
Chapter 6

Funtional Shr�odinger

Equation for Fermions in

External Gauge Fields

In some appliations the language of wave funtionals and the funtional

Shr�odinger equation has provided valuable insights (See, e. g., [1℄ and

[2℄ for a review). One big advantage of the Shr�odinger piture is that

the intuitive piture of evolving wave funtions, so suessful in quantum

mehanis, an be extended to problems in �eld theory. It is of ourse

still an open problem whether the existene of the Shr�odinger piture an

be proved rigorously. At least in the ase of renormalizable salar �eld

theories it has been demonstrated that a funtional Shr�odinger equation

with respet to a global time parameter exists at eah order of perturbation

theory [3℄. For arbitrary loal time variations an expliit alulation has

veri�ed the validity of the Shr�odinger equation up to two loops [4℄.

An important �eld of appliation is quantum gravity. Sine quantum

general relativity is non-renormalizable at the perturbative level, one has

to develop non-perturbative methods, provided the theory is viable at all.

There have been remarkable developments in anonial quantum gravity in

reent years whih have so far ulminated in the disovery, by using the

funtional Shr�odinger piture, of exat formal solutions to all onstraint

equations [5℄. The use of wave funtionals has also been useful in perform-

ing semi lassial approximations, for example in the derivation of formal

orretion terms to the Shr�odinger equation from quantum gravity [6℄. It

may thus turn out to be very useful for later appliations to explore the

potentialities of the funtional Shr�odinger piture in ordinary �eld theory.
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In this hapter ouple fermioni matter to gauge �elds. Apart from the

last paragraph we limit ourselves to the ase where the gauge �eld an be

treated semi lassially, i.e. we disuss the funtional Shr�odinger equation

for the fermioni wave funtional in a presribed external gauge �eld. Most

of our work deals with QED but we also give some results for the non-

Abelian ase.

We start by giving a brief review of the funtional Shr�odinger equation

for fermions following, with elaborations, the work of Floreanini and Jakiw

[8℄. Gaussian states are used as generalized vauum states, but ontrary

to the bosoni ase one has to �x a �lling presription for the Dira sea

to selet a partiular vauum. Setion 6.1.3 is onerned with the time-

dependent Shr�odinger equation. We give its formal solution for arbitrary

external �elds in terms of solutions of the (�rst-quantized) Dira equation.

We then proeed to alulate the exat ground state for arbitrary ex-

ternal �elds in two dimensional QED in both the massless and the massive

ase (setion 6.2). We give expliit expressions for the expetation values

of the Hamiltonian, the eletri harge, and the axial harge with respet

to this ground state. Regularization is performed through gauge-invariant

point splitting. All results are given for the ase of �nite as well as in�nite

spae intervals. The �nite ase allows a areful disussion of the dependene

of the Casimir energy on the hosen boundary onditions.

The extension to non-Abelian �elds in two dimensions is straightforward

and is worked out in setion 6.3. We give the exat ground state as well as

the expetations values for the Hamiltonian, the eletri and axial harges.

In setion 6.4 then proeed to disuss appliations of the time - depen-

dent Shr�odinger equation. The partile reation rate for onstant external

eletri �elds is alulated in this framework and the lassial result found

by Shwinger is reovered (setion 6.4.1). In the massless ase in two di-

mensions we alulate the anomalous partile prodution rate for arbitrary

external �elds. Its interpretation in the funtional language is very trans-

parent { the anomalous prodution rate is basially due to the dependene

of the �lling presription on the external �eld (setion 6.4.2).

Finally we go beyond the external �eld approximation and disuss briey

some subtleties onneted with the interpretation of Gauss law. We show

that, exept for the ase when anomalies violating gauge invariane are

present, the interpretation of the Gauss onstraint as a generator of gauge

transformation an be resued even if it does no longer annihilate gauge

invariant states. We also present a brief outlook on possible future work.
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6.1 Funtional Shr�odinger equation for fermions

6.1.1 Commutation relations and inner produt

In this setion we give a brief review of the anonial formalism for QED and

the funtional Shr�odinger piture. Unless otherwise stated, the dimension

D of spaetime is left arbitrary. The Lagrangian density is given by

L = �

1

4

F

��

F

��

+ i

�

 (D

�



�

�m) ; (6.1)

where

D

�

= �

�

+ ieA

�

is the ovariant derivative assoiated with the eletromagneti potential A

�

.

The anonial momenta read

�

0

= 0; �

i

= F

i0

� E

i

; �

 

= i 

y

(6.2)

so that the total Hamiltonian is given by

H =

Z

dx

�

1

2

E

2

+

1

4

F

ij

F

ij

�

+

Z

dxdy 

y

(x)h(x; y) (y)

+

Z

dxA

0

(e 

y

 �rE); (6.3)

where

h(x; y) = �i

0



i

�

�x

i

Æ(x� y) + 

0

(m+ e

i

A

i

)Æ(x � y) (6.4)

plays the role of a �rst quantized Dira Hamiltonian in an external eletro-

magneti �eld. We will denote with h

(0)

the �rst quantized Hamiltonian

without external �eld. We note that x and y is a shorthand notation for a

vetor in (D�1) dimensional spae, and the metri onvention for spaetime

is diag(1;�1� 1; :::). Variation of (6.3) with respet to A

0

yields the Gauss

onstraint

rE = e 

y

 : (6.5)

In the following we use the gauge ondition A

0

= 0. The ommutation

relations read

[A

i

(x); E

j

(y)℄ = iÆ

j

i

Æ(x� y) (6.6)

for the eletromagneti �eld, and

f 

�

(x);  

y

�

(y)g = Æ

��

Æ(x � y) (6.7)

for the fermion �elds. All other ommutators (antiommutators) vanish.
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In the funtional Shr�odinger piture we represent these ommutation

relations by ating with the �eld operators on physial states 	[u; u

y

;A℄

aording to

E

j

!

1

i

Æ

ÆA

j

;  

�

!

1

p

2

 

u

�

+

Æ

Æu

y

�

!

;  

y

�

!

1

p

2

�

u

y

�

+

Æ

Æu

�

�

;

(6.8)

and A is represented by multipliation. Note that u

�

and u

y

�

are Grassmann

variables, and 	 is not an eigenstate of either  or  

y

. An alternative

representation has been used, for example, in [9℄, where  is represented,

as in the bosoni ase, by multipliation with u, and  

y

is represented by

Æ=Æu. Sine, however, the Hermitian onjugate of u in that representation

is not given by u

y

, but by Æ=Æu, we �nd it easier for our disussion to resort

to the representation (6.8).

The Grassmann harater of the fermion �elds requires a areful treat-

ment of the inner produt [8℄. If one de�nes the inner produt by the

funtional integration (we do in the following not expliitly write out the

eletromagneti �eld and the spinor indies)

h	

1

j	

2

i �

Z

Du

y

Du	

�

1

	

2

= h	

2

j	

1

i

�

; (6.9)

the dual 	

�

of a state 	 is not given by ordinary omplex onjugation, but

by the expression

	

�

[u; u

y

℄ =

Z

D�u

y

D�u exp

�

�uu

y

+ �u

y

u

�

�

	[�u; �u

y

℄: (6.10)

Here,

�

	 is the hermitian onjugate of 	. We have used a ompat nota-

tion, i. e., �uu �

R

dx�u

�

(x)u

�

(x), et. Note the analogy to the Bargmann

representation for the harmoni osillator in quantum mehanis.

A speial role is played by Gaussian states,

	 = exp

�

u

y


u

�

; (6.11)

sine this generalizes the notion of a Fok vauum; 
 is sometimes alled

the \ovariane." If we apply the above rules to suh a state we �nd

�

	[�u; �u

y

℄ = exp

�

�u

y




y

�u

�

; (6.12)

and for the dual, applying the familiar rules of Grassmann integration,

	

�

[u; u

y

℄ =

Z

D�u

y

D�u exp

�

�uu

y

+ �u

y

u+ �u

y




y

�u

�

= det(�


y

) exp

�

u

y

(


y

)

�1

u

�

:

(6.13)

One then �nds for h	j	i the expression
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h	j	i = det(�


y

)

Z

Du

y

Du exp

�

u

y

h

(


y

)

�1

+


i

u

�

= det(1 + 


y


):

(6.14)

An important di�erene to the bosoni ase is the fat that the state 	[u; u

y

℄

is not an overlap with �elds states, 	[u; u

y

℄ 6= hu; u

y

j	i, sine the inner

produt is an ordinary number, whereas 	 an be expanded in terms of

Grassmann variables.

6.1.2 Solution of the stationary Shr�odinger equation

Here we look for the ground state of the Dira Hamiltonian in an external

eletromagneti �eld, i. e., we solve the stationary Shr�odinger equation

�

Z

dxdy 

y

(x)h(x; y) (y)

�

	 � H

 

	 = E

0

	: (6.15)

If  

n

are the eigenmodes of the �rst quantized Hamiltonian h,

h 

n

= E

n

 

n

; (6.16)

we an expand the �eld operators  and  

y

as

 =

X

n

a

n

 

n

,  

y

=

X

n

a

y

n

 

y

n

;

where a

n

(a

y

n

) is the usual annihilation (reation) operator. Then,

H

 

=

X

n

E

n

a

y

n

a

n

:

We an also expand u and u

y

in terms of these eigenmodes

u(x) =

X

n

u

n

 

n

(x); u

y

(x) =

X

n

u

y

n

 

y

n

(x):

Note that

Æ

Æu(x)

=

X

n

 

y

n

(x)

Æ

Æu

n

to guarantee that Æu(x)=Æu(y) = Æ(x � y). Inserting these expansions into

the expression for H

 

, we �nd

H

 

=

1

2

X

n

E

n

�

u

y

n

+

Æ

Æu

n

�

 

u

n

+

Æ

Æu

y

n

!

:

(6.17)

We want to apply this Hamiltonian on the Gaussian state (6.11). To that

purpose we note that

u

y


u =

X

n;m

u

y

n




nm

u

m

(6.18)
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with


(x; y) =

X

n;m




nm

 

n

(x) 

y

m

(y): (6.19)

We then �nd

H

 

	 =

1

2

Trh(1 + 
)	

+

1

2

X

k;l;n

u

y

n

(Æ

nk

�


nk

)E

k

(Æ

kl

+


kl

)u

l

	:

(6.20)

Upon omparison with (6.15) we see that the ground state energy is given

by

E

0

=

1

2

Trh(1 + 
) =

1

2

X

n

E

n

(1 + 


nn

); (6.21)

and that, sine the seond term in (6.20) must vanish, the elements of 


nn

are given by




nm

= �Æ

nm

: (6.22)

There still remains some arbitrariness how one distributes the numbers 1

and �1 among the elements of 
. This arbitrariness an be removed by the

use of the annihilation operators introdued above. We have

a

y

n

a

n

	 =

�

u

y

n

+

Æ

Æu

n

�

 

u

n

+

Æ

Æu

y

n

!

