
Chapter 4

Hamiltonian Redution of

WZNW Theories

Two dimensional onformally invariant �eld theories are based on various

extensions of the hiral Virasoro algebras. The best-known extensions is

the Ka-Moody (KM) algebra [23℄, whose most prominent Lagrangian real-

ization is the Wess-Zumino-Witten-Novikov (WZNW) model [50℄. Another

extension is the so-alled W-extension [52℄, whih is a polynomial extension

of the Virasoro algebra by higher spin �elds. These W-algebras proved very

fruitful in analyzing onformal �eld theories and they have beome the sub-

jet of intense study (see [13℄ for a review on these algebras). It has been

realized by Gervais and Bilal that Toda theories provide a Lagrangian real-

ization of W-algebras [9℄. In [20℄ we have shown that the exat relationship

is that Toda theories may be regarded as WZNW models redued by onfor-

mally invariant onstraints. More preisely, Toda theories an be identi�ed

as the onstrained WZNW models, modulo the left-moving upper triangular

and right-moving lower triangular KM transformations, whih are the gauge

transformations generated by the �rst lass onstraints.

The onstrained WZNW (KM) setting of the Toda theories (W-algebras)

alls for generalizations, some of whih have been investigated. For exam-

ple, in [39℄ the redution was generalized to produe a series of onformally

invariant integrable theories whih interpolate between the WZNW and

Toda theories. These theories ontain WZNW �elds belonging to reduible

WZNW groups, with the irreduible piees in nearest neighbor interation,

thus providing a natural generalization of Toda theories. A remarkable fea-

ture of the theories is the emergene of a �eld whih plays the role of the

two-dimensional gravitational density

p

�g. Further features are the ease
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with whih the general solutions of the �eld equations in these theories an

be obtained from the well-known WZNW solutions, and the formula for the

enters of the Virasoro algebra in terms of the WZNW enter.

Also, it has been realized in [5, 18℄ that it is possible to assoiate a general-

ized W-algebra to every embedding of the Lie algebra sl(2) into the simple

Lie algebras. The standardW-algebra ourring in Toda theory, orresponds

to the so alled prinipal sl(2). Another interesting development is the W

l

n

algebras introdued by Bershadsky [8℄. It is known that the simplest non-

trivial ase W

2

3

, whih was originally proposed by Polyakov [44℄, is a speial

sl(2)-based W-algebra. the lassi�ation based on sl(2) embeddings

In addition, the whole onstrution has been supersymmetrized by on-

straining super-WZNW theories [14℄. As in the bosoni ase one �nds that

the redued supersymmetri theories ontain superW-algebras as non-linear

symmetry algebras. Here the lassi�ation of the W-algebras is based on

OSp(1j2) embeddings in a simple superalgebra G. A speially simple exam-

ple where the algebra loses linearly is the N = 1 superonformal algebra

made from the stress energy tensor and a onformal spin 3=2 fermioni �eld.

Here we undertake a systemati study of the Hamiltonian redutions of

WZNW theory, aiming at unovering the general struture of the redution.

We shall derive the e�etive �eld theories (some of them will ontain �elds

with half-integer spins) whih ontain generalized W-algebras as symme-

try algebras and investigate the relation between the di�erent W-algebras.

We give purely Lie-algebrai onditions for the onstraints to be �rst lass,

onformally invariant and that they lead to a polynomial extension of the

Virasoro algebra. Finally we investigate the quantum redution of WZNW

theories and derive the entral harge for the e�etive redued theories for

arbitrary redutions.

We start with realling, that WZNW-theories are �eld theories for group

valued �elds g(x) 2 G with ation

1

S

WZ

(g) =

�

2

Z

d

2

xTr (g

�1

�

�

g)(g

�1

�

�

g)�

�

3

Z

B

3

Tr (g

�1

dg)

3

:

(4.1)

We assume that G is a a simple, maximally non-ompat, onneted real Lie

group or in other words that the simple Lie algebra, G, orresponding to G

allows for a Cartan deomposition over the �eld of real numbers. Thus G is

de�ned as the real span of a Chevalley basis H

i

, E

��

of the orresponding
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, and in the ase of the lassial series A

n

, B

n

, C

n

and D

n

is given by sl(n+ 1; R), so(n; n+ 1; R), sp(2n;R) and so(n; n;R),

respetively. The Cartan-Killing form of G is denoted by h:; :i � Tr (::).

The �eld equation of the WZNW theory an be written in the equivalent

1

The KM level k is �4��. The spae-time onventions are: �

00

= ��

11

= 1 and

x

�

=

1

2

(x

0

� x

1

). The WZNW �eld g is periodi in x

1

with period 2�r.
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forms

�

�

J = 0 or �

+

~

J = 0;
(4.2)

where

J = ��

+

g � g

�1

and

~

J = ��g

�1

�

�

g:
(4.3)

These equations express the onservation of the left- and right KM urrents,

J and

~

J , respetively. The general solution of the �eld equation have the

simple form

g(x

+

; x

�

) = g

L

(x

+

) � g

R

(x

�

); (4.4)

where g

L

and g

R

are arbitrary G-valued funtions, onstrained only by the

boundary onditions imposed on g.

In what follows we shall need the remarkable Polyakov-Wiegmann iden-

tity [43℄,

S
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o

:

(4.5)

4.1 Gauging the WZNW theories

For gauging the WZNW theories we ouple the �elds a and  in (4.5) mini-

mally to gauge potentials, that is replae the ordinary derivatives by ovari-

ant ones

D

�

a = �

�

a+Aa and D

+

 = �

+

�

~

A;

whih transform ovariant under the gauge transformations

a! e

�

a; ! e
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 () g ! e
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~�
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Ae

�~�

+ (�

+

e

~�

)e

�~�

:

(4.6)

The b �eld in the deomposition of g is gauge invariant. Clearly, if we

replae the derivatives of a;  in (4.5) by ovariant ones and if we drop the

WZ-ation of a and 

�1

, then the resulting ation
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(4.7)

would be gauge invariant. However, in general this ation annot be re-

expressed in terms of the original �eld g. For example, for vanishing gauge

potential this is only possible if we would add the WZ-ations of a and 

�1

.

However, suh terms are are not gauge invariant. The way out is to assume

that S

WZ

vanish on these �elds. This is equivalent to assuming that a and 

vary in subgroups of G with Lie-algebras � and

~

�, respetively, whih have

the property � � �

?

and

~

� �

~

�

?

. Of ourse, the gauge potentials lie then

also in these subalgebras, A 2 � and

~

A 2

~

�.

With these assumptions the gauge-invariant ation (4.7) an be written

in terms of the original �eld, up to a term

�

Z

Tr

n

A(�

+

a)a

�1

�

~

A(�

�

)

�1

o

:

But beause A and (�

+

a)a

�1

are both in � and we assumed that � � �

?

(and similarly for

~

�) this di�erene vanishes. However, the resulting gauge-

theories are still rather uninteresting, they are essentially WZNW-theories

for the gauge-invariant �eld b. To get interesting new theories we ouple the

gauge �eld to onstant elements M and

~

M and de�ne

I = I

0

� �

Z

Tr

�

AM +

~

A

~

M

�

:

whih, with our assumption on �;

~

� an be rewritten as

I(g;A;

~

A) � S

WZ

(g) + �

Z

d

2

x

�

Tr (A(�

+

gg

�1

�M)

+

~

A(g

�1

�

�

g �

~

M) +Ag

~

Ag

�1

�

:

(4.8)

Later we shall see that for partiular hoies of M;

~

M the redued theories

are interesting interating Toda-type theories. Note that the terms ontain-

ing M and

~

M are not invariant under the general transformations (4.6).

However, they beome invariant if we assume that M is orthogonal to the

derived algebra [�;�℄. For example, under an in�nitesimal gauge transfor-

mation belonging to e

�

' 1 + �, the term hA;Mi hanges by

Æ hA;Mi = �h�

�

�;Mi + hM; [�;A℄i ;

whih is a total divergene sine with our assumption on � the seond term

vanishes, as both A and � are from �. This then proves that the ation
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(4.8) is gauge invariant, provided we impose the following onditions on M

and �: for �; � 2 �

[�; �℄ 2 �; h�; �i = 0 and !

M

(� ; �) = 0; (4.9)

where I introdued the anti-symmetri Kostant-Kirillov 2-form on G:

!

M

(u; v) � hM; [u; v℄i for a �xed M 2 G and 8u; v 2 G: (4.10)

This means that � is a subalgebra on whih the Cartan-Killing form and !

M

vanish. Of ourse, we must impose exatly the same onditions on

~

M;

~

�. It

is easy to see that the 3 onditions in (4.9) an be equivalently written as

[�;�

?

℄ � �

?

; � � �

?

and [M;�℄ � �

?

; (4.11)

respetively. Subalgebras � satisfying � � �

?

exist in every real form of the

omplex simple Lie algebras exept the ompat one, sine for the ompat

real form the Cartan-Killing inner produt is (negative) de�nite. Now we

have the following

Lemma 3 � � �

?

=) � is a solvable subalgebra of G.

We reall that � is solvable, if �

(n)

= 0 for some n, where the �

(k)

; k � 0

are de�ned iteratively by:

�

(0)

= � and �

(k)

= [�

(k�1)

;�

k�1

℄:

The seond ondition in (4.11) an be satis�ed for example by assuming

that every  2 � is a nilpotent element of G in whih ase � is atually

a nilpotent Lie algebra, by Engel's theorem [28℄. We also reall that � is

alled nilpotent, if �

(n)

= 0 for some n, where the �

(k)

; k � 0 are de�ned

iteratively by:

�

(0)

= � and �

(k)

= [�

(k�1)

;�℄:

Clearly, any nilpotent � is solvable. However, the nilpoteny of � is not

neessary for � � �

?

to hold. In fat, solvable but not nilpotent �'s whih

satisfy (4.11) an be found.

The Euler-Lagrange equation derived from (4.8) by varying g an be

written equivalently as

�

�

(�

+
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�1
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~
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�1

) + [A; �

+
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�1

+ g
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�

+
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�
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�1

Ag) � [

~

A; g

�1

�

�

g + g

�1

Ag℄ + �

�

~

A = 0

(4.12)

and they determine the evolution of the �eld g. Sine the ation ontains

70



no time-derivative of the gauge �elds the A;

~

A-equations are Lagrangian

onstraints

h; �

+

gg

�1

+ g

~

Ag

�1

�Mi = 0; 8  2 � ;

h~ ; g

�1

�

�

g + g

�1

Ag �

~

Mi = 0; 8 ~ 2

~

�:

(4.13)

We now note that by making use of the gauge invariane,

~

A and A an be set

equal to zero simultaneously. The important point for us is that, as is easy

to see, in the A =

~

A = 0 gauge one reovers from (4.12) the �eld equations

(4.2) of the WZNW theory and from (4.13) the onstraints

�



= h; J � �Mi = 0; and

~

�

~

= h~;

~

J + �

~

Mi = 0; (4.14)

where the  and the ~ form bases of � and

~

�, respetively.

Note that setting A;

~

A to zero is not a omplete gauge �xing, the residual

gauge transformations are exatly the hiral gauge transformations

g(x

+

; x

�

) �! e

�(x

+

)

� g(x

+

; x

�

) � e

�~�(x

�

)

; (4.15)

where � and ~� are arbitrary � and

~

� valued hiral funtions, respetively.

