
Chapter 5

2-dimensional Gauge

Theories

The response of physi
al systems to a 
hange of external 
onditions is of

eminent importan
e in physi
s. In parti
ular the dependen
e of expe
tation

values on temperature, the parti
le density, the spa
e region, the imposed

boundary 
onditions or external �elds has been widely studied [18℄. De-

spite all these e�orts we are still unable to understand, for example, the

me
hanism leading to the spontaneous symmetry breaking of the SU

A

(N)

in low temperature QCD [43℄. Clearly su
h subtle e�e
ts require a bet-

ter understanding of the non-perturbative e�e
ts and in parti
ular non-

perturbative the va
uum se
tor of gauge theories. From our experien
e

with 2-dimensional gauge theories [41℄ whi
h we suppose to mimi
 one-


avor QCD [35℄, we are lead to believe that gauge �elds with windings are

responsible for the non-vanishing 
hiral 
ondensate and in parti
ular its tem-

perature dependen
e. A related problem is how quantum systems behave

in a hot and dense environment as it exists or existed in heavy ion 
ollision,

neutron stars or the early epo
hs of the universe [43℄.

On another front there has been mu
h e�ort to quantize self-intera
ting

�eld theories in a ba
kground gravitational �eld [5℄. For example, one is

interested whether a bla
k hole still emits thermal radiation when self-

intera
tion is in
luded. Due to general arguments by Gibbons and Perry

[25℄ this question is intimately 
onne
ted with universality of the se
ond

law of thermodynami
s.

Rather than seeking new partial results for more general and realisti
 4-

dimensional systems we have 
hosen an idealized 2-dimensional model with

self-intera
tion to investigate the questions mentioned and others. It is a
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theory 
ontaining photons

1

, 
harged mass-less fermions, s
alars and pseudo-

s
alars in intera
tion with themselves and a gravitational ba
kground �eld.

The model has the a
tion
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where F

��

is the ele
tromagneti
 �eld strength, the gamma-matri
es in


urved spa
e are related to the 
at ones as 
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�

is the generally and gauge 
ovariant derivative 
ontaining the U(1) gauge

potential and spin 
onne
tion, �

��

=

p

�g �

��

denotes the totally antisym-

metri
 tensor and R the Ri

i s
alar. The gravitational �eld g

��

(or rather

the 2-bein e

a

�

, sin
e the theory 
ontains fermions) is treated as 
lassi
al

ba
kground �eld, whereas the 'photons' A

�

, 'ele
trons'  , s
alars � and

pseudo-s
alars � are fully quantized. The 
lassi
al theory is invariant under

U(1) gauge- and axial transformations and 
orrespondingly possesses 
on-

served ve
tor and axial-ve
tor 
urrents. Despite its 
omplexity the general

model (5.1) is solvable for arbitrary 
lassi
al ba
kgrounds g

��

and allows for

an analyti
al treatment.

We have 
hosen this model sin
e it allows to address the above raised

questions and sin
e it relates to known soluble models for 
ertain values of

the 
oupling 
onstants. For example it 
ontains the gauged Thirring model,

the S
hwinger model in 
urved spa
e time and the minimal models in 
onfor-

mal �eld theory as parti
ular limits. For �nite volumes the theory possesses

instantons whi
h minimize the Eu
lidean a
tion in a given topologi
al se
-

tor. These instantons lead to a non-trivial va
uum stru
ture, i.e. to �-va
ua

[10℄, and to 
hirality violating amplitudes. For example, a non-zero 
hiral


ondensate develops whi
h vanishes exponentially for temperature and 
ur-

vature bigger than the indu
ed 'photon' massm

2




= e

2

=(�+

1

2

g

2

2

). This mass

is generated via the S
hwinger me
hanism and it the analog of m

2

�

0

in QCD

[23℄.

In two dimensions the ele
tri
 
harge e has the dimension of a mass.

The other 3 
ouplings are dimensionless. The physi
al role of the 
oupling


onstants is the following: The 
oupling of � to the transversal 
urrent

de
reases the e�e
tive ele
tromagneti
 intera
tion between fermions. For

example, the ele
tri
 
harge be
omes renormalized to

1

Although photons in 1+1 dimensions possess no transversal degrees of freedom we

still 
all them photons. However, through their intera
tion with 
harged fermions they

may be
ome dynami
al �elds as exempli�ed by the S
hwinger me
hanism.
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e

ren
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e
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1 + g
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=2�

(5.2)

the 
hiral 
ondensate de
reases as � (2�+g

2

2

)

�

1

2

. The mass in the bosonised

theory depends on g

2

.

For e = 0 all 
oupling 
onstants are dimensionless, the model has a

trivial va
uum stru
ture and be
omes 
onformally invariant. It possesses

the Virasoro algebra extended by left-right U(1) Ka
-Moody algebras as

symmetry algebra. The 
entral extensions, 
onformal weights and U(1)


harges all depend on g

2

. The 
oupling 
onstant g

3

ampli�es the Hawking

radiation whi
h remains thermal for the intera
ting model. It is (3+24�g

2

3

)

times as strong as that of a free mass-less s
alar �eld. The 
entral 
harge and


onformal weights depend also on g

3

. A
tually, the weights of the fermioni


�elds be
ome 
omplex for g

3

6=0. However, g

3

does not enter in the �nite size

e�e
ts. The 
oupling 
onstant g

1

to the longitudinal 
urrent weakens the

long range gauge invariant ele
tron-ele
tron 
orrelators in the one-instanton

se
tor (see 5.104). In the un-gauged se
tor it enters in expe
tation values

of lo
al operators and in parti
ular in the short distan
e expansions of the

fermioni
 �elds and energy momentum tensor. It does not in
uen
e the

thermodynami
s of the model.

Sin
e for parti
ular 
hoi
es of the 
oupling 
onstants the model redu
es

to well-known and well-studied exa
tly soluble models there are many ear-

lier works whi
h are related to ours. Some of them 
on
entrated more on

the gauge se
tor and investigated the renormalization of the ele
tri
 
harge

in the gauged Thirring model by the four-Fermi intera
tion [30℄ or the non-

trivial va
uum stru
ture in the S
hwinger model [41, 29℄. Others 
on
en-

trated on the un-gauged 
onformal se
tor. Freedman and Pil
h 
al
ulated

the partition fun
tion of the un-gauged Thirring model on arbitrary Rie-

mann surfa
es [21℄. We do not agree with their result and in parti
ular show

that there is no holomorphi
 fa
torization for general fermioni
 boundary


onditions. Also we deviate from Destri and deVega [16℄ whi
h investigated

the un-gauged model on the 
ylinder with twisted boundary 
onditions. We

shall 
omment on the dis
repan
ies in se
tions 5:2 and 5:4:1. Other papers

whi
h are relevant and are dealing with di�erent aspe
ts of 
ertain limiting


ases of (5.1) are [50℄, where the thermodynami
s of the Thirring model has

been studied or [5℄ in whi
h the Hawking radiation has been derived.

This 
hapter is organized as follows: In se
tion 5:1 we analyze the 
las-

si
al model to prepare the ground for the quantization. In parti
ular we

derive the general solution of the �eld equations, dis
uss the 
onservation

laws and investigate the limiting theories. By employing the graded stru
-

ture we derive the 
lassi
al Poisson (anti) 
ommutators of the fundamental

�elds with the energy momentum tensor. In the following se
tion we quan-
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tize the �nite temperature model. To avoid infrared problems we assume

spa
e to be �nite. Together with the �nite temperature boundary 
onditions

we are lead to 
onsidering the theory on the 2-dimensional Eu
lidean torus.

Due to the twists in the fermioni
 boundary 
onditions, the non-trivial va
-

uum stru
ture and the asso
iated instantons and fermioni
 zero-modes the

quantization is rather subtle. A
tually we show that some of the results in

the literature are in
orre
t. In subse
tion 5:2:1 the general results are ap-

plied to derive the partition fun
tion of the gauged model. Its dependen
e

on the spatial size, temperature and gravitational �eld is expli
itly found.

In subse
tion 5:2:2 we show that the gauged model on 
urved spa
etime 
an

be bosonised. It turns out that only the non-
onstant parts of the 
urrents


an be bosonised and that the well-known bosonization rules of the Thirring

model are modi�ed. In the following se
tion the 
hiral symmetry breaking is

studied. The exa
t form of the 
hiral 
ondensate is found. On the 
at torus

the formula simpli�es to (5.96). Various limits, e.g. L!1; T ! 0, T !1

or g

2

! 1 are investigated. By 
omparing the temperature and 
urvature

dependen
e of the 
ondensate we derive an e�e
tive 
urvature indu
ed tem-

perature. In se
tion 5:4:1 the thermodynami
s of the un-gauged model is

studied. We derive the ground state energy and its dependen
e on the 
ou-

pling 
onstants, size of the system and boundary 
onditions. We 
ompute

the equation of state and our result does not agree with [50℄. In subse
-

tion 5:4:2 we investigate the 
onformal se
tor of (5.1), that is the un-gauged

model in 
at spa
etime. Besides the Virasoro algebra the model 
ontains an

U(1) Ka
-Moody algebra. We 
al
ulate the important 
ommutators and in

parti
ular determine the 
onformal weights and U(1)-
harges of the funda-

mental �elds from �rst prin
iples. Also we show that the �nite size e�e
ts

are in general not proportional to the 
entral 
harge as has been 
onje
tured

by Cardy [12℄. The appendix A 
ontains our 
onventions and s
aling for-

mulas for the various geometri
al obje
ts. In appendix B we 
olle
ted some

useful variational formulas whi
h we have used in this 
hapter.

5.1 Classi
al theory

Equations of motion: The �eld equations of the model (5.1) are
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(5.3)

r

�

F

��

= e j

�

;

whi
h are the Dira
 equation for mass-less 
harged fermions propagating in

a 
urved spa
e-time and intera
ting with the s
alar and pseudos
alar-�elds,
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Klein Gordon type of equation and Maxwell equation. Here j

5�

is the axial

ve
tor 
urrent whi
h is de�ned by

j

5�

=

�

 


�




5

 =�

�

�

j

�

: (5.4)

When one de
omposes the gauge �eld as

A

�

= �

�

�� �

��

�

�

' so that F

01

=

p

�gr

2

';

(5.5)

and 
hooses isothermal 
oordinates for whi
h g

��

= e

2�

�

��

, then the gener-

alized Dira
 operator reads

D= = e

iF�i


5

G�
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�iF�i


5

G+

1
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�

; where

F = g

1

�+ e � , G = g

2

�+ e ' :

(5.6)

Hen
e, if  

0

(x) solves the free Dira
 equation in 
at Minkowski spa
e time,

then

 (x) � e

iF+i


5

G�

1

2
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0

(5.7)

solves the Dira
 equation of the intera
ting theory on 
urved spa
etime. The

ve
tor 
urrents are related as

j
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=

�
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The same relation holds for the axial ve
tor 
urrent. From

p

�gr

�

j

�

=

�

�

p

�gj

�

the 
onservation of the ve
tor and axial 
urrents follow at on
e,

r

�

j

�

= r

�

j

5�

= 0 ;

expressing the 
lassi
al U(1) � U

A

(1) invarian
e of the model. Using these


onservation laws in (5.1) we 
on
lude that

2r

2

� = �g

3

R and r

2

� = 0

(5.8)

or that there is no ba
k-rea
tion from fermions onto s
alars. Finally the


onservation laws imply that the 
urrents are free �elds

r

2

j

�

= r

2

j

5�

= 0 ;

(5.9)

whi
h is the reason whi
h a

ounts for the solubility of the model [33℄, even

in the presen
e of photons and an external gravitational �eld. As is well-

known, for any gauge invariant regularization the axial 
urrent possesses an

anomalous divergen
e in the quantized model and (5.9) is modi�ed. Thus

the normal U

A

(1) Ward identities in the un-gauged Thirring model [30℄

be
ome anomalous when the fermions 
ouple to a gauge �eld.
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Solution to the equations of motion: In isothermal 
oordinates the

general solution of the �eld equations 
an be expressed in terms of 6 
hiral

fun
tions as follows: Introdu
ing light 
one 
oordinates x

�

=x

0

�x

1

so that

ds

2

=e

2�

dx

+

dx

�

, the solutions of (5.8) read

� = g

3

� + �

+

(x

+

) + �

�

(x

�

); and � = �

+

(x

+

) + �

�

(x

�

) (5.10)

and depend on 4 
hiral fun
tions whi
h are �xed by the initial data on some

spa
e-like hypersurfa
e. The solutions of the free Dira
 equations depend

on 2 
hiral fun
tions as
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�

:

In these 
oordinate system the Maxwell equations (5.3) 
an easily be inte-

grated and one �nds

�

+

�

�

� = F

01

= 2e

2�

h

x

�

Z

 

y

�

(�) 

�

(�)d� �

x

+

Z

 

y

+

(�) 

+

(�)d�

i

:

(5.11)

To go further we must �x the gauge. Conveniently one 
hooses the Lorentz

gauge su
h that �=0 in (5.5) and thus � in (5.11) determines A

�

. We see

that in isothermal 
oordinates and this gauge the general solution of (5.3)

is given by (5.10), (5.11) and (5.7), that is in terms of 6 
hiral fun
tions.

Energy-momentum tensor: Besides the 
urrents the symmetri
 energy

momentum tensor of the matter �elds

T

��

� �

2

p

g

ÆS
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��

(5.12)

plays an important role in any theory in 
urved spa
e time. Applying the

variational identities in Appendix B one obtains after a lengthy but straight-

forward 
omputation
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where we have introdu
ed the symmetrization A

(�

B

�)

=

1

2

(A

�

B

�

+ A

�

B

�

).

The �rst two lines are just the energy momentum of the ele
tromagneti
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�eld, 
harged fermions and free neutral (pseudo-) s
alars. The terms 
on-

taining se
ond derivatives of � are the improvement terms [9℄ whi
h are

always present when one 
ouples s
alars non-minimally to a ba
kground 
ur-

vature. The remaining terms re
e
t the intera
tion between the fermioni


and auxiliary �elds.

On shell T

��

is 
onserved as required by general 
ovarian
e. Using the

�eld equations for  and � its tra
e reads

T

�

�

= g

2

3

R�

1

2

F

��

F

��

:

(5.14)

In parti
ular for g

3

=0 and A

�

=0 it vanishes, and the theory be
omes Weyl-

invariant. As a 
onsequen
e it redu
es to a 
onformal �eld theory in the 
at

spa
etime limit [22℄. It is remarkable that it 
an be made Weyl invariant

even when g

3

6=0. Indeed, without 
hanging the 
at spa
etime limit we may

add a nonlo
al Wess-Zumino-type term to the a
tion, namely
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(5.15)

The tra
e of the modi�ed energy momentum tensor is now zero, and for

g

��

!�

��

the Lagrangian 
orresponds to a 
onformal �eld theory in Minkowski

spa
etime.

Choosing the 
oupling 
onstants appropriately, the model redu
es to

various well known exa
tly solvable models:

� For g

3

=0 and g

2

1

=�g

2

2

=g

2

the fermioni
 se
tor redu
es to the gauged

version of the Thirring model [47℄ in 
urved spa
e time. To see that we

solve the Klein Gordon equations in (5.3) for the U(1) 
urrent whi
h

yields

j

�

= �

2

g

1

�

�
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�

�

�

�:

Inserting this into the Dira
 equation we �nd
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�

r

�

 �

g

2

2
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�

 = 0 ;
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whi
h is the �eld equation of the gauged Thirring model in 
urved

spa
etime with Lagrangian

L

Thir

[A

�

;

�

 ; ℄ =

�

 i


�

r
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 �

g
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4
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�
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4

F

��
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��

: (5.16)

If we further spe
ialize to g = 0 we re
over the S
hwinger model in


urved spa
etime [29℄.