	

=

1

2

(1 + 


nn

)	:

(6.23)

We demand that the ground state 	 be annihilated by a

n

for positive energies

E

n

, i. e.,

a

y

n

a

n

	 =

(

0 if 


nn

= �1$ E

n

> 0

	 if 


nn

= +1$ E

n

< 0

(6.24)

This selets a spei� ground state and is equivalent to say, in a more heuris-

ti language, that a spei� presription for the �lling of the Dira sea has

been hosen. From (6.19) we thus �nd for the ovariane


(x; y) =

X

E

n

<0

 

n

(x) 

y

n

(y)�

X

E

n

>0

 

n

(x) 

y

n

(y): (6.25)

It is very onvenient, and we will make extensive use of it later on, to express

this relation in terms of projetors,


 � P

�

� P

+

; where P

�

�

1� 


2

(6.26)

projet on positive and negative energies, respetively:

P

+

P

�

= P

�

P

+

= 0; P

2

+

= P

+

; P

2

�

= P

�

; P

+

+ P

�

= 1: (6.27)
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We also note the operator expression for 
, whih follows from the vanishing

of the seond term in (6.20), reads:

1

4

(1�
)h(1 + 
) = 0 = P

+

hP

�

: (6.28)

In ase that the external eletromagneti �eld vanishes we an give easily an

expliit expression for 
. In momentum spae, the solution orresponding

to the �lling presription (6.24) reads




(0)

(p; p

0

) = �

h

(0)

p

p

2

+m

2

Æ(p � p

0

); (6.29)

where h

(0)

is the A-independent part of (6.4). This an most easily be seen

by alulating the vauum energy E

0

. From (6.21) we have, sine h

(0)

has

vanishing trae,

E

0

=

1

2

Trh

(0)




(0)

=

1

2

X

n

E

n




nn

= �

1

2

X

n

jE

n

j

= �

1

2

Tr

q

p

2

+m

2

= �

1

2

V

(2�)

3

Z

d

3

p

q

p

2

+m

2

:

(6.30)

Use has been made here of the fat that the square of h is given by h

2

(0)

=

p

2

+m

2

. For later use we give the expliit result for two and four spaetime

dimensions. In two dimensions we have,




(0)

= �

1

p

p

2

+m

2

 

�p m

m p

!

; 


(0)

=

1

p

p

2

+m

2

 

�m p

p m

!

:

(6.31)

in the hiral and Dira representations, respetively. In the four dimensional

ase we have, in the Dira representation,




(0)

= �

1

p

p

2

+m

2

 

m � � p

� � p �m

!

; (6.32)

where � are the Pauli matries.

We onlude this part with a disussion of the two-point funtion

h 

�

(x) 

y

�

(y)i, where the expetation value is omputed with respet to the

above ground state. For this we need the two-point funtion of uu

y

whih

we now alulate, using (6.11) and (6.13),

hu

�

(x)u

y

�

(y)i

h	j	i

=

det(�


y

)

h	j	i

Z

Du

y

Duu

�

(x)u

y

�

(y)

� exp

�

u

y

[(


y

)

�1

+
℄u

�
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=

det(�


y

)

h	j	i

Æ

2

Æ�

�

(x)Æ�

y

�

(y)

Z

Du

y

Du

� exp

�

u

y

[(


y

)

�1

+
℄u+ �u+ �

y

u

y

�

j

�=�

y

=0

=

det(1 + 


y


)

h	j	i

Æ

2

Æ�

�

(x)Æ�

y

�

(y)

exp

�

�[(


y

)

�1

+
℄

�1

�

y

�

j

�=�

y

=0

= �[(


y

)

�1

+
℄

�1

��

(x; y);

where (6.14) has been used. In the present ase, where 
 = 


y

and 


2

= 1,

this reads

hu

�

(x)u

y

�

(y)i

h	j	i

= �

1

2




��

(x; y): (6.33)

If we apply  

�

(x) 

y

�

(y) on the ground state, we �nd

 

�

(x) 

y

�

(y)	 =

1

2

(Æ

��

Æ(x� y)� 


��

(x; y))	

+

1

2

(u

�

(x) + 


�Æ

(x;w)u

Æ

(w))(u

y

�

(y)� u

y



(z)


�

(z; y))	;

where a summation (integration) over repeated indies (variables) is under-

stood.

Using the result (6.33) we �nd eventually for the desired two-point fun-

tion the expression

h 

�

(x) 

y

�

(y)i

h	j	i

=

1

2

(Æ

��

Æ(x � y)� 


��

(x; y));

or, in operator notation and with respet to a normalized state,

h (x) 

y

(y)i =

1

2

(1� 
(x; y)) = P

+

(x; y): (6.34)

Thus, if one knows the ovariane, one an alulate all two-point funtions,

and vie versa. We �nally note that exited states an be easily generated

by applying the above reation operator a

y

n

on the ground state, leading to

a Gaussian times some polynomial.

6.1.3 Solution of the time-dependent Shr�odinger equation

In this subsetion we disuss the solution of the funtional Shr�odinger equa-

tion for fermions in an external eletromagneti �eld,

�

Z

dxdy 

y

(x)h(x; y) (y)

�

	 � H

 

	 = i

_

	; (6.35)
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where, again, h is given expliitly by (6.4). Equation (6.35) follows from a

semilassial expansion of the full funtional Shr�odinger equation [7℄. We

make again a Gaussian ansatz,

	 = N(t) exp

�

u

y


(t)u

�

; (6.36)

where 
 and N now depend on time. The state (6.36) may be thought

as an evolving vauum state. Inserting this ansatz into (6.35) we �nd two

equations for N and 
 whih read, in operator notation,

i

d lnN

dt

=

1

2

Trh
 (6.37)

i

_


 =

1

2

(1� 
)h(1 + 
): (6.38)

An important speial ase is given if 
 an be written in terms of the pro-

jetors (6.26). As in the ase of the stationary equation this is equivalent to




2

= 1.

One physial appliation we have in mind is to hoose the free solution

in, say, the asymptoti past and study its evolution under the inuene of

an external eletromagneti �eld aording to (6.35). It is important to

note that (6.38) preserves the property 


2

= 1. Thus, 
(t) an always be

written as in (6.26) provided 


2

(t

0

) = 1 for some \initial time" t

0

. This an

easily be seen: One �rst veri�es that the inverse of 
, 


�1

, obeys the same

di�erential equation as (6.38). From the uniqueness of the solution we thus

have 
(t

0

) = 


�1

(t

0

)) 
(t) = 


�1

(t), 


2

(t) = 1.

Eq. (6.38) is solved by


(t) = (Q(t)� C) (Q(t) +C)

�1

; (6.39)

where C is a time-independent operator, and the operator Q(t) satis�es

i

_

Q = hQ: (6.40)

One may wish, for example, to hoose for 
 the \free solution" (6.25) in the

asymptoti past, i.e., one demands that 
 approahes 


0

= P

�

� P

+

for

t! �1. This would orrespond to the hoie

C = P

+

; and Q(t)

t!�1

�! P

�

:

The time evolution aording to (6.35) will then in general indue a time

dependene of 
 whih may deviate, at late times, from the asymptoti

\free" solution. This an then be interpreted as partile reation and will

be expliitly disussed below.

The signi�ane of the result (6.39,6.40) onsists in the redution of

the solution of the full funtional equation (6.35) to the solution of a \�rst
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quantized" problem { Eq. (6.40) is nothing but the Dira equation with an

external eletromagneti �eld.

After the solution for 
 has been found, the prefator N an be imme-

diately determined from (6.37) to read

N(t) = N

0

exp

�

�

i

2

Z

t

Tr(h
)ds

�

:

The time-independent fator N

0

an be �xed if 	 is normalized, i. e.

h	j	i = 1, and one �nds, using (6.14),

N(t) = det

�1=2

(1 + 


y


) exp

�

�

i

2

Z

t

Re Tr(h
)ds

�

: (6.41)

We now address the question of partile reation. We �rst note that the

absolute square of the matrix element of two Gaussians, 	

1

and 	

2

, with

orresponding ovarianes 


1

and 


2

, is given by the expression

jh	

1

j	

2

ij

2

= det

(1 + 


y

1




2

)(1 + 


y

2




1

)

(1 + 


y

1




1

)(1 + 


y

2




2

)

: (6.42)

In the following we will take for 	

1

the time-evolved in-vauum and for 	

2

the vauum state at late times. The orresponding ovarianes will be alled


(t) and 


0

, respetively. As disussed above, we demand 
(t) to approah

the \free ovariane" 


0

at t! �1. Sine 


0

= 


y

and 


2

0

= 1, the desired

transition element (6.42) reads

jh	

1

j	

2

ij

2

= det

(1 + 


0


(t))(1 + 


y

(t)


0

)

2(1 + 


y

(t)
(t))

: (6.43)

To get the desired expression (6.39) for 
, whih for the present ase reads


(t) = (Q(t)� P

+

) (Q(t) + P

+

)

�1

; (6.44)

it is �rst neessary to solve (6.40) for Q(t). This is most onveniently done

by the ansatz

Q(t) =

X

n

�

n

(t)�

y

n

;

where �

n

(without argument) denotes a negative frequeny eigenfuntion

of the Dira Hamiltonian h, and �

n

(t) denotes the solution of (6.40) whih

approahes �

n

in the asymptoti limit t! �1. Therefore,

Q(t)

t!�1

�!

X

n

�

n

�

y

n

� P

�

;

as required. It will prove to be onvenient if one expands �

n

(t) as follows,
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�

n

(t) = �

nm

(t)�

m

+ �

nm

(t) 

m

; (6.45)

where  

m

is a positive frequeny eigenfuntion of h, and �, � are the time-

dependent Bogolubov oeÆients assoiated with this expansion. Sine h

is hermitian, the norm (�

n

(t); �

m

(t)) is onserved, and we hoose it to be

equal to one. The Bogolubov oeÆients are then normalized aording to

j�j

2

+ j�j

2

= 1: (6.46)

Note that this is di�erent from the bosoni ase where the analogous ex-

pression ontains a minus sign.

