Chapter 5

2-dimensional Gauge
Theories

The response of physical systems to a change of external conditions is of
eminent importance in physics. In particular the dependence of expectation
values on temperature, the particle density, the space region, the imposed
boundary conditions or external fields has been widely studied [18]. De-
spite all these efforts we are still unable to understand, for example, the
mechanism leading to the spontaneous symmetry breaking of the SU4(N)
in low temperature QCD [43]. Clearly such subtle effects require a bet-
ter understanding of the non-perturbative effects and in particular non-
perturbative the vacuum sector of gauge theories. From our experience
with 2-dimensional gauge theories [41] which we suppose to mimic one-
flavor QC'D [35], we are lead to believe that gauge fields with windings are
responsible for the non-vanishing chiral condensate and in particular its tem-
perature dependence. A related problem is how quantum systems behave
in a hot and dense environment as it exists or existed in heavy ion collision,
neutron stars or the early epochs of the universe [43].

On another front there has been much effort to quantize self-interacting
field theories in a background gravitational field [5]. For example, one is
interested whether a black hole still emits thermal radiation when self-
interaction is included. Due to general arguments by Gibbons and Perry
[25] this question is intimately connected with universality of the second
law of thermodynamics.

Rather than seeking new partial results for more general and realistic 4-
dimensional systems we have chosen an idealized 2-dimensional model with
self-interaction to investigate the questions mentioned and others. It is a
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theory containing photons ', charged mass-less fermions, scalars and pseudo-
scalars in interaction with themselves and a gravitational background field.
The model has the action

1 . . o,
§ = /v—g[ = g Fw B iy (Vi — 19104 A +igam," 0, )y

5.1

9" (0,00, p + B ADN) — ggm] : 5
where F),, is the electromagnetic field strength, the gamma-matrices in
curved space are related to the flat ones as y* =eh 4%, V, =0, +iw, —ieA,
is the generally and gauge covariant derivative containing the U(1) gauge
potential and spin connection, 7,, =+/—g€,, denotes the totally antisym-
metric tensor and R the Ricci scalar. The gravitational field g,,, (or rather
the 2-bein e, since the theory contains fermions) is treated as classical
background field, whereas the ’photons’ A, ’electrons’ 1), scalars A and
pseudo-scalars ¢ are fully quantized. The classical theory is invariant under
U(1) gauge- and axial transformations and correspondingly possesses con-
served vector and axial-vector currents. Despite its complexity the general
model (5.1) is solvable for arbitrary classical backgrounds g, and allows for
an analytical treatment.

We have chosen this model since it allows to address the above raised
questions and since it relates to known soluble models for certain values of
the coupling constants. For example it contains the gauged Thirring model,
the Schwinger model in curved space time and the minimal models in confor-
mal field theory as particular limits. For finite volumes the theory possesses
instantons which minimize the Euclidean action in a given topological sec-
tor. These instantons lead to a non-trivial vacuum structure, i.e. to #-vacua
[10], and to chirality violating amplitudes. For example, a non-zero chiral
condensate develops which vanishes exponentially for temperature and cur-
vature bigger than the induced 'photon’ mass m?2 = e?/(m+ £93). This mass
is generated via the Schwinger mechanism and it the analog of m%, in QCD

[23].

In two dimensions the electric charge e has the dimension of a mass.
The other 3 couplings are dimensionless. The physical role of the coupling
constants is the following: The coupling of ¢ to the transversal current
decreases the effective electromagnetic interaction between fermions. For
example, the electric charge becomes renormalized to

! Although photons in 141 dimensions possess no transversal degrees of freedom we
still call them photons. However, through their interaction with charged fermions they
may become dynamical fields as exemplified by the Schwinger mechanism.
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e
e’r‘en =
1+ 9g3/2m (5.2)

the chiral condensate decreases as ~ (27r+g%)_%. The mass in the bosonised
theory depends on go.

For e = 0 all coupling constants are dimensionless, the model has a
trivial vacuum structure and becomes conformally invariant. It possesses
the Virasoro algebra extended by left-right U(1) Kac-Moody algebras as
symmetry algebra. The central extensions, conformal weights and U(1)
charges all depend on go. The coupling constant g; amplifies the Hawking
radiation which remains thermal for the interacting model. Tt is (3 + 247g2)
times as strong as that of a free mass-less scalar field. The central charge and
conformal weights depend also on g3. Actually, the weights of the fermionic
fields become complex for g3 #0. However, g3 does not enter in the finite size
effects. The coupling constant g; to the longitudinal current weakens the
long range gauge invariant electron-electron correlators in the one-instanton
sector (see 5.104). In the un-gauged sector it enters in expectation values
of local operators and in particular in the short distance expansions of the
fermionic fields and energy momentum tensor. It does not influence the
thermodynamics of the model.

Since for particular choices of the coupling constants the model reduces
to well-known and well-studied exactly soluble models there are many ear-
lier works which are related to ours. Some of them concentrated more on
the gauge sector and investigated the renormalization of the electric charge
in the gauged Thirring model by the four-Fermi interaction [30] or the non-
trivial vacuum structure in the Schwinger model [41, 29]. Others concen-
trated on the un-gauged conformal sector. Freedman and Pilch calculated
the partition function of the un-gauged Thirring model on arbitrary Rie-
mann surfaces [21]. We do not agree with their result and in particular show
that there is no holomorphic factorization for general fermionic boundary
conditions. Also we deviate from Destri and deVega [16] which investigated
the un-gauged model on the cylinder with twisted boundary conditions. We
shall comment on the discrepancies in sections 5.2 and 5.4.1. Other papers
which are relevant and are dealing with different aspects of certain limiting
cases of (5.1) are [50], where the thermodynamics of the Thirring model has
been studied or [5] in which the Hawking radiation has been derived.

This chapter is organized as follows: In section 5.1 we analyze the clas-
sical model to prepare the ground for the quantization. In particular we
derive the general solution of the field equations, discuss the conservation
laws and investigate the limiting theories. By employing the graded struc-
ture we derive the classical Poisson (anti) commutators of the fundamental
fields with the energy momentum tensor. In the following section we quan-
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tize the finite temperature model. To avoid infrared problems we assume
space to be finite. Together with the finite temperature boundary conditions
we are lead to considering the theory on the 2-dimensional Euclidean torus.
Due to the twists in the fermionic boundary conditions, the non-trivial vac-
uum structure and the associated instantons and fermionic zero-modes the
quantization is rather subtle. Actually we show that some of the results in
the literature are incorrect. In subsection 5.2.1 the general results are ap-
plied to derive the partition function of the gauged model. Its dependence
on the spatial size, temperature and gravitational field is explicitly found.
In subsection 5.2.2 we show that the gauged model on curved spacetime can
be bosonised. It turns out that only the non-constant parts of the currents
can be bosonised and that the well-known bosonization rules of the Thirring
model are modified. In the following section the chiral symmetry breaking is
studied. The exact form of the chiral condensate is found. On the flat torus
the formula simplifies to (5.96). Various limits, e.g. L — 0o, T — 0, T — o0
or go — oo are investigated. By comparing the temperature and curvature
dependence of the condensate we derive an effective curvature induced tem-
perature. In section 5.4.1 the thermodynamics of the un-gauged model is
studied. We derive the ground state energy and its dependence on the cou-
pling constants, size of the system and boundary conditions. We compute
the equation of state and our result does not agree with [50]. In subsec-
tion 5.4.2 we investigate the conformal sector of (5.1), that is the un-gauged
model in flat spacetime. Besides the Virasoro algebra the model contains an
U(1) Kac-Moody algebra. We calculate the important commutators and in
particular determine the conformal weights and U(1)-charges of the funda-
mental fields from first principles. Also we show that the finite size effects
are in general not proportional to the central charge as has been conjectured
by Cardy [12]. The appendix A contains our conventions and scaling for-
mulas for the various geometrical objects. In appendix B we collected some
useful variational formulas which we have used in this chapter.

5.1 Classical theory

Equations of motion: The field equations of the model (5.1) are

i (V, — g0\ + 19smp 0" ¢) Y = ivF Dy, = 0

2 VA= —g;R — ¢, V,.5"

2 V2¢ = —0.Vuj*" (5.3)
VVFMU = ejﬂ )

which are the Dirac equation for mass-less charged fermions propagating in
a curved space-time and interacting with the scalar and pseudoscalar-fields,
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Klein Gordon type of equation and Maxwell equation. Here j°* is the axial
vector current which is defined by

3 =yt =nt, 5. (5.4)

When one decomposes the gauge field as

Ay, = 0po — 0, 0% so that  Fy; = v/—¢V2op, (5.5)

and chooses isothermal coordinates for which g, =277, then the gener-
alized Dirac operator reads

. . 73 s o l
lz): ezF iv5G 20.&6 iF 175G+2o" where

(5.6)
F=gltea , G=gdtep.

Hence, if 1p,(x) solves the free Dirac equation in flat Minkowski space time,
then

P(z) = ez’F-l—i’YsG—%awO (5.7)

solves the Dirac equation of the interacting theory on curved spacetime. The
vector currents are related as

: - - . _ r .

3= = e hoe T = = i
The same relation holds for the axial vector current. From /—gV,j# =
Our/—g7" the conservation of the vector and axial currents follow at once,

expressing the classical U(1) x U4 (1) invariance of the model. Using these
conservation laws in (5.1) we conclude that

2VZA=—-¢g,R and V=0 (5.8)

or that there is no back-reaction from fermions onto scalars. Finally the
conservation laws imply that the currents are free fields

Vit = V2P =0, (5.9)

which is the reason which accounts for the solubility of the model [33], even
in the presence of photons and an external gravitational field. As is well-
known, for any gauge invariant regularization the axial current possesses an
anomalous divergence in the quantized model and (5.9) is modified. Thus
the normal Uy (1) Ward identities in the un-gauged Thirring model [30]
become anomalous when the fermions couple to a gauge field.
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Solution to the equations of motion: In isothermal coordinates the
general solution of the field equations can be expressed in terms of 6 chiral
functions as follows: Introducing light cone coordinates z*=2%4z' so that
ds?>=e??dxtdz~, the solutions of (5.8) read

A=gso+ A (zT)+ A (z7), and ¢ =¢, (z7)+¢ (z7) (5.10)

and depend on 4 chiral functions which are fixed by the initial data on some
space-like hypersurface. The solutions of the free Dirac equations depend

on 2 chiral functions as
_(Y-(z7)
o= <¢+($+)> '

In these coordinate system the Maxwell equations (5.3) can easily be inte-
grated and one finds

0:0-¢ = Fn =2 [ L) (©)ae ~ [l ©wi(ae]. (11

To go further we must fix the gauge. Conveniently one chooses the Lorentz
gauge such that a=0 in (5.5) and thus ¢ in (5.11) determines A,. We see
that in isothermal coordinates and this gauge the general solution of (5.3)
is given by (5.10), (5.11) and (5.7), that is in terms of 6 chiral functions.

Energy-momentum tensor: Besides the currents the symmetric energy
momentum tensor of the matter fields

2 0S
NI (5.12)
plays an important role in any theory in curved space time. Applying the

variational identities in Appendix B one obtains after a lengthy but straight-
forward computation

Tl“/ =

1 n 7

T = g FFy, — FE, M 4+ L[y DYy — (DWh)y)y)
+2VHPVYh — gV PV ap  + (¢ N)
—2¢5(g"*'V? — VAVY)A (5.13)

1. y y
+§]M (1VIX = gan"*Vad) + (nov)
020" %105V ¢ — 292710 V)

where we have introduced the symmetrization A#BY) = L(A*BY + AVB").
The first two lines are just the energy momentum of the electromagnetic
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field, charged fermions and free neutral (pseudo-) scalars. The terms con-
taining second derivatives of A\ are the improvement terms [9] which are
always present when one couples scalars non-minimally to a background cur-
vature. The remaining terms reflect the interaction between the fermionic
and auxiliary fields.