� For the spe
ial 
hoi
e g

1

= g

2

= e = 0 and for vanishing gauge �eld

the �- dependent part of (5.1) is just the Lagrangian of s
alar �elds


oupled to a ba
kground 
harge and and for imaginary g

3

des
ribes

the minimal models of 
onformal �eld theory [4℄.

Hamiltonian formalism and 
lassi
al 
onformal stru
ture: In this

subse
tion we investigate the Hamiltonian stru
ture of the model (5.1) in

the 
onformal limit, i.e. in 
at Minkowski spa
e and for vanishing gauge

�eld. In the presen
e of both fermions and bosons it is 
onvenient to exploit

the graded Poisson stru
ture [11℄. We re
all, that the equal time Poisson

bra
kets are

fA(x); B(y)g �

X

O

Z
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1

�
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 �
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�

x

0
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0

:

The sum is over all fundamental �elds O(x) in the theory . The sign is minus

if one or both of the �elds A and B are bosoni
 (even) and it is plus if both

are fermioni
 (odd) �elds. The momentum densities �

O

(x) 
onjugate to the

O-�elds are given by fun
tional left-derivatives

�

O

(x) =

�!

Æ S

Æ�

0

O(x)

:

A simple 
al
ulation yields the following momenta
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�
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1

j
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0

�

whi
h form the fundamental Poisson bra
kets with the �elds
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y
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1
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(5.17)

For the Hamiltonian we obtain
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(5.18)

It 
an be 
he
ked that the 
orresponding Hamiltonian equations are just

the �eld equations (5.3) with 
at metri
 and vanishing gauge potential, as

required. Sin
e T

�

�

= 0 (see 5.14) the only non-zero 
omponents of T

��

are the light-
one 
omponents T

++

and T

��

. To 
ontinue it is 
onvenient

to introdu
e adapted light 
one 
oordinates x

�

= x

0

� x

1

and the 
hiral


omponents of the Dira
 spinor  

�
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simpli�es to

T

��

= �

1

2

(�

 

+

�

�

 

+

� �

�

�

 

+

 

+

) + 2(�

�

�)

2

+ 2(�

�

�)

2

+g

3

�

2

�

�+ i�

�

(g

1

�+ g

2

�)�

 

+

 

+

:

(5.19)

Using the equations of motion one shows expli
itly that it is a 
hiral �eld,

i.e. depends only on x

�

. With (5.19) we 
an now �nd the 
onformal weights

of the fundamental �elds whi
h determine their transformations under in-

�nitesimal 
onformal symmetry transformations. For that we must 
al
ulate

the 
ommutator of the symmetry generators T

f

=

R

dx

�

f(x

�

)T

��

with the

�elds. The result is

Æ

f

� = f�; T

f

g � f�

�

�

Æ

f

� = f�

�

��

g

3

2

�

�

f (5.20)

Æ

f

 

+

= f�

�

 

+

+

1

2

(1� ig

1

g

2

) 

+

�

�

f

Æ

f

 

y

+

= f�

�

 

y

+

+

1

2

(1 + ig

1

g

2

) 

y

+

�

�

f:

Whereas � and  

+

are primary �elds, � is not. A
tually, the non-primary


hara
ter of � is very mu
h linked with the g

3

-dependent term in the trans-

formation of the Dira
 �eld. To see that more 
learly we note that under an

in�nitesimal left 
onformal transformation generated by

�

T

f

=

R

dx

+

f(x

+

)T

++

the s
alar and fermi �eld transform as

�

Æ

f

� = f�

�

��

g

3

2

�

�

f and

�

Æ 

+

= f�

�

 

+

� ig

1

g

2

 

+

�

�

f:

Sin
e  

+

is not any longer a s
alar under left transformation the term

Z

dx

+

dx

�

�

2i 

y

+

(�

+

� ig

1

�

+

�) 

+

�
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appearing in the a
tion is only 
onformally invariant be
ause � transforms

inhomogenously like a spin 
onne
tion. It maybe surprising that the symme-

try transformations depend on the 
oupling 
onstant g

3

whi
h is not present

in the 
at spa
e time Lagrangian. A
tually, the same happened for the

gauged WZNWmodels 
onsidered in the previous. Indeed, the g

3

-dependent

term in the energy momentum tensor (5.19) 
ontains se
ond derivatives of

the �eld � and is the analog of the improvement term Tr HJ

0

in (4.59) in

the 
onstrained WZNW theory.

The 
urrent transforms as

Æ

f

j

=

f�

�

j

�

+ j

�

�

�

f

(5.21)

and the energy momentum tensor as

Æ

f

T

��

= f�

�

T

��

+ 2T

��

�

�

f � g

2

3

�

3

�

f:

(5.22)

Re
alling that a primary �eld O with weight h transforms as

Æ

f

O = fO;T

f

g = f�

�

O + hO�

�

f

and 
omparing with the above results we have found the following stru
ture:

� The pseudos
alar �eld � is primary with h

�

=0. The s
alar �eld � is

only primary for g

3

=0 in whi
h 
ase h

�

=0.

� The Dira
 �eld  

+

is primary with h

 

+

=

1

2

(1� ig

1

g

3

). The 
onformal

weight is real for imaginary g

3

.

� The 
urrent is primary with weight 1.

� Already on the 
lassi
al level the energy momentum tensor is only

quasi-primary. The 
orresponding Virasoro algebra (5.22) has 
entral


harge 
=24�g

2

3

.

In the following se
tions we are lead to 
onsider the Eu
lidean version of

the model. Then one must repla
e the Lorentzian 


�

; g

��

and !

�

by there

Eu
lidean 
ounterparts. For example, with our 
onventions (see appendix

A) the relation (5.4) be
omes

j

5�

= �i�

�

�

j

�

and as a 
onsequen
e the generalized Dira
 operator in Eu
lidean spa
etime

be
omes

D= = e

iF+


5

G�

3

2

�

�= � e

�iF+


5

G+

1

2

�

instead of (5.6). Also, to re
over the Eu
lidean Thirring model as parti
ular

limit of (5.1) we must set g

3

= 0 and g

2

1

=g

2

2

=g

2

.
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5.2 Quantization of the generalized gauged Thirring

model

In this se
tion we quantize the general model (5.1) in 
urved spa
e-times.

The results are then applied in the following se
tions, where we 
al
ulate

the partition fun
tion, ground state energy, equation of state and 
ertain


orrelators of interest and their dependen
e on the 
hemi
al potential, vol-

ume of spa
e, temperature and ba
kground metri
. To do that we 
ouple

the 
onserved U(1)-
harge to a 
hemi
al potential �. We en
lose the system

in a box with length L to avoid infrared divergen
es. To investigate the

temperature dependen
e the time is taken to be purely imaginary in the

fun
tional approa
h [19℄. The imaginary time x

0

varies then from zero to

the inverse temperature � and we must impose periodi
- and anti-periodi


boundary 
onditions for the bosoni
- and fermioni
 �elds, respe
tively. Thus

to study the �nite temperature model we must assume that spa
e-time is

an Eu
lidean torus [0; �℄ � [0; L℄.

To see how the partition fun
tion and 
orrelators depend on the gravi-

tational �eld we assume that the torus is equipped with an arbitrary metri


with Eu
lidean signature or equivalently with a 2-bein e

�a

. The 
urved

gamma matri
es are 


�

= e

�a


̂

a

and in parti
ular 


5

= �

i

2

�

��




�




�

= �

3

is 
onstant (see appendix A for our 
onventions). We 
an always 
hoose

(quasi) isothermal 
oordinates and a Lorentz frame su
h that

e

�a

= e

�

ê

�a

� e

�

�

�

0

�

1

0 1

�

g

��

= e

2�

ĝ

��

� e

2�

�

j� j

2

�

1

�

1

1

�

(5.23)

where � = �

1

+ i�

0

is the Tei
hmueller parameter and � the gravitational

Liouville �eld. Spa
e-time is then a square of length L and has volumeV =

R

L

0

d

2

x

p

g. We allow for the general twisted boundary 
onditions for the

fermions

 (x

0

+ L; x

1

) = �e

2�i(�

0

+�

0




5

)

 (x

0

; x

1

)

 (x

0

; x

1

+ L) = �e

2�i(�

1

+�

1




5

)

 (x

0

; x

1

):

(5.24)

The parameters �

i

and �

i

represent ve
torial and 
hiral twists, respe
tively.

We 
ould allow for twisted boundary 
onditions for the (pseudo) s
alars as

well, e.g. �(x

0

+nL; x

1

+mL) = �(x

1

; x

0

) + 2�(m+n). However, to re
over

the Thirring model for 
ertain values of the 
ouplings we assume that these

�elds are periodi
. For � = 0, � = i�=L and �

0

= �

0

= 0 the partition

fun
tion has then the usual thermodynami
al interpretation. Its logarithm

is proportional to the free energy at temperature T =1=�.
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Fermioni
 path integral: Twisted boundary 
onditions as in (5.24) re-

quire some 
are in the fermioni
 path integral. Indeed the fermioni
 de-

terminant is not uniquely de�ned when one allows for su
h twists. The

ambiguities are not related to the unavoidable ultra-violet divergen
es but

to the transition from Minkowski- to Eu
lidean spa
e-time. To see that

more 
learly let S

�

denote the set of fermioni
 �elds in Minkowski spa
e-

time with 
hirality �1. Sin
e both the 
ommutation relations and the a
tion

do not 
onne
t S

+

and S

�

we 
an 
onsistently impose di�erent boundary


onditions on S

+

and S

�

. On the other hand, in the Eu
lidean path-integral

for the generating fun
tional

Z

F

[�; ��℄ =

Z

D 

y

D e

R

p

g  

y

iD= +

R

p

g (�� + 

y

�)

;

(5.25)

the Dira
 operator

D= =

�

0 D

�

D

+

0

�

ex
hanges the two 
hiral 
omponents of  , i.e. D= : S

�

! S

�

. Thus,

in 
ontrast to the situation in Minkowski spa
e the two 
hiral se
tors are

related in the a
tion. Of 
ourse, the eigenvalue problem for iD= is then

not well de�ned. This is the origin of the ambiguity in the de�nition of

the determinant. It is related to the ambiguities one en
ounters when one

quantizes 
hiral fermions [2℄. To solve this problem we shall analyti
ally


ontinue the well-de�ned determinants in the untwisted se
tor � = 0 to

� 6=0. The resulting determinants do not fa
torize into (anti-) holomorphi


pie
es and di�er from previous ones in the literature [21℄.

Let us now study the generating fun
tional for fermions in an external

gravitational and gauge �eld and 
oupled to the auxiliary �elds. For that

we observe that on the torus the de
omposition (5.4) of the gauge potential

generalizes to

A

�

= A

I

�

+

2�

L

t

�

+ �

�

�� �

��

�

�

';

(5.26)

where the last 3 terms are re
ognized as Hodge de
omposition of the single

valued part of A in a given topologi
al se
tor, that is the harmoni
-, exa
t-

and 
o-exa
t pie
es. In arbitrary 
oordinates the toron �eld t

�

obeys the

harmoniti
ity 
onditions r

�

t

�

= t

[�;�℄

=0. It follows then that in isothermal


oordinates t

�

must be 
onstant. The role of the toron �elds has re
ently

been emphasized within the 
anoni
al approa
h [34℄. In the Hamiltonian for-

mulation they are quantum me
hani
al degrees of freedom whi
h are needed

for an understanding of the infrared se
tor in gauge theories. Also, in [45℄ it

has been demonstrated that the Z

N

-phases of hot pure Yang-Mills theories
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[46℄ should 
orrespond to the same physi
al state if one takes 
are of the

toron �elds.

The �rst term in (5.26) is an instanton potential whi
h gives rise to a

non-vanishing quantized 
ux � or integer-valued instanton number k:

� = e

Z

F

01

� e

Z

E = e

Z

E

I

= 2� k:

As representative in the k-instanton se
tor we 
hoose the, up to gauge trans-

formations, unique absolute minimum of the Maxwell a
tion in (5.1). It has

�eld strength eE

I

=

p

g�=V . As instanton potential we 
hoose

eA

I

�

= e

^

A

I

�

� � �

�

�

�

�

�; where e

^

A

I

= �

p

ĝ

^

V

(x

1

; 0)

(5.27)

is the instanton potential on the 
at torus with the same 
ux but �eld

strength

p

ĝ�=

^

V . The fun
tion � is then determined (up to a 
onstant) by

p

g

�

V

�

p

ĝ

�

^

V

=

p

g4�:

(5.28)

The solution of this equation is given by

�(x) = �

1

^

V

(

1

4

e

�2�

)(x) =

1

^

V

Z

d

2

y

q

g(y)G

0

(x; y) e

�2�(y)

;

(5.29)

where

G

0

(x; y) = hxj

1

�4

jyi =

X

�

n

>0

�

n

(x)�

y

(y)

�

n

(5.30)

is the Green-fun
tion belonging to �4. In deriving (5.29) we have used that

1

4

(�=V )=0 whi
h follows from the spe
tral resolution (5.30) for the Green

fun
tion in whi
h the 
onstant zero mode �

0

=1=

p

V of 4 is missing.

Note that 2-dimensional gauge theories are not s
ale or Weyl invariant

as 4-dimensional ones are. For that reason the instantons on 
onformally


at spa
etimes are not just the '
at' instantons.

To be more expli
it we relate G

0

to the Green-fun
tion

^

G

0

on the 
at

torus with the hatted metri
 [28℄

^

G

0

(x; y) = �

1

4�

log j

1

�(�)

h

1

2

+

�

0

L

1

2

+

�

1

L

i

(0; �)j

2

; where � = x� y:

(5.31)

For that we note that due to the missing zero-mode in (5.30) the usual 
at
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spa
etime equations for the Green-fun
tions are modi�ed to

�4

x

G

0

(x; y) =

Æ(x�y)

p

g

�

1

V

; �

^

4

x

^

G

0

(x; y) =

Æ(x�y)

p

ĝ

�

1

^

V

:

Furthermore one sees at on
e that both Green fun
tions annihilate the 
or-

responding 
onstant zero modes

Z

d

2

y

q

g(y)G

0

(x; y) =

Z

d

2

y

p

ĝ

^

G

0

(x; y) = 0:

(5.32)

From these two equations one 
on
ludes that Green-fun
tion on the 
urved

torus is related to the 
at one (5.31) as

G

0

(x; y) =

^

G

0

(x; y) +

1

V

2

Z

d

2

ud

2

v

q

g(u)g(v)

^

G

0

(u; v)

�

1

V

Z

^

G

0

(x; u)

q

g(u)d

2

u�

1

V

Z

d

2

u

q

g(u)

^

G

0

(u; y)

(5.33)

and this repla
es the in�nite spa
e relations G

0

=

^

G

0

[6℄.