The operator Q(t) + P

+

in (6.44) is then given by the expression

Q(t) + P

+

=

X

n;m

�

�

nm

�

m

�

y

n

+ �

nm

 

m

�

y

n

�

+

X

n

 

n

 

y

n

;

from where its inverse is found to read

(Q(t) + P

+

)

�1

=

X

n

 

n

 

y

n

�

X

n;s;t

 

n

�

�1

st

�

tn

�

y

n

+

X

n;s

�

n

�

�1

sn

�

y

s

:

One an then write down the desired expression for 
(t),


(t) =

X

n

(�

n

�

y

n

�  

n

 

y

n

) + 2

X

n;s;t

 

n

�

�1

st

�

tn

�

y

s

= 


0

+ 2

X

n;s;t

 

n

�

�1

st

�

tn

�

y

s

� 


0

+ 2B;

(6.47)

where we have introdued an operator B, whih in the position representa-

tion is given by

B(x; y) =

X

n;s;t

 

n

(x)�

�1

st

�

tn

�

y

s

(y):

It maps negative energy eigenfuntions into positive ones, and it annihilates

positive energy eigenfuntions. Conversely, its adjoint

B

y

(x; y) =

X

n;s;t

�

s

(x)��

�1

st

�

�

tn

 

y

n

(y)

maps positive energy eigenfuntions into negative ones and annihilates neg-

ative energy eigenfuntions. Note that B and B

y

are nilpotent operators.

One then �nds for the various terms in the transition element (6.43) the

expressions
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y

(t)


0

= 1� 2B

y

; , 


0


(t) = 1� 2B;




y

(t)
(t) = 1� 2B � 2B

y

+ 4B

y

B;

(6.48)

and one has

jh	

1

j	

2

ij

2

= det

(1�B)(1�B

y

)

(1�B �B

y

+ 2B

y

B)

: (6.49)

Written in the basis ( ; �)

T

, the various operators in (6.48) are given by the

matrix expressions

B =

 

0 �

�1

�

0 0

!

, B

y

=

 

0 0

(�

�1

�)

y

0

!

;

(6.50)

One immediately veri�es that det(1 � B) = det(1 � B

y

) = 1. Therefore,

using (2.63),

jh	

1

j	

2

ij

2

= det

�1

(1�B �B

y

� 2B

y

B)

= det

�1

(1 + �

�1

��

y

�

�1y

) = det

�1

(1 + �

y

(1� ��

y

)

�1

�)

= det

�1

�

�1

(1� ��

y

)

�1

� = det(1� ��

y

):

(6.51)

The interpretation of this result is obvious. The determinant is less than one

for non-vanishing Bogolubov oeÆient �, whih signals partile reation.

Note that the analogous expression in the bosoni ase reads [7℄ det

�1

(1 +

��

y

), whih is only equal to (6.51) for small �. We will apply the above

result to the alulation of partile reation in an external eletri �eld in

setion 6.4.

6.2 Ground state for QED

2

6.2.1 The massless ase

Calulation of the ovariane: In the following we shall give expliit

results for the ground state of QED

2

in arbitrary external eletromag-

neti �elds by applying the method developed in the last setion. Two-

dimensional massless QED is also known as the Shwinger model [10℄. It

has been expliitly solved and found to be equivalent to the theory of a free

massive salar �eld (see [11℄ for some literature on the Shwinger model). In

this paper we also address some issues for the Shwinger model on a �nite

spae [12, 42℄. The Hamiltonian formalism for the Shwinger model has

been disussed in [13℄ and [14℄.

It is onvenient to disuss the massless and the massive ase separately

sine it is adequate to use the hiral representation for the Gamma matries
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in the massless ase and the Dira representation in the massive ase. For

m = 0 we thus use



0

=

 

0 1

1 0

!

; 

1

=

 

0 1

�1 0

!

; 

0



1

=

 

�1 0

0 1

!

: (6.52)

The �rst-quantized Hamiltonian h (6.4) is then given expliitly by (with

A

1

� A)

h(x; y) =

 

i

�

�x

� eA(x) 0

0 �i

�

�x

+ eA(x)

!

Æ(x� y): (6.53)

To �nd the ground state of the stationary Shr�odinger equation we have

to solve the "�rst-quantized" problem (6.16), i. e., to �nd the spetrum of

(6.53),

h 

n

= E

n

 

n

: (6.54)

We quantize the �elds in a �nite interval, x 2 [0; L℄, and impose the bound-

ary ondition

 

n

(x+ L) = e

2�i(�+�

5

)

 

n

(x); (6.55)

where � and � are the vetorial and hiral twists, respetively. Writing

 

n

=

 

'

n

�

n

!

; (6.56)

the diagonality of h yields two deoupled equations for '

n

and �

n

, orre-

sponding to a deomposition into right- and left handed fermions. One �nds

from (6.54) and (6.55) for the right handed part

'

n

(x) =

1

p

L

exp

�

�i

�

E

R

n

x+ e

Z

x

0

A

��

;

E

R

n

=

2�

L

(n� �� �)�

e

L

Z

L

0

A �

2�

L

(n� �);

(6.57)

and for the left handed part

�

n

(x) =

1

p

L

exp

�

i

�

E

L

n

x� e

Z

x

0

A

��

;

E

L

n

= �

2�

L

(n� �+ �) +

e

L

Z

L

0

A � �

2�

L

(n�

~

�):

(6.58)

Here we have introdued

� = �+ � +

e

2�

Z

L

0

A and

~

� = �� � +

e

2�

Z

L

0

A:

(6.59)
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The ovariane (6.25) also splits into a right- and left handed part


(x; y) =

 




+

(x; y) 0

0 


�

(x; y)

!

; (6.60)

where




+

(x; y) =

X

E

R

n

<0

'

n

(x)'

y

n

(y)�

X

E

R

n

>0

'

n

(x)'

y

n

(y);




�

(x; y) =

X

E

L

n

<0

�

n

(x)�

y

n

(y)�

X

E

L

n

>0

�

n

(x)�

y

n

(y):

(6.61)

From (6.57) and (6.58) one reognizes that E

R

n

> 0 for n > � and E

L

n

> 0

for n <

~

�. Inserting all this into (6.61) one �nds




+

(x; y) =

1

L

X

E

R

n

<0

exp

�

iE

R

n

(y � x) + ie

Z

y

x

A

�

�

1

L

X

E

R

n

>0

exp

�

iE

R

n

(y � x) + ie

Z

y

x

A

�

=

1

L

exp

�

ie

Z

y

x

A+ i

2��

L

(x� y)

�

�

0

�

X

n<�

exp

�

�

2�in

L

(x� y)

�

�

X

n>�

exp

�

�

2�in

L

(x� y)

�

1

A

=

i

L

exp

�

ie

Z

y

x

A+

2�i

L

(�� [�℄�

1

2

)(x� y)

�

�

1

sin

�

L

(x� y)

; (6.62)

where [�℄ denotes the biggest integer smaller or equal than �.

The left handed part, 


�

(x; y), is alulated in the same way, and found

to read




�

(x; y) = �

i

L

exp

�

ie

Z

y

x

A+

2�i

L

(

~

�� [

~

�℄�

1

2

)(x� y)

�

1

sin

�

L

(x� y)

:

(6.63)

In the limit L!1 the ovariane is given by the expression


(x; y) =

i

�

exp

�

ie

Z

y

x

A

�

P

�

1

x� y

�

 

1 0

0 �1

!

; (6.64)

where P denotes the prinipal value. This result is in aordane with [8℄.

We make a �nal remark on the existene of large gauge transformations, i.

e. gauge transformations whih annot be obtained from the identity in a
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ontinuous way. As an be seen from the expressions for the energy, (6.57)

and (6.58), suh gauge transformations hange the uxes � and

~

� by an

integer. Sine the eigenfuntions in (6.57) and (6.58) remain unhanged,

and the ovariane ontains only the frational part of the ux (see (6.62)

and (6.63)), the wave funtional (6.11) remains invariant.

Charges and energy: Now we shall alulate the expetation values of

the harge, hiral harge, and energy with respet to the ground state derived

above.

The omponents of the eletri urrent are given by

j

0

=  

y

 = '

y

'+ �

y

� � j

+

+ j

�

;

j

1

=  

y



0



1

 = �'

y

'+ �

y

� � �j

+

+ j

�

:

(6.65)

The total harge and hiral harge are

Q =

Z

dxj

+

+

Z

dxj

�

� Q

+

+Q

�

; and Q

5

= Q

+

�Q

�

;

(6.66)

respetively. These expressions ontain produts of the �eld operators and

thus require a regularization presription. The proedure employed here is

to �rst perform a point splitting and then to subtrat the expetation value

for vanishing external �eld. After the point splitting is removed, one is left

with a �nite result. The ruial point to note is that the point splitting has

to be done in a gauge invariant way. We thus de�ne the following \point

splitted" quantities

�

+

(x; y) = '

y

(x)e

ie

R

y

x

A

'(y) and �

�

(x; y) = �

y

(x)e

ie

R

y

x

A

�(y)

and they are expliitly gauge invariant. Applying �

+

on the vauum state

(6.11) we �nd

�

+

	 =

1

2

exp

�

ie

Z

y

x

A

��

u

y

1

(x) +

Æ

Æu

1

(x)

�

 

u

1

(y) +

Æ

Æu

y

1

(y)

!

	

=

1

2

exp

�

ie

Z

y

x

A

�

(Æ(x� y) + 


+

(y; x))	 (6.67)

+

1

2

exp

�

ie

Z

y

x

A

�

(u

y

1

(x)� 


+

(z; x)u

y

1

(z))�

(u

1

(y) + 


+

(y; z)u(z))	;

where, again, an integration over repeated variables is understood. If we set

x = y and integrate over x, the last term on the right-hand side of (6.67)

vanishes sine (1 � 


+

)(1 + 


+

) = 0 aording to (6.28). Subtrating the
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expression for vanishing A �eld, the �rst term after the seond equation sign

on the right-hand side of (6.67) reads

1

2

exp

�

ie

Z

y

x

A

�




+

(y; x)�

1

2




(0)

(y; x) (6.68)

=

i

2�

exp

�

2�i

L

(�� [�℄�

1

2

)(y � x)

�

1

y � x

� �$ �

0

+O(x� y);

where we have expanded the sine in the expression (6.62) for the ovariane

and kept only the term proportional to (x� y)

�1

. We have also introdued

�

0

= �+ � so that � = �

0

+

e

2�

Z

L

0

A � �

0

+ '

(ompare (6.59)). Expanding also the exponential in (6.68) we note that

the terms whih beome singular in the limit x! y drop out. We an thus

remove the point splitting and perform the x integration to �nd

hQ

+

i = [�℄� �� ([�

0

℄� �

0

): (6.69)

The left handed setor is alulated analogously, with the result

hQ

�

i = [

~

�℄�

~

�� ([

~

�

0

℄�

~

�

0

); (6.70)

where

~

�

0

= �� � (6.71)

so that

~

� =

~

�

0

+

e

2�

Z

L

0

A �

~

�

0

+ ' (6.72)

(ompare (6.59)).