On shell T is conserved as required by general covariance. Using the
field equations for ¢ and A its trace reads

1
Th = giR — §F"pF(,p : (5.14)

In particular for g; =0 and A, =0 it vanishes, and the theory becomes Weyl-
invariant. As a consequence it reduces to a conformal field theory in the flat
spacetime limit [22]. It is remarkable that it can be made Weyl invariant
even when g, #0. Indeed, without changing the flat spacetime limit we may
add a nonlocal Wess-Zumino-type term to the action, namely

2
1
§S—8=5-%5, where §,= /\/_—gRﬁR

the variation of which is

) 1 1 e
58, = / {4[g"R - vV oo Rl +2v" <ﬁn) \Y <ﬁn)
|

1 (5.15)
gV, (ﬁR> Ve (ﬁR> } V=909
The trace of the modified energy momentum tensor is now zero, and for
9uv — N the Lagrangian corresponds to a conformal field theory in Minkowski
spacetime.

Choosing the coupling constants appropriately, the model reduces to
various well known exactly solvable models:

e For g, =0 and g2 =—g¢2 = g2 the fermionic sector reduces to the gauged
version of the Thirring model [47] in curved space time. To see that we
solve the Klein Gordon equations in (5.3) for the U(1) current which
yields

2 2
= ——0,A — —n," 0.
& g1 g 927’“ v

Inserting this into the Dirac equation we find

2
itV — 5 FHyup =0,
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which is the field equation of the gauged Thirring model in curved
spacetime with Lagrangian

2

- - e L v
Ll A b 9] = i Vop = TG = JFwF™ | (5.16)

If we further specialize to ¢ = 0 we recover the Schwinger model in
curved spacetime [29)].

e For the special choice g, = ¢, = e = 0 and for vanishing gauge field
the \- dependent part of (5.1) is just the Lagrangian of scalar fields
coupled to a background charge and and for imaginary g3 describes
the minimal models of conformal field theory [4].

Hamiltonian formalism and classical conformal structure: In this
subsection we investigate the Hamiltonian structure of the model (5.1) in
the conformal limit, i.e. in flat Minkowski space and for vanishing gauge
field. In the presence of both fermions and bosons it is convenient to exploit
the graded Poisson structure [11]. We recall, that the equal time Poisson
brackets are

_ A(2)5 TBly) _ A@)T 3By
{A(@), Bly)} = ZO:/ 2! 50(2) dm0(2) | omo(z) 00(2) )

The sum is over all fundamental fields O(z) in the theory . The sign is minus
if one or both of the fields A and B are bosonic (even) and it is plus if both
are fermionic (odd) fields. The momentum densities 7o (z) conjugate to the
O-fields are given by functional left-derivatives

7S
mo(zr) = 33,0(@)"

20=y0

A simple calculation yields the following momenta
my = =i, my=aj§ + 2004 and m\ = gijo + 200\
which form the fundamental Poisson brackets with the fields

{$L(@),9sW)} = idapdla’ —y"),
Aa)m@y)}y = o' —yh), (5.17)
{p(@),ms(y)} = o(z' —y").

For the Hamiltonian we obtain
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H = /dxl [80¢ﬂ¢+80>\7r)\+30¢7r¢—£]
= /dxl [71’1/,’)/5611/1 — 'L'g161>\71'¢’)/5¢ — i9281¢ﬂ¢1/1 + (61)\)2 (518)

1 , 1 .
+((91¢)2 + Z(m\ — zg17r¢1/1)2 + Z(W(b — Zgg7T¢75’lﬁ)2j|.
It can be checked that the corresponding Hamiltonian equations are just
the field equations (5.3) with flat metric and vanishing gauge potential, as
required. Since 7%, = 0 (see 5.14) the only non-zero components of T
are the light-cone components 7'y and 7__. To continue it is convenient
to introduce adapted light cone coordinates z+ = z% + z' and the chiral
components of the Dirac spinor ¢4 = 1(1 £ v;)¢. Then T__ in (5.13)
simplifies to
1

T = 5wy, 0y =0 my ¢y) + 2(0-2)% + 2(0-¢)? 5.19)

+9302 X +10_ (91X + g200) Ty, Py

Using the equations of motion one shows explicitly that it is a chiral field,
i.e. depends only on z~. With (5.19) we can now find the conformal weights
of the fundamental fields which determine their transformations under in-
finitesimal conformal symmetry transformations. For that we must calculate
the commutator of the symmetry generators Ty = [ dx™ f(z~)T__ with the
fields. The result is

orp = {6, T}t =f0-¢

SiA = fa,A—%’"a,f (5.20)
ophy = fO_tpy + %(1 —19192)P+ 0 f

Sy = FO-d + 5(1+igng)ylo .

Whereas ¢ and 1, are primary fields, A is not. Actually, the non-primary
character of A is very much linked with the gs-dependent term in the trans-
formation of the Dirac field. To see that more clearly we note that under an
infinitesimal left conformal transformation generated by Ty = [ dz ™ f(z )T} +
the scalar and fermi field transform as

SpA=FON=20.f and Gy = FO_tpy — igigatp0-f.

Since 14 is not any longer a scalar under left transformation the term
/ do*da (2004} (9 — igid My )
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appearing in the action is only conformally invariant because A transforms
inhomogenously like a spin connection. It maybe surprising that the symme-
try transformations depend on the coupling constant g3 which is not present
in the flat space time Lagrangian. Actually, the same happened for the
gauged WZNW models considered in the previous. Indeed, the g3-dependent
term in the energy momentum tensor (5.19) contains second derivatives of
the field A and is the analog of the improvement term Tr H.J' in (4.59) in
the constrained WZNW theory.
The current transforms as

SpjfO i +j-o_f (5.21)

and the energy momentum tensor as

6;T-_ =fo_T _ +2T__0_f —g30° f. (5.22)
Recalling that a primary field O with weight h transforms as
0r0 ={0,Tf} = fO_O 4+ hOO_f
and comparing with the above results we have found the following structure:

e The pseudoscalar field ¢ is primary with hgy =0. The scalar field X is
only primary for g3 =0 in which case h)=0.

e The Dirac field ¢ is primary with A, :%(1 —1ig193). The conformal
weight is real for imaginary gs.

e The current is primary with weight 1.

e Already on the classical level the energy momentum tensor is only
quasi-primary. The corresponding Virasoro algebra (5.22) has central
charge c=24mg3.

In the following sections we are lead to consider the Fuclidean version of
the model. Then one must replace the Lorentzian v, g,, and w, by there
Euclidean counterparts. For example, with our conventions (see appendix
A) the relation (5.4) becomes

j = —in',

and as a consequence the generalized Dirac operator in Euclidean spacetime
becomes

. 3 . 1
p — 61F+75G—50 aa e—zF+75G+5a

instead of (5.6). Also, to recover the Euclidean Thirring model as particular
limit of (5.1) we must set g3 = 0 and ¢ =g2=g°.
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5.2 Quantization of the generalized gauged Thirring
model

In this section we quantize the general model (5.1) in curved space-times.
The results are then applied in the following sections, where we calculate
the partition function, ground state emergy, equation of state and certain
correlators of interest and their dependence on the chemical potential, vol-
ume of space, temperature and background metric. To do that we couple
the conserved U(1)-charge to a chemical potential p. We enclose the system
in a box with length L to avoid infrared divergences. To investigate the
temperature dependence the time is taken to be purely imaginary in the
functional approach [19]. The imaginary time z° varies then from zero to
the inverse temperature 8 and we must impose periodic- and anti-periodic
boundary conditions for the bosonic- and fermionic fields, respectively. Thus
to study the finite temperature model we must assume that space-time is
an Euclidean torus [0, 8] x [0, L].

To see how the partition function and correlators depend on the gravi-
tational field we assume that the torus is equipped with an arbitrary metric
with Euclidean signature or equivalently with a 2-bein e,,. The curved
gamma matrices are 7y, = e,,y" and in particular v; = —%n,w*y“*y” = 03
is constant (see appendix A for our conventions). We can always choose
(quasi) isothermal coordinates and a Lorentz frame such that

~ _ O T1
Cpa = eae#a:e”<0 1)
5.23
g _ eQUg = 20 |7-|2 1 ( )
w py = 1 1

where 7 = 71 + 179 is the Teichmueller parameter and o the gravitational
Liouville field. Space-time is then a square of length L and has volumeV =
fOL d?z\/g. We allow for the general twisted boundary conditions for the
fermions

1/)(x0 + L,:l:l) _ _627ri(ao+ﬁo’75)¢(I0’I1)

¢(IO,$1 + L) = _627ri(a1+ﬁ175),¢}(I0’I1). (524)

The parameters «; and (; represent vectorial and chiral twists, respectively.
We could allow for twisted boundary conditions for the (pseudo) scalars as
well, e.g. ¢(z°+nL,z'+mL) = ¢(z',2") + 27(m+n). However, to recover
the Thirring model for certain values of the couplings we assume that these
fields are periodic. For ¢ =0, 7 = i8/L and oy = Sy = 0 the partition
function has then the usual thermodynamical interpretation. Its logarithm
is proportional to the free energy at temperature T=1/0.
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Fermionic path integral: Twisted boundary conditions as in (5.24) re-
quire some care in the fermionic path integral. Indeed the fermionic de-
terminant is not uniquely defined when one allows for such twists. The
ambiguities are not related to the unavoidable ultra-violet divergences but
to the transition from Minkowski- to Euclidean space-time. To see that
more clearly let ST denote the set of fermionic fields in Minkowski space-
time with chirality +1. Since both the commutation relations and the action
do not connect ST and S~ we can consistently impose different boundary
conditions on ST and S~. On the other hand, in the Fuclidean path-integral
for the generating functional

Zrln,m) = / DDy el VIU VL[ Vi (v titn) (5.25)

the Dirac operator
0 D_
P= <D+ 0 )

exchanges the two chiral components of ¢, i.e. P : St — ST. Thus,
in contrast to the situation in Minkowski space the two chiral sectors are
related in the action. Of course, the eigenvalue problem for i]) is then
not well defined. This is the origin of the ambiguity in the definition of
the determinant. It is related to the ambiguities one encounters when one
quantizes chiral fermions [2]. To solve this problem we shall analytically
continue the well-defined determinants in the untwisted sector 5 = 0 to
B#0. The resulting determinants do not factorize into (anti-) holomorphic
pieces and differ from previous ones in the literature [21].

Let us now study the generating functional for fermions in an external
gravitational and gauge field and coupled to the auxiliary fields. For that

we observe that on the torus the decomposition (5.4) of the gauge potential
generalizes to

A, = Ai + 2%25“ + Oy — 0’ p, (5.26)
where the last 3 terms are recognized as Hodge decomposition of the single
valued part of A in a given topological sector, that is the harmonic-, exact-
and co-exact pieces. In arbitrary coordinates the toron field ¢, obeys the
harmoniticity conditions Vt#=t;, ,;=0. It follows then that in isothermal
coordinates ¢, must be constant. The role of the toron fields has recently
been emphasized within the canonical approach [34]. In the Hamiltonian for-
mulation they are quantum mechanical degrees of freedom which are needed
for an understanding of the infrared sector in gauge theories. Also, in [45] it
has been demonstrated that the Zy-phases of hot pure Yang-Mills theories
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[46] should correspond to the same physical state if one takes care of the
toron fields.

The first term in (5.26) is an instanton potential which gives rise to a
non-vanishing quantized flux ® or integer-valued instanton number k:

@:e/FOIEe/E:e/EI:%rk.

