�� de�ned as1=p�g � ÆS=Æg�� is automati
ally tra
eless due to the �eld equation for exp(�) =p�g, ÆSÆp�g = ÆSÆg�� Æg��Æp�g = �g�� T�� = 0; (30)and it is easy to verify that the Virasoro densities L = T��+JH and ~L = ~T+�� ~JHintrodu
ed earlier in order to redu
e the WZNW theory 
oin
ide exa
tly withthe T++ and T�� 
omponents of this energy-momentum tensor T�� . Note alsothat on
e exp(�(x)) is identi�ed as p�g it de�nes a 
ovariant derivative (e.g.on ve
tors r� = �� + ��) with Christo�el symbols �� = ���, and that theexisten
e of this 
ovariant derivative explains why the H-
omponents of the
urrents loose their tensorial (primary �eld) 
hara
ter under redu
tion. Thepoint is that the 
urrents r+b b�1 and b�1r�b formed with r� are tensors,whereas the a
tual 
urrents �+b b�1 and b�1��b are not, but sin
ejb = �+b b�1 = r+b b�1 �H�+; (31)8



and similiarly for ~jb, the non-
ovariant pie
es o

ur only for the H-
omponentsof the 
urrents.We now turn to the general solution of the �eld equation (24). Sin
e the
onstraints satisfy the �eld equations (indeed are spe
ial solutions to some ofthem) the general solution must be of the usual WZNW form [3℄g(x) = g(x+)~g(x�): (32)The only new feature is that g(x+) and ~g(x�) are no longer 
ompletely freebut are subje
t to the 
onstraints on the 
urrents. To see the e�e
t of the
onstraints, we ignore them for the moment and make a Gauss de
ompostionof all the g's in (32) to obtaina(x)b(x)
(x) = a(x+)b(x+)
(x+) � ~a(x�)~b(x�)~
(x�): (33)From (33) one sees that the B-
omponent b(x) of g(x) is the the B-
omponentin the Gauss-de
omposition of b(x+)
(x+) � ~a(x�)~b(x�). Furthermore, if
(x+) � ~a(x�) = �(x)�(x)
(x) (34)is the Gauss de
omposition of 
~a alone, then the required Gauss-de
ompositionof b
~a~b is [b(x+)�(x)b�1(x+)℄ [b(x+)�(x)~b(x�)℄ [~b�1(x�)
(x)~b(x�)℄; (35)and so the required b(x) 
omponent of g(x) isb(x) = b(x+)�(x)~b(x�): (36)Let us now impose the 
onstraints, whi
h from (17) are just�+
 
�1 = b�1Mb and ~a�1��~a = ~b ~M~b�1; (37)and thus determine 
(x+) and ~a(x�) in terms of b(x+) and ~b(x�) respe
tively (upto 
onstant matri
es whi
h 
an be absorbed in b;~b). Sin
e the matrix �(x) isdetermined uniquely by 
(x+) and ~a(x�) from (34) we then see that the role ofthe 
onstraints is to determine the matrix �(x) in terms of the matri
es b(x+)and ~b(x�). Thus, the general solution of the �eld equation for the redu
edsystem is (36), where b(x+) and ~b(x�) are arbitrary and �(x) is determined in9



terms of b(x+) and ~b(x�) by (34) and (37). Eq. (36) should be 
ompared tothe non-intera
ting WZNW solution for b(x) whi
h is (36) with �=1.From the above dis
ussion we see that the algorithm for 
onstru
ting thegeneral solution is to take arbitrary matri
es b(x+); ~b(x�), solve (37) for 
(x+)and ~a(x�), and determine �(x) (algebrai
ally) from (34). It might be thoughtthat this pro
edure only shifts the problem to solving another set of di�erentialequations, namely (37), but be
ause of the nilpoten
y of the groups A and C,these 
an be solved by su

essive integration of already known quantities. Infa
t, if 
(x+) is de
omposed into its H-
omponents 
h(x+) the solution is givenby the �nite series
(x+) = 1 +Xh 
h(x+) where 
h+1 = x+Z0 dy b�1(y)M b(y)
h(y) (38)and similiarly for ~a(x�). To illustrate the algorithm in more detail let us 
onsiderthe 'Liouville' analogue in whi
h the little group B has only two irredu
ibleblo
ks, for de�niteness G = SL(n;R) and B = S�GL(p;R)
GL(q; R)� for p+q=n.ThenH = � pn1q 00 � qn1p � b(x) = � b1(x) 00 b2(x)� M = � 0 0m 0� ~M = � 0 ~m0 0 � ;(39)and the Gauss de
omposition (34) is
(x+)~a(x�) = � 1 0l(x+) 1�� 1 ~r(x�)0 1 �= � 1 u(x)0 1 �� (�y)�1 00 �(x)�� 1 0v(x) 1� ; (40)where �(x) = 1+ l(x+)~r(x�) and (u; v) = (~r��1;��1l). Thus � =diag((�y)�1;�)and the solutions for the blo
ks in b(x) areb1(x) = b1(x+) 1�y(x)) ~b1(x�) and b2(x) = b2(x+)�(x)~b2(x�): (41)It remains therefore only to 
ompute l(x+) and r(x�) from the �nite series (38).It is easy to see that the series terminates after one step and thusl(x+) = x+Z0 dy b�12 (y)mb1(y) and r(x�) = x�Z0 dy ~b1(y) ~m~b�12 (y): (42)10