The results for the expetation values of the total harge and hiral

harge are then given by

hQi = hQ

+

i+ hQ

�

i

= [�+ � + '℄� [�+ �℄� [�� � + '℄ + [�� �℄ (6.73)

and

hQ

5

i = hQ

+

i � hQ

�

i

= [�+ � + '℄� [�+ �℄ + [�� � + '℄� [�� �℄� 2': (6.74)

Note that < Q >= 0 for vanishing hiral twist, � = 0 (see (6.55)), and that

< Q

5

>= 2(['℄�') for � = � = 0. The above expetation values have been

alulated, using zeta regularization, by [14℄ for the speial ase � = 1=2

and � = 0. Their result is in agreement with ours.

196



We now proeed to alulate the expetation value of the Hamiltonian

H

 

(6.17). We �rst operate with H

 

on the ground state wave funtional to

�nd the expression (6.20). We then use the expliit solution (6.22) for the

ovariane to reognize that only the �rst term in (6.20) ontributes to the

expetation value < H

 

>:

hH

 

i =

1

2

X

n

E

n

(1 + 


nn

): (6.75)

We regularize again by point splitting. We thus introdue a "point splitted"

expetation value whih for the ontribution from the right handed setor

reads

h	jH

y

 

(x; y)j	i =

1

2

exp

�

�ie

Z

y

x

A

�

h

x

X

n

(1 + 


nn

)'

n

(x)'

y

n

(y): (6.76)

Note that this expression is expliitly gauge-invariant and redues to (6.75)

after setting x = y and integrating over x (the ation of the �rst-quantized

Hamiltonian h

x

� i�=�x � eA(x) just produes the energy E

n

when ating

on the  

n

). The ompleteness of the '

n

, as well as (6.19), enables one to

write (6.76) as

h	jH

y

 

(x; y)j	i =

1

2

exp

�

�ie

Z

y

x

A

�

h

x

(Æ(x � y) + 


+

(x; y)): (6.77)

Using the expliit expression (6.62) for 


+

(x; y) one �nds, up to order x�y,

exp

�

�ie

Z

y

x

A

�

h

x




+

(x; y) =

�

�

2i

L(x� y)

(�� [�℄�

1

2

) +

1

�(x� y)

2

�

�

6L

2

�

�

exp

�

2�i

L

(�� [�℄�

1

2

)(x� y)

�

+O(x� y):

Expanding also the exponential, this reads

exp

�

�ie

Z

y

x

A

�

h

x




+

(x; y) =

1

�(x� y)

2

�

�

6L

2

+

2�

L

2

(��[�℄�

1

2

)

2

+O(x�y);

so that we �nd

h	jH

y

 

(x; y)j	i =

1

2

exp

�

�ie

Z

y

x

A

�

(i

�

�x

� eA)Æ(x � y)

+

1

2�(x� y)

2

�

�

12L

2

+

�

L

2

(�� [�℄�

1

2

)

2

+O(x� y):

Sine

exp

�

�ie

Z

y

x

A

�

i

�

�x

Æ(x� y) = iÆ

0

(x� y) + eA(x)Æ(x � y);
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we have

h	jH

y

 

(x; y)j	i =

i

2

Æ

0

(x�y)+

1

2�(x� y)

2

�

�

12L

2

+

�

L

2

(��[�℄�

1

2

)

2

+O(x�y):

(6.78)

From this expression one has to subtrat the expetation value for vanishing

external �eld. To retain �nite-size e�ets we subtrat the "free" value for

L ! 1. This removes the divergent terms in (6.78). Setting x = y and

integrating over x, one �nds the result

hH

y

 

i =

�

L

�

�� [�℄�

1

2

�

2

�

�

12L

: (6.79)

This vanishes in the limit L ! 1. The expression for �nite L is nothing

but the Casimir energy whih is also present for vanishing external �eld:

hH

y

 

i =

�

L

�

�

0

� [�

0

℄�

1

2

�

2

�

�

12L

:

Note that the resulting fore between the boundaries at x = 0 and x = L

an be attrative or repulsive, depending on the hosen boundary onditions.

For the onditions hosen in [14℄ the expetation value is given by ��=12L

and thus leads to an attrative fore.

The expetation value of the Hamiltonian in the left handed setor is

alulated in the same way by making use of (6.63) and using �h

x

=

�i�=�x+ eA(x). Instead of (6.79) one �nds

hH

�

 

i =

�

L

�

~

�� [

~

�℄�

1

2

�

2

�

�

12L

: (6.80)

The total Casimir energy is the sum of the expressions (6.79) and (6.80).

6.2.2 The massive ase

Calulation of the ovariane: In the massive ase we use the Dira

representation for the Gamma matries, i. e.,



0

= �

3

, 

1

= �i�

2

, 

0



1

= ��

1

(6.81)

The �rst-quantized Hamiltonian is then given by the expression

h(x; y) =

 

m i

�

�x

� eA(x)

i

�

�x

� eA(x) �m

!

Æ(x� y): (6.82)

We are again looking for the eigenfuntions of h,

h 

n

= E

n

 

n

: (6.83)
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If we make the ansatz

 

n

=

1

p

L

exp

�

�ie

Z

x

0

A� i�

n

x

�



n

; (6.84)

Eq. (6.83) yields an algebrai equation for 

n

,

 

m�E

n

�

n

�

n

�m�E

n

! 



n;1



n;2

!

= 0: (6.85)

The boundary ondition

 

n

(x+ L) = e

2�i�

 

n

(x) (6.86)

yields a quantization ondition for the �

n

,

�

n

=

2�

L

 

n� ��

e

2�

Z

L

0

A

!

�

2�

L

(n� �); (6.87)

where n 2 Z. From (6.85) one then �nds the values for the energy,

E

n

= �

q

m

2

+ �

2

n

= �

s

m

2

+

4�

2

L

2

(n� �)

2

� �!

n

: (6.88)

We already note at this point that the massless limit of (6.88) yields E

n

=

�

2�

L

jn� �j instead of E

n

= �

2�

L

(n� �) whih was found by starting from

m = 0 ab initio. This will be relevant for the disussion of anomalies in

hapter 5.

The normalized eigenfuntions  

n

read

 

n;+

=

1

p

2!

n

(!

n

+m)L

 

!

n

+m

�

n

!

exp

�

�i�

n

x� ie

Z

x

0

A

�

(6.89)

for E

n

= !

n

, and

 

n;�

=

1

p

2!

n

(!

n

+m)L

 

��

n

!

n

+m

!

exp

�

�i�

n

x� ie

Z

x

0

A

�

(6.90)

for E

n

= �!

n

.

We now use again (6.25) and the �lling presription (6.24) to alulate

the ovariane,


(x; y) =

X

n

 

n;�

(x) 

y

n;�

(y)�

X

n

 

n;+

(x) 

y

n;+

(y) � P

�

� P

+

:

(6.91)

Noting that �

n

= (!

n

+m)(!

n

�m), we �nd

P

+

(x; y) =

1

2L

e

�ie

R

x

y

A

X

n

e

�i�

n

(x�y)

!

n

 

!

n

+m �

n

�

n

!

n

�m

!

(6.92)
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and

P

�

(x; y) =

1

2L

e

�ie

R

x

y

A

X

n

e

�i�

n

(x�y)

!

n

 

!

n

�m ��

n

��

n

!

n

+m

!

: (6.93)

To evaluate the various sums in these expressions we make use of Poisson's

summation formula:

2�

1

X

n=�1

f(2�n) =

1

X

n=�1

F (n) where F (u) =

Z

1

�1

dzf(z)e

izu

:

(6.94)

We then have

X

n

�

n

!

n

e

�2�in(x�y)=L

�

X

n

f(2�n) and

X

n

1

!

n

e

�2�in(x�y)=L

�

X

n

~

f(2�n);

where

f(z) =

z � 2��

p

(z � 2��)

2

+m

2

L

2

e

�i(x�y)z=L

and

~

f(z) =

L

p

(z � 2��)

2

+m

2

L

2

e

�i(x�y)z=L

:

From (6.94) we then �nd

F (u) = e

2�i�(u�(x�y)=L)

Z

1

�1

dp

pe

ip(u�(x�y)=L)

p

p

2

+m

2

L

2

= 2ie

2�i�(u�(x�y)=L

mLK

1

(mLu�m(x� y))

(6.95)

and

~

F (u) = Le

2�i�(u�(x�y)=L)

Z

1

�1

dp

e

ip(u�(x�y)=L)

p

p

2

+m

2

L

2

= 2Le

2�i�(u�(x�y)=L

K

0

(mLu�m(x� y)):

(6.96)

Here K

0

and K

1

denote Bessel funtions and use has been made of [15℄ to

evaluate the integrals. From (6.94) we then �nd for the sums

X

n

�

n

!

n

e

�2�in(x�y)=L

= �

imL

�

e

�2�i�(x�y)=L

X

n

e

�2�in�

K

1

(mLn+m(x� y))

and

X

n

1

!

n

e

�2�in(x�y)=L

=

L

�

e

�2�i�(x�y)=L

X

n

e

�2�in�

K

0

(mLn+m(x� y)):

200



In the expressions below we will for simpliity not expliitly write out the

argument mLn + m(x � y) of the Bessel funtions K

0

and K

1

. For the

remaining sum we have

X

n

e

�

2�in

L

(x�y)

= L

X

n

Æ(x� y � nL) = LÆ(x � y)

sine jx� yj < L. Inserting all these results into the expressions (6.92) and

(6.93) we �nd

P

+

=

1

2

Æ(x� y)I+

m

2�

e

�ie

R

x

y

A

X

n

�

K

0

�iK

1

�iK

1

�K

0

�

e

�2�in�

(6.97)

and

P

�

=

1

2

Æ(x� y)I�

m

2�

e

�ie

R

x

y

A

X

n

 

K

0

�iK

1

�iK

1

�K

0

!

e

�2�in�

:

(6.98)

We verify that P

+

+ P

�

= I. Our �nal result for the ovariane (6.26) is

then given by the expression


(x; y) = P

�

� P

+

=

m

�

e

�ie

R

x

y

A

X

n

 

�K

0

iK

1

iK

1

K

0

!

e

�2�in�

:

(6.99)

In the limit L!1 we �nd


(x; y) =

m

�

e

�ie

R

x

y

A

 

�K

0

(m(x� y)) iK

1

(m(x� y))

iK

1

(m(x� y)) K

0

(m(x� y))

!

: (6.100)

Using the asymptoti expressions for the Bessel funtions one veri�es that


 approahes the result (6.64) in the limit of vanishing mass. Furthermore,

in the opposite limit of large mass (or large jx� yj) the ovariane reads


(x; y) =

s

m

2�jx� yj

e

�ie

R

x

y

A

exp (�mjx� yj)

 

�1 i

i 1

!