As representative in the k-instanton sector we choose the, up to gauge trans-
formations, unique absolute minimum of the Maxwell action in (5.1). It has
field strength e BT = V9 ®/V. As instanton potential we choose

edy = edy = @, d,x, where A = —g(:cl,()) (5.27)

is the instanton potential on the flat torus with the same flux but field
strength /g ®/V. The function y is then determined (up to a constant) by

\/53 - f% = VgLX- (5.28)

The solution of this equation is given by

X(@) = =5 @) == [ Pu/sGale ) e (s29)

)¢t
Go(z,y) :<I|%|y): )3 M

(5.30)
An >0 n

is the Green-function belonging to —A. In deriving (5.29) we have used that
+(®/V) =0 which follows from the spectral resolution (5.30) for the Green
function in which the constant zero mode ¢o=1/vV of A is missing.

Note that 2-dimensional gauge theories are not scale or Weyl invariant
as 4-dimensional ones are. For that reason the instantons on conformally
flat spacetimes are not just the 'flat’ instantons.

To be more explicit we relate Gy to the Green-function éo on the flat
torus with the hatted metric [28]

; S BT R 2 DA
Go(Iay):—Elog|%[%+%](0ﬁ)|a where £=z-y. (531)

For that we note that due to the missing zero-mode in (5.30) the usual flat
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spacetime equations for the Green-functions are modified to

_AIGO(x7y) = (S‘(L\/;y) - % ) —Axéo(flf,y) = 5(3_‘5?/) - é

Furthermore one sees at once that both Green functions annihilate the cor-
responding constant zero modes

/de\/g(y)Go(x,y) = /de\/EG”o(:v,y) = 0. (5.32)

From these two equations one concludes that Green-function on the curved
torus is related to the flat one (5.31) as

Golory) = Golwy) + o7 [ udon[o(w)g(0)Golu,v)
- 3 [ G waiu - 5 [ Pu/swotuy)

and this replaces the infinite space relations Gy = Gy [6].

Our choice for the instanton potential (5.26,5.27) corresponds to a par-
ticular trivialization of the U(1)-bundle over the torus [41]. In other words,
the gauge potentials and fermion fields at (z°,z') and (2°,z' +L) are nec-
essarily related by a nontrivial gauge transformation with windings

(5.33)

A#(xoaxl + L) - AM(Ioaxl) = 8ﬂa(I)

w(xo,xl + L) — _eiea(x) 627Ti(a1+ﬁ1’75) w(xo’xl)- (534)

For the choice (5.27) we find

P
—Z l'O.

ea(r) =

Note that A is still periodic in z° with period L and 1) still obeys the first
boundary condition in (5.24). Our trivialization differs from the one chosen
in [31] and so do our instantons and fermionic zero modes.

Similarly as for the gauge potential we must add a harmonic piece to the
auxiliary vector field B, to which the fermions couple in (5.1), so that

27
Bu = _g()hu + glauA - g2nuuay¢ (535)

L
appears in the Dirac operator in (5.1) on the torus. A and ¢ couple to
the divergence of the vector and axial vector currents. The harmonic fields
h, couple to the harmonic part of the current and are needed to recover
the Thirring model in the limit g3 = g7 = g5. Also, we shall see that t,
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and h, are essential to obtain the correct answer for the thermodynamic
potential. Note that B, contains no instanton part since it couples to the
gauge invariant fermionic current.

Finally we introduce a chemical potential for the conserved U (1) charge.
In the Euclidean functional approach this is equivalent to coupling the
fermions to a constant imaginary gauge potential Ay [1].

Inserting the above decompositions and the chemical potential into the
Dirac operator finally yields in isothermal coordinates

P = 1D, = PHGHIIe pGE her
. o Lo 27
D =~"(0, +iw, — zeAfL — T[Hu + ), (5.36)
.ToL
HM = etu +90hu and My = —'Lglﬁ 6#0-

Here @ is the spin connection belonging to €,,. It vanishes for our choice of
the reference zweibein. A’ is the instanton potential (5.27) on the flat torus.
The scalar and pseudo scalar functions F', G and x have been introduced in
(5.6,5.29). In the chosen coordinates ¢ and h and hence H are all constant.
In [41] it has been shown that [P possesses |k| zero-modes of definite chirality
and their chirality is given by the sign of k. They are crucial in any correct
quantization. For example, if one would leave out instanton sectors in which
i) has zero-modes then the cluster property would be violated.

In a first step we quantize the fermions in the flat instanton and har-
monic background and reference metric g,,, that is we assume ) — l? in
(5.25). The dependence on the remaining fields F, G, x and o, that is the
relation between Zp and Zp, is then found by integrating the chiral and
trace anomalies [7] and exploiting the relation (5.36) between ) and .

We expand the fermionic field in a orthonormal basis of the Hilbert space

P(z) = Zand’nJr(x)'l'zbnd’nf(x)

W@ = S @)+ 3 boxh (@) (537)

where ay, by, ay,, b, are independent Grassmann variables.

Topologically trivial sector: For k£ = 0 or vanishing instanton potential
we can immediately write down a basis

1 .+ 2 1

(o) = 5 @0 en )= T

and ey are the eigenvectors of 7;. The 1, and 1), must obey the S*
and S~ boundary conditions, respectively. These boundary conditions fix

+ a; + B +n;), (5.38)
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the admissible momenta p in (5.38). Since the Dirac operator maps S*
into ST the x;,,+ must then obey the same boundary conditions as the ;.
Thus x,+(z) is obtained from 1,4 (z) by exchanging p;” and p,,. It follows
then that

Z;AD"/)n:i: = Afan; (5.39)
with
2T 1 1
A= T()L[_( +a1+ f1+n1) — (2+ao+ﬂo+no)]
_ 2r . 1 1 (5.40)
Moo= (g Far =B m) = (5 + a0 = fo + o).
oL 2

Here we have introduced a, = o, — H,, —p,. Substituting (5.37,5.39,5.40)
into the generating functional (5.25) and applying the standard Grassmann
integration rules we arrive at

n'n?

Z(¢n+<x>xl W) , ¥ (@ >xn+(y>)_ (5.41)

S -
(z,y) ¥ N

n

S is the fermionic Green function in the 0-instanton sector. Note that both
the ’eigenvalues’ and the Green function depend on the Teichmueller param-
eter, harmonic potentials, twists and chemical potential.

We proceed to calculate the infinite product or generalized determinant
n (5.41). This is one of the central points of this section and for non-zero
chiral twists and chemical potential our result deviates from previous ones
[21]. Actually the twists and chemical potential are related as one can see
from (5.39,5.40).

One may be tempted so identify

det(DyD_) ~[[APA, and detDidet D_ ~ [[A [[Mn  (5.42)

and thus conclude that the determinant is a product, f(7)f(), that is
factorizes into holomorphic and anti-holomorphic pieces (the overall factor ~
1/7oL in the eigenvalues (5.40)) drops in the infinite product, since the torus
has vanishing Euler number). However, the infinite product in (5.41) must
be regularized and the two expressions in (5.42) may differ. In conformal
field theory [28] one is naturally lead to consider the individual chiral sectors
and thus finds holomorphic factorization. For Dirac fermions one uses Ip?
to regularize the product and this leads to the determinant of the product
D.D_.
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To continue we recast the infinite product in the form

o0

I = 11 (7)

A

2 .1 1
gﬂy(g e +n#)(§ + cy + )

where M is the inverse of the reference metric (5.23) and

ey =ay, +1i9," By, where (7 ”)——i no P

w = Gy My Pu, My ) = o \1 —n ) (5.43)
The point is that for real c,, that is for vanishing chiral twists (3, and
chemical potential (see the definitions of a, below (5.40) and p, in (5.36))
the zeta function defined by

C(s) =D (M) (5.44)

n

has a well defined analytic continuation to s <1 via a Poisson resummation.
An explicit calculation yields [41, 48, 8]

det(i)) = (H A,"{A;)mg = ¢G)ls=0 where
n
1
((8)lymp = —log|——73©
=0 [In(7)|2 {
However, for complex ¢, the Poisson resummation is not applicable and
¢'(0) cannot be calculated by direct means. To circumvent these difficulties
we note that the infinite product (5.44) defining the (-function for s >1 is a
meromorphic function in c¢. Thus we may first continue to s <1 for real ¢,
and then continue the result to complex values. Using the transformation
properties of theta functions the resulting determinant can be written as

(5.45)

—C1 —C1

[0, 8] "o0,n)].

Co €o

det(ip)) = (V33" Bubu—2iB1a0)

read e R powe R A

It can be shown that this determinant is gauge invariant, i.e. invariant un-
der o, — o, +1, but not invariant under chiral transformations, 8, — £,+1,
as expected. Furthermore it transforms covariantly under modular transfor-
mations 7 — 7+ 1 and 7 — —1/7. In other words, det i]) is invariant under
modular transformations if at the same time the boundary conditions are
transformed accordingly. The exponential prefactor is needed for modular
covariance and is not present in the literature [21]. It correlates the two
chiral sectors and will have important consequences.
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Topologically nontrivial sectors: Before deriving chirality violating am-
plitudes one comment is in order. Due to the integrated Gauss law the
expectation value of the electric charge must vanish in the fully quantized
theory, although it may be nonzero in the intermediate step where one treats
the gauge field as external field. This then implies that the partition func-
tion and expectation values must be independent of the chemical potential
coupled to the electric charge. For example, if the partition function would
depend on p then the expectation value of the charge would not vanish as
can easily be seen by differentiating the effective action with respect to p.
Now we note that a chiral twists is equivalent to a chemical potential, and a
non-chiral twist to a harmonic gauge potential. Thus we conclude that the
partition function can not depend on the twists. This can be checked by
explicit calculation. For example, the normal twists are wiped out by the
toron integration. Thus we shall set the twists to zero for the gauged model
so that we have the same boundary conditions in the left and right handed
sectors and the Dirac operator becomes selfadjoint. In particular we may
use eigenfunctions of the Dirac operator to perform the path integral. The
twist will only be relevant for the un-gauged model which we considered
later.

Let us now, for definiteness, assume that the instanton number is posi-
tive, £ > 0. Then zl?) possesses k zero-modes 1%’, p=1,...,k with positive
chirality. They must be included in an expansion of ¢ in (5.37). The Grass-
mann integral over the variables belonging to the excited modes is performed
as in the trivial sector. Also, the integration over the Grassmann variables
accompanying the zero-modes can easily be done (see [41] for a careful dis-
cussion) and one obtains

|k|

Zrln. ) = [] (7, 98) (i, m)detifpe S 7)o,
=t (5.47)
. . t '
act'ip = I A Suloy) = 3 L200nl®),
An#0 An#0 "
Note that the excited Green function S, anticommutes with ;.
To calculate the determinant we observe that
D_D 0 1 1 e
2 _ + - ng - oA
= ("0 005 g V99 Dy = g R g s
simplifies in the instanton background A’ and on the flat torus to
2 AUV Y T ¢
—p*=—-9""D,D, - el (5.48)

In other words, it is the same in the two chiral sectors, up to the constant
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20/ V. This observation allows one to reconstruct the spectrum of —l?)Q
completely. For that we observe that the excited eigenmodes of the Dirac
operator come in pairs with opposite eigenvalues, since 7y, anticommutes with
D). Since 7y; commutes with the squared Dirac operator the chiral projections
Py, of these modes are eigenmodes of fDQ. Thus the excited modes of the
squared Dirac operator come also in pairs and two partners have the same
energies but opposite chiralities. Earlier we have seen that there are exactly
k-zero modes with chirality +1 (we assumed k£ > 0). Because of (5.48)
they are at the same time excited modes of —])? with energy 2®/V and
chirality —1. Due to the pairing there are then k excited modes with the
same energies 29/ V but chirality +1. This procedure may now be iterated
and one ends up with the following spectrum of —ﬁ)Q:

\2 — 0  degeneracy =k
" 12n®/V  degeneracy = 2k.