4.1.1 Hamiltonian formalism of the gauged theory

To disuss the Hamiltonian formalism for these theories we need to speify

the anonial variables. For that purpose we parametrize the group elements

in some arbitrary way [11℄, g = g(�). We shall regard the parameters �

a

,

a = 1; :::;dimG, as the anonial oordinates in the theory. To �nd the

anonial momenta, we introdue the 2-form A =

1

2

A

ab

(�) d�

a

d�

b

to rewrite

the Wess-Zumino term as

1

3

Tr (dg g

�1

)

3

= dA:

(4.16)

The 2-form A is well-de�ned only loally on G, sine the Wess-Zumino 3-

form is losed but not exat. Fortunately we do not need to speify A

expliitly below. Next we express the Maurer-Cartan forms as

dgg

�1

= N

ab

(�)d�

a

T

b

and g

�1

dg =

~

N

ab

(�)d�

a

T

b

; (4.17)

where T

b

are some orthonormal generators of G

2

. These non-singular ma-

tries are related with eah other and A by

N
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(4.18)

2

In real forms of the omplex Lie algebra some T

a

have norm �1
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Furthermore, the Maurer-Cartan relations (or integrability ondition on g)

take the form

N

b

;

a

�N

a

;

b
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pq
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In these variables the ation reads
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(4.19)

Sine it does not depend on

_

A, one has the primary onstraints

�
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a
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�

a

= �N

p

a

N

bp

_

�

b

� �A

ab

�

0b

+ �N

ab

A

b

+ �

~

N

ab

~

A

b

:

(4.20)

The anonial Hamiltonian an be written as

H =

1

4�

hJ; Ji + hA; �M +

1

2
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1

4�
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~
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(4.21)

where we have de�ned the KM-urrents
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(4.22)

The onsisteny of the primary onstraints lead to the following seondary

onstraints

h; J � �M � �Ai = 0 and h~;

~

J + �

~

M + �

~

Ai = 0: (4.23)

For arbitrary subalgebras these onstraints do not weakly ommute with

the primary onstraints due to terms linear in the gauge �elds. Thus to get

FCC we are again lead to impose the seond ondition in (4.9) or in (4.11).

Then the quadrati in A;

~

A terms in (4.21) and the linear in A;

~

A terms in

(4.23) vanish and we remain with the seondary onstraints
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= h; J � �Mi = 0 and
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(4.24)

After a lengthy but straightforward alulation, where one uses (4.18,4.19)

and identities like
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B

q

= 0;

one �nds the following equal time Poisson brakets for the KM-urrents

fhu; J(x)i; hv; J(y)ig = h[u; v℄; J(x)iÆ(�) + 2�hu; viÆ
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~
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(4.25)

for arbitrary u; v 2 G. Here I abbreviated x� y = �. Thus we have
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(4.26)

with the same arguments as in (4.25). Again it is evident that the onstraints

are �rst lass if, and only if, the onditions (4.9) are ful�lled, that is if �;

~

�

are solvable subalgebras on whih the Kostant-Kirillov forms vanish.

Finally we need to hek the onsisteny of the seondary onstraints.

Using the seond assumption in (4.9) we �nd for the Poisson brakets of the

seondary onstraints with the Hamiltonian density (4.21)
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(4.27)

Using the last property in (4.9) and integrating over y we obtain for the

smeared onstraints
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(4.28)

We see, that the primary and seondary onstraints form a FC system.

Finally, let us hek whih o�-shell symmetries are generated by these

FCC. For that we de�ne a general FCC

G =

Z

dx

1

�

�

i

�

i

+ �

i

�

i

+ ~�

i

~

�

i

+

~

�

i

~

�

i

�

; where �

i

= �



i

;

alulate its time-derivative
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and demand that this must be proportional to the primary onstraints.

One easily �nds that this an only be the ase if the oeÆient funtions are
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related as
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With these relations between the parameters one obtains the following o�

mass-shell symmetry transformations
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whih are the in�nitesimal gauge transformations (4.6). Finally note, that

if we set the gauge �elds to zero, then we �nd

3

d

dt

Z

(�

i

�

i

+ ~�

i

~

�

i

) =

Z

�

h�

�

�; J � �Mi+ h�

+

~�;

~

J + �

~

Mi

�

:

The right hand side vanishes if the � and ~� depend only on x

+

and x

�

,

respetively. The orresponding smeared onstraints generate transforma-

tions whih leave the surfae de�ned by the onstraints and the onditions

A =

~

A = 0 invariant. In other words, the onditions A=

~

A= 0 is only a

partial gauge �xing and the onstraints

G

h

�

Z

dx

1

�

�

i

(x

+

)�

i

+ ~�

i

(x

�

)

~

�

i

�

(4.30)

generate hiral o� mass-shell symmetries on the surfae de�ned by the par-

tial gauge �xing. From (4.29) we see that these symmetries are just the hiral

gauge transformations (4.15), as expeted. The urrents are transformed as

ÆJ = T

a

fJ

a

(x); G

h

g = [�(x); J(x)℄ + 2��

0

Æ

~

J = T

a

f

~

J

a

(x); G

h

g = [~�(x);

~

J(x)℄� 2�~�

0

(4.31)

whih, sine 2�

0

= �

+

� and 2~�

0

= ��

�

~� for hiral funtions, are just the

in�nitesimal forms of the global gauge transformations

J ! e

�

Je

��

+ (�

+

e

�

) e

��

; � = �(x

+

)

~

J ! e

~�

~

Je

�~�

� e

~�

�

�

e

�~�

; ~� = ~�(x

�

):

(4.32)

These are just the transformation of the urrents (4.2) whih follow from

(4.15).

� From now on I shall always assume that the anonial pairs A

i

;�

i

and

~

A

i

;

~

�

i

have been eliminated.

3

up to surfae terms whih vanish if we impose periodi boundary onditions
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The Dira braket on the so partially redued phase spae, are just the

ordinary Poisson braket for the remaining degrees of freedom. The situation

is very muh like in Yang-Mills theories, where one remains with the time-

independent gauge transformations after elimination of the primary pair

A

0

;�

0

and where these transformations are generated by the seondary

Gauss-onstraints smeared with time-independent test funtions. Also, in

the rest of this hapter, the notation f

0

= 2�

1

f is used for every funtion,

inluding the spatial Æ-funtions. This has the advantage that for a hiral

funtion f(x

+

) one has then f

0

= �

+

f .

4.1.2 E�etive �eld theories from left-right dual redutions

The aim of this setion is to desribe the e�etive �eld equations and ation

funtionals for an important lass of redued WZNW theories. This lass of

theories is obtained by making the assumption that the left and right gauge

algebras � and

~

� are dual to eah other with respet to the Cartan-Killing

form, whih means that one an hoose bases 

i

2 � and ~

j

2

~

� so that

h

i

; ~

j

i = Æ

ij

:

(4.33)

This tehnial assumption allows for having a simple general algorithm for

disentangling the onstraints (4.24) whih de�ne the redution. It holds if

one hooses � and

~

� to be the images of eah other under a Cartan invo-

lution

4

of the underlying simple Lie algebra. For maximally non-ompat,

onneted real Lie groups the Cartan involution is (�1)� transpose, oper-

ating on the Chevalley basis aording to

H

i

�! �H

i

E

��

�! �E

��

:

It is obvious that hv ; v

t

i > 0 for any non-zero v 2 G and from this one sees

that �

t

is dual to � with respet to the Cartan-Killing form, i.e., (4.33) holds

for

~

� = �

t

. It should also be mentioned that there is a Cartan involution for

every non-ompat real form of the omplex simple Lie algebras, as explained

in detail in [26℄.

Equation (4.33) implies that the left and right gauge algebras do not

interset, and thus we an onsider a diret sum deomposition of G of the

form

G = � + B +

~

� ;

(4.34)

where B is some linear subspae of G. Here B is in priniple an arbitrary

omplementary spae to (� +

~

�) in G, but one an always make the hoie

4

A Cartan involution � of the simple Lie algebra is an automorphism for whih �

2

= 1

and hv; �(v)i < 0.
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B = (� +

~

�)

?

; (4.35)

whih is natural in the sense that the Cartan-Killing form is non-degenerate

on this B. We note that matters simplify if the spae B is a subalgebra of

G, but this is not neessary for our arguments and is not always possible

either.

We an assoiate a `generalized Gauss deomposition' of the group G to

the diret sum deomposition (4.34). By `Gauss deomposing' an element

g 2 G, we mean writing it in the form

g = a � b �  ; with a = e



; b = e

�

and  = e

~

;

(4.36)

where , � and ~ are from the respetive subspaes in (4.34).

There is a neighborhood of the identity in G onsisting of elements whih

allow a unique deomposition of this sort, and in this neighborhood the

piees a, b and  an be extrated from g by algebrai operations. We make

the assumption that every G-valued �eld we enounter is deomposable as

g in (4.36). It is easily seen that in this `Gauss deomposable setor' the

omponents of b(x

+

; x

�

) provide a omplete set of gauge invariant loal

�elds.

Below I explain how to solve the onstraints (4.24) in the Gauss deom-

posable setor of the WZNW theory. For our method to work, we restrit

ourselves to �elds whih vary in suh a Gauss deomposable neighborhood

of the identity where the matrix

V

ij

(b) = h

i

; b ~

j

b

�1

i

(4.37)

is invertible. Due to the assumptions, the analysis given in the following

yields a loal desription of the redued theories. It is lear that for a global

desription one should use pathes on G obtained by multiplying out the

Gauss deomposable neighborhood of the identity, but we do not deal with

this issue here.

Field equations of the redued theories: First I derive the �eld

equations of the redued theory by implementing the onstraints diretly

in the WZNW �eld equation �

�

(�

+

gg

�1

) = 0. (This is allowed sine the

WZNW dynamis leaves the onstraint surfae invariant.) By inserting the

Gauss deomposition of g into (4.14) and making use of the onstraints being

�rst lass, the onstraint equations an be rewritten as

h

i

; �

+

bb

�1

+ b(�

+



�1

)b

�1

�Mi = 0 ;

h~

i

; b

�1

�

�

b+ b

�1

(a

�1

�

�

a)b�

~

Mi = 0:

(4.38)
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With the help of the inverse of V

ij

in (4.37), one an solve these equations

for �

+



�1

and a

�1

�

�

a in terms of b,

�

+



�1

= b

�1

T (b)b; and a

�1

�

�

a = b

~

T (b)b

�1

; (4.39)

where

T (b) =

X

ij

V

�1

ij

(b) h

j

; M � �

+

bb

�1

i b~

i

b

�1

;

~

T (b) =

X

ij

V

�1

ij

(b) h~

i

;

~

M � b

�1

�

�

bi b

�1



j

b:

(4.40)

The e�etive �eld equation for the �eld b(x

+

; x

�

) an be obtained, for in-

stane, by noting that the WZNW �eld equation an be written in the

zero-urvature form [�

+

�J; �

�

� 0℄ = 0 or equivalently after a gauge trans-

formation with a as

[�

+

�A

+

; �

�

�A

�

℄ = 0; (4.41)

where

A

+

= �

+

b b

�1

+ b(�

+



�1

)b

�1

and A

�

= �a

�1

�

�

a : (4.42)

Inserting the relations (4.39) we see that the �eld equation of the redued

theory is the zero urvature ondition of the following Lax potential:

A

+

(b) = �

+

b b

�1

+ T (b) and A

�

(b) = �b

~

T (b)b

�1

: (4.43)

More expliitly, the e�etive �eld equation reads

�

�

(�

+

bb

�1

) + [b

~

T (b)b

�1

; T (b)℄ + �

�

T (b) + b(�

+

~

T (b))b

�1

= 0: (4.44)

The expression on the left-hand-side of (4.44) in general varies in the full

spae G, but not all the omponents represent independent equations. The

number of the independent equations is the number of the independent om-

ponents of the WZNW �eld equation minus the number of the onstraints in

(4.24), sine the onstraints automatially imply the orresponding ompo-

nents of the WZNW equation. Thus there are exatly as many independent

equations in (4.44) as the number of the redued degrees of freedom. In fat,

the independent �eld equations an be obtained by taking the Cartan-Killing

inner produt of (4.44) with a basis of the linear spae B. The inner prod-

ut of with the 

i

and the ~

i

vanishes as a onsequene of the onstraints

together with the independent �eld equations.
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General solution of �eld equation: The e�etive �eld equation

(4.44) is in general a non-linear equation for the �eld b(x

+

; x

�

), and we an

give a proedure whih an in priniple be used for produing its general

solution. We are going to do this by making use of the fat that the spae

of solutions of the redued theory is the spae of the onstrained WZNW

solutions fatorized by the hiral gauge transformations (4.15). Thus the

idea is to �nd the general solution of the e�etive �eld equation by �rst

parameterizing, in terms of arbitrary hiral funtions, those WZNW solu-

tions whih satisfy the onstraints (4.24), and then extrating their b-part

by algebrai operations.