: (6.101)

In summary, we have found the exat ground state for arbitrary external

�elds in the massive Shwinger model. The exited states, 	

n

, an then

be onstruted in the usual way through the appliation of the reation

operator. A general state, 	, of the fully quantized theory an then be

expanded into these energy eigenstates aording to

	[A; u; u

y

℄ =

X

n

'

n

[A℄	

n

[A; u; u

y

℄;

where the funtionals '

n

[A℄ an be determined from the full funtional

Shr�odinger equation whih ontains the kineti term�Æ

2

=2ÆA

2

in the Hamil-

tonian.
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Charges and energy: We de�ne again a "point splitted" harge operator

�(x; y) =  

y

(x) exp

�

ie

Z

y

x

A

�

 (y)

and �nd for its ation on the vauum state an expression analogous to (6.67)

(there is now no distintion between a left and a right handed setor):

�(x; y)	 =

1

2

exp

�

ie

Z

y

x

A

�

(2Æ(x � y) +

2

X

�=1




��

(y; x))	

+

1

2

exp

�

ie

Z

y

x

A

�

(u

y

�

(x)� 


��

(z; x)u

y

�

(z))�

(u

�

(y) + 


�

(y; z)u



(z))	;

(6.102)

where a summation (integration) over repeated indies (variables) is under-

stood. Like in the massless ase, the seond term on the right-hand side

vanishes after setting x = y and integrating over x. The �rst term is again

regularized by subtrating its value for vanishing external �eld. This yields

for the vauum expetation value of the total harge

hQi =

1

2

2

X

�=1

Z

L

0

dx lim

x!y

�




��

(y; x) �


(0)

��

(y; x)

�

= 0; (6.103)

sine the ovariane (6.99) is traeless with respet to the spinor indies.

The result (6.103) has of ourse been expeted sine the total harge should

annihilate the vauum state (see also the disussion at the end of this hap-

ter). This is true in any number of dimensions.

For the hiral harge we give �rst a general expression whih is valid in

any even dimension. We de�ne the \point splitted" hiral harge

�

5

(x; y) =

�

 (x)

5



0

exp

�

ie

Z

y

x

A

�

 (y)

= � 

y

(x)

5

exp

�

ie

Z

y

x

A

�

 (y):

(6.104)

Operating with this on the vauum state yields (ompare (6.67))

�

5

(x; y)	 = �

1

2

exp

�

ie

Z

y

x

A

�

Tr

5

(Æ(x� y) + 
(y; x))	

�

1

2

exp

�

ie

Z

y

x

A

�

Z

dvdwu

y

(v) (Æ(v � x)� 
(v; x)) 

5

� (Æ(y � w) + 
(y;w)) u(z)	:

(6.105)

The seond term an be written, after setting x = y, integrating over x, and

performing the expetation value, as

�2TrP

+



5

P

�

= 0
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sine P

+

P

�

= 0 (ompare (6.79)), and use has been made of (6.33). We are

thus left with

h	jQ

5

j	i = �

1

2

Tr

Z

L

0

dx lim

x!y



5


(y; x) exp

�

ie

Z

y

x

A

�

; (6.106)

from where the result for A = 0 has to be subtrated. Using the expliit

results in two dimensions we �nd

�

1

2

Tr 

5


(y; x) exp

�

ie

Z

y

x

A

�

=

im

�

X

n

K

1

(mLn+m(y � x))e

�2�in�

:

Subtrating from this the expression with A = 0 we get

im

�

X

n

�

K

1

(m(y � x) + nmL)e

�2�in�

�K

1

(m(y � x) + nmL)e

�2�in�

�

so that we have

hQ

5

i =

im

�

Z

L

0

dx

X

n 6=0

K

1

(nmL)

�

e

�2�in�

� e

�2�in�

�

=

2mL

�

X

n>0

K

1

(nmL)(sin(2�n�)� sin(2�n�)):

(6.107)

In the limit m! 0 we obtain

lim

m!0

hQ

5

i =

2

�

X

n>0

1

n

(sin(2�n�) � sin(2�n�))

= 2([�℄� �+

1

2

)� 2([�℄ � �+

1

2

)

= 2([�+ '℄ + [�℄� '):

(6.108)

This is equal to our earlier result (6.74) when evaluated for � = 0 (' was

de�ned in (6.72)). Realling the asymptoti formula for K

1

in the limit of

large arguments one �nds that

hQ

5

i

L!1

�

s

2mL

�

(sin(2�n�) � sin(2�n�))e

�mL

L!1

! 0: (6.109)

We �nally alulate the vauum expetation value of the Hamiltonian H

 

(6.17) in the massive ase. We start from the expetation value (6.77) for

the point splitted Hamiltonian but insert in that expression

h

x

= �i

0



1

(�

x

� iA) +m

0

(6.110)
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as well as the full ovariane 
 instead of 


+

. With our result (6.99) for the

ovariane we then �nd

exp

�

ie

Z

x

y

A

�

h

x


(x; y) = �

im

2

�



0



1

X

n

 

�K

0

0

iK

0

1

iK

0

1

K

0
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!

e
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+

m

2
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0
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�

�ie

Z

x

y

A

�

X
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�K

0

iK

1

iK

1

K

0

!

e

�2�in�

:

Thus,

h	jH

 

(x; y)j	i =

1

2
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�

�ie

Z

x

y

A

�

(h

x


(x; y) + h

x

Æ(x � y))

= Tr

(

m

2
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X
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�K

0

�K

0

1

iK

1

+ iK

0

0

�iK

1

� iK

0

0

�K

0

1

�K

0

!

e

�2�in�

+

1
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0 1

1 0

!

iÆ

0

(x� y) +

m

2

 

1 0

0 �1

!

Æ(x� y)

)

:

(6.111)

From this we subtrat the expetation value for L ! 1 and vanishing A.

Using the relations

K

0

1

(�) +K

0

(�) = �

K

1

(�)

�

; K

1

= �K

0

0

;

this yields

hH

 

i =

Z

L

0

dx lim

x!y

(h	jH

 

(x; y)j	i � h	

0

jH

 

(x; y)j	

0

i)

=

m

2

�

Z

L

0

dx lim

x!y

 

X

n

e

�2�in�

m(x� y)

K

1

(m(x� y))

�

1

m(x� y) + nmL

K

1

(m(x� y) + nmL)

�

=

m

�

X

n 6=0

1

n

K

1

(nmL)e

�2�in�

=

2m

�

X

n>0

1

n

K

1

(nmL) os(2�n�): (6.112)

This vanishes in the limit L ! 1 but remains �nite for �nite L even for

vanishing eletromagneti �eld where we have

hH

 

i

A=0

=

2m

�

X

n>0

1

n

K

1

(nmL) os(2�n�): (6.113)

In the limit of vanishing mass we obtain from (6.112) the result of se-

tion 6.2.1. The expetation value of the Hamiltonian vanishes for L ! 1

as an be easily seen from (6.112).
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6.3 Non-Abelian gauge �elds

Calulation of the ovariane: We onsider the Lagrangian

L = �

1

4

F

��

F

��

+

�

 (iD

�



�

�m) ; (6.114)

where

F

��

= �

�

A

�

� �

�

A

�

+ i[A

�

; A

�

℄ , D

�

= �

�

+ iA

�

:

(6.115)

We have introdued here the (hermitian) matrix-valued vetor �eld, A

�

(x),

whih is de�ned by

A

�

= A

i

�

T

i

, (T

i

; T

j

) = Æ

ij

:

The gauge oupling onstant has been set equal to one. In two dimensions

the disussion is greatly simpli�ed sine the gauge A

0

= 0 removes the om-

mutator in (6.115). This enables us to proeed analogously to the Abelian

ase. Denoting A

1

� A, the total Hamiltonian density reads expliitly

H =

1

2

�

2

A

� i 

y



0



1

(�

x

+ iA) +m 

y



0

 �

1

2

�

2

A

+  

y

h :

(6.116)

The �rst-quantized Hamiltonian reads

h = gh

(0)

g

�1

; where h

(0)

= �i

0



1

�

x

+m

0

(6.117)

and

g(x) = P exp

�

�i

Z

x

0

A

�

; (6.118)

where P denotes path-ordering (we will suppress this letter in the following).

It follows immediately that if  

(0)

is an eigenfuntion of h

(0)

with eigenvalue

E then  = g 

(0)

is an eigenfuntion of h with the same eigenvalue E. From

(6.89) and (6.90) we see that the free eigenfuntions are given by

 

(0)

n;+

= f

n

;  

(0)

n;�

= g

n

; (6.119)

where  is a onstant vetor in the representation spae of the above gener-

ators, and

f

n

(x) =

1

p

2!

n

(!

n

+m)L

 

!

n

+m

�

n

!

exp (�i�

n

x)

and

g

n

(x) =

1

p

2!

n

(!

n

+m)L

 

��

n

!

n

+m

!

exp (�i�

n

x) :
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We also have to implement the boundary onditions

 (L) = e

2�i�

 (0) = g(L) 

(0)

(L) = g(0)e

2�i�

 

(0)

(0): (6.120)

We note that

g

�1

(L)g(0) = exp

 

i

Z

L

0

A

!

� exp (iB) : (6.121)

Sine B is a hermitian matrix it an be diagonalized:

Be

a

= �

a

e

a

, (e

a

; e

b

) = Æ

ab

;

where a and b run form 1 to the dimension of the representation. We thus

have

g

�1

(L)g(0)e

a

= exp (i�

a

) e

a

: (6.122)

Choosing  = e

a

we �nd from (6.120) the quantization ondition

�

n;a

=

2�

L

(n� �)�

�

a

L

; (6.123)

and the energies are given by

E

n;a

= �

q

m

2

+ �

2

n;a

� �!

n;a

(6.124)

in analogy to the Abelian result (6.88). From (6.119) and  = g 

(0)

the

positive energy and negative energy solutions are given by

 

a

n;+

= g(x)e

a


 f

a

n

,  

a

n;�

= g(x)e

a


 g

a

n

;

(6.125)

(no summation over a). These solutions are orthonormal sine

( 

a

n;+

;  

b

m;+

) = (g(x)e

a


 f

a

n

; g(x)e

b


 f

b

m

) = Æ

ab

Æ

nm

; et.

Under a gauge transformation mediated by U(x) the following transforma-

tion laws hold:

 !

~

 = U(x) ; A!

~

A = UAU

�1

+ i(�

x

U)U

�1

;

g ! ~g = U(x)g(x)U

�1

(0) ;  

(0)

!