With the explicit spectrum at hand we can compute the zero-mode truncated
determinant with zeta-function methods and find [41]

det/ (i]D) = (%)é/ "

We proceed with computing the zero modes of ﬁ)Q. For that we note that
the operator commutes with the time translations which leads to the ansatz
o eZm'cpr/L eZm'Hlxl/Lg (

1 ].
Xp p(T7) e, cp=§+p,

where we have assumed k > 0. The choice of ¢, is dictated by the time-

like boundary conditions in (5.24). Inserting this ansatz into the zero mode
equation %y, = 0 yields

2 ® d P
2 2 . . _

(I7| ar Y 2”1ﬁyd_y —i773)6 =0,

I (5.49)

where y=z!+ %(cp — Hy).

This is just the differential equation for the ground state of a generalized

harmonic oscillator to which it reduces for 7 = i7y. The solution is given by

d
27 L?

L 2
{e' + T (e — Ho))’]-
These functions do not obey the boundary condition (5.34), but the correct
eigenmodes can be constructed as superpositions of them. For that we
observe that

gp:eXP[_

~ _ 0 ; ~
Xp($0,$1+L) —e 1®x°/B eZmHl Xp+k(x07x1)
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so that the sums

1
w o= (2k70) T~ —2im(np/k)(A— )

0o — — Xp+nk €+, 5.50
\/|7’|V nez ( )

where p=1,...,k, obey the boundary conditions and thus are the k required
zero-modes. The overall factor normalizes these functions to one. Modes
with different p are orthogonal to each other, so that the system (5.50) forms
an orthonormal basis of the zero-mode subspace. For k <0 the zero-modes
are the same if one replaces e, by e_.

Integrating the chiral and trace anomalies: To relate the determi-
nants of 71 and i) we introduce the one-parameter family of Dirac operators

which interpolates between ) and IP [39]. The r-derivative of the corre-
sponding determinants is determined by the chiral and trace anomaly. An
explicit calculation yields

o det's]p
det'i)

dr .
E /\/g_Ttral (275[6" + &x] — O')

(5.52)
v

Here g7 is the determinant of the deformed metric g;,, = eQTf’gW, and

1
aT———RT—i-’)/TAG—i—— 1—T\/_A+T 5.53
1 ; = igls  6a)
is the relevant Seeley-deWitt coefficient of [P2. Furthermore, /\7¢ is the
norm-matrix of the zero-modes ¥ in (5.50). Since those are orthonormal
it is just the k-dimensional identity matrix. N, is the norm-matrix of the
zero-modes of 7]) which are related to the 1%’ as

yh = eIz (5.54)

as follows from (5.36). Inserting (5.53) into (5.52) one finds the following
formula for the determinant in arbitrary background gravitational and gauge
fields:
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det’i]p = det ﬁ?ﬂ det’(i1D) exp o T o / \/_GAG

"
2(1)!7 / \/EX),

(5.55)
- exp (_

where
Sp = / Vi[Ro — Aol (5.56)

is the Liowville action. In deriving this result we used that [,/gx =0. Ac-
tually, for our reference metric the Ricci scalar R vanishes and the Liouville
action simplifies to — [ VgoAo. However, as it stands the formula (5.55)
holds for arbitrary reference metrics and arbitrary Riemannian surfaces.

As expected for a gauge-invariant regularization, the function F' and
thus the pure gauge part of the vector potential does not appear in the
determinant.

For later use we also give the analogous formula for the zero-mode trun-
cated scalar determinant [44]

ot (8) = det's (=) () exp (= 5-51). (5.57)
This completes the computations of the determinants.

The generating functional for the full theory is then obtained as follows:
First one notes that the formulas (5.41) and (5.47) for the fermionic func-
tionals still hold without hats. Thus to calculate the functionals in arbitrary
gauge-, auxiliary- and gauge fields we need to know the Green-functions, de-
terminants and zero-modes in these backgrounds.

To relate the fermionic Green-functions S in the different topological sectors
to the hatted ones we define

Si(z,y) =9 S(z,y) e IW), g = —iF +7,(G + ®x) + =

On the infinite space we would have S = S; [6]. However, if the Dirac
operator possesses zero modes this simple relation is modified to to

S@.y) = Silay) + [ Polaw)S) ()P (v,5)y a(w)g(0)dudy

/Slquguy\/ du—/PoxuSluy\/ u)d?u,

and this formula should be compared with the analogues one for scalars
(5.33). Here P, is the orthonormal projector onto the zero modes. For gauge
fields with vanishing flux S=5;. Together with the relation (5.55) between
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the full and hatted determinant and the explicit form (5.45,5.46) for det i)
this yields the fermionic generating functional in the various topological
sectors.

In the trivial sector one finds explicitly

Zrin.i) = 150 ' 0.7) @[;fl](o,ﬂ

o= [ 1@)S@u0) . o (% 4 / VIGAG]).

(5.59)

By using the scaling properties of the Ricci-scalar and Laplacian (see ap-
pendix B) the exponent can be rewritten as

%W/fn R+ 7T/@GAG,

which makes clear that the resulting functional is diffeomorphism invariant.
Here we used that R integrates to zero or that the Euler number of the
torus vanishes. On the sphere or higher genus surfaces the last formula is
modified.

To relate the hatted and full functionals in the non-trivial sectors one recalls
that in the formula (5.47) for the full partition function (without hats) one
must use orthonormal zero-modes. These can be expanded in terms of the
un-normalized modes 1} defined in (5.54). Inserting these expansions into
(5.47) yields the inverse square roots of the determinants of the correspond-
ing norm matrices Ny, and N, which partly chancel det Ny in (5.47). Thus
one ends up with

. P ) . _ |k|
Zeln. ) = (55) ™ PPV I VT ) t)

p=1 (5.60)
= ) ey (5L L / ViGAa + 2 / VaG),

where the ¢, are the un-normalized zero-modes (5.50).

Bosonic path integral: To arrive at the generating functional for the
complete theory we must finally quantize the photon and auxiliary fields A,
and B, (see (5.35)). For that we insert the decomposition (5.26) into the
bosonic part of the (Euclidean) action (5.1). This results in

CI)2 2 [Aauv
Sp = % + (2m)2V/ 39" hyhy,

+ /@(%M% ~AAX =AY — gaR)).

(5.61)
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The term quadratic in the h field is not present in the action (5.1) on
Minkowski space-time. But on the torus h is part of the Hodge decom-
position of B, and thus on the same footing as 0\ and nd¢. Since Sp and
the fermionic determinants are both gauge invariant and thus independent
of the pure gauge mode « in (5.26), it is natural to change variables from
A, to (p,a,t,,®) in each topological sector. One can show [41] that this
transformation is one to one, provided

/\/@p = /\/ﬁa =0 and et, €]0,1]. (5.62)

The measures are related as

DA, = Jzk: dtodtiDeDa, where J = (27)%det'(=A). (5.63)
The Jacobian J is independent of the dynamical fields. In expectation values
of gauge invariant and thus -independent operators the a-integration cancels
against the normalization. This is of course related to the fact that in QED
the ghosts decouple in the Lorentz gauge.

Finally observe that via the derivative couplings to the fermionic current
[24] we introduced artificial degrees of freedom. The relation between B, in
(5.35) and the fields (¢, A, h,,) is only one to one if we impose the conditions
similar to (5.62), namely

b= %/\/gqﬁ =0, A=0 and hy, € [-00,00]|. (5.64)

There is no restriction on the harmonic part of the auxiliary field, since B,
is not a gauge field. The constraints are imposed in the functional integral
as

/ dhodhn DEDAS(B)5(N) - - - (5.65)

The normalization by the volume in (5.64) is needed such that the con-
straints and hence the partition function are both dimensionless. For exam-
ple, expanding ¢ in eigenmodes of the Laplacian as

1
¢ = agpo + Z antn , where ¢o=—=
n>0 \/V

is the zero mode, one finds the dimensionless partition function

- 1
/D¢ 3(p) e?2? = Wm (5.66)
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for free bosons.
Constraining the mean field to zero as in (5.66) is equivalent to fixing the
field at an arbitrary point £ on the torus to zero [49]

[ Do 5@ = [ Do s((6)
This can be seen as follows:

[ Do 860+ = [ dub(d~ u)Dg 5(8(6)) -

Now one shifts the field as ¢ — ¢+ u. Using that the action is left invariant
by this shift, the measure becomes

[ @D 5@sp(e) +u)- = [ D3

which shows that the two constraints are the same. When integrating over
the auxiliary fields it is always understood that the divergent zero modes
are suppressed as in (5.65).

5.2.1 Partition function

As a first application of our general results we calculate the partition function
of the theory (5.1). To compute it we must put the sources 1 and 7 in (5.25)
to zero. Then it is evident from (5.60) that the non-trivial sectors do not
contribute and hence we may assume ® =0. Thus the partition function is
given by

Zo=J / d*td>hDyp D@D Zr[0,0] e 5B12=0], (5.67)

where J is the Jacobian of the transformation (5.63). Zp the fermionic
partition function (5.59) in the trivial sector and the integration is over
fields obeying the conditions (5.62,reft51). Now we perform the various
integrals in turn.

integration over the harmonics: By using the series representation of
the theta functions one computes

1
. e 1
0/ P(et)O| 001](0,7) 6| COI](O,T): = (5.68)

Since the result appears always together with the n-function factor in (5.59)
it is convenient to introduce

11
V27 [n(7)[?
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in the following expressions. The result (5.68) does not depend on the h-field
and hence the h-integration in (5.67) becomes Gaussian. It yields a factor
1/47 so that

Zo = mrdet! (—A\) eSE/2T / Dy(ippA) e3e [ VIGAGSEI=0 g o,

where G has been defined in (5.6).We inserted the explicit expression (5.63)
for the Jacobian. If we would have kept the chemical potential and twists
then already the toron-integration in (5.68) would have washes out the de-
pendence on the boundary conditions and chemical potential.

Integration over A and ¢: The integral over A, subject to the condition
(5.64), modifies the Liouville factor and yields one inverse square-root of the
determinant of —2A in (5.69). To continue we recall the scaling formula for
the determinant of A [14]:

det’ (—al\) 1
g Gy = g <0 = loga- [ [ =)

where p is the number of zero modes of the operator. On the torus [a; =0
and we find

det'( — a\) = é det! (—A). (5.70)

Using this scaling property the A-integral together with (5.66) we obtain

Zy = kmy/2Vdet'(—A) pl93+1/24m)S1,

/ Ds(pp) ezr ] VIGAGSplh=r=0] (5.71)

To quantize the ¢ field we need to recall that G =ep+ga¢p. Since pAp ~
(AT, AT), the anomalous term ~ [GAG in the exponent contains an ex-
plicit photon mass term with bare-mass e//m. However, when quantizing
the ¢ field this mass is renormalized. This can be seen explicitly in the re-
sulting expression for the partition function after the ¢-integration has been
performed

2y/mreV o 1 2 2
7y = \/7;77 6(93+1/2477)SL /'D(p@ P f\/ﬁ_w(A va)‘p’ (572)
where the renormalized photon mass is

, e 27
My

?271'4-93.
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Integration over ¢: The zeta-function regulated determinant which one
obtains when performing the integral (5.72) factorizes

det’ (A% — mgyA) =det/(=A) - det’ (- A + mgy)

This factorization property is not obvious since all determinants must be
regulated. But it holds for commuting operators and in the zeta-function
scheme. Then the partition function simplifies to

_ 2/mkeV ., , gy L 9 1
Zy = " (det’(—A)det’ (A +m3)) 2 exp ((g3 + 247T)SL)'

We can go further by using (5.57) and the known result for the determinant
of A [28] which together yield

1 V 1
det'2 (—=A) = TOL|n(T)|2\/;exp ( - ESL) (5.73)

which finally leads to

1 1 1
Zy = V2rV — exp L)
’ o T et ey 0 (o 7 51)

for the partition function of the general model (5.1) on curved spaces. It
shows explicitly that in the topologically trivial sector the theory should be
equivalent to a theory of free mass-less and massive bosons with mass m.,.
It is interesting to follow the various contributions to the explicit dependence
on the gravitational field since they contribute to the Hawking radiation.
For that we recall that when one quantizes a conformal field theory with
central charge ¢ in an external gravitational fields one ends up with the
Liouville term, Z ~ exp|c S, /24n] [44]. Thus the fermions contribute with
c =1, as expected. The ¢ and X field contribute with 1 and 1 + 247g2,
respectively. However, the Jacobian combined with the conformal part of
the gauge sector contribute with c=—1 and we are left with a total central
charge ¢ = 2 + 247wg3. Of course, the gauged model is not conformally
invariant and the breaking is manifest in the massive determinant in (5.74).
The partition function of the un-gauged theory is (5.72) multiplied by an
inverse determinant (the missing Jacobian) and without ¢-integration. In
this limit one obtains a conformal theory with central charge c=3 + 247g3.