A

ordingly, (41) and (42), where �(x) = 1+ l(x+)r(x�) is the general solutionfor the two-blo
k 
ase. Note that the solution (41) for b1(x) generalizes thegeneral solution b21(x) = �+l(x+) [1 + l(x+)~r(x�)℄�2 ��~r(x�) (43)of the Liouville equation, and redu
es to it for G = SL(2; R). Note also thatwhen p=q the two-blo
k system admits the re
exion symmetryb1  ! (by2)�1 ; ~M  ! (My)�1 (44)and that if one identi�es b1 with (bt2)�1 one obtains a simple WZNW �eld inself-intera
tion (or, more pre
isely a WZNW �eld ~b in intera
tion with itselfand with the gravitational Liouville �eld exp(�)).As a �rst step toward quantization of the redu
ed theories we 
ompute theirVirasoro 
entres in terms of the KM 
entres k, assuming only that quantizationrequires the use of highest-weight (Fo
k-spa
e) representations. There aretwo main 
ontributions. First, there is the dire
t 
ontribution of the modi�edenergy-momentum tensor L(x+), namely,
L = dimG1 + g=k � 12ktrH2; (45)where g is the dual Coxeter number of the group G, the �rst term is the wellknown 
entre of the Sommer�eld-Sugawara energy-momentum tensor [4℄, andthe se
ond term 
omes from the J 0H(x+)-modi�
ation. Se
ond there is the
ontribution from the BRST ghost-pairs due to the 
onstraints (15) or (17)and the 
orresponding gauge-�xing 
onstraints. As is well known the ghost-
ontribution takes the form
gh = �2Xj>0 [1 + 6j(j � 1)℄; (46)where j is the 
onformal weight of the ghosts [6℄. But sin
e these are just theweights of the 
orresponding 
onstrained 
urrents, (46) may be written as
gh = �(dimG� dimB)� 6 tr(adjH)2 + 12X�>0(~�; ~Æ)= dimB � dimG� 12 trH2 + 24(~�; ~Æ); (47)11



where ~� is half the sum of the positive roots. Adding (47) and (45), and usingthe Freudenthal-deVries formula g dimG = 12~� 2, we obtain �nally
 = 
L + 
gh = dimB � 12 ~� 2k + g � 12(g + k)trH2 + 24(~�; ~Æ)= dimB � 12� ~�pk + g �pk + g ~Æ�2: (48)This generalizes the formula obtained previously for the Toda theory [2℄, andredu
es to it for B=Cartan (dimB = l) and ~Æ=sum of all the fundamental
oweights=half the sum of the positive 
oroots. Note that for the simply-la
ed Toda 
ase the formula redu
es to 
 = l�12~� 2(��1=�)2, where �2 = k+g,whi
h is reminis
ent of the general formulae for de
enerate 
onformal �eldtheories. But the formula (48) was obtained only under the assumption thatthe representations were highest weight, and, until some other 
onditions su
has unitarity or rationality are added, the value of (k + g) is unknown. It 
ouldeven be negative, in whi
h 
ase the two negative signs in (48) would be repla
edby positive one, a result that has been obtained using a 
ompletely di�erentquantization pro
edure in ref. [7℄.Finally, we 
onsider the possibility of generalizing the redu
tion pro
esseven further. For this we note that the redu
tion of the WZNW �eld equationsin (23) is a
tually valid for the de
omposition g = ab
 of g 2 G into any threea; b and 
 and for any 
hoi
e of 
onstant matri
es M ~M , not merely when B is alittle group, A;C are nilpotent, and M; ~M have grade �1. The only di�eren
e isthat, in the general 
ase, the redu
tion is not ne
essarily 
onformally invariant,there is no analogue of the gravitational �eld exp(�(x)), and the 
onstraintsj
 = b�1Mb and ~ja = b ~Mb�1; (49)are not, in general, expressible as linear 
onstraints for the full WZNW 
urrentsJ(x+) and ~J(x�).For example, if we 
hoose B as in the usual Toda theory, but 
hoose thematri
es M; ~M in (49) asM = X� simple��E�� + �E
 and ~M = X� simple ��E� + �E�
 ; (50)where ~
 is the highest root, then the �eld equations for the �elds �� belongingto the diagonal subgroup B (b=exp(��H�)) are, from (24),r2~� = � Xsimple� ~�e (~�;~�) + ~
e�(~
;~�); where ~� =X 2~�~� 2 ��; (51)12



and we have set 2����=~� 2 and 2��=~
 2. These are just the (non-
onformally-invariant) equations of aÆne Toda �eld theory [8℄. In parti
ular for G = SL(2; R)we have r2� = � sinh�; where � = �=p2; (52)whi
h is just the sinh-Gordon equation.A
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Figure 
aption:Fig. 1: The spe
ial element H of the Cartan subgroup, the 
onstant Matrix Mof H-grade �1, the little group B and the 
ontrained 
urrent J for the groupSL(9; R) and ~Æ=(0; 0; 0; 1; 0; 1; 0; 0).
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