To be more onrete, one an start the onstrution of the general so-

lution by �rst Gauss-deomposing the hiral fators of the general WZNW

solution g(x

+

; x

�

) = g

L

(x

+

) � g

R

(x

�

) as

g

L

(x

+

) = a

L

(x

+

) � b

L

(x

+

) � 

L

(x

+

)

g

R

(x

�

) = a

R

(x

�

) � b

R

(x

�

) � 

R

(x

�

):

(4.45)

Then the onstraint equations (4.24) beome

�

+



L



�1

L

= b

�1

L

T (b

L

)b

L

and a

�1

R

�

�

a

R

= b

R

~

T (b

R

)b

�1

R

:

(4.46)

In addition to the the purely algebrai problems of omputing the quantities

T and

~

T and extrating b from g = g

L

�g

R

= a�b�, these �rst order systems of

ordinary di�erential equations are all one has to solve to produe the general

solution of the e�etive �eld equation. If this an be done by quadrature then

the e�etive �eld equation is also integrable by quadrature. In general, one

an proeed by trying to solve (4.46) for the funtions 

L

(x

+

) and a

R

(x

�

)

in terms of the arbitrary `input funtions' b

L

(x

+

) and b

R

(x

�

). Clearly, this

involves only a �nite number of integrations whenever the gauge algebras �

and

~

� are nilpotent.

We note that in onrete ases some other hoie of input funtions,

instead of the hiral b's, might prove more onvenient for �nding the gen-

eral solutions of the systems of �rst order equations on g

L

and g

R

given in

(4.46) (see for instane the derivation of the general solution of the Liouville

equation given in [20℄).

E�etive ation for gauge invariant �elds: It is natural to ask

for the ation funtional underlying the e�etive �eld theory obtained by

imposing the onstraints (4.24) on the WZNW theory. In fat, the e�etive

ation is given by the following formula:

I

e�

(b) = S

WZ

(b)�

Z

d

2

x hb

~

T (b)b

�1

; T (b)i: (4.47)
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One an derive the following ondition for the extremum of this ation:

hÆbb

�1

; �

�

(�

+

bb

�1

) + [b

~

Tb

�1

; T ℄ + �

�

T + b(�

+

~

T )b

�1

i = 0: (4.48)

It is straightforward to ompute this, the only thing to remember is that

the objets b

~

Tb

�1

and b

�1

Tb introdued in (4.40) vary in the gauge algebras

� and

~

�. The arbitrary variation of b(x) is determined by the arbitrary

variation of �(x) 2 B, aording to b(x) = e

�(x)

, and thus we see from

(4.48) that the Euler-Lagrange equation of the ation (4.47) yields exatly

the independent omponents of the e�etive �eld equation (4.44).

The e�etive ation given above an be derived from the gauged WZNW

ation (4.8), by eliminating the gauge �elds A;

~

A by means of their Euler-

Lagrange equations (4.13). By using the Gauss deomposition, these Euler-

Lagrange equations beome equivalent to the relations

a

�1

D

�

a = b

~

T (b)b

�1

; and D

+



�1

= �b

�1

T (b)b; (4.49)

where T and

~

T are given by the expressions in (4.40) and D

�

denotes the

gauge ovariant derivatives introdued earlier. Now I show that I

e�

(b) an

indeed be obtained by substituting the solution of (4.49) for A;

~

A bak into

(4.8) with g = ab. To this �rst we rewrite I(ab;A;

~

A) in the form (4.5)

(plus the terms ontainingM and

~

M) and use (4.49) by noting, for example,

that h�

�

aa

�1

; Mi is a total derivative.

Parity operations: Here I point out that the partiular left-right re-

lated hoie (4.33) of the gauge algebras an also be used to ensure the parity

invariane of the e�etive �eld theory. Indeed, for maximally non-ompat

onneted Lie group G S

WZ

(g) is invariant under any of the following two

`parity transformations' g �! Pg:

(P

1

g)(x

0

; x

1

) � g

t

(x

0

;�x

1

) , (P

2

g)(x

0

; x

1

) � g

�1

(x

0

;�x

1

): (4.50)

If one hooses

~

� = �

t

and

~

M =M

t

then the parity transformation P

1

simply

interhanges the left and right onstraints, � and

~

� in (4.24), and thus the

orresponding e�etive �eld theory is invariant under the parity P

1

. The

spae B in (4.35) is invariant under the transpose in this ase, and thus

the gauge invariant �eld b transforms in the same way under P

1

as g does

in (4.50). Of ourse, the parity invariane an also be seen on the level of

the gauged ation. Namely, I(g;A;

~

A) is invariant under P

1

if one extends

the de�nition in (4.50) to inlude the following parity transformation of the

gauge �elds:
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(P

1

A)(x

0

; x

1

) � A

t

(x

0

;�x

1

) ; (4.51)

and similarly for

~

A. The P

1

-invariant redution proedure does not preserve

the parity symmetry P

2

, but it is possible to onsider redutions preserving

just P

2

instead of P

1

. In fat, suh axial redutions an be obtained by

taking

~

� = � and

~

M =M .

It is obvious that to onstrut parity invariant WZNW redutions in

general, for some arbitrary but non-ompat real form G of the omplex

simple Lie algebras, one an use �� instead of the transpose, where � is a

Cartan involution of G.

Speial ases: Finally I would like to mention ertain speial ases

when the above equations simplify. First we note that if one has

[B ; �℄ � � and [B ;

~

�℄ �

~

� ; (4.52)

then

T (b) =M � ~�(�

+

bb

�1

) and

~

T (b) =

~

M � �(b

�1

�

�

b) ; (4.53)

where we introdued the projetors onto the spaes � and

~

�,

� =

X

i

j

i

ih~

i

j and ~� =

X

i

j~

i

ih

i

j ;

(4.54)

and, without loss of generality, (see 4.33) assumed that M 2

~

� and

~

M 2 �.

One obtains (4.53) from (4.39,4.40) by taking into aount that in this ase

V

ij

(b) in (4.37) is the matrix of the operator Ad

b

ating on

~

�, and thus the

inverse is given by Ad

b

�1
.

The niest possible situation ours when B = (�+

~

�)

?

is a subalgebra of

G and also satis�es (4.52). In this ase one simply has T = M and

~

T =

~

M

and thus (4.44) simpli�es to

�

�

(�

+

bb

�1

) + [b

~

Mb

�1

; M ℄ = 0 : (4.55)

The derivative term is now an element of B and by ombining the above

assumptions with the �rst lass onditions [M;�℄ � �

?

and [

~

M;

~

�℄ �

~

�

?

one sees that the ommutator term in (4.55) also varies in B, whih ensures

the onsisteny of this equation. Generalized, or non-Abelian, Toda theories

of this type have been �rst investigated by Leznov and Saveliev [32, 33℄ ,

who de�ned these theories by postulating their Lax potential

A

H

+

= �

+

b � b

�1

+M , A

H

�

= �b

~

Mb

�1

;

(4.56)
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whih they obtained by onsidering the problem that if one requires a G-

valued pure-gauge Lax potential to take some speial form, then the onsis-

teny of the system of equations oming from the zero urvature ondition

beomes a non-trivial problem. Also, in this partiular situation the e�etive

ation simpli�es to

I

H

e�

(b) = S

WZ

(b)�

Z

d

2

x hb

~

Mb

�1

;Mi;

(4.57)

where the �eld b varies in the subgroup with Lie-algebra B.

4.2 Conformally invariant redutions

The purpose of this setion is to �nd suÆient onditions for the onformal

invariane of the onstraints. The residual gauge symmetries on the partially

gauge �xed on�gurations onsisting of urrents of the form

J(x) = �M + j(x) ; with j(x) 2 �

?

(4.58)

are the hiral transformations (4.15) and (4.32) whih are generated by the

FCC (4.24) smeared with hiral test funtions. The analysis applies to eah

urrent J and

~

J separately so we hoose one of them, J say, for de�niteness.

It is lear from (4.24) thatM an be shifted by an arbitrary element from

�

?

without hanging the atual ontent of the onstraints. This ambiguity

is unessential, sine one an �x M , for example, by requiring that it is

from some given linear omplement of �

?

in G, whih an be hosen by

onvention. We shall assume that M =2 �

?

from now on.

Now let us disuss suÆient onditions whih ensure onformal invari-

ane. The standard onformal symmetry generated by the Virasoro densityL

KM

(x)

is broken by the onstraints (4.24), sine they set some omponent of the

urrent, whih has spin 1, to a non-zero onstant. The idea is to irumvent

this apparent violation of onformal invariane by hanging the standard a-

tion of the onformal group on the KM phase spae to one whih does leave

the onstraint surfae invariant. One an try to generate the new onfor-

mal ation by hanging the usual KM Virasoro density to the new Virasoro

density

L

H

(x) = L

KM

(x)� hH;J

0

(x)i; where L

KM

=

1

2�

hJ; Ji

(4.59)

is twie the energy-density (4.21) on the partially gauge �xed �elds and H

is some onstant element of G. The onformal ation generated by L

H

(x)

operates on the KM phase spae as
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Æ

f;H

J(x) �

Z

dy

1

fJ(x); L

H

(y)g f(y

+

)

= f(x

+

)J

0

(x) + f

0

(x

+

)(J(x) + [H;J(x)℄) + �f

00

(x

+

)H

(4.60)

for any parameter funtion f(x

+

), orresponding to the onformal oordi-

nate transformation Æ

f

x

+

= �f(x

+

). In partiular, j(x) in (4.58) trans-

forms under this new onformal ation aording to

5

Æ

f;H

j(x) = f(x

+

)j

0

(x) + f

00

(x

+

)H

+ f

0

(x

+

)

�

j(x) + [H; j(x)℄ + [H;M ℄ +M

�

;

(4.61)

and our ondition is that this variation should be in �

?