By using an elegant result of Christensen and Fulling [42], that relates
the conformal anomaly to the asymptotic Hawking flux, one concludes that
the Hawking radiation of the un-gauged model is 3+ 247g2 times that of
free mass-less scalars. For the gauged model the Hawking radiation is still
thermal and consists of mass-less and massive particles.
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The appearance of m, in (5.72) should be interpreted as renormalization
of the electric charge induced by the interaction of the auxiliary fields with
the fermions. After summing over all fermion-loops this leads to an effective
coupling between the photons and the ¢-field and in turn to a modified
effective mass for the photons in (5.72). In the limit go — 0 this mass tends
to the well-known Schwinger model result, m, — e//7 [8].

We conclude this subsection with deriving an explicit formula for the par-
tition function on the flat torus. Applying the results in [3] one obtains for
the massive determinant

det’(—A + m?y)% = Le—%g’(o)’
My

with
1V Vm?
CTO):ZF—L\/%IG(WL (n,n)) — 47:7, (5.75)
n#0 ’

where (n,n)=g;jn'n’ is the inner product taken with the reference metric,
and the sum is over all (n') € Z, with the origin excluded. For g, =
duv, in which case the partition function has the usual thermodynamical
interpretation, the result reduces to one derived previously by Ambjorn
[27]. In addition, if L approaches infinity we recover a result in [1]. The free
energy for 71 = 0 and on flat space simplifies then to

—%logZ L '(0).

F—
2p
with ¢’(0) from (5.75) and the particular choice for the parameters.

5.2.2 Bosonisation

In the classical analysis we have already seen that in the limiting case g3 =0
and g; = g2 = g the general model reduces to the gauged Thirring model.
Now we show that the same is true for the quantized theory on the torus
if in addition we set gy = g. More precisely, the Hubbard-Stratonovich
transform of the Thirring model is just the derivative coupling model (5.1)
with identical couplings. In the process of showing that we shall arrive at the
Bosonisation formulas for the gauged Thirring model on the curved torus.
We shall see that only the non-harmonic part of the fermion current can
naively be bosonised and that for this part the rules of the un-gauged model
on flat space time [15] need just be covariantized.

For that we calculate the partition function (5.67) in a different order.
First we integrate out the auxiliary fields. In order to understand the role
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of A and ¢ we introduce sources for them. Thus we study the generating
functional for the correlators of the auxiliary fields

Z[¢, ¢l = / D(hpA,)e =5+ Valrtco],
Here

S — _¢/\/§¢T$¢+SB[93=0]

is the action of the full theory. I is the Dirac operator in (5.36) with all
couplings set equal and Sp the bosonic action (5.61). Since X and ¢ integrate
to zero (see 5.64) we may assume the same property to hold for the sources.
Also, since there are no fermionic sources only configurations in the trivial
sector contribute, so that there is not instanton potential in (5.36) and hence
® =0 in (5.61). The integration over the auxiliary fields is Gaussian and
yields

Z=No [D@A) e e [ V5] = Jlexe+i0)

. g(f%jfﬁ . C%jﬁu)] (5.76)
where
Sp = —i/\/g(FWF’“’ — it Dy — %ﬂjﬂ) (5.77)
is the action of the gauged Thirring model on curved space-time and
V
No = Irdet’ (—A) (5.78)

comes from the integration over the auxiliary fields.
Let us first consider the partition function, that is set the sources to zero.
Comparing (5.76) with (5.72) and using (5.73) we easily find

/D(w)e*ST = %+ I =i [ Euw ™ /ny 3(3) e 5, (5.79)

where 7 is the mean field (see 5.64) and we used (5.63) and (5.70). The
action for the neutral scalar field v is found to be

1 ie 1
S :—/ 9,y 0" ——7/ Agp.

Since (5.79) holds for any ¢ (and thus for the non-harmonic part of any A,,,
because of gauge-invariance) we read off the following Bosonisation rules:
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f\/m
R

where prime denotes the non-harmonic part of the currents. Thus, only the
non-harmonic parts of the currents can be bosonised in terms of a single
valued scalar field. To bosonise their harmonic parts one would have to
allow for a scalar field v with windings as ¢ below . On the infinite plane the
harmonic part is not present and we may leave out the primes in (5.80). If we
further assume space time to be flat we recover the well-known Bosonisation
rules in [15]. What we have shown then, is that for the gauged model on
curved space time the Bosonisation rules are just the flat ones properly
covariantized and with the omission of the zero-modes.

, (5.80)
j5ﬂ —

Since (5.79) holds for any gauge field the current correlators in the
Thirring model are correctly reproduced by the Bosonisation rules (5.80).
To see that more clearly we calculate the two-point functions of the auxiliary
fields in the Thirring model (5.76-5.78). For that we differentiate (5.76) (¢
is treated as external field) with respect to the sources and find

@AWY = SGo(an) + % [ (Gole w0 Go(w, i 1)
(5.81)
G)60) = SGo(w.0) + L [(Golw. )i, (W)Go(y, 1) (1)

where G is the free mass-less Green-function (5.30,5.33) in curved space-
time and the integrations are over the variables v and v with the invariant
measure on the curved torus. Here (...); are vacuum expectation values of
the Thirring model (5.77). Alternatively we can calculate these expectation
values from (5.69) and (5.71), where the fermionic integration has been
performed and find

AW = 5Gole,y)
ﬂ_mQ m2 2 (5.82)
B = oo Golwy) + 21 (1= "5 )p(a)p(y)

Comparing this with the result (5.81) we see at once that

[ (Golaw)ity wGoly, )it @) = 0 (58

3

2
/(Go(%U)jgm(U)Go(y,v)js'f;u(v)ﬁ = —H(mip(@)p(y) — Golz,y)).
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These correlators express the gauge invariance and the axial anomaly ( jg‘f; u> =
—m,Ap in the gauged Thirring model. They can be correctly reproduced
with the bosonization rules (5.80). They are not reproduced with the ones
derived for the un-gauged model [15].

5.3 Chiral condensate

Recalling that S, in (5.60) anti-commutes with 7, one sees at once that
only configuration supporting one fermionic zero-mode with positive chiral-
ity contribute to the chiral condensate

g8
Zo o4 (2)o1+ ()

where n, = Pyn. Earlier we have seen that these are the gauge fields with
flux ® =27 or instanton number £=1. Thus the condensate becomes

(' P = | PG Zrln g0 e,

W'P:) = ‘zi\/g/ D() (@)oo () exp() e 5a0=1 (5.84)

where exp(...) is the last exponential factor in (5.60). First we integrate
over the toron field . The ¢t dependence enters only through the zero mode
and more specifically g in (5.54) and (5.50) with p=1. Using the series
representation for the theta functions one finds

/thwS(I)dJo(:f:) = é (5.85)
Note that the result does not depend on the chemical potential similarly as
in our calculation of the partition function.

To continue we observe that the term [ /gG in exp(...) vanishes because
of our conditions (5.62) and (5.64) on the fields ¢ and ¢. Also note, that
the fermionic Green function does not enter in the expression for the chiral
condensate. It follows that the fermionic functional (5.59) in the trivial
sector and (5.60) in the one-instanton sector are the same, up to the factors
in the fist lines. From (5.85) and (5.69) we see that the toron integral of

the fist line in (5.60) is |n|?\/70/V exp(27 [ \/gx/V) times the toron integral
over the factor in (5.59). Also, since
21?2
Splk=1] =SBk =0] + ==
plk =1] = Splk =01 + -
the functional integral and normalizing partition function in (5.84) are the
same, up to these factor and the field-dependent factors which relate the
hatted and un-hatted zero-modes in (5.54). Finally note that the X integrals
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in (5.84) and in the normalizing partition function cancel so that we end up
with the following formula for the condensate

. 70 2 —272/e2V42n/V g -2 ep)(z)—o(x
(i Pap) = > In(r)|2e=2"/ / f\/§x<e (98+ep)(z)—0( )>¢¢§5.86)

The expectation value is evaluated with

1 e? e? ega
Sefs = /\/E[gw(AQ O - —Zphp|.

™

A formal calculation of the resulting Gaussian integrals yield

(1/)TP+1/)> _ %|n(7_)|2672772/e2V+27r/Vf\/ZJX efa(x)f2<l>x(z)
Y 2
exp [ K (o.0)] exp [t o).
where
1 1
K(z,y) = (ﬂm@ = m—%(Go(l‘,y) = G, (7,9)) (5.88)

and G,,, Gy are the massive and mass-less Green-functions.

Here we encounter ultra-violet divergences since Gy(z,y) is logarithmi-
cally divergent when z tends to y. To extract a finite answer we need to
renormalize the operator exp(a¢). This wave function renormalization is
equivalent to the renormalization of the fermion field in the Thirring model
and thus is very much expected [44, 15]. In order to do that we first de-
termine the short distance behavior of the mass-less Green function (5.31).
Using the identity

0

a5y

760 + ¢!

[E 10, 7)) = | €/ e (B )2
L

N|—= D=

_I_
_I_

AN

and the small z expansion
O1(z,7) = 2mn(7)3 2 + O(2?),

we see that Gy possesses the expected logarithmic short distance singularity

. Iy
Golw.y) = —3-log P55 — o (4w mln(n)[) + 0€). (5.89)

From the relation (5.33) between the full and hatted Green function and
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the definition of x in (5.28) it follows that Gy possesses the short distance
expansion

Golz.9) ~ Golar) + 2x(2) ~ 3 [ Vix+0(0

To continue we need to regularize the composite operator exp(a¢) ap-
pearing in (5.86). The normal ordering prescription

(@)

. a(z)
ie = (ead’(ff))'

(5.90)

works well on the whole plane [44, 15]. On the curved torus we must be
more careful when renormalizing this operator. The required wave function
renormalization is not unique but it is very much restricted by the following
requirements: First we take as reference system (the denominator in 5.90)
one with a minimal number of dynamical degrees of freedom since we do not
want to loose information by our regularization. Second, the renormalized
operator should have a well-defined infinite volume limit and its expectation
values should cluster. Finally, the regularization should respect general co-
variance. These requirements then force us to take as reference system the
infinite plane with metric g,,,. The flat metric d,, is not permitted since it
leads to a ill-defined expression for (exp(a¢)). With these choice the normal
ordering in (5.90) is equivalent to replacing the mass-less Green function in
(5.87) by

1
G (z,y) := Go(z,y) + e log [1?s*(x,y)]. (5.91)
Here s(z,y) denotes the geodesic distance between z and y. The occurrence
of the arbitrary mass scale y comes from the ambiguities in the required
ultra-violet regularization. On the flat torus G;* has now the finite coinci-
dence limit

. 1 4 2 4
Ggeg(x,x) _ log( 4 To|77(T)| )

- _E ,U«2V (592)

To determine the chiral condensate we also need to determine K (z,y) on the
diagonal. In a first step we shall obtain it for the flat torus. Its o-dependence
is then determined in a second step. For 0 =0 and 7 =17y the Green function
K has been computed in [41]. The generalization to arbitrary 7 is found to
be
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- 1 TTHq 1
2 0
miK(x,z) = — coth (—=%-) + =
( ) 2m., Ly ( |7'|2 ) m?YV (5.93)

)+ F(L,7) = H(L,7)),

1 -1
— (=1 -
+ 27r( og |n(—
where we introduced the dimensionless constant a = Lm.,|7|/2m and the

functions

1 1
F(L = R s
tn) = Y- g
o ) X . ) (5.94)
( 77') = n2>0 m [672772'24_(77,) -1 + e2miz—(n) _ 1]'

We used the abbreviations
1
zZy = W(nn +impVn? + a?). (5.95)

Substituting (5.93) and (5.92) into (5.87) with =0 we obtain the following
exact formula for the chiral condensate on the torus with flat metric g, :

2
1 my LT\ 2= m2m Lm. Ty
TP L o= = () 27y Y th Y
m?2 '

exp [77 (F(L,T) - H(L,T))],

where we used that on the flat torus y =0 and V = V. Furthermore, we
identified p with the natural mass scale m.,, of the theory.