~

 

(0)

= U(0) 

(0)

:

(6.126)

Sine gauge transformations should respet the boundary onditions, we

must have U(0) = U(L). Sine the "boundary operator" g

�1

(L)g(0) trans-

forms as

g

�1

(L)g(0) ! U(0)g

�1

(L)g(0)U

�1

(0)

the quantities �

a

appearing in (6.122) are gauge invariant.
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We now proeed to alulate the ovariane of the ground state. For the

projetor on positive energies one �nds, making use of the result (6.92) for

the Abelian ase,

P

+

(x; y) =

X

a;n

 

a

n;+

(x) 

a+

n;+

(y)

=

1

2L

g(x)

"

X

a

e

a

e

y

a

exp (

i

L

(2��+ �

a

)(x� y))

�

X

n

e

e

�2�in(x�y)=L

!

n

�

!

n

+m �

n

�

n

!

n

�m

�

#

g

y

(y):

(6.127)

Applying Poisson's summation formula (6.94) one �nds, in analogy to (6.97),

P

+

(x; y) =

1

2

Æ(x� y)I�

m

2�

g(x)

"

X

a;n

e

a

exp (� in

Z

L

0

�

a

)e

y

a

�

�

�K

0

iK

1

iK

1

K

0

�

e

�2�in�

#

g

y

(y):

(6.128)

and P

�

= I� P

+

: It is onvenient to de�ne the "diagonal matrix"

D =

X

a

exp (i�

a

) e

a

e

y

a

) D

n

=

X

a

exp (in�

a

) e

a

e

y

a

:

(6.129)

The ovariane 
 = P

�

� P

+

an thus be written as


(x; y) =

m

�

g(x)

"

X

n

D

�n

e

�2�in�

 

�K

0

iK

1

iK

1

K

0

!#

g

y

(y): (6.130)

In the Abelian ase we have

� =

Z

L

0

A (6.131)

so that the result (6.130) equals our earlier result (6.99).

Charges and energy: The point splitted version of the non-Abelian ur-

rent operator reads, in any number of dimensions,

j

�

i

(x; y) =  

y

(x) exp

�

i

Z

y

x

A

�

T

i



0



�

 (y): (6.132)

Its ation on the vauum state 	 an be found in the same way as for the

Abelian ase (6.102). The result is
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j

�

i

(x; y)	 =

1

2

Tr exp

�

i

Z

y

x

A

�

T

i



0



�

(Æ(x � y) + 
(y; x))	

+

1

2

Z

dvdwu

y

(v)(Æ(v � x)� 
(v; x)) exp

�

i

Z

y

x

A

�

�

T

i



0



�

(Æ(y � w) + 
(y;w))u(w)	:

(6.133)

Taking the expetation value of the seond term in (6.133) with respet to

	, one gets, making use of (6.33) and (6.27)

1

4

Tr

Z

dvdw (Æ(v � x)� 
(v; x)) exp

�

i

Z

y

x

A

�

�

T

i



0



�

(Æ(y � w) + 
(y;w))
(w; v)

=

1

4

Tr

Z

dv(Æ(y � v) + 
(y; v))(Æ(v � x)� 
(v; x)) �

exp

�

i

Z

y

x

A

�

T

i



0



�

= 0:

The expetation value of the point splitted urrent with respet to 	 is thus

given by

h	jj

�

i

(x; y)j	i =

1

2

Tr exp

�

i

Z

y

x

A

�

T

i



0



�

(Æ(x � y) + 
(y; x)): (6.134)

For the axial urrent

j

�

5i

(x; y) =  

y

(x) exp

�

i

Z

y

x

A

�

T

i



0



5



�

 (y) (6.135)

the analogous result is (ompare also (6.105))

h	jj

�

5i

(x; y)j	i = �

1

2

Tr exp

�

i

Z

y

x

A

�

T

i



5



0



�

(Æ(x�y)+
(y; x)): (6.136)

Like in the Abelian ase (see (6.103)) one �nds from (6.134) that < Q >= 0,

where Q is the total harge (the �rst term in (6.134) vanishes after the

subtration of the "free" expetation value, the seond term vanishes sine


 is traeless in spinor spae - see (6.130)).

In the following we expliitly evaluate the vauum expetation value of

the hiral harge in two spaetime dimensions. From (6.136) we have

h�

5

i

(x; y)i = �

1

2

Tr exp

�

i

Z

y

x

A

�

T

i



0



1

(
(y; x)� 


(0)

(y; x)): (6.137)

The trae in (6.137) onsists atually of two traes: a trae Tr

S

in spinor

spae and a trae Tr

C

in the representation spae of the Lie group. We

evaluate the spinor trae by making use of (6.81) and (6.130):

�

1

2

Tr

S



0



1


(y; x) =

im

�

g(y)

X

n

e

�2�i�n

D

�n

K

1

(m(x� y) +mnL)g

y

(x):
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Eq. (6.137) then beomes

h�

5

i

(x; y)i =

im

�

X

n

e

�2�i�n

�

Tr

C

e

i

R

y

x

A

T

i

g(y)D

�n

g

y

(x)

�Tr

C

T

i

)K

1

(m(x� y) +mnL):

(6.138)

The singular terms whih arise for n = 0 anel. The remaining terms are

non singular in the oinidene limit x! y, and one �nds for the expetation

value of the total hiral harge

hQ

5

i

i =

im

�

Z

L

0

X

n 6=0

e

�2�i�n

�

Tr

C

g

y

(x)T

i

g(x)D

�n

�Tr

C

T

i

)K

1

(mnL):

(6.139)

This is the non-Abelian version of our earlier result (6.107). In the limit of

vanishing mass one �nds, using (6.129) and K

1

(x) � 1=x,

hQ

5

i

i �

2m

L

Z

L

0

dxTr

C

g

y

(x)T

i

g(x)

X

a

e

a

e

y

a

([�

a

℄ +

1

2

� �

a

)

�Tr

C

T

i

([�℄ +

1

2

� �):

(6.140)

Note that for semisimple groups the trae of the T

i

vanishes. We emphasize

that the urrents in the non-Abelian theory are not gauge invariant quan-

tities but instead transform under the adjoint representation of the gauge

group.

We �nally ome to the alulation of the vauum expetation value for

the energy. This losely parallels the disussion of the Abelian ase whih

was disussed in setion 6.2 so that we an be brief in the present ase.

The point splitted version of the expetation value now reads, in analogy to

(6.77),

h	jH

 

(x; y)j	i =

1

2

Tr

Z

dx exp

�

�i

Z

y

x

A

�

h

x

(Æ(x� y) + 
(x; y): (6.141)

We reall that the exponential stands for a path ordered produt. Inspetion

of the expliit form of the ovariane, Eq. (6.130), exhibits that, as in the

Abelian ase, the fators g(x) and g

y

(y) are exatly aneled by the expo-

nential in (6.141). In analogy to (6.112) we then �nd, after the subtration

of the expetation value for vanishing external �eld,

hH

 

i =

2m

�

X

a

X

n>0

1

n

K

1

(nmL) os(2�n�+ n�

a

): (6.142)
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In the limit of vanishing mass this beomes

hH

 

i

m=0

=

2�

L

X

a

�

�+

�

a

2�

� [�+

�

a

2�

℄�

1

2

�

2

�

�

6L

N; (6.143)

where N is the number of avors.

6.4 Partile Creation

6.4.1 Constant eletri �eld in four dimensions

In this subsetion we demonstrate how the well known expression for the

reation of fermions in a onstant external eletri �eld [16℄ an be reovered

in the funtional Shr�odinger piture. The physial piture is the following:

We start with a fermioni vauum state in the far past (\in - region") and

let it evolve under the inuene of the external �eld, using the Shr�odinger

equation, into the far future (\out - region"). There we alulate the overlap

with the vauum in the out - region and interpret the deviation from one as

the probability for partile reation. The state remains, of ourse, Gaussian

but its exat form (and thus the notion of the vauum) hanges under the

evolution of the external �eld. It would be physially reasonable to swith

on the �eld somewhere in the past and swith it o� again in the future sine

no �elds last in�nitely long. In the present ase of a onstant eletri �eld it

will prove advantageous to treat an idealized situation by making use of the

notion of an adiabati vauum state whih is approahed in the asymptoti

regions. This is possible sine

_

h=h, where

_

h is the time-derivative of the

�rst-quantized Hamiltonian h (6.4), approahes zero in both the asymptoti

past and future. The onept of adiabati states is also suessfully applied

in traditional disussions of partile reation [17℄ and �nds in partiular a

fruitful appliation in quantum theory on urved spaetimes [18℄.

We thus have for the in - vauum state

	

in

= N exp

�

u

y




in

(ad)

u

�

; (6.144)

and for the out - vauum state

	

out

= N exp

�

u

y




out

(ad)

u

�

: (6.145)

The \adiabati" ovariane 


(ad)

an be obtained from the \free" ovari-

ane 


(0)

(see 6.32) by replaing the momentum p with p + eA. It turns

out to be onvenient, in spite of the non-vanishing mass, to use the hiral

representation for the Dira matries. The reason is that the mass terms in

the expressions for the ovariane beome unimportant in the asymptoti

regions. We thus have, instead of (6.32),
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(ad)

=

1

p

~p

2

+m

2

 

�� � ~p m

m � � ~p

!

; ~p � (p

x

; p

y

; p

z

+ eA

z

);

(6.146)

and the eletri �eld points in z - diretion, E = Ee

z

, so that A

z

= Et. For

simpliity we denote the transversal momentum by p

?

so that p

2

?

= p

2

x

+p

2

y

.

It will also be onvenient to introdue the dimensionless quantity

� �

p

eE

�

t+

p

z

eE

�

: (6.147)

We now give the expliit expression for 


(ad)

in both the asymptoti past

and future. In the limit � ! �1, (6.146) reads (�

i

are the Pauli matries)




(ad)

=

1

p

A

 

��

?

� p

?

� �

z

�

p

eE� m

m �

?

� p

?

+ �

z

�

p

eE�

!

�!�1

�!

 

�

z

0

0 ��

z

!

� 


in

(ad)

; A = p

2

?

+ eE�

2

+m

2

:(6.148)

Analogously,




out

(ad)

=

 

��

z

0

0 �

z

!

= �


in

(ad)

: (6.149)

Before we proeed to alulate the pair reation rate aording to the gen-

eral formula (6.51), we have to disuss one subtlety whih arises through the

use of asymptoti vauum states. As an be immediately seen by omparing

(6.148) and (6.149), the adiabati ovarianes 


out

(ad)

and 


in

(ad)

di�er in their

sign. Consequently, from the general expression (6.25), the positive (nega-

tive) frequeny eigenfuntions in the far future are the negative (positive)

frequeny eigenfuntions of the far past. An observer in the far future would

replae the expansion (6.45) by

�

n

(t) = �

f

nm

�

f

m

+ �

f

nm

 

f

m

= �

f

nm

 

m

+ �

f

nm

�

m

; (6.150)

where the supersript f refers to \far future." Comparing (6.150) with (6.45)

we see that �

f

nm

= �

nm

and �

f

nm

= �

nm

. Nevertheless, one an still use the

expression (6.51) to alulate the transition element. The reason is that one

now has to use 


out

(ad)

= �


in

(ad)

instead of 


0

= 


in

(ad)

in (6.43). This would

amount to replae �

nm

in (6.51) by �

nm

= �

f

nm

. Thus, the partile reation

rate is still given by (6.51) with �

nm

replaed by �

f

nm

as it was introdued

in (6.150) (in the following we will for simpliity omit the supersript f).