Our 
hoi
e for the instanton potential (5.26,5.27) 
orresponds to a par-

ti
ular trivialization of the U(1)-bundle over the torus [41℄. In other words,

the gauge potentials and fermion �elds at (x

0

; x

1

) and (x

0

; x

1

+L) are ne
-

essarily related by a nontrivial gauge transformation with windings

A

�

(x

0

; x

1

+ L)�A

�

(x

0

; x

1

) = �

�

�(x)

 (x

0

; x

1

+ L) = �e

ie�(x)

e

2�i(�

1

+�

1




5

)

 (x

0

; x

1

):

(5.34)

For the 
hoi
e (5.27) we �nd

e�(x) = �

�

L

x

0

:

Note that A is still periodi
 in x

0

with period L and  still obeys the �rst

boundary 
ondition in (5.24). Our trivialization di�ers from the one 
hosen

in [31℄ and so do our instantons and fermioni
 zero modes.

Similarly as for the gauge potential we must add a harmoni
 pie
e to the

auxiliary ve
tor �eld B

�

to whi
h the fermions 
ouple in (5.1), so that

B

�

=

2�

L

g

0

h

�

+ g

1

�

�

�� g

2

�

��

�

�

�

(5.35)

appears in the Dira
 operator in (5.1) on the torus. � and � 
ouple to

the divergen
e of the ve
tor and axial ve
tor 
urrents. The harmoni
 �elds

h

�


ouple to the harmoni
 part of the 
urrent and are needed to re
over

the Thirring model in the limit g

2

0

= g

2

1

= g

2

2

. Also, we shall see that t

�
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and h

�

are essential to obtain the 
orre
t answer for the thermodynami


potential. Note that B

�


ontains no instanton part sin
e it 
ouples to the

gauge invariant fermioni
 
urrent.

Finally we introdu
e a 
hemi
al potential for the 
onserved U(1) 
harge.

In the Eu
lidean fun
tional approa
h this is equivalent to 
oupling the

fermions to a 
onstant imaginary gauge potential A

0

[1℄.

Inserting the above de
ompositions and the 
hemi
al potential into the

Dira
 operator �nally yields in isothermal 
oordinates

D= = 


�

D

�

= e

iF+


5

(G+��)�

3

2

�

^

D= e

�iF+


5

(G+��)+

1

2

�

; where

^

D= = 


�

(�

�

+ i!̂

�

� ie

^

A

I

�

�

2�i

L

[H

�

+ �

�

℄); (5.36)

H

�

= e t

�

+ g

0

h

�

and �

�

= �i

�

0

L

2�

� Æ

�0

:

Here !̂ is the spin 
onne
tion belonging to ê

�a

. It vanishes for our 
hoi
e of

the referen
e zweibein.

^

A

I

is the instanton potential (5.27) on the 
at torus.

The s
alar and pseudo s
alar fun
tions F , G and � have been introdu
ed in

(5.6,5.29). In the 
hosen 
oordinates t and h and hen
e H are all 
onstant.

In [41℄ it has been shown that D= possesses jkj zero-modes of de�nite 
hirality

and their 
hirality is given by the sign of k. They are 
ru
ial in any 
orre
t

quantization. For example, if one would leave out instanton se
tors in whi
h

iD= has zero-modes then the 
luster property would be violated.

In a �rst step we quantize the fermions in the 
at instanton and har-

moni
 ba
kground and referen
e metri
 ĝ

��

, that is we assume D= !

^

D= in

(5.25). The dependen
e on the remaining �elds F;G; � and �, that is the

relation between Z

F

and

^

Z

F

, is then found by integrating the 
hiral and

tra
e anomalies [7℄ and exploiting the relation (5.36) between D= and

^

D= .

We expand the fermioni
 �eld in a orthonormal basis of the Hilbert spa
e

 (x) =

X

n

a

n

 

n+

(x) +

X

n

b

n

 

n�

(x)

 

y

(x) =

X

n

�a

n

�

y

n+

(x) +

X

n

�

b

n

�

y

n�

(x);

(5.37)

where a

n

; b

n

; �a

n

;

�

b

n

are independent Grassmann variables.

Topologi
ally trivial se
tor: For k = 0 or vanishing instanton potential

we 
an immediately write down a basis

 

n�

(x) =

1

p

V

e

i(p

�

n

;x)

e

�

; (p

�

n

)

i

=

2�

L

(

1

2

+ �

i

� �

i

+ n

i

);

(5.38)

and e

�

are the eigenve
tors of 


5

. The  

n+

and  

n�

must obey the S

+

and S

�

boundary 
onditions, respe
tively. These boundary 
onditions �x
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the admissible momenta p

�

n

in (5.38). Sin
e the Dira
 operator maps S

�

into S

�

the �

n�

must then obey the same boundary 
onditions as the  

n�

.

Thus �

n�

(x) is obtained from  

n�

(x) by ex
hanging p

+

n

and p

�

n

. It follows

then that

i

^

D= 

n�

= �

�

n

�

n�

(5.39)

with

�

+

n

=

2�

�

0

L

[��(

1

2

+ a

1

+ �

1

+ n

1

)� (

1

2

+ a

0

+ �

0

+ n

0

)℄

�

�

n

=

2�

�

0

L

[�(

1

2

+ a

1

� �

1

+ n

1

)� (

1

2

+ a

0

� �

0

+ n

0

)℄:

(5.40)

Here we have introdu
ed a

�

� �

�

�H

�

��

�

. Substituting (5.37,5.39,5.40)

into the generating fun
tional (5.25) and applying the standard Grassmann

integration rules we arrive at

^

Z

F

[�; ��℄ = det i

^

D= e

�

R

��(x)

^

S(x;y)�(y)

; det i

^

D= =

Y

n

�

+

n

�

�

n

;

^

S(x; y) =

X

n

(

 

n+

(x)�

y

n�

(y)

�

+

n

+

 

n�

(x)�

y

n+

(y)

�

�

n

):

(5.41)

^

S is the fermioni
 Green fun
tion in the 0-instanton se
tor. Note that both

the 'eigenvalues' and the Green fun
tion depend on the Tei
hmueller param-

eter, harmoni
 potentials, twists and 
hemi
al potential.

We pro
eed to 
al
ulate the in�nite produ
t or generalized determinant

in (5.41). This is one of the 
entral points of this se
tion and for non-zero


hiral twists and 
hemi
al potential our result deviates from previous ones

[21℄. A
tually the twists and 
hemi
al potential are related as one 
an see

from (5.39,5.40).

One may be tempted so identify

det(D

+

D

�

) �

Y

�

+

n

�

�

n

and detD

+

detD

�

�

Y

�

+

n

Y

�

�

m

(5.42)

and thus 
on
lude that the determinant is a produ
t, f(�)

�

f(�), that is

fa
torizes into holomorphi
 and anti-holomorphi
 pie
es (the overall fa
tor �

1=�

0

L in the eigenvalues (5.40)) drops in the in�nite produ
t, sin
e the torus

has vanishing Euler number). However, the in�nite produ
t in (5.41) must

be regularized and the two expressions in (5.42) may di�er. In 
onformal

�eld theory [28℄ one is naturally lead to 
onsider the individual 
hiral se
tors

and thus �nds holomorphi
 fa
torization. For Dira
 fermions one uses D=

2

to regularize the produ
t and this leads to the determinant of the produ
t

D

+

D

�

.
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To 
ontinue we re
ast the in�nite produ
t in the form

1

Y

�

+

n

�

�

n

=

Y

~n2Z

2

�

2�

L

�

2

ĝ

��

(

1

2

+ 


�

+ n

�

)(

1

2

+ 


�

+ n

�

)

where ĝ

��

is the inverse of the referen
e metri
 (5.23) and




�

= a

�

+ i�̂

�

�

�

�

; where (�̂

�

�

) = �

1

�

0

�

�

1

�j� j

2

1 ��

1

�

:

(5.43)

The point is that for real 


�

, that is for vanishing 
hiral twists �

�

and


hemi
al potential (see the de�nitions of a

�

below (5.40) and �

�

in (5.36))

the zeta fun
tion de�ned by

�(s) =

X

n

(�

+

n

�

�

n

)

�s

(5.44)

has a well de�ned analyti
 
ontinuation to s<1 via a Poisson resummation.

An expli
it 
al
ulation yields [41, 48, 8℄

det(i

^

D= ) � (

Y

n

�

+

n

�

�

n

)

reg

= e

��

0

(s)j

s=0

; where

�

0

(s)j

s=0

= � log

h

1

j�(�)j

2

�

h

�


1




0

i

(0; �)

�

�

h

�


1




0

i

(0; �)

i

:

(5.45)

However, for 
omplex 


�

the Poisson resummation is not appli
able and

�

0

(0) 
annot be 
al
ulated by dire
t means. To 
ir
umvent these diÆ
ulties

we note that the in�nite produ
t (5.44) de�ning the �-fun
tion for s>1 is a

meromorphi
 fun
tion in 
. Thus we may �rst 
ontinue to s<1 for real 


�

and then 
ontinue the result to 
omplex values. Using the transformation

properties of theta fun
tions the resulting determinant 
an be written as

det(i

^

D= ) = e

2�(

p

ĝĝ

��

�

�

�

�

�2i�

1

a

0

)

�

1

j�(�)j

2

�

h

�a

1

+ �

1

a

0

� �

0

i

(0; �)

�

�

h

��a

1

� �

1

�a

0

+ �

0

i

(0; �):

(5.46)

It 
an be shown that this determinant is gauge invariant, i.e. invariant un-

der �

�

! �

�

+1, but not invariant under 
hiral transformations, �

�

! �

�

+1,

as expe
ted. Furthermore it transforms 
ovariantly under modular transfor-

mations � ! � +1 and � ! �1=� . In other words, det i

^

D= is invariant under

modular transformations if at the same time the boundary 
onditions are

transformed a

ordingly. The exponential prefa
tor is needed for modular


ovarian
e and is not present in the literature [21℄. It 
orrelates the two


hiral se
tors and will have important 
onsequen
es.
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Topologi
ally nontrivial se
tors: Before deriving 
hirality violating am-

plitudes one 
omment is in order. Due to the integrated Gauss law the

expe
tation value of the ele
tri
 
harge must vanish in the fully quantized

theory, although it may be nonzero in the intermediate step where one treats

the gauge �eld as external �eld. This then implies that the partition fun
-

tion and expe
tation values must be independent of the 
hemi
al potential


oupled to the ele
tri
 
harge. For example, if the partition fun
tion would

depend on � then the expe
tation value of the 
harge would not vanish as


an easily be seen by di�erentiating the e�e
tive a
tion with respe
t to �.

Now we note that a 
hiral twists is equivalent to a 
hemi
al potential, and a

non-
hiral twist to a harmoni
 gauge potential. Thus we 
on
lude that the

partition fun
tion 
an not depend on the twists. This 
an be 
he
ked by

expli
it 
al
ulation. For example, the normal twists are wiped out by the

toron integration. Thus we shall set the twists to zero for the gauged model

so that we have the same boundary 
onditions in the left and right handed

se
tors and the Dira
 operator be
omes selfadjoint. In parti
ular we may

use eigenfun
tions of the Dira
 operator to perform the path integral. The

twist will only be relevant for the un-gauged model whi
h we 
onsidered

later.

Let us now, for de�niteness, assume that the instanton number is posi-

tive, k > 0. Then i

^

D= possesses k zero-modes

^

 

p

0

, p=1; : : : ; k with positive


hirality. They must be in
luded in an expansion of  in (5.37). The Grass-

mann integral over the variables belonging to the ex
ited modes is performed

as in the trivial se
tor. Also, the integration over the Grassmann variables

a

ompanying the zero-modes 
an easily be done (see [41℄ for a 
areful dis-


ussion) and one obtains

^

Z

F

[�; ��℄ =

jkj

Y

p=1

(��;

^

 

p

0

)(

^

 

p

0

; �)det

0

i

^

D=e

�

R

��(x)

^

S

e

(x;y)�(y)

;

det

0

i

^

D= =

Y

�

n

6=0

�

n

;

^

S

e

(x; y) =

X

�

n

6=0

 

n

(x) 

y

n

(y)

�

n

:

(5.47)

Note that the ex
ited Green fun
tion S

e

anti
ommutes with 


5

.

To 
al
ulate the determinant we observe that

D=

2

=

�

D

�

D

+

0

0 D

+

D

�

�

=

1

p

g

D

�

p

gg

��

D

�

�

1

4

R+

e

2

�

��

F

��




5

simpli�es in the instanton ba
kground

^

A

I

and on the 
at torus to

�

^

D=

2

= �ĝ

��

^

D

�

^

D

�

�

�

^

V




5

:

(5.48)

In other words, it is the same in the two 
hiral se
tors, up to the 
onstant
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2�=

^

V . This observation allows one to re
onstru
t the spe
trum of �

^

D=

2


ompletely. For that we observe that the ex
ited eigenmodes of the Dira


operator 
ome in pairs with opposite eigenvalues, sin
e 


5

anti
ommutes with

D= . Sin
e 


5


ommutes with the squared Dira
 operator the 
hiral proje
tions

P

�

 

n

of these modes are eigenmodes of

^

D=

2

. Thus the ex
ited modes of the

squared Dira
 operator 
ome also in pairs and two partners have the same

energies but opposite 
hiralities. Earlier we have seen that there are exa
tly

k-zero modes with 
hirality +1 (we assumed k > 0). Be
ause of (5.48)

they are at the same time ex
ited modes of �

^

D=

2

with energy 2�=

^

V and


hirality �1. Due to the pairing there are then k ex
ited modes with the

same energies 2�=

^

V but 
hirality +1. This pro
edure may now be iterated

and one ends up with the following spe
trum of �

^

D=

2

:

�

2

n

=

�

0 degenera
y = k

2n�=

^

V degenera
y = 2k:

With the expli
it spe
trum at hand we 
an 
ompute the zero-mode trun
ated

determinant with zeta-fun
tion methods and �nd [41℄

det

0

(i

^

D= ) =

�

�

^

V

�

�

�=4�

:

We pro
eed with 
omputing the zero modes of

^

D=

2

. For that we note that

the operator 
ommutes with the time translations whi
h leads to the ansatz

~�

p

= e

2�i


p

x

0

=L

e

2�iH

1

x

1

=L

�

p

(x

1

) e

+

; 


p

=

1

2

+ p;

where we have assumed k > 0. The 
hoi
e of 


p

is di
tated by the time-

like boundary 
onditions in (5.24). Inserting this ansatz into the zero mode

equation

~

D=

2

~�

p

= 0 yields

(j� j

2

d

2

dy

2

�

�

2

L

4

y

2

� 2i�

1

�

L

2

y

d

dy

� i�

�

L

2

)�

p

= 0;

where y = x

1

+

L

k

(


p

�H

0

):

(5.49)

This is just the di�erential equation for the ground state of a generalized

harmoni
 os
illator to whi
h it redu
es for � = i�

0

. The solution is given by

�

p

= exp

h

�

�

2i��L

2

fx

1

+

L

k

(


p

�H

0

)g

2

i

:

These fun
tions do not obey the boundary 
ondition (5.34), but the 
orre
t

eigenmodes 
an be 
onstru
ted as superpositions of them. For that we

observe that

~�

p

(x

0

; x

1

+L) = e

�i�x

0

=�

e

2i�H

1

~�

p+k

(x

0

; x

1

)
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so that the sums

^

 

p

0

=

(2k�

0

)

1

4

q

j� j

^

V

�

X

n2Z

e

�2i�(n+p=k)(

1

2

�H

1

)

~�

p+nk

e

+

;

(5.50)

where p=1; : : : ; k, obey the boundary 
onditions and thus are the k required

zero-modes. The overall fa
tor normalizes these fun
tions to one. Modes

with di�erent p are orthogonal to ea
h other, so that the system (5.50) forms

an orthonormal basis of the zero-mode subspa
e. For k<0 the zero-modes

are the same if one repla
es e

+

by e

�

.