To study the finite temperature behavior of the chiral condensate we
must assume that 7 =48/L and then § =1/T is just the inverse temper-
ature. Furthermore we perform the thermodynamic limit . — oo. Then
coth(...) = 1, H — 0 and the expression for the chiral condensate simpli-
fies to

2
92 2
P _ Tmy 2w
) 2exp[ e? T+27r-l—g%F]

My
27T

(W' Py = =7 ( (5.97)

Let us now investigate the low and high temperature limits in turn. To
study the low temperature limit we use that

a 1
F(ﬁ)—m/-l-logg-l-% for a — oo,

where v = 0.57721... is the Euler number. Inserting this expansion into
(5.97) yields

156



Moy 02 /(27402 2
<¢TP+1/;> = —4—7: 995 /(27 +93) exp (271' g 7) for T — 0. (5.98)

For temperatures large compared to the induced photon mass F' vanishes.
Thus we obtain the high temperature behavior

2

_93 2
(TP ) = —T(;—;) T4 exp ( - W@T”T) for T —oo  (5.99)

It is instructive to discuss the various limiting cases. For all g; =0, i.e. the
Schwinger model limit, the exact result (5.97) simplifies to

— I T+F(B — el T—0
WPy = —Te mt TTH { et o, (5:100)

where now m% = ¢%/r is the induced photon mass in the Schwinger model.

This formula for the temperature dependence of the chiral condensate in
QED; agrees with the earlier results in [41].

Next we wish to investigate how the self-interaction of the fermions affect
the breaking. For large coupling ¢g» and fixed temperature the exponent in
(5.97) vanishes so that

1
W Ppyp ~ ——— for T fixed, gy — 0.

\/ 27 + g3

Hence, for very large current-current coupling the chiral condensate vanishes.
Or in other words, the electromagnetic interaction which is responsible for
the chiral condensate, is shielded by the pseudoscalar-fermion interaction.
For intermediate temperature and coupling go we must retreat to numer-
ical evaluations of the sums defining the chiral condensate in (5.97). The
numerical results are depicted in figure 1.

The study of the influence of the gravitational field is complicated by the
presence of the massive Green function G, in (5.87,5.88). This Green func-
tion is known only for very particular curved spaces. Fortunately we only
need the coincidence limit for which we can use its short distance expansion
[37]. For simplicity we assume infinite volume and zero temperature. Then

[13]
RS 9 \i g
Gm(xay) ~ Eza]‘(zay)(_ amg) HO (ms)a (5.101)
Jj=0

for small geodesic distances s=s(x,y). Here HSQ) denotes the Hankel func-
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tion of the second kind and order zero. In particular

z

2
Hi? (2) — —[log -

+~] for z—0.

Inserting that into (5.101) we find with Go = Gy from (5.89) the following
short distance expansion

27T|77(T)|2) B ]
myLef’(‘L’)

1 & 0 .
+ E;aj(x)(—w)]log(nﬁ).

Go(z,y) — Gm(z,y) ~ - % [log (

(5.102)

We have used that ag(z)=1 and s ~ ()3, where § is the geodesic distance
on the flat spacetime with hatted metric, §? = g, (z—y)*(z—y)”. Finally,
substituting (5.102) into (5.87) we end up with

1, m™n 2 s (j — 1)'
(W' Pr)y = (T PLp) g - exp [ —5(=, *) ;aj(l’)w]-
The Seeley-deWitt coefficients a; have been computed up to j=5 [26]. They
are of order j in the curvature and its derivatives. The first two are

1
ap(z) =1 and a(z) = ER
For R << m? and slowly varying R we conclude that the chiral condensate
decreases with increasing curvature as

2

(W' P+y)) ~ exp[ = = R].

If we compare this with the temperature dependence (5.99) we are lead to
define a curvature induced effective temperature
R
Teff — .
12m,,

For this identification of curvature with temperature no horizon is needed as
in black hole physics where the temperature is related to the surface gravity
at the horizon. Note that contrary to the temperature the curvature may
become negative. Then the condensate is amplified and the identification of
R with T is only a formal one.

Finally we consider the chiral two point function for non-coinciding points.
The gauge invariant form reads
eie f; Apdxt

Si(z,y) = ($'(2) Pyy(y))-
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It is related to a bound state between a static external charge and a dynam-
ical fermion [20].

The integration over the various fields is similar as in the calculation of the
condensate. The result takes a simple form in the infinite volume and zero
temperature limit:

S4(0,9) = $:(2) 15 ) F exp [ ("N (K (1) + K (3,))]
_ T3 91 g
exp (575 + 5)Go(e,y) = (Golao) + Goly )], (5109

where S, (z) = S,(z,z) = (¢'(x)y(z)) denotes the chiral condensate.
Again the mass-less propagator must be regularized. We do this using the
prescription (5.91). Then

L . ex lm:”QGnH z,y) + Gm, (y, x
Si(z,y) = S+(2)154(y)1 p[Q( )2( ) (Z ))]'

2 1 g
VETm I (g(x)5g(y)4) 7>
Note that the coupling strength g; to the longitudinal current enters the

scaling exponent. On flat space G, reduces to %Kg(mé) which decays
exponentially for large separations. Hence we find

~ 1

N S . (x)2

St(z,y) ~ % (5.104)
V2713 (my§)in

for large separations of x and y. We have used that the chiral condensate
Si(z) in (5.98) is constant, due to translational invariance. For g; =0 this
simplifies to the Schwinger model result [41]

. m~eY 1
Sz, y) ~ ] —2 .
+(z,y) 2 2n [z —y|

Unlike the correlators of fields which in the bosonised version are local in the
massive boson field, this two-point function does not decay exponentially.
However the long range correlations are suppressed by the coupling to the
longitudinal current.

5.4 The un-gauged sector

5.4.1 Thermodynamics

In this section we derive the grand canonical potential, equation of state
and ground state energy for A, =0. For the un-gauged model there is no
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Gauss constraint and the charge of the vacuum need not vanish. Indeed, for
A, =0 the partition function depends on the chemical potential and on the
fermionic boundary conditions. Technically this is due to the absence of the
toron integration which for the gauged model wiped out any dependence on
1, and 5.

The partition function of the un-gauged model is given by

7= / LhDDA Zpln=ij=A=0] ¢ SBA=0], (5.105)

where Zp is the fermionic generating functional (5.59) and Sp the bosonic
action (5.61). The integration over the harmonic fields is Gaussian and
yields

€o

7d2h®[_01]®[_01]6(2ﬂ)2\/§gwhuhv = 9[:2](/\)

o 4y /1 + g2 /2m

where

@[u](A) = Z i (n+u) A(n+u)+2mi(n+u)w

z, (5.106)

is the theta function with characteristics
1 .y 1 .y
u=- (1) (1 +in"py) and w= (_1) (o0 +ing’ By — o) (5.107)

and covariance

T 0 . TgETo < gt —4r — g%)
A= .
(0 —T> oy g8 \ —4r — g3 9% (5.108)

The remaining functional integrals in (5.105) are performed as in the cal-
culation of the condensate. To obtain the partition function of the Thirring
model in the limit g; =g we divide Z by the corresponding partition function
Ny of the free bosons (see 5.78). Using (5.70) and (5.59) we obtain

é ! 21+ 95 [ (1/247+¢2)S
N C) A T+93)5L
No IH(T)IQ\/E [w]( Je : (5.109)

In the Thirring model limit g» = go and the square-root in this formula
disappears.

160



Zero-temperature limit: To investigate the thermodynamics of the model
we assume spacetime to be flat and that 7=14¢3/L. Then

1 1 A
= — Og _

B " No
is the grand canonical potential. Let us now investigate the low temperature
limit of 2. For ;=0 this yields the ground state energy.

To study this limit we observe that for 7=143/L the covariance matrix A in
(5.108) simplifies to

. B g 1 ( 9 —4m — g%)
A=——|Id+
o L [ * 4 27 + g2 \ —4m — g2 g8 ] (5.110)

Q

and has eigenvalues

7321 + g3 w3 2w
T e M T T Dt 2 (5.111)
with corresponding eigenvectors
vy =(—1,1) and wvy = (1,1). (5.112)

Also the n tensor (see 5.43) and g (see 5.36) in (5.107) simplify to

v 0 L B
K :<—L/5 % ) and o = gt

Now we can determine the low temperature limit of the grand potential from
(5.109) (with Sz, =0) and (5.110-5.112]. For that we note that the saddle
point approximation to the Gaussian sum (5.106) defining the theta-function
becomes exact when 8 — co. Also, using that

w3

log |n(7)]>? — “oL for B — oo
we end up with
s dr T wL o
Q — = —-—— - — -
(b= =~ “ @M T 50
T . 12r+g3 4 uL o
+2L min [ o {ng —nq 27+ g2 (B1 + 271_)} (5.113)
27 2
-2
+27r+g§{n1 + n2 o} ]

for the zero-temperature grand potential of the un-gauged model. The chem-
ical potential and chiral twist enter only through the combination S1+uL /2.
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Up to the second term the potential is invariant under

uL
2w

uL

1+ ¢2/2m.
27T+ +go/7T

ap —ar+1 and [+ — B +

Let us now discuss the potential in the various limiting cases.

No chiral twist, §; =0, and vanishing chemical potential: Then
Q(B — o0) coincides with the ground state energy. The minimum in (5.113)
is attained for n; =no= [%—i—al] and we find

Eoy(L, ar, pr=0) = _61L+2%2:Tﬂgg(al - [%+a1])2- (5.114)
Only for anti-periodic boundary conditions, that is for a; = 0, does this
Casimir energy coincide with the corresponding result for free fermions. For
g8 > 4m the Casimir force is always attractive whereas for g3 < 4 it can
be attractive or repulsive, depending on the value of aq. The result (5.114)
is in agreement with the literature [16]. For example, it coincides with De
Vegas and Destri’s result if we make the identification wpp, = 2ma; and
1/Bpp=1+ g3 /27 in formula (42) of that paper.