, whih means that

this onformal ation preserves the onstraint surfae. From (4.61), one sees

that this is equivalent to having the following relations:

H 2 �

?

; [H;�

?

℄ � �

?

and ([H;M ℄ +M) 2 �

?

: (4.62)

In onlusion, the existene of an operator H satisfying these relations is

a suÆient ondition for the onformal invariane of the KM redution ob-

tained by imposing (4.24). The onditions in (4.62) are equivalent to L

H

(x)

being a gauge invariant quantity, induing a orresponding onformal a-

tion on the redued phase spae. Obviously, the seond relation in (4.62) is

equivalent to

[H;�℄ � � : (4.63)

An element H 2 G is alled diagonalizable if the linear operator ad

H

pos-

sesses a omplete set of eigenvetors in G. By the eigenspaes of ad

H

, suh an

element de�nes a grading of G, and below we shall refer to a diagonalizable

element as a grading operator of G.

If H is a grading operator satisfying (4.62) then it is always possible to

shift M by some element of �

?

so that the new M satis�es

[H;M ℄ = �M ; (4.64)

instead of the last ondition in (4.62). It is also lear that if H is a grading

operator then one an take graded bases in � and �

?

. On re-inserting (4.64)

into (4.61) it then follows that all omponents of j(x) are primary �elds with

respet to the onformal ation generated by L

H

(x), with the exeption of

the H-omponent, whih also survives the onstraints aording to the �rst

ondition in (4.62).

5

From now on we set � = 1. Only when we ompute the entral extension in the

Virasoro algebra do we reinstall �.
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4.2.1 Gauge invariant polynomials

In the previous setions I derived the onditions for the onstraints to be �rst

lass and for L

H

(J) in (4.59) being a gauge invariant polynomial. It is lear

that the KM Poisson brakets of all gauge invariant di�erential polynomials

of the urrent always lose on suh polynomials and Æ-distributions. The

orresponding algebra is of speial interest in the onformally invariant ase

when it is a polynomial extension of the Virasoro algebra, the so-alled W-

algebra. Here I shall give suÆient onditions on the triple (�;M;H) whih

allows one to onstrut out of the onstrained urrent a omplete set of

gauge invariant di�erential polynomials. Their KM Poisson braket algebra

beomes the Dira braket algebra of the urrent omponents in the so-alled

Drinfeld-Sokolov (DS) gauges [15℄. Thus we an representW-algebras as KM

Poisson braket algebras of gauge invariant di�erential polynomials, whih in

priniple allows for its quantization through the KM representation theory.

Also we shall exhibit the primary �elds for the W-algebras and desribe

their struture in detail.

Let us suppose that

� (�;M;H) satisfy the previously given onditions, (4.9) and (4.62).

� H is a grading operator and M is hosen so that [H;M ℄ = �M , f.

(4.64).

The grade-h subspaes of G are denoted by G

h

and the diret sum of the G

h

0

with h

0

> h by G

>h

. Also note that in the present situation � and �

?

are

graded by the eigenvalues of ad

H

. Now we an prove the following

Theorem 6 If �\K

M

= f0g and �

?

� G

>�1

, where K

M

= Ker(ad

M

), then

one an onstrut out of J(x) in (4.58) a omplete set of gauge invariant

di�erential polynomials.

The ondition on �

?

plays a tehnial role in our onsiderations, but perhaps

it an be argued for also physially, on the basis that it ensures that the

onformal weights of the primary �eld omponents of j(x) in (4.58) are non-

negative with respet to L

H

. Seond, let us observe that in our situation

M satisfying (4.64) is uniquely determined, that is, there is no possibility

of shifting it by elements from �

?

, simply beause there are no grade �1

elements in �

?

. The �rst ondition means that the operator ad

M

maps �

into �

?

in an injetive manner, and for this reason we all it non-degeneray

ondition. Before proving this result, we disuss some onsequenes of the

onditions, whih we shall need later.

Lemma 4 The onditions in the theorem imply the following onditions on

the gauge algebra and the kernel of M : G

�1

� � � G

>0

; G

�0

� �

?

� G

>�1

and K

M

� G

<1

.

83



Hene every  2 � is represented by a nilpotent operator in any �nite

dimensional representation of G.

To prove the lemma we note that the spaes G

h

and G

�h

are dual to eah

other with respet to the Cartan-Killing form whih is a onsequene of its

non-degeneray and invariane under ad

H

. This implies G

�1

� �. On the

other hand, if � would ontain an element  of grade � 0, then ad

M

, whih

is non-zero aording to our non-degeneray ondition and lies in �

?

, would

have grade � �1. This would be in onit with our assumption on �

?

.

So we onlude that � � G

>0

. Using the duality property we also onlude

then G

�0

� �

?

. Finally, sine � ontains all elements with grade � 1, the

Kernel of ad

M

must be a subset of G

<1

. This then proves the lemma.

Finally, I wish to establish a ertain relationship between the dimensions

of G and K

M

. For this purpose we onsider an arbitrary omplementary

spae T

M

to K

M

, de�ning a linear diret sum deomposition

G = K

M

+ T

M

:

(4.65)

Clearly, !

M

(K

M

;G) = 0, and the restrition of !

M

to T

M

is a sympleti

form, in other words:

!

M

(T

M

;T

M

) is non�degenerate : (4.66)

We note in passing that T

M

an be identi�ed with the tangent spae at M

to the o-adjoint orbit of G through M , and in this piture !

M

beomes

the Kirillov-Kostant sympleti form of the orbit [2℄. The non-degeneray

ondition says that one an hoose the spae T

M

in (4.65) in suh a way

that � � T

M

. One then obtains the inequality

dim(�) �

1

2

dim(T

M

) =

1

2

(dim(G)� dim(K

M

)) ;

(4.67)

where the fator

1

2

arises sine !

M

is a sympleti form on T

M

, whih van-

ishes on the subspae � � T

M

.

After the above lari�ation of the meaning of onditions in the theo-

rem, I now wish to show that they indeed allow for exhibiting a omplete

set of gauge invariant di�erential polynomials among the gauge invariant

funtions. Generalizing the arguments of [15, 4, 40℄, this will be ahieved

by demonstrating that an arbitrary urrent J(x) subjet to (4.58) an be

brought to a ertain normal form by a unique gauge transformation whih

depends on J(x) in a di�erential polynomial way.

A normal form suitable for this purpose an be assoiated to any graded

subspae � � G whih is dual to � with respet to the 2-form !

M

. Beause
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of the non-degeneray ondition and the lemma suh a spae must obey

� � G

<1

and dim(� \ G

1�h

) = dimG

h

; h � 1:

It is possible to hoose bases 

i

h

and �

j

k

in � and � respetively suh that

!

M

(

l

h

; �

i

k

) = Æ

il

Æ

hk

; (4.68)

where the subsript h on 

l

h

denotes the grade, and the indies i and l denote

the additional labels whih are neessary to speify the base vetors at �xed

grade. The subsript k on elements �

j

k

2 � does not denote the grade,

whih is (1 � k). The redued phase spae orresponding to � is given by

the following equation:

J

red

(x) =M + j

red

(x) where j

red

(x) 2 �

?

\�

?

� V : (4.69)

In other words, the set of redued urrents is obtained by supplementing the

FCC (4.24) by the gauge �xing ondition

�

�

(x) = hJ(x); �i � hM; �i = 0 ; 8� 2 �: (4.70)

We all a gauge whih an be obtained in the above manner a Drinfeld-

Sokolov (DS) gauge. It is not hard to see that the spae V is a graded

subspae of �

?

whih is disjoint from the image of � under the operator

ad

M

and is in fat omplementary to the image, i.e., one has

�

?

= [M;�℄ + V : (4.71)

It also follows from the non-degeneray ondition that any graded omple-

ment V in (4.71) an be obtained in the above manner, by means of using

some �. Thus it is possible to de�ne the DS normal form of the urrent

diretly in terms of a omplementary spae V as well, as has been done in

speial ases in [15, 4, 18℄.

As the �rst step in proving that any urrent in (4.58) is gauge equivalent

to one in the DS gauge, let us onsider the gauge transformation by g

h

(x

+

) =

exp[

P

l

a

l

h

(x

+

)

l

h

℄ for some �xed grade h. Suppressing the summation over

l, it an be written as

6

j(x)! j

g

h

(x) = e

a

h

�

h

(j(x) +M)e

�a

h

�

h

+ (e

a

h

�

h

)

0

e

�a

h

�

h

�M :

6

Throughout the hapter, all equations involving gauge transformations, Poisson brak-

ets, et., are to be evaluated by using a �xed time. They are valid both on the anonial

phase spae and on the hiral KM phase spae belonging to spae of solutions of the

theory.
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Taking the inner produt of this equation with the basis vetors �

i

k

in (4.68)

for all k � h, we see that there is no ontribution from the derivative term.

We also see that the only ontribution from

e

a

h

�

h

j(x)e

�a

h

�

h

= j(x) + [a

h

� 

h

; j(x)℄ + : : :

is the one oming from the �rst term, sine all ommutators ontaining the

elements 

l

h

drop out from the inner produt in question as a onsequene

of the following ruial relation:

[

l

h

; �

i

k

℄ 2 �; for k � h; (4.72)

whih follows from the lemma by noting that the grade of this ommutator

is at least 1 for k � h. Taking these into aount, and omputing the

ontribution from those two terms in j

g

h

(x) whih ontainM by using (4.68)

and h�

i

k

;Mi = 0, we obtain

h�

i

k

; j

g

h

(x)i = h�

i

k

; j(x)i � a

i

h

(x

+

)Æ

hk

; for all k � h:

We see from this equation that

h�

i

k

; j(x)i = 0 () h�

i

k

; j

g

h

(x)i = 0 ; for k < h ;

and

a

i

h

(x

+

) = h�

i

h

; j(x)i ) h�

i

h

; j

g

h

(x)i = 0 ; for k = h:

The last two equations tell us that if the gauge-�xing ondition h�

i

k

; j(x)i = 0

is satis�ed for all k < h then we an ensure that the same ondition holds

for j

g

h

(x) for the extended range of indies k � h, by hoosing a

i

h

(x

+

) to be

h�

i

h

; j(x)i. From this it is easy to see that the DS gauge (4.70) an be reahed

by an iterative proess of gauge transformations, and the gauge-parameters

a

i

h

(x

+

) are unique polynomials in the urrent at eah stage of the iteration.

In more detail, let us write the general element g(a(x

+

)) 2 e

�

of the

gauge group as a produt in order of desending grades, i.e.,as

g(a(x

+

)) = g

h

n

� g

h

n�1

� � � g

h

1

; with g

h

i

(x

+

) = e

a

h

i

(x

+

)�

h

i

;

where h

n

> h

n�1

> : : : > h

1

is the list of grades ourring in �. Let us then

insert this expression into

j ! j

g

= g(j +M)g

�1

+ g

0

g

�1

�M ; (4.73)

and onsider the ondition

j

g

(x) = j

red

(x) ; (4.74)

with j

red

(x) in (4.69), as an equation for the gauge-parameters a

h

(x

+

). One
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sees from the above onsiderations that this equation is uniquely soluble for

the omponents of the a

h

(x

+

) and the solution is a di�erential polynomial

in j(x). This implies that the omponents of j

red

(x) an also be uniquely

omputed from (4.73,4.74) and the solution yields a omplete set of gauge

invariant di�erential polynomials of j(x), whih establishes the required re-

sult. The above iterative proedure is in fat a onvenient tool for omputing

the gauge invariant di�erential polynomials in pratie [40℄. Of ourse, any

unique gauge �xing an be used to de�ne gauge invariant quantities, but

they are in general not polynomial, not even loal in j(x).