Integrating the 
hiral and tra
e anomalies: To relate the determi-

nants of i

^

D= and iD= we introdu
e the one-parameter family of Dira
 operators

D=

�

= e

� [iF+


5

(G+��)�

3

2

�℄

^

D= e

� [�iF+


5

(G+��)+

1

2

�℄

(5.51)

whi
h interpolates between

^

D= and D= [39℄. The � -derivative of the 
orre-

sponding determinants is determined by the 
hiral and tra
e anomaly. An

expli
it 
al
ulation yields

log

det

0

iD=

det

0

i

^

D=

=

1

Z

0

d�

4�

Z

p

g

�

tr a

�

1

�

2


5

[G+��℄� �

�

+ log det

N

 

^

N

 

:

(5.52)

Here g

�

is the determinant of the deformed metri
 g

�

��

= e

2��

ĝ

��

, and

a

�

1

= �

1

12

R

�

+ 


5

�4

�

G+

1

p

g

�

h

(1� �)

p

ĝ

�

^

V

+ �

p

g

�

V

i




5

(5.53)

is the relevant Seeley-deWitt 
oeÆ
ient of D=

2

�

. Furthermore,

^

N

 

is the

norm-matrix of the zero-modes

^

 

p

0

in (5.50). Sin
e those are orthonormal

it is just the k-dimensional identity matrix. N

 

is the norm-matrix of the

zero-modes of iD= whi
h are related to the

^

 

p

0

as

 

p

0

= e

iF�


5

(G+��)�

1

2

�

^

 

p

0

(5.54)

as follows from (5.36). Inserting (5.53) into (5.52) one �nds the following

formula for the determinant in arbitrary ba
kground gravitational and gauge

�elds:
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det

0

iD= = det

N

 

^

N

 

det

0

(i

^

D= ) exp

�

S

L

24�

+

1

2�

Z

p

ĝG

^

4G

�

� exp

�

2k

V

Z

p

gG+

�

2

2�

^

V

Z

p

ĝ�

�

;

(5.55)

where

S

L

=

Z

p

ĝ[

^

R� � �

^

4�℄

(5.56)

is the Liouville a
tion. In deriving this result we used that

R

p

g�=0. A
-

tually, for our referen
e metri
 the Ri

i s
alar

^

R vanishes and the Liouville

a
tion simpli�es to �

R p

ĝ�

^

4�. However, as it stands the formula (5.55)

holds for arbitrary referen
e metri
s and arbitrary Riemannian surfa
es.

As expe
ted for a gauge-invariant regularization, the fun
tion F and

thus the pure gauge part of the ve
tor potential does not appear in the

determinant.

For later use we also give the analogous formula for the zero-mode trun-


ated s
alar determinant [44℄

det

0

1

2

(�4) = det

0

1

2

(�

^

4)(

V

^

V

)

1

2

exp

�

�

1

24�

S

L

�

:

(5.57)

This 
ompletes the 
omputations of the determinants.

The generating fun
tional for the full theory is then obtained as follows:

First one notes that the formulas (5.41) and (5.47) for the fermioni
 fun
-

tionals still hold without hats. Thus to 
al
ulate the fun
tionals in arbitrary

gauge-, auxiliary- and gauge �elds we need to know the Green-fun
tions, de-

terminants and zero-modes in these ba
kgrounds.

To relate the fermioni
 Green-fun
tions S in the di�erent topologi
al se
tors

to the hatted ones we de�ne

S

1

(x; y) = e

�g(x)

^

S(x; y) e

��g(y)

; g = �iF + 


5

(G+��) +

1

2

�:

On the in�nite spa
e we would have S = S

1

[6℄. However, if the Dira


operator possesses zero modes this simple relation is modi�ed to to

S(x; y) = S

1

(x; y) +

Z

P

0

(x; u)S

1

(u; v)P

0

(v; y)

q

g(u)g(v)d

2

ud

2

v

�

Z

S

1

(x; u)P

0

(u; y)

q

g(u)d

2

u�

Z

P

0

(x; u)S

1

(u; y)

q

g(u)d

2

u;

(5.58)

and this formula should be 
ompared with the analogues one for s
alars

(5.33). Here P

0

is the orthonormal proje
tor onto the zero modes. For gauge

�elds with vanishing 
ux S=S

1

. Together with the relation (5.55) between
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the full and hatted determinant and the expli
it form (5.45,5.46) for det i

^

D=

this yields the fermioni
 generating fun
tional in the various topologi
al

se
tors.

In the trivial se
tor one �nds expli
itly

Z

F

[�; ��℄ =

1

j�(�)j

2

�

h

�


1




0

i

(0; �)

�

�

h

��


1

�


0

i

(0; �)

e

�

R

��(x)S(x;y)�(y)

� exp

�

1

24�

S

L

+

1

2�

Z

p

gG4G℄

�

:

(5.59)

By using the s
aling properties of the Ri

i-s
alar and Lapla
ian (see ap-

pendix B) the exponent 
an be rewritten as

�

1

96�

Z

p

gR

1

4

R+

1

2�

Z

p

gG4G;

whi
h makes 
lear that the resulting fun
tional is di�eomorphism invariant.

Here we used that R integrates to zero or that the Euler number of the

torus vanishes. On the sphere or higher genus surfa
es the last formula is

modi�ed.

To relate the hatted and full fun
tionals in the non-trivial se
tors one re
alls

that in the formula (5.47) for the full partition fun
tion (without hats) one

must use orthonormal zero-modes. These 
an be expanded in terms of the

un-normalized modes  

p

0

de�ned in (5.54). Inserting these expansions into

(5.47) yields the inverse square roots of the determinants of the 
orrespond-

ing norm matri
es N

 

and N

�

whi
h partly 
han
el detN

 

in (5.47). Thus

one ends up with

Z

F

[�; ��℄ =

�

�

^

V

�

�

�

4�

e

�

2

=2�

^

V �

R
p

ĝ�

jkj

Y

p=1

(��;  

p

0

)( 

p

0

; �)

�e

�

R

��(x)S

e

(x;y)�(y)

exp

�

S

L

24�

+

1

2�

Z

p

ĝG

^

4G+

2k

V

Z

p

gG

�

;

(5.60)

where the  

p

0+

are the un-normalized zero-modes (5.50).

Bosoni
 path integral: To arrive at the generating fun
tional for the


omplete theory we must �nally quantize the photon and auxiliary �elds A

�

and B

�

(see (5.35)). For that we insert the de
omposition (5.26) into the

bosoni
 part of the (Eu
lidean) a
tion (5.1). This results in

S

B

=

�

2

2e

2

V

+ (2�)

2

p

ĝĝ

��

h

�

h

�

+

Z

p

g

�

1

2

'4

2

'� �4�� �4�� g

3

R�

�

:

(5.61)
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The term quadrati
 in the h �eld is not present in the a
tion (5.1) on

Minkowski spa
e-time. But on the torus h is part of the Hodge de
om-

position of B

�

and thus on the same footing as �� and ���. Sin
e S

B

and

the fermioni
 determinants are both gauge invariant and thus independent

of the pure gauge mode � in (5.26), it is natural to 
hange variables from

A

�

to ('; �; t

�

;�) in ea
h topologi
al se
tor. One 
an show [41℄ that this

transformation is one to one, provided

Z

p

g' =

Z

p

g� = 0 and et

�

2 [0; 1℄:

(5.62)

The measures are related as

DA

�

= J

X

k

dt

0

dt

1

D'D�; where J = (2�)

2

det

0

(�4):

(5.63)

The Ja
obian J is independent of the dynami
al �elds. In expe
tation values

of gauge invariant and thus -independent operators the �-integration 
an
els

against the normalization. This is of 
ourse related to the fa
t that in QED

the ghosts de
ouple in the Lorentz gauge.

Finally observe that via the derivative 
ouplings to the fermioni
 
urrent

[24℄ we introdu
ed arti�
ial degrees of freedom. The relation between B

�

in

(5.35) and the �elds (�; �; h

�

) is only one to one if we impose the 
onditions

similar to (5.62), namely

�

� �

1

V

Z

p

g� = 0;

�

� = 0 and h

�

2 [�1;1℄:

(5.64)

There is no restri
tion on the harmoni
 part of the auxiliary �eld, sin
e B

�

is not a gauge �eld. The 
onstraints are imposed in the fun
tional integral

as

Z

dh

0

dh

1

D�D�Æ(

�

�)Æ(

�

�) � � � :

(5.65)

The normalization by the volume in (5.64) is needed su
h that the 
on-

straints and hen
e the partition fun
tion are both dimensionless. For exam-

ple, expanding � in eigenmodes of the Lapla
ian as

� = a

0

�

0

+

X

n>0

a

n

�

n

; where �

0

=

1

p

V

is the zero mode, one �nds the dimensionless partition fun
tion

Z

D� Æ(

�

�) e

�4�

=

p

V

1

det

0

1

2

(�4)

(5.66)

146



for free bosons.

Constraining the mean �eld to zero as in (5.66) is equivalent to �xing the

�eld at an arbitrary point � on the torus to zero [49℄

Z

D� Æ(

�

�) � � � =

Z

D� Æ(�(�))

This 
an be seen as follows:

Z

D� Æ(�(�)) � � � =

Z

duÆ(

�

�� u)D� Æ(�(�)) � � � :

Now one shifts the �eld as �! �+u. Using that the a
tion is left invariant

by this shift, the measure be
omes

Z

duD� Æ(

�

�)Æ(�(�) + u) � � � =

Z

D� Æ(

�

�) � � �

whi
h shows that the two 
onstraints are the same. When integrating over

the auxiliary �elds it is always understood that the divergent zero modes

are suppressed as in (5.65).

5.2.1 Partition fun
tion

As a �rst appli
ation of our general results we 
al
ulate the partition fun
tion

of the theory (5.1). To 
ompute it we must put the sour
es � and �� in (5.25)

to zero. Then it is evident from (5.60) that the non-trivial se
tors do not


ontribute and hen
e we may assume �=0. Thus the partition fun
tion is

given by

Z

0

= J

Z

d

2

td

2

hD'D�D� Z

F

[0; 0℄ e

�S

B

[�=0℄

;

(5.67)

where J is the Ja
obian of the transformation (5.63). Z

F

the fermioni


partition fun
tion (5.59) in the trivial se
tor and the integration is over

�elds obeying the 
onditions (5.62,reft51). Now we perform the various

integrals in turn.

integration over the harmoni
s: By using the series representation of

the theta fun
tions one 
omputes

1

Z

0

d

2

(et)�

h

�


1




0

i

(0; �)

�

�

h

�


1




0

i

(0; �) =

1

p

2�

0

(5.68)

Sin
e the result appears always together with the �-fun
tion fa
tor in (5.59)

it is 
onvenient to introdu
e

� :=

1

p

2�

0

1

j�(�)j

2
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in the following expressions. The result (5.68) does not depend on the h-�eld

and hen
e the h-integration in (5.67) be
omes Gaussian. It yields a fa
tor

1=4� so that

Z

0

= ��det

0

(�4) e

S

L

=24�

Z

D

Æ

('��) e

1

2�

R

p

gG4G�S

B

[h=0℄

;

(5.69)

where G has been de�ned in (5.6).We inserted the expli
it expression (5.63)

for the Ja
obian. If we would have kept the 
hemi
al potential and twists

then already the toron-integration in (5.68) would have washes out the de-

penden
e on the boundary 
onditions and 
hemi
al potential.

Integration over � and �: The integral over �, subje
t to the 
ondition

(5.64), modi�es the Liouville fa
tor and yields one inverse square-root of the

determinant of �24 in (5.69). To 
ontinue we re
all the s
aling formula for

the determinant of 4 [14℄:

log

det

0

(�a4)

det

0

(�4)

= log a � �(0) = log a � [

1

4�

Z

a

1

� p℄;

where p is the number of zero modes of the operator. On the torus

R

a

1

=0

and we �nd

det

0

(� a4) =

1

a

det

0

(�4):

(5.70)

Using this s
aling property the �-integral together with (5.66) we obtain

Z

0

= ��

q

2V det

0

(�4) e

(g

2

3

+1=24�)S

L

Z

D

Æ

('�) e

1

2�

R

p

gG4G�S

B

[h=�=0℄

;

(5.71)

To quantize the � �eld we need to re
all that G= e'+g

2

�. Sin
e '4' �

(A

T

; A

T

), the anomalous term �

R

G4G in the exponent 
ontains an ex-

pli
it photon mass term with bare-mass e=

p

�. However, when quantizing

the � �eld this mass is renormalized. This 
an be seen expli
itly in the re-

sulting expression for the partition fun
tion after the �-integration has been

performed

Z

0

=

2

p

��eV

m




e

(g

2

3

+1=24�)S

L

Z

D'e

�

1

2

R

p

g'(4

2

�m

2




4)'

;

(5.72)

where the renormalized photon mass is

m

2




=

e

2

�

2�

2� + g

2

2

:
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Integration over ': The zeta-fun
tion regulated determinant whi
h one

obtains when performing the integral (5.72) fa
torizes

det

0

(4

2

�m

2




4) = det

0

(�4) � det

0

(�4+m

2




):

This fa
torization property is not obvious sin
e all determinants must be

regulated. But it holds for 
ommuting operators and in the zeta-fun
tion

s
heme. Then the partition fun
tion simpli�es to

Z

0

=

2

p

��eV

m




(det

0

(�4)det

0

(�4+m

2




))

�

1

2

exp

�

(g

2

3

+

1

24�

)S

L

�

:

We 
an go further by using (5.57) and the known result for the determinant

of

^

4 [28℄ whi
h together yield

det

0

1

2

(�4) = �

0

Lj�(�)j

2

s

V

^

V

exp

�

�

1

24�

S

L

�

(5.73)

whi
h �nally leads to

Z

0

=

p

2�V

e

m




1

�

0

j�(�)j

4

1

det

0

1

2

(�4+m

2




)

exp

�

(

1

12�

+ g

2

3

)S

L

�

(5.74)

for the partition fun
tion of the general model (5.1) on 
urved spa
es. It

shows expli
itly that in the topologi
ally trivial se
tor the theory should be

equivalent to a theory of free mass-less and massive bosons with mass m




.

It is interesting to follow the various 
ontributions to the expli
it dependen
e

on the gravitational �eld sin
e they 
ontribute to the Hawking radiation.

For that we re
all that when one quantizes a 
onformal �eld theory with


entral 
harge 
 in an external gravitational �elds one ends up with the

Liouville term, Z � exp[
 S

L

=24�℄ [44℄. Thus the fermions 
ontribute with


 = 1, as expe
ted. The � and � �eld 
ontribute with 1 and 1 + 24�g

2

3

,

respe
tively. However, the Ja
obian 
ombined with the 
onformal part of

the gauge se
tor 
ontribute with 
=�1 and we are left with a total 
entral


harge 
 = 2 + 24�g

2

3

. Of 
ourse, the gauged model is not 
onformally

invariant and the breaking is manifest in the massive determinant in (5.74).

The partition fun
tion of the un-gauged theory is (5.72) multiplied by an

inverse determinant (the missing Ja
obian) and without '-integration. In

this limit one obtains a 
onformal theory with 
entral 
harge 
=3+ 24�g

2

3

.