Small twists and chemical potential: For small 8; and y the min-
imum is assumed for n; =0 and the potential simplifies to

™ 2r 2w 9

Q SRS . -
B = Tarr g™

and does not dependent on the chemical potential.
For vanishing go, that is for free fermions, the minimum of (5.113) is attained
for
1 wL 1 wL
=[= _B - == d == Lt
ni [2 +ar =B 27r] and ng [2 +oa1 + B+ 27T]a

where [z] denotes the biggest integer which is smaller or equal to z. This
then leads to the following zero temperature potential

T 27 uL o
Q= - — - — L
6z LT o)
T wL 1 uL. o
+ L{oq ,61 o [2 + (03] ,61 271']} (5.115)
T wL 1 uL. o
+ L{Otl—i-ﬂl-i-27r [2+041+51+27T]}-

For p = 1 = 0 this reduces to the Casimir energy for free fermions with
left-right symmetric twists and agrees with the results in [32].
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Note, however, that for 5, #0 we disagree with [16]. The difference is due
to the second term on the right in (5.113). Let us give two arguments in
favor of our result:

The discrepancy arises from the prefactor appearing in the fermionic deter-
minant (5.46). As discussed earlier this prefactor implies the breakdown of
holomorphic factorization, a property which has been presupposed in [16].
One can show that our results can be reproduced by starting with massive
fermions and taking the limit m — 0.

The second argument goes as follows: Suppose that 5, = @3 = 0. Then
(5.115) simplifies to

T 2 uL. .o 2w uL 1 wuL. o

Q(B — o0) __6_L_f(§) +f(§—[§+§]) : (5.116)
For mass-less fermions the fermi energy is just p and at T'=0 all electron
states with energies less then p and all positron states with energies less then
—u are filled. The other states are empty. Since d2/dp is the expectation
value of the electric charge in the presence of u we see that it must jump
if p crosses an eigenvalue of the first quantized Dirac Hamiltonian h. For
vanishing twists the eigenvalues of h are just E, =(n — %)71'/ L. Indeed, from
(5.116) one finds that the electric charge

dQ2 1 L
=@=2[§+g—w]=2n for F, <pu< B,

(@)
jumps at these values for p. Further observe, that in the thermodynamic
limit L — oo the density

Q 2 p?

_>_ —_
L 21 + g3 27’

reduces for go=0 to the standard result for free electrons.

Equation of state: We wish to derive the equation of state for finite T'
in the infinite volume limit L — co. This may be achieved by interchanging
the roles played by L and . More precisely, using that

of )= \Jdet(iA-1) > o[ "]

we find in analogy with the low temperature limit that for L — oo the
pressure is given by
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Z T 2m2m+ g3

1
= lim —log— = — 2
fp = Jlim Tlog 3m =45 T 5 2 1
T . 27r-|-g§ 2
- %félznz[ o {n1 +n2+ 26} (5.117)
2m PR 2
_ 2 2_
27r—|—g§{n2 TL1+ Olg-l- 2271- ]

Here the minimum of the real part has to be taken. Again the minimiza-
tion arises from the saddle point approximation to the theta function which
becomes exact when L — oco. For small twists the minimum is assumed for
n; =0 and then

T  2m 2w B

_ e e _2
~ 68 B 27r+g§(o‘°+Z )

Bp =

becomes independent on the chiral twist 8y. As we have interchanged the
roles of the temporal and spatial twists this is consistent with the earlier
result that for small twists € is independent of 3,. In particular, for o; =0,
we are lead to the following equation of state

s w2

p(B, 1, g =0) = 652 + omon t g2

which for small By relates the pressure to the chemical potential and tem-
perature. This result is consistent with the renormalization of the electric
charge which is conjugate to the chemical potential. It shows in particular
that the thermodynamic behavior of the Thirring model is not just the one
of free fermions as has been claimed in [50]. Indeed, the zero point pressure
is multiplied by a factor 2w/(27 + ¢3). This modification arises from the
coupling of the current to the harmonic fields. It can not be seen if only the
local part of the auxiliary field is considered, which is the case if one quan-
tizes the model on the infinite Euclidean space. Furthermore, we see that
the ’pressure’ p is real only for oy =0. This phenomenon occurs also in the
Hamiltonian formalism [38]. However, finite temperature physics dictates
anti-periodic boundary conditions, i.e oy =0, and then p becomes real.

5.4.2 Conformal structure

When we discussed the properties of the classical model (5.1) we have noticed
that for A, = 0 it reduces to a conformal field theory on flat Minkowski
spacetime. We have found the results listed at the end of section 2.

We determine the quantum corrections to these classical results. As in
the previous sections we do that within the Euclidean functional approach.
Thus we start from first principles and need not postulate the emerging
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Kac-Moody and Virasoro algebras in advance [30, 22]. When comparing the
classical with the quantum results one should keep in mind that roles of ]
and 1! are interchanged when one switches from Minkowski to Euclidean
spacetime. For further changes the reader is referred to appendix A.

In what follows it is convenient to exploit the holomorphic structure of
the model. On the torus with flat metric g,,, the Cauchy-Riemann equations
read

(" 0y —i0u) f = 0. (5.118)

Then one chooses coordinates z'¢ = e”, z# and the corresponding complex
coordinates = =2/ +iz'" such that (5.118) takes the standard form. More
explicitly we chose

- 0 . 1 1

x =147z’ +izr' sothat 0, = —(0p — TOp).
2’7’0

In this section z and = always denote the complex coordinates belonging
to z*. In these coordinates the free Dirac operator and the corresponding
Green function are simple

o0 O a By L 0 1/¢

i _2Z<3§- 0) and S(z%y") = 57 <1/f 0 >+O(1),
where ¢ =z—y. The chiral components of the energy momentum tensor and
current are then given by

dé 1
RV pwr and  j, = —(15° — §1).

T = (T +T") = 5,70 2i

21
Using that the energy momentum tensor is conserved and traceless and that
the vector and axial-vector currents are conserved it is easy to check that
these chiral components only depend on x and not on Z.

Virasoro and Kac-Moody algebras First we determine the central
charge from the short distance expansion of the T, correlators. As in the
classical theory (see (5.12)) the symmetric energy momentum tensor mea-
sures the change of the effective action I' = log Z under arbitrary variations
of the metric. For the torus there are two independent contributions. One
being due to variations of the modular parameter 7 and its conjugate 7
which depend implicitly on the metric. The other is due to the variations
of terms which depend explicitly on the metric. Since the chiral component
Ty is gotten by contracting T with dg,, /d7 it follows that

<Txx> =

iTo (18 g, 9

0 (L2 — % g, 7] = 8,T[qg, 7,7
o 257 T gt T 77 = el
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It is always understood when doing metric variations, that we take the flat
spacetime limit afterward. The 7 variation is constant and may be skipped
in the short distance expansion.

Taking several metric variations of the curvature dependent part of log 7
with Z from (5.109), (5.78) and (5.73) we find the following short distance
expansions for the three point correlation function

3 + 247g3 1

(2m)%  (u—v)?(u—2)*(v - 2)*
Comparing with the general expression [22] we read off the central charge
and the conformal weight of the energy momentum tensor

(Tuu Tvv Tzz) ~ -

c=3+24g37r and hp, = 2. (5.119)

The first contribution is that of three free fields. The g;—dependent term
we have already met in our classical analysis and comes from the coupling
to the background curvature. It is well known from the minimal conformal
series. Note that the couplings g1 and g do not affect the central charge.
In particular, if we subtract the central charge of the auxiliary fields and set
g3 =0 then c is the same as for the Thirring model, namely c¢=1 [22].

Next we determine the Kac-Moody algebra of the U(1) currents. To de-
rive the correlation functions with current insertions we couple the fermions
to a gauge field, that is consider the 'gauged’ model without Maxwell term.
For example,

1 62T'[g, A]
e2y/g(z*)g(y?) 0 A, (2)0 A, (yP)

<j*(z%) " (y°) > = | A=o0-

Using (5.72) on flat spacetime and without Maxwell term, together with
2m 1

is the transversal part of A,, one obtains the following short distance ex-
pansion

o =mn,A,, where Al =A,— VYA,

11 |
2m 21 + g5 (v —y)?

We read off the value k of the central extension in the U(1)-Kac-Moody
algebra to be

(]z Jy) ~

2T

k= It g (5.120)

Finally we need to determine the conformal weight of the current. From
1 1 1
472 21t + g2 (z — 2)2(y — 2)?

(]x jy Tzz> ~
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we obtain h; = 1. To summarize, the symmetry algebra is the semi-direct
product of a Virasoro algebra with central charge (5.119) and a U(1) Kac-
Moody current algebra with central extension (5.120).

Conformal weights: To unravel the possible representations of the Vira-
soro algebra realized in the model we must determine the conformal weights
of the fundamental fields. The short distance expansions of the fermionic
two-point function with T,, follows from the metric variation of the Green
function

(tho(x) Y1 (y)) = Sij(z,y) - expligigso(z) + aGr(z,z)] — [z — y] — 2aG(z,y)

where

1( 5 2mg3 )_

“T gl_27r+g%

and S;; is the fermionic Green function in the external gravitational field
and harmonic gauge field but with ¢ and A set to zero. More precisely,

(o) 91 (9) Tz) = 02 (Z05n() 91 0))-

However, since Z ~ exp[F(R?)], its metric variation vanishes after the flat
spacetime limit has been taken. We refer to appendix B for the variation of
Si; and G(z,y). Collecting the most singular terms, we arrive at

11 1 1 1
T P — _
@) W) Te) ~ 5ol emm e e~ =y
z—y (z—2)*2 (2—y)? 271 z—x z-y '
Using that
BIBZQG(I,y) S 620;G(x,y) — _g# 620;G(x,y)
Y 2nz —y ’

we find that the 2-point function varies under a infinitesimal conformal trans-
formation, parametrized by f(z), as

= a1 (@) 91 0) Ter) = {$@02 + F0)0,

1 «

504 o))+ @]~ L2 (@) ~ £ )]} Wolahil(w)).

Note that the exponential factor has been absorbed to recover the correlation
function (1o(z)1!(y)). The short distance expansion with T35 is calculated
similarly. Then one reads off the conformal weights
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1 1 1 2ng? 19195
h — - -2 - 2 _
Yo 2 T T6x% T Teron g2 2
hyp = (o)’ (5.122)
- 1 1 2mg? j
hiw = 10— ey = A0

167 167 21 + g2 2

Thus we have reproduced the classical results supplemented by additional
¢, and g, dependent quantum corrections. In the Thirring model limit g; =0
and g, =g, =g, these terms add up to give the known anomalous dimension
appearing in the Thirring model [22]. The last classical term is a peculiar
feature of the solution. For the conformal weight to be real we are obliged
to choose g; imaginary.

Let us now turn to the auziliary fields. 1t is straightforward to compute
the correlators

1 1

TN ~ —gi——
Ao Tzz) 471'93(:6—z)2

1 1

Az AT ~ =

(e y ) 3212 (z — 2)(y — 2) (5.123)
1 1

T. -_—
(bo by Tez) 167 (z — 2)(y — 2)
We see that the classical results are unchanged, that is for g; 20 the scalar
field A is not primary and for g, =0 we find the conformal weights hy=hgy=
0.

Finally we turn to vertex operators or exponentials of the auxiliary fields.
In contrast to A and ¢ those are well defined even on the extended plane.
Recalling the regularization prescription (5.91) we find

(: e @) ¢ ; e20) . T ) o~ ! L [ o + a2y]2

N R A CEe Y
( 6a1¢>(z) . 6a2¢>(y) :>
and hence
1
A /C f2)(: e16(x) .. La20(y) L T,,) ~ [f(x)ax + F )9,
1 2 g1 2 pt a1 p(x) a26(y) (5125)
_W(alf (11:) + OéQf (y))] (: e e :> ]
2

From this we read off the conformal weights of the vertex operators
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Note that a; must be imaginary to get a positive weight. A similar analysis
for the A-field yields

2 [ I e 0 ) 100, + )0,
o

Qo (5.127)
(S o) (2) — (G2 ga) ()] (€N s e
and hence
1 o
hi = —5ai (é +93) - (5.128)

Here both «; and g3 must be imaginary for the weights to be positive.
Note that contrary to A the fields : €**(®) : remain primary when the AR
coupling is switched on. This coupling results only in a shift of the conformal
weights.