The general expression (6.44) for the ovariane 
(t) ontains, via (2.61),

the funtions �

n

(t) whih obey

i _�

n

(t) = h�

n

(t); (6.151)
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where the �rst-quantized Hamiltonian h is given expliitly by

h =

 

� � ~p �m

�m �� � ~p

!

: (6.152)

Note that h

2

= (p

2

?

+m

2

+ E�

2

)I, and n has to be replaed by p. Di�er-

entiating (6.151) by t and using (6.151) again, one arrives at a seond order

equation for the �

n

. The �rst and fourth omponent of the �

p

obeys (we

omit the index p in the following)

 

d

2

d�

2

+ �

2

+�+ i

!

�

1;4

= 0; (6.153)

while the seond and third omponent obeys

 

d

2

d�

2

+ �

2

+�� i

!

�

2;3

= 0: (6.154)

We have introdued in these expressions the quantity

� =

p

2

?

+m

2

jeEj

: (6.155)

The disussion is greatly simpli�ed if we treat the ase of two spaetime

dimensions �rst and reover the four-dimensional ase by some simple ma-

nipulations from the �nal result. Instead of (6.153) and (6.154) we have

then to deal with the equations

 

d

2

d�

2

+ �

2

+ � + i

!

�

1

= 0 ,

 

d

2

d�

2

+ �

2

+ � � i

!

�

2

= 0;

(6.156)

where, obviously,

� =

m

2

jeEj

: (6.157)

Sine � obeys the �rst-order equation (6.151), the equations (6.156) and

(6.156) annot be solved independently. If we hoose, say, for �

1

the general

solution of (6.156), we �nd from (6.151) that

�

2

=

1

p

�

�

i

d�

1

d�

� ��

1

�

: (6.158)

The general solution of (6.156) is then given by a sum of paraboli ylinder

funtions [19℄

�

1

= A

1

D

�i�=2

[(1 + i)� ℄ +B

1

D

�i�=2

[�(1 + i)� ℄: (6.159)
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We now have to impose the boundary ondition that � approahes a negative

frequeny eigenfuntion for � ! �1. For this we need the asymptoti

expansion of (6.159) whih reads [19℄

�

1

�!�1

� A

1

�

e

�

i�

2

2

[(1 + i)� ℄

�

i�

2

�

p

2�

�(

i�

2

)

e

�

��

2

+

i�

2

2

[(1 + i)� ℄

i�

2

�1

!

+B

1

e

�

i�

2

2

[�(1 + i)� ℄

�

i�

2

:

(6.160)

The usual de�nition of positive and negative frequenies involves the phase

of the �rst-quantized eigenfuntions: For a positive frequeny funtion the

phase dereases with inreasing time, while for a positive frequeny funtion

it inreases [17℄. The expression (6.160) thus should only ontain terms

proportional to exp(�i�

2

=2). We thus have A

1

= 0 and one is left with

�

1

= B

1

D

�i�=2

[�(1 + i)℄ : (6.161)

From (6.158) one then gets

�

2

= �

B

1

p

�

2

(1 + i)D

�i�=2�1

[�(1 + i)℄ : (6.162)

We want to normalize the solution � = (�

1

; �

2

)

T

. Sine the norm is on-

served (h in (6.151) is hermitian), it is suÆient to perform the normalization

in the asymptoti past where

�

1

�!�1

�! B

1

e

�

i�

2

2

j� j

�

i�

2

2

�

i�

4

e

��

8

, �

2

�!�1

�! 0:

Thus, the hoie

B

1

= exp(���=8) (6.163)

yields �

y

� � j�

1

j

2

+ j�

2

j

2

= 1.

To make use of (6.150) we have to �nd the positive and negative fre-

queny funtions in the asymptoti future, i.e. for � ! 1. The orretly

normalized negative frequeny solution �

f

to (6.156) and (6.158) reads

�

f

1

=

s

�

2

e

�

��

8

D

i�=2�1

[(1� i)� ℄ , �

f

2

= �

i+ 1

p

2

e

�

��

8

D

i�2

[(1� i)℄ :

5.26 This is easily seen from the asymptoti expansion of the paraboli

ylinder funtions [19℄. Similarly, the positive frequeny funtions are found

to read

 

f

1

= e

�

��

8

D

�i�=2

[(1 + i)� ℄ ,  

f

2

=

p

�

2

(i+ 1)e

�

��

8

D

�i�=2�1

[(1 + i)� ℄ :
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Making now use of the identity [19℄

D

�

(z) = e

��i

D

�

(�z) +

p

2�

�(��)

e

�(�+1)i=2

D

���1

(�iz); (6.164)

we an expand the solution (6.161), (6.162), (6.163) aording to (6.150)

into the asymptoti positive and negative frequeny solutions, respetively:

�(�) =

p

��

�(

i�

2

+ 1)

e

�

��

4

�

f

+ e

�

��

2

 

f

: (6.165)

The Bogolubov oeÆients an be easily read o� from this equation,

� =

p

��

�(

i�

2

+ 1)

e

�

��

4

; � = e

�

��

2

; (6.166)

and it is easily heked that j�j

2

+ j�j

2

= 1. Finally, one then �nds for the

matrix element (6.51)

jh	

1

j	

2

ij

2

= det(1� j�j

2

)

= expTr ln(1� e

���

)

= exp

 

�Tr

X

n

1

n

e

��n�

!

: (6.167)

In two dimensions the trae reads

Tr �!

L

2�

Z

eEt

out

eEt

in

dp =

eELT

2�

;

where T � t

out

�t

in

is the time di�erene between two asymptoti times t

out

and t

in

. This, as well as the length L, has been introdued as an infrared

regulator [17℄, [7℄. Thus,

jh	

1

j	

2

ij

2

= exp

 

�

eELT

2�

1

X

n=1

1

n

e

�

n�m

2

eE

!

: (6.168)

(If eE is negative, one has to take its absolute value.) To �nd the orre-

sponding expression in four spaetime dimensions, we have to replae � by

�, see (6.155). One thus has

j�j

2

= e

���

= e

�

�(m

2

+p

2

?

)

eE

(6.169)

and

Tr �!

V

(2�)

3

Z

eEt
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eEt
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dp

z

Z

2�p

?

dp

?

:
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Moreover, one gets an additional fator of 2 from the disrete part of the

determinant in (6.167) over the spinor indies sine one now deals with four

spinors instead of two spinors. Thus,

jh	

1

j	

2

ij

2

= exp

 

�2Tr

1

X

n=1

1

n

e

��n�

!

= exp

 

�

2(eE)

2

V T

(2�)

3

1

X

n=1

1

n

2

e

�

n�m

2

eE

!

:

(6.170)

This is in agreement with the lassial result of Shwinger [16℄.

6.4.2 Arbitrary external �elds for massless QED

2

We now proeed to alulate the vauum - to - vauum transition rate (6.42)

in the ase of massless fermions for arbitrary external eletromagneti �elds

in two spaetime dimensions. In ontrast to the previous setion we shall

assume that the eletri �eld is swithed o� for some time t < t

1

in the past

and t > t

2

in the future. While one an onsistently assume that the vetor

potential vanishes for t < t

1

, this is not possible for t > t

2

sine the ux

Z

L

0

dx

Z

t

2

t

1

dtE =

Z

dxdt

_

A =

Z

dx (A(x; t

2

)�A(x; t

1

)) = 2�'(t

2

)

need not vanish. In fat, this will give rise to the nontrivial features whih

will be disussed in this setion. We an, however, assume that A does not

depend on x for t > t

2

.

To determine the ovarianes 


1

and 


2

in (6.42) we need to solve the

time-dependent Dira equation,

i

_

 = h = �i

5

(�

x

+ iA) : (6.171)

We make the ansatz

 (x; t) = exp(i�(x; t) + iÆ(x; t)

5

) 

0

(x; t) (6.172)

and hoose � and Æ suh that  

0

obeys the free Dira equation (without A-

�eld). Inserting (6.172) into (6.171) one reognizes that this an be ahieved

if

_

�+ Æ

0

= 0 , �

0

+

_

Æ = �A:

(6.173)

The formal solution reads

� =

1

�

2

A

0

, Æ = �

1

�

2

E:

(6.174)

The solution of the free equation for  

0

,

i

_

 

0

= �i

5

�

x

 

0

; (6.175)
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an of ourse be immediately written down by making use of (6.55) - (6.58)

(we hoose � = 0 for simpliity):

 

0;n

=

 

'

0;n

�

0;n

!

(6.176)

with

'

0;n

=

1

p

L

exp (�ik

n

(x+ t)) , �

0;n

=

1

p

L

exp (�ik

n

(x� t)) ;

where k

n

= 2�(n � �)=L. The positive energy (negative energy) solutions

are obtained for k

n

> 0 (k

n

< 0) in the �`s and and for k

n

< 0 (k

n

> 0) in

the �s (reall (6.57) and (6.58)). The solutions of (6.171) thus read

 

n

(x; t) = exp(i�+ iÆ

5

) 

0;n

: (6.177)

The omponents of the ovariane are alulated in full analogy to Eq.

(6.61). One �nds




+

(x; y; t) = e

i�(x;t)�iÆ(x;t)




(0)

+

(x; y) e

�i�(y;t)+iÆ(y;t)

(6.178)

and




�

(x; y; t) = e

i�(x;t)+iÆ(x;t)




(0)

�

(x; y) e

�i�(y;t)�iÆ(y;t)

; (6.179)

where 


(0)

+

and 


(0)

�

are obtained from (6.62) and (6.63) by setting the A-

�eld equal to zero:




(0)

+

(x; y) = �


(0)

�

(x; y) =

i

L

e

2�i

L

(��[�℄�

1

2

)(x�y)

1

sin

�

L

(x� y)

: (6.180)

Sine A = 0 for t < t

1

one an hoose � = Æ = 0 for t < t

1

. This orresponds

to the hoie of the retarded Green funtion in (6.174). We thus have 
 =




(0)

for t < t

1

.