By using an elegant result of Christensen and Fulling [42℄, that relates

the 
onformal anomaly to the asymptoti
 Hawking 
ux, one 
on
ludes that

the Hawking radiation of the un-gauged model is 3+24�g

2

3

times that of

free mass-less s
alars. For the gauged model the Hawking radiation is still

thermal and 
onsists of mass-less and massive parti
les.
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The appearan
e of m




in (5.72) should be interpreted as renormalization

of the ele
tri
 
harge indu
ed by the intera
tion of the auxiliary �elds with

the fermions. After summing over all fermion-loops this leads to an e�e
tive


oupling between the photons and the �-�eld and in turn to a modi�ed

e�e
tive mass for the photons in (5.72). In the limit g

2

! 0 this mass tends

to the well-known S
hwinger model result, m




! e=

p

� [8℄.

We 
on
lude this subse
tion with deriving an expli
it formula for the par-

tition fun
tion on the 
at torus. Applying the results in [3℄ one obtains for

the massive determinant

det

0

(�

^

4+m

2




)

1

2

=

1

m




e

�

1

2

�

0

(0)

;

with

�

0

(0) =

X

n 6=0

1

�L

^

V m




p

(n; n)

K

1

(m




L

q

(n; n))�

^

V m

2




4�

;

(5.75)

where (n; n)= ĝ

ij

n

i

n

j

is the inner produ
t taken with the referen
e metri
,

and the sum is over all (n

i

) 2 Z

2

with the origin ex
luded. For g

��

=

Æ

��

, in whi
h 
ase the partition fun
tion has the usual thermodynami
al

interpretation, the result redu
es to one derived previously by Ambjorn

[27℄. In addition, if L approa
hes in�nity we re
over a result in [1℄. The free

energy for �

1

= 0 and on 
at spa
e simpli�es then to

F = �

1

�

logZ =

1

2�

�

0

(0):

with �

0

(0) from (5.75) and the parti
ular 
hoi
e for the parameters.

5.2.2 Bosonisation

In the 
lassi
al analysis we have already seen that in the limiting 
ase g

3

=0

and g

1

= g

2

= g the general model redu
es to the gauged Thirring model.

Now we show that the same is true for the quantized theory on the torus

if in addition we set g

0

= g. More pre
isely, the Hubbard-Stratonovi
h

transform of the Thirring model is just the derivative 
oupling model (5.1)

with identi
al 
ouplings. In the pro
ess of showing that we shall arrive at the

Bosonisation formulas for the gauged Thirring model on the 
urved torus.

We shall see that only the non-harmoni
 part of the fermion 
urrent 
an

naively be bosonised and that for this part the rules of the un-gauged model

on 
at spa
e time [15℄ need just be 
ovariantized.

For that we 
al
ulate the partition fun
tion (5.67) in a di�erent order.

First we integrate out the auxiliary �elds. In order to understand the role
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of � and � we introdu
e sour
es for them. Thus we study the generating

fun
tional for the 
orrelators of the auxiliary �elds

Z[�; �℄ =

Z

D(��h A

�

)e

�S+

R

p

g[��+��℄

:

Here

S = �i

Z

p

g 

y

D= + S

B

[g

3

=0℄

is the a
tion of the full theory. D= is the Dira
 operator in (5.36) with all


ouplings set equal and S

B

the bosoni
 a
tion (5.61). Sin
e � and � integrate

to zero (see 5.64) we may assume the same property to hold for the sour
es.

Also, sin
e there are no fermioni
 sour
es only 
on�gurations in the trivial

se
tor 
ontribute, so that there is not instanton potential in (5.36) and hen
e

� = 0 in (5.61). The integration over the auxiliary �elds is Gaussian and

yields

Z = N

0

Z

D( A

�

) e

�S

T

exp

Z

p

g

h

�

1

4

(�

1

4

� + �

1

4

�)

+

g

2

(�

1

4

j

�

;�

+ �

1

4

j

�

5;�

)

i
(5.76)

where

S

T

= �

1

4

Z

p

g

�

F

��

F

��

� i 

y

D= �

g

2

4

j

�

j

�

�

(5.77)

is the a
tion of the gauged Thirring model on 
urved spa
e-time and

N

0

=

V

2�det

0

(�4)

(5.78)


omes from the integration over the auxiliary �elds.

Let us �rst 
onsider the partition fun
tion, that is set the sour
es to zero.

Comparing (5.76) with (5.72) and using (5.73) we easily �nd

Z

D( t)e

�S

T

=

s

1

2

+

g

2

4�

e

�

1

4

R

F

��

F

��

Z

D
 Æ(�
) e

�S




; (5.79)

where �
 is the mean �eld (see 5.64) and we used (5.63) and (5.70). The

a
tion for the neutral s
alar �eld 
 is found to be

S




=

1

2

Z

p

g�

�


�

�


 �

ie

p

�

1

p

1 + g

2

=2�

Z

p

g
4':

Sin
e (5.79) holds for any ' (and thus for the non-harmoni
 part of any A

�

,

be
ause of gauge-invarian
e) we read o� the following Bosonisation rules:
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j

0�

�!

i

p

�

1

p

1 + g

2

=2�

�

��

�

�




j

0�

5

�! �

i

p

�

1

p

1 + g

2

=2�

�

�


;

(5.80)

where prime denotes the non-harmoni
 part of the 
urrents. Thus, only the

non-harmoni
 parts of the 
urrents 
an be bosonised in terms of a single

valued s
alar �eld. To bosonise their harmoni
 parts one would have to

allow for a s
alar �eld 
 with windings as � below . On the in�nite plane the

harmoni
 part is not present and we may leave out the primes in (5.80). If we

further assume spa
e time to be 
at we re
over the well-known Bosonisation

rules in [15℄. What we have shown then, is that for the gauged model on


urved spa
e time the Bosonisation rules are just the 
at ones properly


ovariantized and with the omission of the zero-modes.

Sin
e (5.79) holds for any gauge �eld the 
urrent 
orrelators in the

Thirring model are 
orre
tly reprodu
ed by the Bosonisation rules (5.80).

To see that more 
learly we 
al
ulate the two-point fun
tions of the auxiliary

�elds in the Thirring model (5.76-5.78). For that we di�erentiate (5.76) ('

is treated as external �eld) with respe
t to the sour
es and �nd

h�(x)�(y)i =

1

2

G

0

(x; y) +

g

2

4

Z

hG

0

(x; u)j

�

;�

(u)G

0

(y; v)j

�

;�

(v)i

T

h�(x)�(y)i =

1

2

G

0

(x; y) +

g

2

4

Z

hG

0

(x; u)j

�

5;�

(u)G

0

(y; v)j

�

5;�

(v)i

T

;

(5.81)

where G

0

is the free mass-less Green-fun
tion (5.30,5.33) in 
urved spa
e-

time and the integrations are over the variables u and v with the invariant

measure on the 
urved torus. Here h: : :i

T

are va
uum expe
tation values of

the Thirring model (5.77). Alternatively we 
an 
al
ulate these expe
tation

values from (5.69) and (5.71), where the fermioni
 integration has been

performed and �nd

h�(x)�(y)i =

1

2

G

0

(x; y)

h�(x)�(y)i =

�m

2




2e

2

G

0

(x; y) +

m

2




2

(1�

�m

2




e

2

)'(x)'(y):

(5.82)

Comparing this with the result (5.81) we see at on
e that

Z

hG

0

(x; u)j

�

;�

(u)G

0

(y; v)j

�

;�

(v)i

T

= 0 (5.83)

Z

hG

0

(x; u)j

�

5;�

(u)G

0

(y; v)j

�

5;�

(v)i

T

=

m

2




e

2

(m

2




'(x)'(y) �G

0

(x; y)):
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These 
orrelators express the gauge invarian
e and the axial anomaly hj

�

5;�

i=

�m




4' in the gauged Thirring model. They 
an be 
orre
tly reprodu
ed

with the bosonization rules (5.80). They are not reprodu
ed with the ones

derived for the un-gauged model [15℄.

5.3 Chiral 
ondensate

Re
alling that S

e

in (5.60) anti-
ommutes with 


5

one sees at on
e that

only 
on�guration supporting one fermioni
 zero-mode with positive 
hiral-

ity 
ontribute to the 
hiral 
ondensate

h 

y

P

+

 i = �

J

Z

0

Æ

2

Æ�

+

(x)Æ��

+

(x)

Z

D(: : :)Z

F

[�; ��℄j

�=��=0

e

�S

B

;

where �

+

=P

+

�. Earlier we have seen that these are the gauge �elds with


ux �=2� or instanton number k=1. Thus the 
ondensate be
omes

h 

y

P

+

 i = �

J

Z

0

s

^

V

2

Z

D(:) 

y

0

(x) 

0

(x) exp(:) e

�S

B

[k=1℄

;

(5.84)

where exp(: : :) is the last exponential fa
tor in (5.60). First we integrate

over the toron �eld t. The t dependen
e enters only through the zero mode

and more spe
i�
ally

^

 

0

in (5.54) and (5.50) with p= 1. Using the series

representation for the theta fun
tions one �nds

Z

d

2

t

^

 

y

0

(x)

^

 

0

(x) =

1

^

V

:

(5.85)

Note that the result does not depend on the 
hemi
al potential similarly as

in our 
al
ulation of the partition fun
tion.

To 
ontinue we observe that the term

R

p

gG in exp(: : :) vanishes be
ause

of our 
onditions (5.62) and (5.64) on the �elds ' and �. Also note, that

the fermioni
 Green fun
tion does not enter in the expression for the 
hiral


ondensate. It follows that the fermioni
 fun
tional (5.59) in the trivial

se
tor and (5.60) in the one-instanton se
tor are the same, up to the fa
tors

in the �st lines. From (5.85) and (5.69) we see that the toron integral of

the �st line in (5.60) is j�j

2

q

�

0

=

^

V exp(2�

R

p

g�=

^

V ) times the toron integral

over the fa
tor in (5.59). Also, sin
e

S

B

[k = 1℄ = S

B

[k = 0℄ +

2�

2

e

2

V

the fun
tional integral and normalizing partition fun
tion in (5.84) are the

same, up to these fa
tor and the �eld-dependent fa
tors whi
h relate the

hatted and un-hatted zero-modes in (5.54). Finally note that the � integrals
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in (5.84) and in the normalizing partition fun
tion 
an
el so that we end up

with the following formula for the 
ondensate

h 

y

P

+

 i =

r

�

0

^

V

j�(�)j

2

e

�2�

2

=e

2

V+2�=

^

V

R
p

ĝ�

D

e

�2(g�+e')(x)��(x)

E

�'

:

(5.86)

The expe
tation value is evaluated with

S

eff

=

Z

p

g

h

1

2

'(4

2

�

e

2

�

4)'�

e

2

�m

2




�4��

eg

2

�

�4'

i

:

A formal 
al
ulation of the resulting Gaussian integrals yield

h 

y

P

+

 i =

r

�

0

^

V

j�(�)j

2

e

�2�

2

=e

2

V+2�=

^

V

R
p

ĝ�

e

��(x)�2��(x)

� exp [

2�

2

m

4




e

2

K(x; x)℄ exp [

2�g

2

2

2� + g

2

2

G

0

(x; x)℄;

(5.87)

where

K(x; y) = hxj

1

4

2

�m

2




4

jyi =

1

m

2




(G

0

(x; y)�G

m




(x; y))

(5.88)

and G

m

; G

0

are the massive and mass-less Green-fun
tions.

Here we en
ounter ultra-violet divergen
es sin
e G

0

(x; y) is logarithmi-


ally divergent when x tends to y. To extra
t a �nite answer we need to

renormalize the operator exp(��). This wave fun
tion renormalization is

equivalent to the renormalization of the fermion �eld in the Thirring model

and thus is very mu
h expe
ted [44, 15℄. In order to do that we �rst de-

termine the short distan
e behavior of the mass-less Green fun
tion (5.31).

Using the identity

j�

h

1

2

+

�

0

L

1

2

+

�

1

L

i

(0; �)j

2

= je

i��(�

0

=L)

2

�

1

(

��

0

+ �

1

L

; �)j

2

and the small z expansion

�

1

(z; �) = 2��(�)

3

z +O(z

2

);

we see that

^

G

0

possesses the expe
ted logarithmi
 short distan
e singularity

^

G

0

(x; y) = �

1

4�

log

ĝ

��

�

�

�

�

^

V

�

1

4�

log (4�

2

�

0

j�(�)j

4

) +O(�):

(5.89)

From the relation (5.33) between the full and hatted Green fun
tion and
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the de�nition of � in (5.28) it follows that G

0

possesses the short distan
e

expansion

G

0

(x; y) �

^

G

0

(x; y) + 2�(x)�

1

^

V

Z

p

ĝ�+O(�)

To 
ontinue we need to regularize the 
omposite operator exp(��) ap-

pearing in (5.86). The normal ordering pres
ription

: e

��(x)

:=

e

��(x)

he

��(x)

i

:

(5.90)

works well on the whole plane [44, 15℄. On the 
urved torus we must be

more 
areful when renormalizing this operator. The required wave fun
tion

renormalization is not unique but it is very mu
h restri
ted by the following

requirements: First we take as referen
e system (the denominator in 5.90)

one with a minimal number of dynami
al degrees of freedom sin
e we do not

want to loose information by our regularization. Se
ond, the renormalized

operator should have a well-de�ned in�nite volume limit and its expe
tation

values should 
luster. Finally, the regularization should respe
t general 
o-

varian
e. These requirements then for
e us to take as referen
e system the

in�nite plane with metri
 g

��

. The 
at metri
 Æ

��

is not permitted sin
e it

leads to a ill-de�ned expression for hexp(��)i. With these 
hoi
e the normal

ordering in (5.90) is equivalent to repla
ing the mass-less Green fun
tion in

(5.87) by

G

reg

0

(x; y) := G

0

(x; y) +

1

4�

log [�

2

s

2

(x; y)℄:

(5.91)

Here s(x; y) denotes the geodesi
 distan
e between x and y. The o

urren
e

of the arbitrary mass s
ale � 
omes from the ambiguities in the required

ultra-violet regularization. On the 
at torus

^

G

reg

0

has now the �nite 
oin
i-

den
e limit

^

G

reg

0

(x; x) = �

1

4�

log

�

4�

2

�

0

j�(�)j

4

�

2

^

V

�

:

(5.92)

To determine the 
hiral 
ondensate we also need to determineK(x; y) on the

diagonal. In a �rst step we shall obtain it for the 
at torus. Its �-dependen
e

is then determined in a se
ond step. For �=0 and �= i�

0

the Green fun
tion

^

K has been 
omputed in [41℄. The generalization to arbitrary � is found to

be
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m

2




^

K(x; x) = �

1

2m




L�

0


oth (

��

0

a

j� j

2

) +

1

m

2




^

V

+

1

2�

�

� log j�(

�1

�

)j

2

+ F (L; �) �H(L; �)

�

;

(5.93)

where we introdu
ed the dimensionless 
onstant a = Lm




j� j=2� and the

fun
tions

F (L; �) =

X

n>0

h

1

n

�

1

p

n

2

+ a

2

i

H(L; �) =

X

n>0

1

p

n

2

+ a

2

h

1

e

�2�iz

+

(n)

� 1

+

1

e

2�iz

�

(n)

� 1

i

:

(5.94)

We used the abbreviations

z

�

=

1

j� j

2

(n�

1

� i�

0

p

n

2

+ a

2

):

(5.95)

Substituting (5.93) and (5.92) into (5.87) with �=0 we obtain the following

exa
t formula for the 
hiral 
ondensate on the torus with 
at metri
 ĝ

��

:

h 

y

P

+

 i

ĝ

=

1

Lj� j

�

m




Lj� j

2�

�

g

2

2

2�+g

2

2

exp

�

�

2

m




e

2

L�

0


oth

Lm




�

0

2j� j

�

� exp

h

�m

2




e

2

�

F (L; �)�H(L; �)

�i

;

(5.96)

where we used that on the 
at torus � = 0 and V =

^

V . Furthermore, we

identi�ed � with the natural mass s
ale m




of the theory.