U(1)-charges: To see how the left and right Kac Moody currents act on
the fermionic fields we notice that after the integration over the auxiliary
fields the A-dependence of the fermionic Green function factorizes as

(o(z)l (y))a = o3y [ 0B¢ | p—eg(x) (o (2)9h! (y)) ao €T,

where

2

g9(r) = —ia(z) + ysB¢(), B = r—l—g%

Also, using that on flat spacetime

b(z) = —i / 0,G(z,2)A* +i / 0:G(z, 2) A®

olz) = / 0,G(z,2) A" + / -Gz, 2) A, (5:129)
one ends up with
b1 = 0 [ L L))
el )lizh = 1 [5-2 S Ll )

and thus obtains the following the U(1) charges
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27 ) N _1(1 27
or+g2) 0 T T2V T o2

1
Gy = 5(1+ )- (5.130)
We have used the convention where the electric charge g+¢ is unity. In the
Thirring model limit we can compare (5.130) with the results obtained in
[22]. For that we need to rescale the currents such that the central extension
(5.120) of the Kac-Moody algebra becomes unity

Je =14+ 9¢2/2m j, .

Now it is easy to see that we agree with [22] if we make the identification

g2 1

Jon = E\/l—i—gg/%r )

To summarize, what we have found is that the classical conformal and axial
transformations of all fields besides ¢ and A are deformed. The longitudinal
part of the current-current interaction in (5.1) changes the conformal weights
of the fermion field only. The transversal part affects all weights and U(1)-
charges. The background charge changes the conformal weight of the vertex
operators belonging to the scalar field.

Of course, the same structure is found in the other chiral sector.

5.4.3 Finite size effects

When quantizing a conformal field theory on a spacetime with finite volume
one introduces a length scale. The presence of this length scale in turn breaks
the conformal invariance and gives rise to finite size effects. It has been
conjectured [12] that the finite size effects are proportional to the central
charge. For example when one stretches space time, ¢ — ax®, then the
change of the effective action is proportional to c:

C
Lop — Tz = _Eloga'Xa (5.131)

where x is the Euler number of the Euclidean space time. In [17] this
conjecture has been proven for a class of conformal field theories on spaces
with boundaries. The only important assumption has been that the regu-
larization respects general covariance. In this subsection we shall show that
the conjecture does not hold for the model (5.1) on Riemannian surfaces.

Unfortunately, the only global conformal transformations on the torus
are translations which do not give rise to finite size effects. Also, the Euler
number vanishes and according to (5.131) the finite size effects are insensitive
to the value of c. For that reason we quantize the ungauged model (5.1) on
the sphere where the global conformal group is the Moebius group.
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An effective method to compute finite size effects has been developed in
[17]. Tt is based on the following observation: Any conformal transformation
z — w(z) is a composition of a diffeomorphism (defined by the same w) and
a compensating Weyl transformation g,, — e2f’gm, with

20 _ dw(z) dw(z)

e’ = , z=z° + izt

dz dz

Therefore, choosing a diffeomorphism invariant regularization one has
0=10Tpiff = 0Tconf — T wey-

Now we apply the techniques of the previous sections to derive the change
0lwey of the effective action on the sphere under Weyl transformations.
This change is given by the trace anomaly.

The change of the effective action under Weyl rescaling is

Ol wey = —log JD(A¢) det(i{D) exp(—Sp[A =0,g]) |

J D(A¢) det(ip) exp(—SB[A = 0,7])

where Sp is the bosonic action (5.61) with vanishing gauge field. Also, since
on the sphere there are no harmonic vector fields the term ~ A2 in Sp is
not present. Thus the calculation on the sphere is actually simpler as on
the torus (see 5.105) since there is no integration over the harmonic fields.
As on the torus we must impose the conditions (5.64) in order to eliminate
the additional degrees of freedom we introduced in the derivative coupling
representation. Thus we obtain

det’ A
det’ A’

St
247

_ 1% g§ 1
O Wwey = log v + +Z /RZR + log (5.132)

Here we used that (5.55) in the trivial sector still holds on the sphere. Also
we used the scaling law (5.70). Sz, is the Liouville action (5.56) in which we
can not put R to zero, since

/\/§R=87r=47rx

for any curvature and thus in particular for R. As for the fermions (see
5.51) one introduces the 1-parametric family of Laplacians

AT — 67270A

interpolating between A and A. The 7 derivative of the corresponding
determinant is given by the trace anomaly [39, 17]. The explicit calculation
yields
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A ! 1 T T
logdet'Z = 2/0 dT/\/g_T( mrL P )0, (5.133)

Again ¢" is the determinant and a] = %RT the relevant Seeley-deWitt co-
efficient of the deformed metric g, = 62”@“,. P7 is the projection onto

the zero-mode of A7. Using that the normalized zeromode is constant and
~ 1/v/V7, one finds

A
log det'z = log “j + —SL

The ~ log V' chancel against the same term in (5.132) and we end up with

2
_%/@R R————/\/_ ir Vioho  (5.134)

which depends only on g;. Now we can see why the finite size conjecture
generally fails to be true, although it holds for theories without background
charge on domains with boundaries [17]. Take the simple case of a dilatation
w(z) = az. Then, the conformal angle is a constant ¢ =loga and (R —
87 /V)=0. Then the first term in (5.134) vanishes and the finite size effect
does not depend on ¢2. It is given by

5I‘:——loga/\/_R— loga

and does not agrees with (5.131) since ¢ in (5.119) depends on g3. Thus
we have disproved the conjecture. On other Riemannian surfaces one would
find the same result: the effective action scales as in (5.119) where ¢ is the
central charge of the model without background charge. It is evident that
the finite size scaling comes from the middle term ~ loga [ /§R in (5.134).

It is interesting to compare the finite size scaling on Riemannian surfaces
with the one on domains with boundaries. In the presence of boundaries
(5.133) is modified to

A
log det! = = —~ /\/_al o +f\/_b7 (5.135)

where the second integral is over the boundary of spacetime and gl“,Athe
induced metric on this boundary. On a domain we can always put R to
zero and the middle term in (5.135) does not contribute to the scaling. The
scaling comes from the surface term in (5.135). Diffeomorphism invariance
implies that the bulk term determines the surface term (up to diffeomor-
phism invariant surface terms). This is how the central charge, defined by
the short distance expansion of the T, ,-correlators and thus by the bulk
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term, re-emerges in the scaling law (5.131), which is determined by the
surface term.
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Appendix A

Conventions

In this appendix we set up our notation and give a list of useful formulas.
Let g, be the metric of spacetime. The sign convention for the curvature
tensors is such that

In 2 dimensions the only independent component is Rg;,;. In order to couple
fermions to gravity we must introduce a local Lorentz frame (or tetrad), e,q,
relating the Lorentz and spacetime indices:

1 0
€aaeﬁa =Gap eaaeab =MNab > Tab = <0 _1) ' (A2)

The Latin and Greek indices are Lorentz and spacetime indices, respec-
tively. All physical laws should be general- and Lorentz covariant. If gugs
has Euclidean signature then 74, in (A.2) is changed to d4.

The ’curved’ gamma matrices are related to the flat ones as

7= eyt (A.3)

We us the following chiral representation for the flat v’s:

0 0 1 .l 0 -1
Y = 10 ) Y = 1 0 (A4:)
and in Euclidean spacetime we may choose
Ve =% o e = (A.5)

We may also define
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© a0 2021 10
The relations
N a b NP - a ~b 0 1
YuYs = €Y 5 VYEVs = TLEWY, where €4 = 1 0 (A?)

are particular to 2 dimensions and play an important role in this chapter.
Note that depending whether one is in Minkowskian or Euclidean spacetime
the Lorentz index a is raised with 9% or §%*. The curved space analogue of
(A.6) reads

Y5 = %nuu%‘mﬂ’} = %UWVZL’)’E =¥, (A.8)
where 7,, = v/|gle, is the antisymmetric tensor (whereas the flat metric
has Lorentz- indices, the antisymmetric tensor has space-time indices). To
implement local Lorentz invariance one needs to introduce a connection w;qp.
For example, in the Lagrangian the Lorentz-covariant derivative acting on
the spinors read

D, =0, +iwy, (A.9)

where the spin connection w), is defined by

D, = aueU“—I‘f;l,e/\“—i-wwbeyb =0,
1 b A R (A.10)
Wy = §wuab2a > Y = E[ﬁyaaﬂy ]
In 2 dimensions this reduces to
W, = 5 WuotYs or W, = 5Wpo175- (A.ll)
21 2
Finally we list some useful scaling relations. If the 2-bein scales as e,/ =e”¢ "

then the above introduced quantities scale as

quv = eQang s \/5 = 620\/5 , R= 6_20 (7%, — QAO')
Wyab = d}uab — 8a0éub + abaé#a, (A.12)

Ty, = f‘fj,j + (3,“753 + 0yo by, — Bgogﬁagw),
A=A | P+ig =e 3P +ig)ez”.

175



Appendix B

Variational formulas

Here we collect some useful variational formulas. In the following D/, denotes
the spacetime and Lorentz covariant derivative. How it acts on spacetime
and Lorentz tensors follows from the first formula in (A.10).

Using the definition of the Christoffel symbol and (A.2) it is straightforward
to show that

1
Ogur = 0e,eva + €' 0eva ,  0v/G = 53/99" Oy
1
oyt = _’Yueua(seua ) 677MU - i(nwjaglla o nMUngdggp) (B.1)

1
oT%, = igaﬂ (Dy6gp, + Dyudgs, — Dpdgu).

For some formulas related to the variation of the tetrad let us refer to [36]

1 1
det, = —eyadgh’ — tabe”b , de,t = Se" g — t“beﬂb
2 2
a ]' va v a (B-2)
where t% = 5(6 deyp — €de,?).
Then using (A.10) it is easy to see that
Swyap = D _ Lo o8 (D, D3é
Wuab = Dyplah — Opab  Qpab = 56 a€ b( a098, — B gap)- (B3)

When performing the variation of curvature dependent expressions we have
used the identities

g R = why , where w® = gl oIy, — g™ Ty,

(B.4)
and [ /Ggw*As = [ /G{g*PV, A" — VAP }5g,s .

Depending on the topology of spacetime, the induced curvature R appearing
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in (A.12) may be different from zero. In this case it is not possible to express
the conformal angle o in terms of the curvature scalar. Nevertheless, to
perform variations of o-dependent expressions, the identity

3(\/gR) = —20(,/gr0) (B.5)

proves to be useful.
Taking the variations of the equations

VIAG(z,y) = =6(z —y) and /gipS(z,y) = 8*(z —y) (B.6)

for the scalar and fermionic Green functions we may derive (up to contact
terms) the following variational formulas

0G = / g“”go‘ﬁ +9™9%) G (2, 1) 9 G (1, y) /969y
i
= 1 [ (25 u09# DS, ) ~ DalS (w0 10 S (0 )]) V56
here all arguments and derivatives which are not made explicit in the integral

refer to the coordinate u over which is integrated. Finally, we need the
following formula for the variation of the inverse Laplacian

(1) =z (- 00151) - g [ Vi snzs ma)

where V is the volume of spacetime and f an arbitrary function. To prove
this identity we note that for f € (KernA)* we have

1
AN—f=f.
~f =
Varying this equation yields

f

D> =

NG5 f)=5f ~ (34)

which may be inverted to give

5(%10) (6f—6( ) /fé( ) (B.8)

Varying the identity
1 1
v [ Vigs=o
allows to replace the last term of (B.8) to obtain the required result (B.7).
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