4.2.2 The polynomiality of the Dira braket

It follows from the polynomiality of the gauge �xing that the omponents

of the gauge �xed urrent j

red

in (4.69) generate a di�erential polynomial

algebra under Dira braket.

Now I wish to give a diret proof for the polynomiality of the Dira

braket algebra of the SCC, that is the FCC (4.24) and gauge �xings (4.70)



�

(x) = h� ; J(x)�Mi = 0 where � 2 f

l

h

g [ f�

i

k

g: (4.75)

We note that for ertain purposes SCC might be more natural to use than

FCC sine in the seond lass formalism one diretly deals with the physial

�elds. For example, theW

G

S

-algebra disussed below is very natural from the

seond lass point of view and an be realized by starting with a number of

di�erent �rst lass systems of onstraints, as we shall see in the next setion.

The Dira brakets (2.61) of the redued urrents is

fj

u

red

(x); j

v

red

(y)g

�

= fj

u

red

(x); j

v

red

(y)g

�

X

��

Z

dz

1

dw

1

fj

u

red

(x); 

�

(z)g�

��

(z; w)f

�

(w); j

v

red

(y)g;

(4.76)

where j

u

red

(x) = hu; j

red

(x)i for any u 2 G and �

��

(z; w) is the inverse of

the kernel

�

��

(z; w) = f

�

(z); 

�

(w)g ;

in the sense that (on the onstraint surfae)

X

�

Z

dx

1

�

��

(z; x)�

��

(x;w) = Æ

��

Æ(z

1

� w

1

):

From the struture of the onstraints in (4.75), 

�

= (�



; �

�

), one sees

that �

��

(z) is a �rst order di�erential operator possessing the following

blok struture
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�

��

=

�

f�; �g f�; �g

f�; �g f�; �g

�

=

�

0 E

�E

y

F

�

;

(4.77)

where E

y

is the formal Hermitian onjugate of the matrix E. We see that

�

��

is invertible if and only if its blok E is invertible, and in that ase the

inverse takes the form

(�)

��

=

�

(E

y

)

�1

FE

�1

�(E

y

)

�1

E

�1

0

�

(4.78)

Sine E(z) and F (z) are polynomial (even linear) in the urrent and �

z

it

follows that �

��

is a polynomial di�erential operator if and only if E

�1

(z)

is a polynomial di�erential operator.

To show that E

�1

exists and is a polynomial di�erential operator we

note that in terms of the basis of (� + �) in (4.75) the matrix E is given

expliitly by the following formula:

E



m

h

;�

n

k

(z) = Æ

hk

Æ

mn

+ h[

m

h

; �

n

k

℄; j

red

(z)i+ h

m

h

; �

n

k

i�

z

:

The ruial point is that, by the grading and the property in (4.72), we have

E



m

h

;�

n

k

(z) = Æ

hk

Æ

nm

; for k � h :

(4.79)

The matrix E has a blok struture labeled by the (blok) row and (blok)

olumn indies h and k, respetively, and (4.79) means that the bloks in the

diagonal of E are unit matries and the bloks below the diagonal vanish. In

other words, E is of the form E = 1+", where " is a stritly upper triangular

matrix. It is lear that suh a matrix di�erential operator is polynomially

invertible, namely by a �nite series of the form

E

�1

= 1� "+ "

2

+ : : :+ (�1)

N

"

N

; ("

N+1

= 0);

whih �nishes our proof of the polynomiality of the Dira braket in (4.76).

One an use the arguments in the above proof to set up an algorithm for

atually omputing the Dira braket. The proof also shows that the poly-

nomiality of the Dira braket is guaranteed whenever E is of the form

(1+ ") with " being nilpotent as a matrix. In our ase this was ensured by a

speial grading assumption, and it appears an interesting question whether

polynomial redutions an be obtained at all without using some grading

struture.

The zero blok ours in �

��

in (4.78) beause the SCC originate from

the gauge �xing of FCC. We note that the presene of this zero blok im-

plies that the Dira brakets of the gauge invariant quantities oinide with

their original Poisson brakets, namely one sees this from the formula of the

88



Dira braket by keeping in mind that the gauge invariant quantities weakly

ommute with the FCC.

In our proof of the polynomiality of the gauge �xing and of the algebra

we atually only used that the graded subspae � of G whih de�nes the

gauge �xing in (4.70) is dual to the graded gauge algebra � with respet to

!

M

and satis�es the ondition

([� ; �℄)

�1

� � ;
(4.80)

whih is equivalent to the existene of the bases 

l

h

and �

i

k

satisfying (4.68)

and (4.72). We have seen that this ondition follows from the assumption in

the theorem, but it should be noted that it is a more general ondition, sine

the onverse is not true. This is best seen by onsidering an example. To

this let now G be the maximally non-ompat real form of a omplex simple

Lie algebra. Consider the prinipal sl(2) embedding in G, with ommutation

rules as in (4.81) below, and hoose the one-dimensional gauge algebra � �

fM

+

g and take M �M

�

. The !

M

-dual to M

+

an be taken to be � =M

0

,

and then (4.80) holds. To show that onditions in the theorem annot be

satis�ed, we prove that a grading operator H for whih [H;M

�

℄ = �M

�

and

G

H

�1

� �, does not exist. First of all, [H;M

�

℄ = �M

�

and hM

�

;M

+

i 6= 0

imply [H;M

+

℄ = M

+

, and thus �

H

�1

= fM

+

g. Furthermore, writing H =

(M

0

+ �), we �nd from [H;M

�

℄ = �M

�

that � must be an sl(2) singlet

in the adjoint of G. However, in the ase of the prinipal sl(2) embedding,

there is no suh singlet in the adjoint, and hene H = M

0

. But then the

ondition G

M

0

�1

� � is not ful�lled.

4.3 W-algebras

4.3.1 First lass onstraints for the W

G

S

-algebras

Let S = fM

�

;M

0

g be an sl(2) subalgebra of the simple Lie algebra G:

[M

0

;M

�

℄ = �M

�

; [M

+

;M

�

℄ = 2M

0

: (4.81)

One an assoiate an extended onformal algebra, denoted as W

G

S

, to any

suh sl(2) embedding [5, 18℄. Namely, we de�ned the W

G

S

-algebra to be the

Dira braket algebra generated by the omponents of the onstrained KM

urrent of the the following speial form:

J

red

(x) =M

�

+ j

red

(x) ; with j

red

(x) 2 Ker(ad

M

+

) ;

(4.82)

whih means that j

red

(x) is a linear ombination of the sl(2) highest weight

states in the adjoint of G. This de�nition is indeed natural in the sense that
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the onformal properties are manifest, sine, as we shall see below, with

the exeption of the M

+

-omponent the spin s omponent of j

red

(x) turns

out to be a primary �eld of onformal weight (s + 1) with respet to L

M

0

.

Before showing this, we wish to �nd a gauge algebra � for whih the triple

(�;H = M

0

;M = M

�

) satis�es our suÆient onditions for polynomiality

and (4.82) represents a DS gauge for the orresponding onformally invariant

FCC. The orresponding �rst lass KM onstraints will then be used in the

next setion to onstrut generalized Toda theories whih realize the W

G

S

-

algebras as their hiral algebras.

We start by notiing that the dimension of suh a � has to satisfy the

relation

dimKer(ad

M

+

) = dimW

G

S

= dimG � 2dim� :

From this, sine the kernels of ad

M

�

are of equal dimension, we obtain that

dim� =

1

2

dimG �

1

2

dimKer(ad

M

�

) ;

(4.83)

whih means by (4.67) that we are looking for a � of maximal dimension.

By the representation theory of sl(2), the above equality is equivalent to

dim� = dimG

�1

+

1

2

dimG
1

2

; (4.84)

where the grading is by the, in general half-integral, eigenvalues of ad

M

0

. We

also know from our lemma that we should hoose the graded Lie subalgebra

� of G in suh a way that G

�1

� � � G

>0

. Observe that the non-degeneray

ondition in the theorem is automatially satis�ed for any suh � sine in

the present ase Ker(ad

M

�

) � G

�0

, and H = M

0

2 �

?

is also ensured,

whih guarantees the onformal invariane, see (4.62).

It is obvious from the above that in the speial ase of an integral sl(2)

subalgebra, for whih G
1

2

is empty, one an simply take

� = G

�1

:

For grading reasons, !

M

�

vanishes on this � and thus one indeed obtains

onformal FCC and polynomiality this way.

One sees from (4.84) that for �nding the gauge algebra in the non-trivial

ase of a half-integral sl(2) subalgebra, one should somehow add half of

G
1

2

to G

�1

, in order to have the orret dimension. The key observation for

de�ning the required halving of G
1

2

onsists in notiing that the restrition of

the 2-form !

M

�

to G
1

2

is non-degenerate. This an be seen as a onsequene

of (4.66), but is also easy to verify diretly. By the well known Darboux
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normal form of sympleti forms [2℄, there exists a (non-unique) diret sum

deomposition

G
1

2

= P
1

2

+Q
1

2

(4.85)

suh that !

M

�

vanishes on the subspaes P
1

2

and Q
1

2

separately. The spaes

P
1

2

and Q
1

2

, whih are the analogues of the usual momentum and oordinate

subspaes of the phase spae in analyti mehanis, are of equal dimension

and dual to eah other with respet to !

M

�

. The point is that the �rst-

lassness onditions in (4.13) are satis�ed if we de�ne the gauge algebra to

be

� = G

�1

+ P
1

2

;

(4.86)

by using any sympleti halving of the above kind. It is obvious from the

onstrution that the FCC (4.58) obtained by using � in (4.86) satisfy the

suÆient onditions for polynomiality given earlier. With this � we have

�

?

= G

�0

+Q

�

1

2

; where Q

�

1

2

= [M

�

;P
1

2

℄ � G

�

1

2

:

By ombining these relations with (4.86) one also easily veri�es the following

diret sum deomposition:

�

?

= [M

�

;�℄ + Ker(ad

M

+

) ;

whih is just (4.71) with V = Ker(ad

M

+

). This means that (4.82) is indeed

nothing but a partiular DS gauge for the FCC, and this gauge is alled the

highest weight gauge [4℄. There exists therefore a basis of gauge invariant

di�erential polynomials of the urrent in (4.58) suh that the base elements

redue to the omponents of j

red

(x) in (4.82) by the gauge �xing. The KM

Poisson braket algebra of these polynomials is learly idential to the Dira

braket algebra of the orresponding urrent omponents, and we an thus

realize the W

G

S

-algebra as a KM Poisson braket algebra of gauge invariant

di�erential polynomials.

The SCC de�ning the highest weight gauge (4.82) are natural in the sense

that in this ase � in (4.75) runs over the basis of the spae T

M

�

= [M

+

; G℄

whih is a natural omplement of K

M

�

= Ker(ad

M

�

) in G, eq. (4.65).