To study the �nite temperature behavior of the 
hiral 
ondensate we

must assume that � = i�=L and then � = 1=T is just the inverse temper-

ature. Furthermore we perform the thermodynami
 limit L ! 1. Then


oth(: : :) ! 1, H ! 0 and the expression for the 
hiral 
ondensate simpli-

�es to

h 

y

P

+

 i

�

= �T

�

m




2�T

�

g

2

2

2�+g

2

2

exp

h

�

�

2

m




e

2

T +

2�

2� + g

2

2

F

i

: (5.97)

Let us now investigate the low and high temperature limits in turn. To

study the low temperature limit we use that

F (�)! 
 + log

a

2

+

1

2a

for a!1;

where 
 = 0:57721 : : : is the Euler number. Inserting this expansion into

(5.97) yields
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h 

y

P

+

 i = �

m




4�

2

g

2

2

=(2�+g

2

2

)

exp

�

2�

2� + g

2

2




�

for T ! 0:

(5.98)

For temperatures large 
ompared to the indu
ed photon mass F vanishes.

Thus we obtain the high temperature behavior

h 

y

P

+

 i

T

= �T

�

m




2�T

�

g

2

2

2�+g

2

2

exp

�

�

�

2

m




e

2

T

�

for T !1

(5.99)

It is instru
tive to dis
uss the various limiting 
ases. For all g

i

=0, i.e. the

S
hwinger model limit, the exa
t result (5.97) simpli�es to

h 

y

P

+

 i

T

= �T e

�

�

m




T+F (�)

�!

�

�

m




4�

e




T ! 0

�T e

��T=m




T !1,

(5.100)

where now m

2




= e

2

=� is the indu
ed photon mass in the S
hwinger model.

This formula for the temperature dependen
e of the 
hiral 
ondensate in

QED

2

agrees with the earlier results in [41℄.

Next we wish to investigate how the self-intera
tion of the fermions a�e
t

the breaking. For large 
oupling g

2

and �xed temperature the exponent in

(5.97) vanishes so that

h 

y

P

+

 i

T

�

1

q

2� + g

2

2

for T �xed; g

2

!1:

Hen
e, for very large 
urrent-
urrent 
oupling the 
hiral 
ondensate vanishes.

Or in other words, the ele
tromagneti
 intera
tion whi
h is responsible for

the 
hiral 
ondensate, is shielded by the pseudos
alar-fermion intera
tion.

For intermediate temperature and 
oupling g

2

we must retreat to numer-

i
al evaluations of the sums de�ning the 
hiral 
ondensate in (5.97). The

numeri
al results are depi
ted in �gure 1.

The study of the in
uen
e of the gravitational �eld is 
ompli
ated by the

presen
e of the massive Green fun
tion G

m




in (5.87,5.88). This Green fun
-

tion is known only for very parti
ular 
urved spa
es. Fortunately we only

need the 
oin
iden
e limit for whi
h we 
an use its short distan
e expansion

[37℄. For simpli
ity we assume in�nite volume and zero temperature. Then

[13℄

G

m

(x; y) �

1

4i

1

X

j=0

a

j

(x; y)(�

�

�m

2

)

j

H

(2)

0

(ms);

(5.101)

for small geodesi
 distan
es s=s(x; y). Here H

(2)

0

denotes the Hankel fun
-
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tion of the se
ond kind and order zero. In parti
ular

H

(2)

0

(z)!

2

i�

[ log

z

2

+ 
℄ for z ! 0:

Inserting that into (5.101) we �nd with G

0

=

^

G

0

from (5.89) the following

short distan
e expansion

G

0

(x; y)�G

m

(x; y) � �

1

2�

h

log (

2�j�(�)j

2

m




Le

�(x)

)� 


i

+

1

4�

1

X

j=1

a

j

(x)(�

�

�m

2

)

j

log(m

2

):

(5.102)

We have used that a

0

(x)=1 and s � e

�(x)

ŝ, where ŝ is the geodesi
 distan
e

on the 
at spa
etime with hatted metri
, ŝ

2

= ĝ

��

(x�y)

�

(x�y)

�

. Finally,

substituting (5.102) into (5.87) we end up with

h 

y

P

+

 i

�

= h 

y

P

+

 i

�=0

� exp

h

�

1

2

(

�m




e

)

2

1

X

1

a

j

(x)

(j � 1)!

m

2j

i

:

The Seeley-deWitt 
oeÆ
ients a

j

have been 
omputed up to j=5 [26℄. They

are of order j in the 
urvature and its derivatives. The �rst two are

a

0

(x) = 1 and a

1

(x) =

1

6

R:

For R << m

2

and slowly varying R we 
on
lude that the 
hiral 
ondensate

de
reases with in
reasing 
urvature as

h 

y

P

+

 i � exp [�

�

2

12e

2

R℄:

If we 
ompare this with the temperature dependen
e (5.99) we are lead to

de�ne a 
urvature indu
ed e�e
tive temperature

T

eff

=

R

12m




:

For this identi�
ation of 
urvature with temperature no horizon is needed as

in bla
k hole physi
s where the temperature is related to the surfa
e gravity

at the horizon. Note that 
ontrary to the temperature the 
urvature may

be
ome negative. Then the 
ondensate is ampli�ed and the identi�
ation of

R with T is only a formal one.

Finally we 
onsider the 
hiral two point fun
tion for non-
oin
iding points.

The gauge invariant form reads

S

+

(x; y) � h 

y

(x) e

ie

R

x

y

A

�

dx

�

P

+

 (y)i:
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It is related to a bound state between a stati
 external 
harge and a dynam-

i
al fermion [20℄.

The integration over the various �elds is similar as in the 
al
ulation of the


ondensate. The result takes a simple form in the in�nite volume and zero

temperature limit:

S

+

(x; y) = S

+

(x)

1

4

S

+

(y)

1

4

exp

h

1

2

(

�m




e

)

2

(K(x; y) +K(y; x))

i

� exp [(

�g

2

2

2� + g

2

2

+

g

2

1

2

)G

0

(x; y)�

g

2

1

4

(G

0

(x; x) +G

0

(y; y))

i

; (5.103)

where S

+

(x) � S

+

(x; x) = h 

y

(x) (x)i denotes the 
hiral 
ondensate.

Again the mass-less propagator must be regularized. We do this using the

pres
ription (5.91). Then

S

+

(x; y) = S

+

(x)

1

4

S

+

(y)

1

4

exp

h

1

2

(

�m




e

)

2

(G

m




(x; y) +G

m




(y; x))

i

p

2�m

g

2

1

4�




(g(x)

1

8

g(y)

1

8

ŝ)

1

2

(1+

g

2

1

2�

)

:

Note that the 
oupling strength g

1

to the longitudinal 
urrent enters the

s
aling exponent. On 
at spa
e G

m

redu
es to

1

2�

K

0

(mŝ) whi
h de
ays

exponentially for large separations. Hen
e we �nd

^

S

+

(x; y) �

^

S

+

(x)

1

2

p

2�ŝ(m




ŝ)

g

2

1

4�

(5.104)

for large separations of x and y. We have used that the 
hiral 
ondensate

^

S

+

(x) in (5.98) is 
onstant, due to translational invarian
e. For g

1

=0 this

simpli�es to the S
hwinger model result [41℄

^

S

+

(x; y) �

r

m




e




2

1

2�

p

jx� yj

:

Unlike the 
orrelators of �elds whi
h in the bosonised version are lo
al in the

massive boson �eld, this two-point fun
tion does not de
ay exponentially.

However the long range 
orrelations are suppressed by the 
oupling to the

longitudinal 
urrent.

5.4 The un-gauged se
tor

5.4.1 Thermodynami
s

In this se
tion we derive the grand 
anoni
al potential, equation of state

and ground state energy for A

�

= 0. For the un-gauged model there is no
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Gauss 
onstraint and the 
harge of the va
uum need not vanish. Indeed, for

A

�

=0 the partition fun
tion depends on the 
hemi
al potential and on the

fermioni
 boundary 
onditions. Te
hni
ally this is due to the absen
e of the

toron integration whi
h for the gauged model wiped out any dependen
e on

�; � and �.

The partition fun
tion of the un-gauged model is given by

Z =

Z

d

2

hD�D� Z

F

[�=��=A=0℄ e

�S

B

[A=0℄

;

(5.105)

where Z

F

is the fermioni
 generating fun
tional (5.59) and S

B

the bosoni


a
tion (5.61). The integration over the harmoni
 �elds is Gaussian and

yields

1

Z

�1

d

2

h�

h

�


1




0

i

�

�

h

��


1

�


0

i

e

�(2�)

2

p

ĝĝ

��

h

�

h

�

=

�

h

u

w

i

(�)

4�

q

1 + g

2

0

=2�

where

�

h

u

w

i

(�) =

X

n2Z

2

e

i�(n+u)�(n+u)+2�i(n+u)w

(5.106)

is the theta fun
tion with 
hara
teristi
s

u = �

�

1

1

�

(�

1

+ i�

�

1

�

�

) and w =

�

1

�1

�

(�

0

+ i�

�

0

�

�

� �

0

)

(5.107)

and 
ovarian
e

� =

�

� 0

0 ���

�

+ i

�g

2

0

�

0

2� + g

2

0

�

g

2

0

�4� � g

2

0

�4� � g

2

0

g

2

0

�

:

(5.108)

The remaining fun
tional integrals in (5.105) are performed as in the 
al-


ulation of the 
ondensate. To obtain the partition fun
tion of the Thirring

model in the limit g

i

=g we divide Z by the 
orresponding partition fun
tion

N

0

of the free bosons (see 5.78). Using (5.70) and (5.59) we obtain

Z

N

0

=

1

j�(�)j

2

s

2� + g

2

2

2� + g

2

0

�

h

u

w

i

(�) e

(1=24�+g

2

3

)S

L

:

(5.109)

In the Thirring model limit g

2

= g

0

and the square-root in this formula

disappears.
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Zero-temperature limit: To investigate the thermodynami
s of the model

we assume spa
etime to be 
at and that �= i�=L. Then


 = �

1

�

log

Z

N

0

is the grand 
anoni
al potential. Let us now investigate the low temperature

limit of 
. For �=0 this yields the ground state energy.

To study this limit we observe that for �= i�=L the 
ovarian
e matrix � in

(5.108) simpli�es to

i�� = �

��

L

h

Id +

g

2

0

4�

1

2� + g

2

0

�

g

2

0

�4� � g

2

0

�4� � g

2

0

g

2

0

�

i

(5.110)

and has eigenvalues

�

1

= �

��

L

2� + g

2

0

2�

and �

2

= �

��

L

2�

2� + g

2

0

(5.111)

with 
orresponding eigenve
tors

v

1

= (�1; 1) and v

2

= (1; 1): (5.112)

Also the � tensor (see 5.43) and �

0

(see 5.36) in (5.107) simplify to

�

�

�

=

�

0 �=L

�L=� 0

�

and �

0

= �i

�

2�

�:

Now we 
an determine the low temperature limit of the grand potential from

(5.109) (with S

L

= 0) and (5.110-5.112℄. For that we note that the saddle

point approximation to the Gaussian sum (5.106) de�ning the theta-fun
tion

be
omes exa
t when � !1. Also, using that

log j�(�)j

2

�! �

��

6L

for � !1

we end up with


(� !1) = �

�

6L

�

4�

2� + g

2

0

�

L

(�

1

+

�L

2�

)

2

+

�

2L

min

n2Z

2

h

2� + g

2

0

2�

fn

2

� n

1

�

4�

2� + g

2

0

(�

1

+

�L

2�

)g

2

+

2�

2� + g

2

0

fn

1

+ n

2

� 2�

1

g

2

i

(5.113)

for the zero-temperature grand potential of the un-gauged model. The 
hem-

i
al potential and 
hiral twist enter only through the 
ombination �

1

+�L=2�.
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Up to the se
ond term the potential is invariant under

�

1

�! �

1

+ 1 and �

1

+

�L

2�

�! �

1

+

�L

2�

+ 1 + g

2

0

=2�:

Let us now dis
uss the potential in the various limiting 
ases.

No 
hiral twist, �

1

=0, and vanishing 
hemi
al potential: Then


(� !1) 
oin
ides with the ground state energy. The minimum in (5.113)

is attained for n

1

=n

2

=[

1

2

+�

1

℄ and we �nd

E

0

(L;�

1

; �

1

=0) = �

�

6L

+

2�

L

2�

2� + g

2

0

(�

1

� [

1

2

+ �

1

℄)

2

:

(5.114)

Only for anti-periodi
 boundary 
onditions, that is for �

1

= 0, does this

Casimir energy 
oin
ide with the 
orresponding result for free fermions. For

g

2

0

� 4� the Casimir for
e is always attra
tive whereas for g

2

0

< 4� it 
an

be attra
tive or repulsive, depending on the value of �

1

. The result (5.114)

is in agreement with the literature [16℄. For example, it 
oin
ides with De

Vegas and Destri's result if we make the identi�
ation !

DD

= 2��

1

and

1=�

DD

=1 + g

2

0

=2� in formula (42) of that paper.

Small twists and 
hemi
al potential: For small �

1

and � the min-

imum is assumed for n

i

=0 and the potential simpli�es to


(� !1) = �

�

6L

+

2�

L

2�

2� + g

2

0

�

2

1

and does not dependent on the 
hemi
al potential.

For vanishing g

0

, that is for free fermions, the minimum of (5.113) is attained

for

n

1

= [

1

2

+ �

1

� �

1

�

�L

2�

℄ and n

2

= [

1

2

+ �

1

+ �

1

+

�L

2�

℄;

where [x℄ denotes the biggest integer whi
h is smaller or equal to x. This

then leads to the following zero temperature potential


 = �

�

6L

�

2�

L

(�

1

+

�L

2�

)

2

+

�

L

n

�

1

� �

1

�

�L

2�

� [

1

2

+ �

1

� �

1

�

�L

2�

℄g

2

+

�

L

n

�

1

+ �

1

+

�L

2�

� [

1

2

+ �

1

+ �

1

+

�L

2�

℄g

2

:

(5.115)

For � = �

1

= 0 this redu
es to the Casimir energy for free fermions with

left-right symmetri
 twists and agrees with the results in [32℄.
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Note, however, that for �

1

6=0 we disagree with [16℄. The di�eren
e is due

to the se
ond term on the right in (5.113). Let us give two arguments in

favor of our result:

The dis
repan
y arises from the prefa
tor appearing in the fermioni
 deter-

minant (5.46). As dis
ussed earlier this prefa
tor implies the breakdown of

holomorphi
 fa
torization, a property whi
h has been presupposed in [16℄.

One 
an show that our results 
an be reprodu
ed by starting with massive

fermions and taking the limit m! 0.