We now proeed to alulate the overlap (6.42) between the out - vauum

and the out - state whih results from evolving the in - vauum (whih is

the free state) with the Shr�odinger equation. In the out - region (t ! 1)

we an hoose A to be onstant. From (6.173) we an hoose � = 0 and

Æ = �At. The one partile wave funtions (6.177) then read

 

n

(x; t) = exp(�iAt

5

) 

0;n

(x; t): (6.181)

The out - vauum is alulated from the wave funtions (6.57) and (6.58)

for A = onstant. As an be reognized from these expressions, A drops out

and one is left with the free wave funtions  

0;n

. Does this also mean that

the out - vauum state is idential with the free vauum state? This is not

the ase sine in the general expression for the ovariane, Eq. (6.25), one
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has to distinguish between positive and negative energy solutions. For non-

vanishing (even onstant) A- �eld this distintion is �eld-dependent sine

the energy values are given by

E

n

= �

2�

L

(n� �); (6.182)

where the upper sign is for the right- handed part and the lower sign for the

left- handed part (ompare (6.57) and (6.58)). Let us fous in the following

on the right-hand part. In the expression (6.42) for the overlap we hoose

for 


1

the ovariane whih orresponds to the out - vauum, i. e.,




1

(x; y) =

X

n��

 

0;n

(x) 

y

0;n

(y)�

X

n>�

 

0;n

(x) 

y

0;n

(y); (6.183)

where we have inluded the zero energy eigenfuntion in the �rst sum. Sine

t has dropped out in this expression, we have skipped it in the arguments for

the wave funtions. Sine the phase fator in (6.172) is spae-independent,

the time-evolved in - ovariane (whih plays the role of 


2

) is just given by




2

(x; y) =

X

n��

 

0;n

(x) 

y

0;n

(y)�

X

n>�

 

0;n

(x) 

y

0;n

(y): (6.184)

It is lear that this satis�es the time-dependent Shr�odinger equation (6.38)

trivially with the orret boundary ondition at t < t

1

. We then �nd for the

operator produt 


1




2

in (6.42)




1




2

=

Z

dz

 

X

n��

 

0;n

(x) 

y

0;n

(z)

X

l��

 

0;l

(z) 

y

0;l

(y)

+

X

n>�

 

0;n

(x) 

y

0;n

(z)

X

l>�

 

0;l

(z) 

y

0;l

(y)�

X

n>�

 

0;n

(x) 

y

0;n

(z)

X

l��

 

0;l

(z) 

y

0;l

(y)

�

X

n��

 

0;n

(x) 

y

0;n

(z)

X

l>�

 

0;l

(z) 

y

0;l

(y)

!

:

We may assume without loss of generality that � > �. The �rst and seond

term in (6.176) give together

0

�

X

n��

+

X

n>�

1

A

 

0;n

(x) 

y

0;n

(y) = Æ(x � y)�

X

�<n��

 

0;n

(x) 

y

0;n

(y):

The third term vanishes for � > �, and the last term gives

�

X

�<n��

 

0;n

(x) 

y

0;n

(y):
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We thus have




1




2

= Æ(x� y)� 2

X

�<n��

 

0;n

(x) 

y

0;n

(y):

The determinant in the overlap (6.42) thus ontains the operator

A �

1

2

(1 + 


1




2

) = Æ(x � y)�

X

�<n��

 

0;n

(x) 

y

0;n

(y):

By ating with A on  

0;k

one reognizes that A has a zero eigenvalue if

� < n � �. In this ase, therefore, the overlap in (6.42) vanishes! This

means that the probability for the vauum to remain a vauum is zero {

partiles are always reated. Sine both states 	

1

and 	

2

are, however,

Gaussians it follows that these states belong to di�erent Hilbert spaes { in

the ase of in�nitely many degrees of freedom the overlap between Gaussians

an vanish [1℄. How an one ope with this situation? The key to a proper

treatment is provided by the observation that the energy eigenvalues E

n

of the �rst-quantized eigenfuntions exhibit a spetral ow { some of them

pass through zero between the in- and out - region. This is peuliar to the

massless ase sine the energy values E

n

do not hange sign for m 6= 0, see

(6.88). As a onsequene of the spetral ow the time - evolved in - state

ontains, in the out - region, either oupied positive energy states or empty

negative energy states (for de�niteness we assume that there exist oupied

positive energy states). Our original �lling presription says, however, that

for the vauum state all positive energy states are empty. To have all states

in the same Hilbert spae (Fok spae), one has thus to de�ne the out

- vauum state by applying as many annihilation operators on the out -

Gaussian as there are oupied energy states, i.e.,

j0; outi � N

['℄

Y

k=1

a

k

exp(u

y




1

u): (6.185)

Again, ' = (

R

L

0

A)=(2�) is the ux. The time - evolved in - state an thus

be written as

	

in

t!1

�! N exp(u

y




1

u) =

['℄

Y

k=1

a

y

k

j0; outi: (6.186)

This state thus ontains ['℄ partiles with respet to the out - vauum, a

result whih is of ourse well known (see, e. g., [20℄). The partile reation

rate expressed by (6.186) is diretly related to the anomaly in the axial

urrent, and there is a general relationship between the spetral ow of

the �rst - quantized Dira Hamiltonian, the topologial harge, and the

anomalous partile prodution. This is very learly disussed, for example,
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in [21℄. The important di�erene to the previous subsetion is the fat that

in the present ase a de�nite number of partiles has been produed (as

given by the ux of the external �eld), whereas in the previous ase there is

a non-vanishing probability for the prodution of any number of partiles.

The Shr�odinger piture thus provides us with an intuitive explanation for

the anomaly: The �lling presription, whih is ruial for the spei�ation of

the ground state, hanges in dependene on the external �eld. Consequently,

the notions of vauum and exited states hange under the inuene of the

external �eld.

6.5 The Gauss onstraint

So far we have restrited ourselves to the ase where the external eletro-

magneti �eld an be treated semilassially. This is formally expressed by

negleting terms ontaining Æ=ÆA(x) in the full Hamiltonian (6.3). We want

to relax this restrition now and onlude our paper with a brief disussion

of some subtleties whih arise when the Gauss onstraint (6.5) is realized on

wave funtionals 	[A; u; u

y

℄ in the full theory. Applying the Gauss operator

G(x) = rE� e 

y

 (6.187)

on states 	 we �nd, using the realization (6.8) - (6.8) for the �eld operators,

G(x)	 =

 

1

i

r

Æ

ÆA

�

e

2

[u

y

u+

Æ

2

ÆuÆu

y

+u

y

Æ

Æu

y

� u

Æ

Æu

℄

�

	[A; u; u

y

℄ = 0:

(6.188)

Classially, the Gauss operator generates loal gauge transformations. This

also holds in the quantum theory, in the sense that

�

Z

dx�(x)G(x);  (y)

�

= e�(y) (y); et: (6.189)

with an appropriate test lass funtion �(x). The surprise omes if one

evaluates the expression (6.188) for the Gaussian state (6.11). This yields

G(x)	 = �

1

2

Z

dydzu

y

�

(y)[Æ(y � x)Æ

��

+


��

(y; x)℄�

[Æ(x � z)Æ

�

� 


�

(x; z)℄u



(z)	 6= 0:

(6.190)

Thus, although 	 is expliitly gauge - invariant, it is not annihilated by the

Gauss operator. This an also be reognized from a di�erent perspetive.

Under an in�nitesimal gauge transformation a state 	 hanges as follows:
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	[A; u; u

y

℄! 	[A; u; u

y

℄�

Z

dx�(x)

�

r

Æ

ÆA

+ ieu

Æ

Æu

�ieu

y

Æ

Æu

y

�

	:

(6.191)

The state therefore remains invariant if

�

1

i

r

Æ

ÆA

+ eu

Æ

Æu

� eu

y

Æ

Æu

y

�

	 �

~

G(x)	 = 0: (6.192)

Obviously,

~

G di�ers from G. The formal reason is the fermioni harater

of the matter �elds whih allows the realization of the �eld operators as in

(6.8) and (6.8). In fat, in the bosoni ase one has

~

G � G [7℄. Note that

the integrated Gauss operator annihilates 	, i. e.,

Z

dxG(x)	 =

Z

dx

~

G(x)	 = 0: (6.193)

The interpretation of (6.190) was given by Floreanini and Jakiw [8℄. The

Gauss operator G may produe states whih lie outside the original Fok

spae from whih one started, sine the spae spanned by u and u

y

is muh

bigger than the spae obtained from the ground state through appliation

of the �eld operators  and  

y

. They an only produe polynoms in

(1 + 
)u � u

+

; u

y

(1� 
) � u

y

�

; (6.194)

whereas in (6.190) one reognizes their adjoints u

�

and u

y

+

:

G(x)	 = �

1

2

u

y

+

(x)u

�

(x)	: (6.195)

The presription we impose here is to projet the ation of the Gauss operator

bak onto the original Fok spae,

G ! P

F

G �

1

4

u

+

u

y

�

G:

Sine the state (6.195) is orthogonal to eah state in this spae, one has of

ourse

P

F

G(x)	 = 0: (6.196)

In partiular, one �nds that the expetation value of the Gauss operator

vanishes, h	jG(x)	i = 0.

There is only one possible obstrution to this presription: it may hap-

pen that the presene of an anomaly spoils the ommutativity of two Gauss

operator (this anomaly should not be onfused with the anomaly of the

axial urrent). In this ase our presription would lead to a ontradition
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sine the projeted Gauss operators always ommute with eah other. An

example where suh anomalies our are hiral fermions in an external ele-

tromagneti �eld [8℄. In suh a ase one annot identify a state 	 with

its projeted state, u

+

u

y

�

	=4. Here, however, we deal with Dira fermions

where the anomaly onneted with the left - handed part anels the orre-

sponding anomaly of the right - handed part. It is thus perfetly onsistent

to identify states with their projeted version.

In this respet the situation is analogous to the Gupta - Bleuler quanti-

zation of eletrodynamis where one an get rid of negative norm states by

identifying states with zero norm.

We have thus shown that the Gauss operator for fermions an be onsis-

tently interpreted in the funtional Shr�odinger piture if no gauge violating

anomalies are present.

Outlook: The use of wave funtionals gives an intuitive piture of the

physis involved, in partiular with regard to oneptual questions. This

beame espeially lear in our disussion of partile reation and anomalies.

Seond, this piture may possess tehnial advantages in some appliations,

suh as the alulation of expetation values or anomalous partile produ-

tion rates. One might therefore expet this piture to be of some use in

other branhes of quantum �eld theory where less results are known than

in QED, e.g. fermions in a gravitational bakground as well as oupled to

a quantized gravitational �eld, espeially in the framework of the new vari-

ables in anonial general relativity [5℄. This ould shed some light on the

�nal stages of blak hole evaporation. Further possible appliations inlude

non-Abelian �elds in four dimensions [22℄, deoherene, the semilassial

approximation, bosonization, as well as the extension to problems where

non-Gaussian states play a role.
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