In the seond lass formalism, the onformal ation generated by L

M

0

on the W

G

S

-algebra is given by the following formula:

Æ

�

f;M

0

j

red

(x) � �

Z

dy

1

f(y

+

) fL

M

0

(y) ; j

red

(x)g

�

;

(4.87)

where the parameter funtion f(x

+

) refers to the onformal oordinate
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transformation, f. (4.60). To atually evaluate (4.87), we �rst replae

L

M

0

by the objet

L

mod

(x) = L

M

0

(x)�

1

2

hM

+

; J

00

(x)i ;

whih is allowed under the Dira braket sine the di�erene (the seond

term) vanishes upon imposing the onstraints. The ruial point to notie is

that L

mod

weakly ommutes with all FCC and gauge �xings the KM Poisson

braket. This implies that with L

mod

the Dira braket in (4.87) is in fat

idential to the original KM Poisson braket and by this observation we

easily obtain

Æ

�

f;M

0

j

red

(x) = f(x

+

) j

0

red

+ f

0

(x

+

)(j

red

+ [M

0

; j

red

℄)�

1

2

f

000

(x

+

)M

+

:

This proves that, with the exeption of the M

+

-omponent, the sl(2) high-

est weight omponents of j

red

(x) in (4.82) transform as onformal primary

�elds, whereby the onformal ontent of W

G

S

is determined by the deom-

position of the adjoint of G under S in the aforementioned manner. We end

this disussion by noting that in the highest weight gauge L

M

0

(x) beomes a

linear ombination of the M

+

-omponent of j

red

(x) and a quadrati expres-

sion in the omponents orresponding to the singlets of S in G. From this

we see that L

M

0

(x) and the primary �elds orresponding to the sl(2) highest

weight states give a basis for the di�erential polynomials ontained in W

G

S

,

whih is thus indeed a (lassial) W-algebra in the sense of the general idea

in [52℄.

In the above we proposed a `halving proedure' for �nding purely FCC

for whih W

G

S

appears as the algebra of the orresponding gauge invariant

di�erential polynomials. I now wish to larify the relationship between our

method and the onstrution in a reent paper by Bais et al [5℄, where the

W

G

S

-algebra has been desribed, in the speial ase of G = sl(n), by using a

di�erent method. I reall that the W

G

S

-algebra has been onstruted in [5℄

by adding to the FCC de�ned by the pair (G

�1

;M

�

) the SCC

hu ; J(x)i = 0 for 8u 2 G
1

2

:

(4.88)

Clearly, we reover these onstraints by �rst imposing our omplete set of

FCC belonging to (�;M

�

) with � in (4.86), and then partially �xing the

gauge by imposing the ondition

hu ; J(x)i = 0 ; for 8u 2 Q
1

2

:

One of the advantages of our onstrution is that by using only �rst lass KM

onstraints it is easy to onstrut generalized Toda theories whih possess
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W

G

S

as their hiral algebra, for any sl(2) subalgebra, namely by using our

general method of WZNW redutions. This will be elaborated in the next

setion. We note that in [5℄ the authors were atually also led to replaing

the original onstraints by a system of FCC, in order to be able to onsider

the BRST quantization of the theory. For this purpose they introdued

unphysial `auxiliary �elds' and thus onstruted FCC in an extended phase

spae. However, in that onstrution one has to hek that the auxiliary

�elds �nally disappear from the physial quantities.

The FCC leading to W

G

S

are not unique. For example, arbitrary halving

in (4.85) lead to the same W

G

S

. It maybe onjetured that these W-algebras

always our under ertain natural assumptions on the onstraints. To be

more exat, let us suppose that we have onformally invariant �rst lass

onstraints determined by (�;M

�

;H) where M

�

is a nilpotent matrix and

the non-degeneray ondition in the theorem holds together with equation

(4.83). I expet that these assumptions are suÆient for the existene of

a omplete set of gauge invariant di�erential polynomials and their algebra

is isomorphi to W

G

S

, where S = fM

�

;M

0

g is an sl(2)-extension of the

nilpotent M

�

. Suh an S an always be found, sine we have the

Lemma 5 Let H be a grading operator and M

�

2 G

H

�1

. Then there exists

an sl(2) algebra S = fM

�

;M

0

g suh that M

+

2 G

H

1

.

Note that as a onsequene the di�ereneH�M

0

ommutes with S. To prove

this theorem one �rst extends the nilpotentM

�

to an sl(2) subalgebra, whih

always exists by the Jaobson-Morozow theorem. Then one deomposes the

generators of this sl(2) in omponents of de�niteH-grades. The omponents

with the desired grades form then the sl(2) with the properties in the lemma.

To prove this last fat one uses the lemma 7 on page 98 in [28℄.

I am not able to prove the above onjeture in general, but now I sketh

the proof in an important speial ase whih illustrates the idea.

Let us assume that we have onformally invariant FCC desribed by

(�;M

�

;H) subjet to the suÆient onditions for polynomiality. But in

addition we assume now that H is an integral grading operator of G so that

� = G

�1

. Then the non-degeneray ondition says that

dimG

H

+

= dim[M

�

;G

H

+

℄:

(4.89)

Now I show that this ondition implies

[M

�

;G

H

0

+ G

�

℄ = G

H

�

(4.90)

Indeed, if it would not, then we would �nd an u 2 G

H

+

suh that hu; [M

�

;G

H

0

+

G

H

�

℄i would vanish. By the invariane and non-degeneray of the Cartan-

Killing form this in turn is equivalent to [M

�

; u℄ = 0 whih means that
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the non-degeneray ondition (4.89) would be violated. Also, sine H �M

0

ommutes with S, the di�erene ad

H

� ad

M

0

is onstant in eah multiplet

in the deomposition of G under S. Then it follows immediately from the

sl(2) struture and (4.89,4.90) that

dimKer(ad

M

�

) = dimG

H

0

, Ker(ad

M

+

) � G

H

�0

, Ker(ad

M

�

) � G

H

�0

;

We introdue a de�nition at this point, whih will be used in the rest of the

hapter. Namely, we all S an H--ompatible sl(2) if there exists an integral

grading operator H suh that [H;M

�

℄ = �M

�

is satis�ed together with the

non-degeneray ondition. The non-degeneray ondition an be expressed

in various equivalent forms, it an be given for example as the relation in

above, and its (equivalent) analogue for M

�

.

Turning bak to the problem at hand, we now point out that by using

the H-ompatible sl(2) we have the following diret sum deomposition of

�

?

= G

H

�0

:

G

H

�0

= [M

�

;G

H

>0

℄ + Ker(ad

M

+

):

This means that the set of urrents of the form (4.82) represents a DS gauge

for the present FCC. This implies the required result, that is that the W-

algebra belonging to the onstraints de�ned by � = G

H

>0

together with a

non-degenerate M

�

is isomorphi to W

G

S

with M

�

2 S. In this example

both L

H

(x) and L

M

0

(x) are gauge invariant di�erential polynomials. Al-

though the spetrum of ad

H

is integral by assumption, in some ases the

H-ompatible sl(2) is embedded into G in a half-integral manner.

I also would like to mention an interesting general fat about the W

G

S

-

algebras, whih will be used in the next setion. Let us onsider the deom-

position of G under the sl(2) subalgebra S. In general, we shall �nd singlet

states and they span a Lie subalgebra in the Lie subalgebra Ker(ad

M

+

) of

G. Let us denote this zero spin subalgebra as Z. It is easy to see that we

have the semi-diret sum deomposition

Ker(ad

M

+

) = Z +R; [Z;R℄ � R; [Z;Z℄ � Z;

(4.91)

where R is the linear spae spanned by the rest of the highest weight states,

whih have non-zero spin. It is not hard to prove that the subalgebra of the

original KM algebra whih belongs to Z, survives the redution to W

G

S

. In

other words, the Dira brakets of the Z-omponents of the highest weight

gauge urrent, j

red

in (4.82), oinide with their original KM Poisson brak-

ets, given by (4.25). Furthermore, this Z KM subalgebra ats on the W

G

S

-

algebra by the orresponding original KM transformations, whih preserve

the highest weight gauge:

J

red

(x)! e

a

i

(x

+

)�

i

J

red

(x) e

�a

i

(x

+

)�

i

+ (e

a

i

(x

+

)�

i

)

0

e

�a

i

(x

+

)�

i

;
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where the �

i

form a basis of Z. In partiular, one sees that the W

G

S

-algebra

inherits the semi-diret sum struture given by (4.91) [5℄. The point is that it

is possible to further redue theW

G

S

-algebra by applying the general method

of onformally invariant KM redutions to the present Z KM symmetry. In

priniple, one an generate a huge number of new onformally invariant

systems out of the W

G

S

-algebras in this way, i.e., by applying onformally

invariant onstraints to their singlet KM subalgebras. For example, if one

an �nd a subalgebra of Z on whih the Cartan-Killing form of G vanishes,

then one an onsider the obviously onformally invariant redution obtained

by onstraining the orresponding omponents of j

red

in (4.82) to zero.

Finally, note that for a half-integral sl(2), one an onsider (instead of

using � in (4.86)) also those onformally invariant FCC whih are de�ned

by the triple (�;M

0

;M

�

) with any graded � for whih G

�1

� � � (G

�1

+

P
1

2

). The polynomiality onditions are learly satis�ed with any suh non-

maximal �, and the orresponding extended onformal algebras are in a

sense between the KM and W

G

S

-algebras.

4.3.2 The W

G

S

interpretation of the W

l

n

-algebras

TheW

l

n

-algebras are ertain onformally invariant redutions of the sl(n;R)

KM algebra introdued by Bershadsky [8℄ using a mixed set of FCC and

SCC. It is known [5℄ that the simplest non-trivial ase W

2

3

, originally pro-

posed by Polyakov [44℄, oinides with the W

G

S

-algebra belonging to the

highest root sl(2) of sl(3; R). The purpose of this setion is to understand

whether or not these redued KM systems �t into our framework and to

unover their possible onnetion with the W

G

S

-algebras in the general ase

7

In fat, we shall onstrut here purely �rst lass KM onstraints leading

to the W

l

n

-algebras. We will prove the

Lemma 6 The W

l

n

-algebras an in general be identi�ed as further redu-

tions of partiular W

G

S

-algebras. The seondary redution proess is obtained

by means of the singlet KM subalgebras of the relevant W

G

S

-algebras

By de�nition [8℄, the KM redution yielding the W

l

n

-algebra is obtained by

onstraining the urrent to take the following form:

J

B

(x) =M

�

+ j

B

(x); j

B

(x) 2 �

?

; (4.92)

where � denotes the set of all stritly upper triangular n� n matries and

M

�

= e

l+1;1

+ e

l+2;2

+ :::+ e

n;n�l

;

(4.93)

the e's being the standard sl(n;R) generators (l � n�1), i.e.,M

�

has 1's all

7

In this setion, G = sl(n;R).
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along the l-th slanted line below the diagonal. Generally, these onstraints

omprise �rst and seond lass parts, where the �rst lass part is the one

belonging to the subalgebra D of � de�ned by the relation !

M

�

(D;�) = 0,

(see 4.26). The seond lass part belongs to the omplementary spae, C, of

D in �. In fat, for l = 1 the onstraints are the usual �rst lass ones whih

yield the standard W-algebras, but the seond lass part is non-empty for

l > 1. The above KM redution is so onstruted that it is onformally

invariant, sine the onstraints weakly ommute with the Virasoro density

L

H

l

(x), see (4.59), where H

l

=

1

l

H

1

and H

1

is the standard grading operator

of sl(n;R), for whih [H

1

; e

ik

℄ = (k � i)e

ik

.