The se
ond argument goes as follows: Suppose that �

1

= �

1

= 0. Then

(5.115) simpli�es to


(� !1) = �

�

6L

�

2�

L

(

�L

2�

)

2

+

2�

L

(

�L

2�

� [

1

2

+

�L

2�

℄)

2

:

(5.116)

For mass-less fermions the fermi energy is just � and at T =0 all ele
tron

states with energies less then � and all positron states with energies less then

�� are �lled. The other states are empty. Sin
e d
=d� is the expe
tation

value of the ele
tri
 
harge in the presen
e of � we see that it must jump

if � 
rosses an eigenvalue of the �rst quantized Dira
 Hamiltonian h. For

vanishing twists the eigenvalues of h are just E

n

=(n�

1

2

)�=L. Indeed, from

(5.116) one �nds that the ele
tri
 
harge

hQi =

d


d�

= 2[

1

2

+

�L

2�

℄ = 2n for E

n

� � < E

n+1

jumps at these values for �. Further observe, that in the thermodynami


limit L!1 the density




L

! �

2�

2� + g

2

0

�

2

2�

;

redu
es for g

0

=0 to the standard result for free ele
trons.

Equation of state: We wish to derive the equation of state for �nite T

in the in�nite volume limit L!1. This may be a
hieved by inter
hanging

the roles played by L and �. More pre
isely, using that

�

h

u

w

i

(�) =

q

det(i�

�1

) e

2�iw�u

�

h

�w

u

i

(i�

�1

)

we �nd in analogy with the low temperature limit that for L ! 1 the

pressure is given by
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�p = lim

L!1

1

L

log

Z

N

0

=

�

6�

+

2�

�

2� + g

2

0

2�

�

2

0

�

�

2�

min

n2Z

2

h

2� + g

2

0

2�

fn

1

+ n

2

+ 2�

0

g

2

+

2�

2� + g

2

0

fn

2

� n

1

+ 2�

0

+ 2i

��

2�

g

2

i

(5.117)

Here the minimum of the real part has to be taken. Again the minimiza-

tion arises from the saddle point approximation to the theta fun
tion whi
h

be
omes exa
t when L!1. For small twists the minimum is assumed for

n

i

=0 and then

�p =

�

6�

�

2�

�

2�

2� + g

2

0

(�

0

+ i

��

2�

)

2

be
omes independent on the 
hiral twist �

0

. As we have inter
hanged the

roles of the temporal and spatial twists this is 
onsistent with the earlier

result that for small twists 
 is independent of �

0

. In parti
ular, for �

1

=0,

we are lead to the following equation of state

p(�; �; �

0

=0) =

�

6�

2

+

�

2

2�

2�

2� + g

2

0

;

whi
h for small �

0

relates the pressure to the 
hemi
al potential and tem-

perature. This result is 
onsistent with the renormalization of the ele
tri



harge whi
h is 
onjugate to the 
hemi
al potential. It shows in parti
ular

that the thermodynami
 behavior of the Thirring model is not just the one

of free fermions as has been 
laimed in [50℄. Indeed, the zero point pressure

is multiplied by a fa
tor 2�=(2� + g

2

0

). This modi�
ation arises from the


oupling of the 
urrent to the harmoni
 �elds. It 
an not be seen if only the

lo
al part of the auxiliary �eld is 
onsidered, whi
h is the 
ase if one quan-

tizes the model on the in�nite Eu
lidean spa
e. Furthermore, we see that

the 'pressure' p is real only for �

0

=0. This phenomenon o

urs also in the

Hamiltonian formalism [38℄. However, �nite temperature physi
s di
tates

anti-periodi
 boundary 
onditions, i.e �

0

=0, and then p be
omes real.

5.4.2 Conformal stru
ture

When we dis
ussed the properties of the 
lassi
al model (5.1) we have noti
ed

that for A

�

= 0 it redu
es to a 
onformal �eld theory on 
at Minkowski

spa
etime. We have found the results listed at the end of se
tion 2.

We determine the quantum 
orre
tions to these 
lassi
al results. As in

the previous se
tions we do that within the Eu
lidean fun
tional approa
h.

Thus we start from �rst prin
iples and need not postulate the emerging
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Ka
-Moody and Virasoro algebras in advan
e [30, 22℄. When 
omparing the


lassi
al with the quantum results one should keep in mind that roles of  

y

0

and  

y

1

are inter
hanged when one swit
hes from Minkowski to Eu
lidean

spa
etime. For further 
hanges the reader is referred to appendix A.

In what follows it is 
onvenient to exploit the holomorphi
 stru
ture of

the model. On the torus with 
at metri
 ĝ

��

the Cau
hy-Riemann equations

read

(�

�

�

�

�

� i�

�

)f = 0:

(5.118)

Then one 
hooses 
oordinates x

0a

= e

a

�

x

�

and the 
orresponding 
omplex


oordinates x= x

00

+ix

01

su
h that (5.118) takes the standard form. More

expli
itly we 
hose

x = i��x

0

+ ix

1

so that �

x

=

1

2�

0

(�

x

0
� ��

x

1
):

In this se
tion x and �x always denote the 
omplex 
oordinates belonging

to x

�

. In these 
oordinates the free Dira
 operator and the 
orresponding

Green fun
tion are simple

i�= = 2i

�

0 �

x

�

�x

0

�

and S(x

�

; y

�

) =

1

2�i

�

0 1=�

1=

�

� 0

�

+O(1);

where �=x�y. The 
hiral 
omponents of the energy momentum tensor and


urrent are then given by

T

xx

=

�

0

2i

(�T

00

+ T

01

) =

�

0

2i

dĝ��

d��

T

��

and j

x

=

1

2i

(�j

0

� j

1

):

Using that the energy momentum tensor is 
onserved and tra
eless and that

the ve
tor and axial-ve
tor 
urrents are 
onserved it is easy to 
he
k that

these 
hiral 
omponents only depend on x and not on �x.

Virasoro and Ka
-Moody algebras First we determine the 
entral


harge from the short distan
e expansion of the T

xx


orrelators. As in the


lassi
al theory (see (5.12)) the symmetri
 energy momentum tensor mea-

sures the 
hange of the e�e
tive a
tion � = logZ under arbitrary variations

of the metri
. For the torus there are two independent 
ontributions. One

being due to variations of the modular parameter � and its 
onjugate ��

whi
h depend impli
itly on the metri
. The other is due to the variations

of terms whi
h depend expli
itly on the metri
. Sin
e the 
hiral 
omponent

T

xx

is gotten by 
ontra
ting T

��

with dĝ

��

=d�� it follows that

hT

xx

i =

i�

0

p

g(x

�

)

�

1

L

2

�

���

+

dĝ

��

d��

Æ

Æg

��

(x

�

)

�

�[g; �; �� ℄ � Æ

x

�[g; �; �� ℄:
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It is always understood when doing metri
 variations, that we take the 
at

spa
etime limit afterward. The �� variation is 
onstant and may be skipped

in the short distan
e expansion.

Taking several metri
 variations of the 
urvature dependent part of logZ

with Z from (5.109), (5.78) and (5.73) we �nd the following short distan
e

expansions for the three point 
orrelation fun
tion

hT

uu

T

vv

T

zz

i � �

3 + 24�g

2

3

(2�)

3

1

(u� v)

2

(u� z)

2

(v � z)

2

:

Comparing with the general expression [22℄ we read o� the 
entral 
harge

and the 
onformal weight of the energy momentum tensor


 = 3 + 24g

2

3

� and h

T

xx

= 2 : (5.119)

The �rst 
ontribution is that of three free �elds. The g

3

�dependent term

we have already met in our 
lassi
al analysis and 
omes from the 
oupling

to the ba
kground 
urvature. It is well known from the minimal 
onformal

series. Note that the 
ouplings g

1

and g

2

do not a�e
t the 
entral 
harge.

In parti
ular, if we subtra
t the 
entral 
harge of the auxiliary �elds and set

g

3

=0 then 
 is the same as for the Thirring model, namely 
=1 [22℄.

Next we determine the Ka
-Moody algebra of the U(1) 
urrents. To de-

rive the 
orrelation fun
tions with 
urrent insertions we 
ouple the fermions

to a gauge �eld, that is 
onsider the 'gauged' model without Maxwell term.

For example,

< j

�

(x

�

) j

�

(y

�

) > =

1

e

2

q

g(x

�

)g(y

�

)

Æ

2

�[g;A℄

ÆA

�

(x

�

)ÆA

�

(y

�

)

j

A=0

:

Using (5.72) on 
at spa
etime and without Maxwell term, together with

�

�

� = �

�

�

A

T

�

; where A

T

�

= A

�

�

2�

L

t

�

�r

�

1

4

r

�

A

�

is the transversal part of A

�

, one obtains the following short distan
e ex-

pansion

hj

x

j

y

i � �

1

2�

1

2� + g

2

2

1

(x� y)

2

:

We read o� the value k of the 
entral extension in the U(1)-Ka
-Moody

algebra to be

k =

2�

2� + g

2

2

:

(5.120)

Finally we need to determine the 
onformal weight of the 
urrent. From

hj

x

j

y

T

zz

i � �

1

4�

2

1

2� + g

2

2

1

(x� z)

2

(y � z)

2
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we obtain h

j

= 1. To summarize, the symmetry algebra is the semi-dire
t

produ
t of a Virasoro algebra with 
entral 
harge (5.119) and a U(1) Ka
-

Moody 
urrent algebra with 
entral extension (5.120).

Conformal weights: To unravel the possible representations of the Vira-

soro algebra realized in the model we must determine the 
onformal weights

of the fundamental �elds. The short distan
e expansions of the fermioni


two-point fun
tion with T

zz

follows from the metri
 variation of the Green

fun
tion

h 

0

(x)  

y

1

(y)i = S

ij

(x; y) � exp [ig

1

g

3

�(x) + �G

R

(x; x)℄ � [x! y℄� 2�G(x; y)

where

� =

1

4

�

g

2

1

�

2�g

2

2

2� + g

2

2

�

:

and S

ij

is the fermioni
 Green fun
tion in the external gravitational �eld

and harmoni
 gauge �eld but with � and � set to zero. More pre
isely,

h 

0

(x)  

y

1

(y) T

zz

i =

1

Z

Æ

z

�

Zh 

0

(x)  

y

1

(y)i

�

:

However, sin
e Z � exp[F (R

2

)℄, its metri
 variation vanishes after the 
at

spa
etime limit has been taken. We refer to appendix B for the variation of

S

ij

and G(x; y). Colle
ting the most singular terms, we arrive at

h 

0

(x)  

y

1

(y) T

zz

i �

1

2�i

1

4�

h

1

(z�x)(z�y)

(

1

z�x

�

1

z�y

)

�

ig

1

g

3

x�y

(

1

(z�x)

2

�

1

(z�y)

2

) +

�

2�

(

1

z�x

�

1

z�y

)

2

i

e

2�G(x;y)

:

(5.121)

Using that

�

x

e

2�G(x;y)

= ��

y

e

2�G(x;y)

= �

�

2�

1

x� y

e

2�G(x;y)

;

we �nd that the 2-point fun
tion varies under a in�nitesimal 
onformal trans-

formation, parametrized by f(z), as

1

i

I

dzf(z)h 

0

(x)  

y

1

(y) T

zz

i =

n

f(x)�

x

+ f(y)�

y

+

1

2

(1 +

�

2�

)[f

0

(x) + f

0

(y)℄�

ig

1

g

3

2

[f

0

(x)� f

0

(y)℄

o

h 

0

(x) 

y

1

(y)i:

Note that the exponential fa
tor has been absorbed to re
over the 
orrelation

fun
tion h 

0

(x) 

y

1

(y)i. The short distan
e expansion with T

�z�z

is 
al
ulated

similarly. Then one reads o� the 
onformal weights
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1

16�

g

2

1

�

1

16�

2�g

2

2

2� + g

2

2

�

ig

1

g

3

2

h

 

y

1

= (h

 

0

)

y

�

h

 

0

=

1

16�

g

2

1

�

1

16�

2�g

2

2

2� + g

2

2

�

ig

1

g

3

2

:

(5.122)

Thus we have reprodu
ed the 
lassi
al results supplemented by additional

g

1

and g

2

dependent quantum 
orre
tions. In the Thirring model limit g

3

=0

and g

1

=g

2

=g, these terms add up to give the known anomalous dimension

appearing in the Thirring model [22℄. The last 
lassi
al term is a pe
uliar

feature of the solution. For the 
onformal weight to be real we are obliged

to 
hoose g

3

imaginary.

Let us now turn to the auxiliary �elds. It is straightforward to 
ompute

the 
orrelators

h�

x

T

zz

i �

1

4�

g

3

1

(x� z)

2

h�

x

�

y

T

zz

i � �

1

32�

2

1

(x� z)(y � z)

h�

x

�

y

T

zz

i � �

1

16�

1

(x� z)(y � z)

:

(5.123)

We see that the 
lassi
al results are un
hanged, that is for g

3

6=0 the s
alar

�eld � is not primary and for g

3

=0 we �nd the 
onformal weights h

�

=h

�

=

0.

Finally we turn to vertex operators or exponentials of the auxiliary �elds.

In 
ontrast to � and � those are well de�ned even on the extended plane.

Re
alling the regularization pres
ription (5.91) we �nd

h: e

�

1

�(x)

: : e

�

2

�(y)

: T

zz

i � �

1

16�

1

2�+g

2

2

h

�

1

z�x

+

�

2

z�y

i

2

�h: e

�

1

�(x)

: : e

�

2

�(y)

:i

(5.124)

and hen
e

1

i

Z

C

f(z)h: e

�

1

�(x)

: : e

�

2

�(y)

: T

zz

i �

h

f(x)�

x

+ f(y)�

y

�

1

8(2�+g

2

2

)

(�

2

1

f

0

(x) + �

2

2

f

0

(y))

i

h: e

�

1

�(x)

: : e

�

2

�(y)

:i :

(5.125)

From this we read o� the 
onformal weights of the vertex operators
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h

i

=

�

h

i

= �

�

2

i

8(2� + g

2

2

)

:

(5.126)

Note that �

i

must be imaginary to get a positive weight. A similar analysis

for the �-�eld yields

1

i

Z

C

f(z)h: e

�

1

�(x)

: : e

�

2

�(y)

: T

zz

i �

h

f(x)�

x

+ f(y)�

y

�

�

1

2

(

�

1

8�

+g

3

)f

0

(x)�

�

2

2

(

�

2

8�

+g

3

)f

0

(y)

i

h: e

�

1

�(x)

: : e

�

2

�(y)

:i

(5.127)

and hen
e

h

i

= �

1

2

�

i

(

�

i

8�

+ g

3

) :

(5.128)

Here both �

i

and g

3

must be imaginary for the weights to be positive.

Note that 
ontrary to � the �elds : e

��(x)

: remain primary when the �R


oupling is swit
hed on. This 
oupling results only in a shift of the 
onformal

weights.

U(1)-
harges: To see how the left and right Ka
 Moody 
urrents a
t on

the fermioni
 �elds we noti
e that after the integration over the auxiliary

�elds the A-dependen
e of the fermioni
 Green fun
tion fa
torizes as

h 

0

(x) 

y

1

(y)i

A

= e

1

2

m




R

'4'

� e

�eg(x)

h 

0

(x) 

y

1

(y)i

A=0

e

�e�g(y)

;

where

g(x) = �i�(x) + 


5

�'(x); � =

2�

2� + g

2

2

:

Also, using that on 
at spa
etime

�(x) = �i

Z

�

z

G(x; z)A

z

+ i

Z

�

�z

G(x; z)A

�z

�(x) =

Z

�

z

G(x; z)A

z

+

Z

�

�z

G(x; z)A

�z

;

(5.129)

one ends up with

h 

0

(x) 

1

(y)

y

j

z

i =

1

4�i

h

4� + g

2

2

2� + g

2

2

1

z�x

+

g

2

2

2� + g

2

2

1

z�y

i

h 

0

(x) 

1

(y)

y

i

h 

0

(x) 

1

(y)

y

j

�z

i =

1

4�i

h

g

2

2

2� + g

2

2

1

�z��x

+

4� + g

2

2

2� + g

2

2

1

�z��y

i

h 

0

(x) 

1

(y)

y

i

and thus obtains the following the U(1) 
harges
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q

 

0

=

1

2

(1 +

2�

2� + g

2

2

) , �q

 

0

=

1

2

(1�

2�

2� + g

2

2

):

(5.130)

We have used the 
onvention where the ele
tri
 
harge q+�q is unity. In the

Thirring model limit we 
an 
ompare (5.130) with the results obtained in

[22℄. For that we need to res
ale the 
urrents su
h that the 
entral extension

(5.120) of the Ka
-Moody algebra be
omes unity

j

z

!

q

1 + g

2

2

=2� j

z

:

Now it is easy to see that we agree with [22℄ if we make the identi�
ation

�g

Fu

=

g

2

2

4�

1

p

1 + g

2

2

=2�

:

To summarize, what we have found is that the 
lassi
al 
onformal and axial

transformations of all �elds besides � and � are deformed. The longitudinal

part of the 
urrent-
urrent intera
tion in (5.1) 
hanges the 
onformal weights

of the fermion �eld only. The transversal part a�e
ts all weights and U(1)-


harges. The ba
kground 
harge 
hanges the 
onformal weight of the vertex

operators belonging to the s
alar �eld.

Of 
ourse, the same stru
ture is found in the other 
hiral se
tor.

5.4.3 Finite size e�e
ts

When quantizing a 
onformal �eld theory on a spa
etime with �nite volume

one introdu
es a length s
ale. The presen
e of this length s
ale in turn breaks

the 
onformal invarian
e and gives rise to �nite size e�e
ts. It has been


onje
tured [12℄ that the �nite size e�e
ts are proportional to the 
entral


harge. For example when one stret
hes spa
e time, x

�

! ax

�

, then the


hange of the e�e
tive a
tion is proportional to 
:

�

ax

� �

x

= �




6

log a � �;

(5.131)

where � is the Euler number of the Eu
lidean spa
e time. In [17℄ this


onje
ture has been proven for a 
lass of 
onformal �eld theories on spa
es

with boundaries. The only important assumption has been that the regu-

larization respe
ts general 
ovarian
e. In this subse
tion we shall show that

the 
onje
ture does not hold for the model (5.1) on Riemannian surfa
es.

Unfortunately, the only global 
onformal transformations on the torus

are translations whi
h do not give rise to �nite size e�e
ts. Also, the Euler

number vanishes and a

ording to (5.131) the �nite size e�e
ts are insensitive

to the value of 
. For that reason we quantize the ungauged model (5.1) on

the sphere where the global 
onformal group is the Moebius group.
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An e�e
tive method to 
ompute �nite size e�e
ts has been developed in

[17℄. It is based on the following observation: Any 
onformal transformation

z ! w(z) is a 
omposition of a di�eomorphism (de�ned by the same w) and

a 
ompensating Weyl transformation g

��

! e

2�

g

��

with

e

2�

=

dw(z)

dz

d �w(�z)

d�z

; z = x

0

+ ix

1

:

Therefore, 
hoosing a di�eomorphism invariant regularization one has

0 = Æ�

Diff

= Æ�

Conf

� Æ�

Weyl

:

Now we apply the te
hniques of the previous se
tions to derive the 
hange

Æ�

Weyl

of the e�e
tive a
tion on the sphere under Weyl transformations.

This 
hange is given by the tra
e anomaly.

The 
hange of the e�e
tive a
tion under Weyl res
aling is

Æ�

Weyl

= � log

R

D(��) det(iD= ) exp(�S

B

[A = 0; g℄)

R

D(��) det(i

^

D= ) exp(�S

B

[A = 0; ĝ℄)

;

where S

B

is the bosoni
 a
tion (5.61) with vanishing gauge �eld. Also, sin
e

on the sphere there are no harmoni
 ve
tor �elds the term � h

2

in S

B

is

not present. Thus the 
al
ulation on the sphere is a
tually simpler as on

the torus (see 5.105) sin
e there is no integration over the harmoni
 �elds.

As on the torus we must impose the 
onditions (5.64) in order to eliminate

the additional degrees of freedom we introdu
ed in the derivative 
oupling

representation. Thus we obtain

Æ�

Weyl

= log

^

V

V

�

S

L

24�

++

g

2

3

4

Z

R

1

4

R+ log

det

0

4

det

0

^

4

:

(5.132)

Here we used that (5.55) in the trivial se
tor still holds on the sphere. Also

we used the s
aling law (5.70). S

L

is the Liouville a
tion (5.56) in whi
h we


an not put

^

R to zero, sin
e

Z

p

gR = 8� = 4��

for any 
urvature and thus in parti
ular for

^

R. As for the fermions (see

5.51) one introdu
es the 1-parametri
 family of Lapla
ians

4

�

= e

�2��

^

4

interpolating between

^

4 and 4. The � derivative of the 
orresponding

determinant is given by the tra
e anomaly [39, 17℄. The expli
it 
al
ulation

yields
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log det

0

4

^

4

= 2

Z

1

0

d�

Z

p

g

�

�

�

1

4�

a

�

1

� P

�

�

�;

(5.133)

Again g

�

is the determinant and a

�

1

=

1

6

R

�

the relevant Seeley-deWitt 
o-

eÆ
ient of the deformed metri
 g

�

��

= e

2��

ĝ

��

. P

�

is the proje
tion onto

the zero-mode of 4

�

. Using that the normalized zeromode is 
onstant and

� 1=

p

V

�

, one �nds

log det

0

4

^

4

= log

V

^

V

+

1

12�

S

L

:

The � log V 
han
el against the same term in (5.132) and we end up with

Æ� =

g

2

3

4

Z

p

gR

1

4

(R�

8�

V

)�

3

24�

Z

p

ĝ

^

R� +

3

24�

Z

p

ĝ�

^

4�

(5.134)

whi
h depends only on g

3

. Now we 
an see why the �nite size 
onje
ture

generally fails to be true, although it holds for theories without ba
kground


harge on domains with boundaries [17℄. Take the simple 
ase of a dilatation

w(z) = az. Then, the 
onformal angle is a 
onstant � = log a and (R �

8�=V )=0. Then the �rst term in (5.134) vanishes and the �nite size e�e
t

does not depend on g

2

3

. It is given by

Æ� = �

3

24�

log a

Z

p

ĝ

^

R = � log a

and does not agrees with (5.131) sin
e 
 in (5.119) depends on g

3

. Thus

we have disproved the 
onje
ture. On other Riemannian surfa
es one would

�nd the same result: the e�e
tive a
tion s
ales as in (5.119) where 
 is the


entral 
harge of the model without ba
kground 
harge. It is evident that

the �nite size s
aling 
omes from the middle term � log a

R
p

ĝ

^

R in (5.134).

It is interesting to 
ompare the �nite size s
aling on Riemannian surfa
es

with the one on domains with boundaries. In the presen
e of boundaries

(5.133) is modi�ed to

log det

0

4

^

4

= �

1

2�

Z

1

0

d�

�

Z

p

g

�

a

�

1

� +

I

p

~g

�

b

�

1

�

�

;

(5.135)

where the se
ond integral is over the boundary of spa
etime and ~g

��

the

indu
ed metri
 on this boundary. On a domain we 
an always put

^

R to

zero and the middle term in (5.135) does not 
ontribute to the s
aling. The

s
aling 
omes from the surfa
e term in (5.135). Di�eomorphism invarian
e

implies that the bulk term determines the surfa
e term (up to di�eomor-

phism invariant surfa
e terms). This is how the 
entral 
harge, de�ned by

the short distan
e expansion of the T

zz

-
orrelators and thus by the bulk
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term, re-emerges in the s
aling law (5.131), whi
h is determined by the

surfa
e term.
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Appendix A

Conventions

In this appendix we set up our notation and give a list of useful formulas.

Let g

��

be the metri
 of spa
etime. The sign 
onvention for the 
urvature

tensors is su
h that

R

�

�
Æ

= �

�

Æ�;


� �

�


�;Æ

+ �

�

Æ�

�

�


�

� �

�


�

�

�

Æ�

and R

�Æ

= R

�

��Æ

:

(A.1)

In 2 dimensions the only independent 
omponent isR

0101

. In order to 
ouple

fermions to gravity we must introdu
e a lo
al Lorentz frame (or tetrad), e

�a

,

relating the Lorentz and spa
etime indi
es:

e

�a

e

a

�

= g

��

, e

�a

e

�

b

= �

ab

, �

ab

=

�

1 0

0 �1

�

:

(A.2)

The Latin and Greek indi
es are Lorentz and spa
etime indi
es, respe
-

tively. All physi
al laws should be general- and Lorentz 
ovariant. If g

��

has Eu
lidean signature then �

ab

in (A.2) is 
hanged to Æ

ab

.

The '
urved' gamma matri
es are related to the 
at ones as




�

= e

�

a

~


a

: (A.3)

We us the following 
hiral representation for the 
at 
's:


̂

0

M

=

�

0 1

1 0

�

; 
̂

1

M

=

�

0 �1

1 0

�

(A.4)

and in Eu
lidean spa
etime we may 
hoose


̂

0

E

= 
̂

0

M

; 
̂

1

E

= i
̂

1

M

: (A.5)

We may also de�ne
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~


5

= 
̂

0

M


̂

1

M

= �i
̂

0

E


̂

1

E

=

�

1 0

0 �1

�

(A.6)

The relations

~


a

M

~


5

= �

a

b

~


b

; ~


a

E

~


5

= �i�

a

b

~


b

; where �

ab

=

�

0 1

�1 0

�

(A.7)

are parti
ular to 2 dimensions and play an important role in this 
hapter.

Note that depending whether one is in Minkowskian or Eu
lidean spa
etime

the Lorentz index a is raised with �

ab

or Æ

ab

. The 
urved spa
e analogue of

(A.6) reads




5

=

1

2

�

��




�

M




�

M

=

1

2i

�

��




�

E




�

E

= ~


5

;

(A.8)

where �

��

=

p

jgj�

��

is the antisymmetri
 tensor (whereas the 
at metri


has Lorentz- indi
es, the antisymmetri
 tensor has spa
e-time indi
es). To

implement lo
al Lorentz invarian
e one needs to introdu
e a 
onne
tion !

�ab

.

For example, in the Lagrangian the Lorentz-
ovariant derivative a
ting on

the spinors read

D

�

= �

�

+ i!

�

;

(A.9)

where the spin 
onne
tion !

�

is de�ned by

D

�

� �

�

e

a

�

��

�

��

e

a

�

+!

�ab

e

b

�

= 0;

!

�

=

1

2

!

�ab

�

ab

; �

ab

=

1

4i

[~


a

; ~


b

℄:

(A.10)

In 2 dimensions this redu
es to

!

M

�

=

1

2i

!

�01




5

or !

E

�

=

1

2

!

�01




5

:

(A.11)

Finally we list some useful s
aling relations. If the 2-bein s
ales as e

a

�

=e

�

ê

a

�

then the above introdu
ed quantities s
ale as

g

��

= e

2�

ĝ

��

;

p

g = e

2�

p

ĝ ; R = e

�2�

(

^

R� 2

^

4�)

!

�ab

= !̂

�ab

� �

a

�ê

�b

+ �

b

�ê

�a

; (A.12)

�

�

��

=

^

�

�

��

+

�

�

�

�Æ

�

�

+ �

�

�Æ

�

�

� �

�

�ĝ

��

ĝ

��

�

;

4 = e

�2�

^

4 ; �= + i!= = e

�

3

2

�

(

^

�= + i

^

!= )e

1

2

�

:
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Appendix B

Variational formulas

Here we 
olle
t some useful variational formulas. In the followingD

�

denotes

the spa
etime and Lorentz 
ovariant derivative. How it a
ts on spa
etime

and Lorentz tensors follows from the �rst formula in (A.10).

Using the de�nition of the Christo�el symbol and (A.2) it is straightforward

to show that

Æg

��

= Æe

a

�

e

�a

+ e

a

�

Æe

�a

; Æ

p

g =

1

2

p

gg

��

Æg

��

Æ


�

= �


�

e

�

a

Æe

a

�

; Æ�

�

�

=

1

2

(�

��

Æg

��

� �

�

�

g

��

Æg

��

)

Æ�

�

��

=

1

2

g

��

(D

�

Æg

��

+D

�

Æg

��

�D

�

Æg

��

):

(B.1)

For some formulas related to the variation of the tetrad let us refer to [36℄

Æe

�

a

=

1

2

e

�a

Æg

��

� t

b

a

e

�

b

, Æe

a

�

=

1

2

e

�a

Æg

��

� t

a

b

e

b

�

where t

a

b

=

1

2

(e

�a

Æe

�b

� e

�

b

Æe

a

�

):

(B.2)

Then using (A.10) it is easy to see that

Æ!

�ab

= D

�

t

ab

� �

�ab

�

�ab

=

1

2

e

�

a

e

�

b

(D

�

Æg

��

�D

�

Æg

��

):

(B.3)

When performing the variation of 
urvature dependent expressions we have

used the identities

g

��

ÆR

��

= !

�

;�

; where !

�

= g

��

Æ�

�

��

� g

��

Æ�

�

��

and

R

p

g !

�

A

�

=

R

p

gfg

��

r

�

A

�

�r

�

A

�

gÆg

��

:

(B.4)

Depending on the topology of spa
etime, the indu
ed 
urvature

^

R appearing
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in (A.12) may be di�erent from zero. In this 
ase it is not possible to express

the 
onformal angle � in terms of the 
urvature s
alar. Nevertheless, to

perform variations of �-dependent expressions, the identity

Æ(

p

gR) = �2Æ(

p

g4�)

(B.5)

proves to be useful.

Taking the variations of the equations

p

g�G(x; y) = �Æ(x� y) and

p

g iD=S(x; y) = Æ

2

(x� y)

(B.6)

for the s
alar and fermioni
 Green fun
tions we may derive (up to 
onta
t

terms) the following variational formulas

ÆG =

Z

(�

1

2

g

��

g

��

+ g

��

g

��

)�

�

G(x; u) �

�

G(u; y)

p

gÆg

��

ÆS =

i

4

Z

�

2S(x; u)


�

D

�

S(u; y)�D

�

[S(x; u)


Æ

�

�

Æ

�

��

S(u; y)℄

�

p

gÆg

��

;

here all arguments and derivatives whi
h are not made expli
it in the integral

refer to the 
oordinate u over whi
h is integrated. Finally, we need the

following formula for the variation of the inverse Lapla
ian

Æ

�

1

4

f

�

=

1

4

�

Æf � Æ(4)

1

4

f

�

�

1

2V

Z

p

gg

��

Æg

��

1

4

f;

(B.7)

where V is the volume of spa
etime and f an arbitrary fun
tion. To prove

this identity we note that for f 2 (Kern4)

?

we have

4

1

4

f = f:

Varying this equation yields

4(Æ

1

4

f) = Æf � (Æ4)

1

4

f

whi
h may be inverted to give

Æ

�

1

4

f

�

=

1

4

�

Æf � Æ(4)

1

4

f

�

+

1

V

Z

p

gÆ

�

1

4

f

�

:

(B.8)

Varying the identity

1

V

Z

p

g

1

4

f = 0

allows to repla
e the last term of (B.8) to obtain the required result (B.7).
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