We start our onstrution by extending the nilpotent generator M

�

in

(4.93) to an sl(2) subalgebra S. In fat, parameterizing n = ml + r with

m = [

n

l

℄ and 0 � r < l, we an take

M

0

= diag

�

r times

z }| {

m

2

; � � �;

(l�r) times

z }| {

m� 1

2

; � � �; � � � ;

r times

z }| {

�

m

2

; � � �

�

;

(4.94)

where the multipliities, r and (l � r), our alternately and end with r.

The meaning of this formula is that the fundamental of sl(n;R) branhes

into l irreduible representations under S, r of spin m=2 and l � r of spin

(m � 1)=2. The expliit form of M

+

is a ertain linear ombination of the

e

ik

's with (k � i) = l, whih is straightforward to ompute.

Next I desribe the �rst and the seond lass parts of the onstraints in

(4.92) in more detail by using the grading de�ned by M

0

. We observe �rst

that in terms of this grading the spae � admits the deomposition

� = �

0

+ G
1

2

+ G

1

+ G

>1

:

(4.95)

From this and the de�nition of !

M

�

, the subalgebra D omprising the �rst

lass part an also be deomposed into

D = D

0

+D

1

+ G

>1

; where D

0

= Ker (ad

M

�

) \�

0

(4.96)

is the set of the sl(2) singlets in �, and D

1

is a subspae of G

1

whih we

do not need to speify. By ombining (4.95) and (4.96), we see that the

omplementary spae C, to whih the seond lass part belongs, has the

struture

C = Q

0

+ G
1

2

+ P

1

;

where the subspae Q

0

is omplementary to D

0

in �

0

, and P

1

is omplemen-

tary to D

1

in G

1

. The 2-form !

M

�

is non-degenerate on C by onstrution,

and this implies by the grading that the spaes Q

0

and P

1

are sympletially
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onjugate to eah other, whih is reeted by the notation.

We shall onstrut a gauge algebra, �, so that Bershadsky's onstraints

will be reovered by a partial gauge �xing from the �rst lass ones belonging

to �. As a generalization of the halving proedure of the previous setion,

we take the following ansatz:

� = D + P
1

2

+ P

1

;

(4.97)

where P
1

2

is de�ned by means of some sympleti halving G
1

2

= P
1

2

+ Q
1

2

,

like in (4.85). It is important to notie that this equation an be reasted

into

� = D

0

+ P
1

2

+ G

�1

;

(4.98)

whih would be just the familiar formula (4.86) if D

0

was not here. By using

(4.93) and (4.94), D

0

an be identi�ed as the set of n � n blok-diagonal

matries, �, of the following form:

� = blok-diagf�

0

; �

0

;�

0

; :::::;�

0

; �

0

;�

0

g;

where the �

0

's and the �

0

's are idential opies of stritly upper triangular

r � r and (l � r)� (l � r) matries respetively. This implies that

dimD

0

=

1

4

[l(l � 2) + (l � 2r)

2

℄ ;

whih shows that D

0

is non-empty exept when l = 2; r = 1, whih is the

ase of W

2

n

with n = odd. The fat that D

0

is in general non-empty gives us

a trouble at this stage, namely, we have now no guarantee that the above �

is atually a subalgebra of G. By using the grading and the fat that D

0

is

a subalgebra, we see that � in (4.98) beomes a subalgebra if and only if

[D

0

; P
1

2

℄ � P
1

2

:

(4.99)

I next show that it is possible to �nd suh a `good halving' of G
1

2

for whih

P
1

2

satis�es (4.99).

For this purpose, we use yet another grading here. This grading is pro-

vided by using the partiular diagonal matrix, H 2 G, whih we onstrut

out ofM

0

in (4.94) by �rst adding

1

2

to its half-integral eigenvalues, and then

subtrating a multiple of the unit matrix so as to make the result traeless.

In the adjoint representation, we then have ad

H

= ad

M

0

on the tensors, and

ad

H

= ad

M

0

� 1=2 on the spinors. We notie from this that the H-grading

is an integral grading. In fat, the relationship between the two gradings

allows us to de�ne a good halving of G
1

2

as follows:

97



P
1

2

� G
1

2

\ G

H

1

; and Q
1

2

� G
1

2

\ G

H

0

:

(4.100)

Sine M

�

is of grade �1 with respet to both gradings, the spaes given

by (4.100) learly yield a sympleti halving of G
1

2

with respet to !

M

�

.

That this ensures the ondition (4.99), an also be seen easily by observing

that D

0

has grade 0 in the H-grading, too. Thus we obtain the required

subalgebra � of G by using this partiular P
1

2

in (4.98).

Let us onsider now the FCC orresponding to the above onstruted

gauge algebra �, �



(x) = 0 for  2 �, whih bring the urrent into the form

J

�

(x) =M

�

+ j

�

(x) ; j

�

(x) 2 �

?

: (4.101)

It is easy to verify that the original onstraint surfae (4.92) an be reovered

from (4.101) by a partial gauge �xing in suh a way that the residual gauge

transformations are exatly the ones belonging to the spae D. In fat,this

is ahieved by �xing the gauge freedom orresponding to the piee (P
1

2

+P

1

)

of �, (4.97), by imposing the partial gauge �xing ondition

�

q

i

(x) = 0 ; q

i

2 (Q

0

+Q
1

2

);

where the q

i

form a basis of the spae (Q

0

+ Q
1

2

) and the �

q

's are de-

�ned like in (4.24). This implies that the redued phase spae de�ned by

the onstraints in(4.101) is the same as the one determined by the original

onstraints (4.92). In onlusion, our purely FCC, (4.101), have the same

physial ontent as Bershadsky's original mixed set of onstraints, (4.92).

Finally, we give the relationship between Bershadsky's W

l

n

-algebras and

the sl(2) systems. Having seen that the redued KM phase spaes arrying

the W

l

n

-algebras an be realized by starting from the FCC in (4.101), it fol-

lows from (4.98) that the W

l

n

-algebras oinide with partiularW

G

S

-algebras

if and only if the spae D

0

is empty, i.e., for W

2

n

with n = odd. In order

to establish the W

G

S

interpretation of W

l

n

in the general ase, note that the

redued phase spae an be reahed from (4.101) by means of the following

two step proess based on the sl(2) struture. Namely, one an proeed

by �rst �xing the gauge freedom orresponding to the piee (P
1

2

+ G

�1

) of

�, and then �xing the rest of the gauge freedom. Clearly, the onstraint

surfae resulting in the �rst step is the same as the one obtained by putting

to zero those omponents of the highest weight gauge urrent representing

W

G

S

whih orrespond to D

0

. The �nal redued phase spae is obtained in

the seond step by �xing the gauge freedom generated by the onstraints

belonging to D

0

, whih we have seen to be the spae of the upper triangular

singlets of S. Thus we an onlude that W

l

n

an be regarded as a further

redution of the orresponding W

G

S

, where the `seondary redution' is of
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the type mentioned at the end of the previous subsetion.

4.4 Generalized Toda theories

The standard onformal Toda �eld theories

L

Toda

=

�

2

 

l

X

ij=1

1

2j�

i

j

2

K

ij

�

�

'

i

�

�

'

j

�

l

X

i=1

m

2

i

exp

n

1

2

l

X

j=1

K

ij

'

j

o

!

;

(4.102)

where K

ij

is the Cartan matrix and the �

i

the simple roots of G, are the

most simple ases of redued WZNW theories, and as a onsequene these

theories possess the hiral algebrasW

G

S

�

~

W

G

S

as their anonial symmetries,

where S is the prinipal sl(2) subalgebra of the maximally non-ompat real

Lie algebra G. It is natural to seek for WZNW redutions leading to e�etive

�eld theories whih would realize W

G

S

�

~

W

G

S

as their hiral algebras for any

sl(2) subalgebra S of any simple real Lie algebra. The main purpose of this

hapter is to obtain generalized Toda theories meeting the above requirement

in the non-trivial ase of the half-integral sl(2) subalgebras of the simple Lie

algebras. Before turning to desribing these new theories, next I briey

reall the main features of those generalized Toda theories, assoiated to

the integral gradings of the simple Lie algebras, whih have been studied

before [33, 46, 39, 40, 5, 49, 18℄. The simpliity of the latter theories will

motivate some subsequent developments.

4.4.1 Generalized Toda theories with integral gradings

The WZNW redution leading to the generalized Toda theories in question

is set up by onsidering an integral grading operator H of G, and taking the

speial ase

� = G

H

�1

; M 2 G

H

�1

and

~

� = G

H

��1

;

~

M 2 G

H

1

:

(4.103)

In the present ase B in (4.35) is the subalgebra G

H

0

, and, beause of the

grading struture, the properties expressed by equation (4.52) hold. Thus

the e�etive �eld equation reads as (4.55) and the orresponding ation is

given by the simple formula (4.57) where the �eld b varies in the little group

G

H

0

of H in G.

It was shown in [33, 46, 5℄ in the speial ase whenH,M and

~

M are taken

to be the standard generators of an integral sl(2) subalgebra of G, that the

non-Abelian Toda equation allows for onserved hiral urrents underlying

its exat integrability. These urrents then generate hiral W-algebras of

the type W

G

S

, for integrally embedded sl(2)'s.
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By means of the argument given in the previous setion, we an establish

the struture of the hiral algebras of a wider lass of non-Abelian Toda

systems [18℄. Namely, we see that if M and

~

M in (4.103) satisfy the non-

degeneray onditions

Ker(ad

M

) \ � = f0g and Ker(ad

~

M

) \

~

� = f0g ;

then the left � right hiral algebra of the orresponding generalized Toda

theory is isomorphi to W

G

S

�

~

W

G

~

S

, where S and

~

S are sl(2) subalgebras

of G ontaining the nilpotent generator M and

~

M , respetively. The H-

ompatible sl(2) algebras S and

~

S ourring here are not always integrally

embedded ones. Thus for ertain half-integral sl(2) algebras W

G

S

an be

realized in a generalized Toda theory of the type (4.57). As we would like to

have generalized Toda theories whih possessW

G

S

as their symmetry algebra

for an arbitrary sl(2) subalgebra, we have to ask whether the theories given

above are already enough for this purpose or not. This leads to the tehnial

question as to whether for every half-integral sl(2) subalgebra S of G there

exists an integral grading operator H suh that S is an H-ompatible sl(2),

in the sense introdued earlier. The answer to this question is negative. Thus

we have to �nd new integrable onformal �eld theories for our purpose.

4.4.2 Generalized Toda theories with half-integral sl(2)'s

In the following I exhibit a generalized Toda theory possessing the left �

right hiral algebra W

G

S

�

~

W

G

S

for an arbitrarily hosen half-integral sl(2)

subalgebra S of the arbitrary but non-ompat simple real Lie algebra G.

Clearly, if one imposes FCC of the type desribed in the previous setion on

the urrents of the WZNW theory then the resulting e�etive �eld theory

will have the required hiral algebra. We shall hoose the left and right

gauge algebras in suh a way to be dual to eah other with respet to the

Cartan-Killing form.

Thus we hoose a diret sum deomposition of G
1

2

of the type in (4.85),

and then de�ne the indued deomposition G

�

1

2

= P

�

1

2

+Q

�

1

2

to be given

by the subspaes

Q

�

1

2

� P

?

1

2

\ G

�

1

2

= [M

�

; P
1

2

℄ and P

�

1

2

� Q

?

1

2

\ G

�

1

2

= [M

�

; Q
1

2

℄ :

It is easy to see that the 2-form !

M

+

vanishes on the above subspaes of

G

�

1

2

as a onsequene of the vanishing of !

M

�

on the orresponding subspaes

of G
1

2

. Thus we an take the left and right gauge algebras to be

� = (G

�1

+ P
1

2

) and

~

� = (G

��1

+ P

�

1

2

) ;

(4.104)

with the onstant matries M and

~

M entering the onstraints given by M

�
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and M

+

, respetively. The duality hypothesis of setion 4.1.2 is obviously

satis�ed by this onstrution.

In priniple, the ation and the Lax potential of the e�etive theory

an be obtained by speializing the general formulas of setion 4.1.2 to the

present partiular ase. In our ase

B = Q
1

2

+ G

0

+Q

�

1

2

;

and the physial modes, whih are given by the entries of b in the generalized

Gauss deomposition g = ab with a 2 e

�

and  2 e

~

�

, are now onveniently

parametrized as

b(x) = exp[q
1

2

(x)℄ � g

0

(x) � exp[q

�

1

2

(x)℄;

(4.105)

where q

�

1

2

(x) 2 Q

�

1

2

and g

0

(x) 2 G

0

, the little group of M

0

in G. Next

I introdue some notation whih will be useful for desribing the e�etive

theory.

The operator Ad

g

0

maps G

�

1

2

to itself and, by writing the general element

of G

�

1

2

as a two-omponent olumn vetor whose upper and lower ompo-

nents belong to P

�

1

2

and Q

�

1

2

, respetively, we an write this operator as a

2� 2 matrix:

Ad

g

0

jG

�

1

2

=

�

X

11

(g

0

) X

12

(g

0

)

X

21

(g

0

) X

22

(g

0

)

�

(4.106)

Analogously, I introdue the notation

Ad

g

�1

0

jG

1

2

=

�

Y

11

(g

0

) Y

12

(g

0

)

Y

21

(g

0

) Y

22

(g

0

)

�

;

(4.107)

whih orresponds to writing the general element of G
1

2

as a olumn vetor,

whose upper and lower omponents belong to P
1

2

and Q
1

2

, respetively.

The ation funtional of the e�etive �eld theory resulting from the

WZNW redution at hand reads as follows:

I

S

e�

(g

0

; q
1

2

; q

�

1

2

) = S

WZ

(g

0

)�

Z

d

2

x hg

0

M

+

g

�1

0

; M

�

i

+

Z

d

2

x (h�

�

q
1

2

; g

0

�

+

q

�

1

2

g

�1

0

i+ h�
1

2

; X

�1

11

� �

�

1

2

i);

(4.108)

where the objets �

�

1

2

2 P

�

1

2

are given by the formulas

�
1

2

= [M

+

; q

�

1

2

℄ + Y

12

� �

�

q
1

2

and �

�

1

2

= [M

�

; q
1

2

℄�X

12

� �

+

q

�

1

2

:

The Euler-Lagrange equation of this ation is the zero urvature ondition

of the following Lax potential:
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A

S

+

= M

�

+ �

+

g

0

� g

�1

0

+ g

0

(�

+

q

�

1

2

+X

�1

11

� �

�

1

2

)g

�1

0

;

A

S

�

= �g

0

M

+

g

�1

0

� �

�

q
1

2

+ Y

�1

11

� �
1

2

:

(4.109)

The above new (onformally invariant) e�etive ation and Lax potential

are among the main results of the present hapter. Clearly, for an integrally

embedded sl(2) this ation and Lax potential simplify to the ones given by

equation (4.57) and (4.56).

The derivation of the above formulas is not ompletely straightforward,

and next I wish to sketh the main steps. First, let us remember that, by

(4.39), to speialize the general e�etive ation (4.47) and the Lax potential

(4.43) to our situation, we should express the objets �

+



�1

and a

�1

�

�

a

in terms of b by using the onstraints on J and

~

J , respetively

8

. For this

purpose it turns out to be onvenient to parametrize the WZNW �eld g by

using the grading de�ned by the sl(2), i.e., as

g = g

+

� g

0

� g

�

where g

+

= a � exp[q
1

2

℄; g

�

= exp[q

�

1

2

℄ � :

We reall that the �elds a, , g

0

and q have been introdued previously by

means of the parametrization g = ab, with b in (4.105). Also for later

onveniene, we write g

�

as

g

+

= exp[r

�1

+ p
1

2

+ q
1

2

℄ and g

�

= exp[r

��1

+ p

�

1

2

+ q

�

1

2

℄ :

Note that here and below the subsript denotes the grade of the variables,

and p

�

1

2

2 P

�

1

2

. In our ase this parametrization of g is advantageous,

sine, as shown below, the use of the grading struture failitates solving

the onstraints.

For example, the left onstraint are restritions on J

<0

, for whih we

have

J

<0

= (g

+

g

0

Ng

�1

0

g

�1

+

)

<0

with N = �

+

g

�

� g

�1

�

:

By onsidering this equation grade by grade, starting from the lowest grade,

it is easy to see that the onstraints orresponding to G

�1

� � are equivalent

to the relation

N

��1

= g

�1

0

M

�

g

0

:

The remaining left onstraints set the P

�

1

2

part of J

�

1

2

to zero, and to unfold

these onstraints �rst we note that

J

�

1

2

= [p
1

2

+ q
1

2

;M

�

℄ + g

0

�N

�

1

2

� g

�1

0

; with N

�

1

2

= �

+

p

�

1

2

+ �

+

q

�

1

2

:

8

In the present ase it would be tedious to ompute the inverse matrix of V

ij

in (4.37),

whih would be needed for using diretly (4.40).
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By using the notation introdued in (4.106), the vanishing of the projetion

of J to P

�

1

2

is written as

[q
1

2

; M

�

℄ +X

11

� �

+

p

�

1

2

+X

12

� �

+

q

�

1

2

= 0;

and from this we obtain

�

+

p

�

1

2

= X

�1

11

� f[M

�

; q
1

2

℄�X

12

� �

+

q

�

1

2

g:

Combining our previous formulas, �nally we obtain that on the onstraint

surfae of the WZNW theory

N = g

�1

0

M

�

g

0

+ �

+

q

�

1

2

+X

�1

11

(g

0

) � f[M

�

; q
1

2

℄�X

12

(g

0

) � �

+

q

�

1

2

g:

A similar analysis applied to the right onstraints yields that they are equiv-

alent to the following equation:

�g

�1

+

�

�

g

+

= �g

0

M

+

g

�1

0

� �

�

q
1

2

+ Y

�1

11

(g

0

)f[M

+

; q

�

1

2

℄ + Y

12

(g

0

)�

�

q
1

2

g :

By using the relations established above, we an at this stage easily ompute

b

�1

Tb = �

+



�1

and b

~

Tb

�1

= a

�1

�

�

a as well, and substituting these into

(4.47), and using the Polyakov-Wiegmann identity to rewrite S

WZ

(b) for b in

(4.105), results in the ation in (4.108) indeed. The Lax potential in (4.109)

is obtained from the general expression in (2.32) by an additional `gauge

transformation' by the �eld exp[�q
1

2

℄, whih made the �nal result simpler.

The hoie of the onstraints leading to the e�etive theory (4.108) guar-

antees that the hiral algebra of this theory is the required one, W

G

S

�

~

W

G

S

,

and thus one should be able to express the W-urrents in terms of the loal

�elds in the ation. For that reall that in setion 4.2.1 an algorithm has been

given for onstruting the gauge invariant di�erential polynomials W (J).

The point I wish to make is that the expression of the gauge invariant ob-

jet W (J) in terms of the loal �elds in (4.108) is simplyW (�

+

b b

�1

+T (b)),

where b is given by (4.105). Applying the reasoning of [18℄ to the present

ase, this follows sine the funtion W is form-invariant under any gauge

transformation of its argument, and the quantity (�

+

b b

�1

+ T (b)) is ob-

tained by a (non-hiral) gauge transformation from J , namely by the gauge

transformation de�ned by the �eld a

�1

2 e

�

, see equations (4.42,4.43). We

an in priniple ompute the objet T (b), as explained in the above, and

thus we have an algorithm for �nding the formulas of the W 's in terms of

the loal �elds g

0

and q

�

1

2

.

The onformal symmetry of the e�etive theory (4.108) is determined

by the left and right Virasoro densities L

M

0

(J) and L

�M

0

(

~

J), whih survive

the redution. To see this onformal symmetry expliitly, it is useful to

extrat the Liouville �eld � by means of the deomposition g

0

= e

�M

0

� ĝ

0

,
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where ĝ

0

ontains the generators from G

0

orthogonal to M

0

. One an easily

rewrite the ation in terms of the new variables and then its onformal

symmetry beomes manifest sine e

�

is of onformal weight (1; 1), ĝ

0

is

onformal salar, and the �elds q

�

1

2

have onformal weights (

1

2

; 0) and (0;

1

2

),

respetively. This assignment of the onformal weights an be established

in a number of ways, one an for example derive it from the orresponding

onformal symmetry transformation of the WZNW �eld g in the gauged

WZNW theory, see eq. (***). We also note that the ation (4.108) an be

made generally ovariant and thereby our generalized Toda theory an be

re-interpreted as a theory of two-dimensional gravity sine � beomes the

gravitational Liouville mode [39℄.

There is a ertain freedom in onstruting a �eld theory possessing the

required hiral algebra W

G

S

, for example, one has a freedom of hoie in the

halving proedure used here to set up the gauge algebra. The theories in

(4.108) obtained by using di�erent halvings in equation (4.85) have their

hiral algebras in ommon, but it is not quite obvious if these theories are

always ompletely equivalent loal Lagrangian �eld theories or not.

A speial ase of this problem arises from the fat that one an expet

that in some ases the theory in (4.108) is equivalent to one of the form

(4.57). This is ertainly so in those ases when for the half-integral sl(2) of

M

0

and M

�

one an �nd an integral grading operator H suh that:

i) [H ; M

�

℄ = �M

�

; ii) P
1

2

+ G

�1

= G

H

�1

iii) P

�

1

2

+ G

��1

= G

H

��1

; iv) Q

�

1

2

+ G

0

+Q
1

2

= G

H

0

;

(4.110)

where one uses the M

0

grading and the H-grading on the left- and on the

right hand sides of these onditions, respetively. By de�nition, we all

the halving G
1

2

= P
1

2

+Q
1

2

an H-ompatible halving if these onditions are

met. Those generalized Toda theories in (4.108) whih have been obtained

by using H-ompatible halvings in the WZNW redution an be rewritten

in the simpler form (4.57) by means of a renaming of the variables, sine

in this ase the relevant FCC are in the overlap of the ones whih have

been onsidered for the integral gradings and for the half-integral sl(2)'s to

derive the respetive theories. Sine the form of the ation in (4.57) is muh

simpler than the one in (4.108), it appears important to know the list of

those sl(2) embeddings whih allow for an H-ompatible halving, i.e., for

whih onditions (4.110) an be satis�ed with some integral grading operator

H and halving. The answer to this group theoreti question for the sl(2)

subalgebras of the maximally non-ompat real forms of the lassial Lie

algebras are:

� For G = sl(n;R) an H-ompatible halving an be found for every sl(2)

subalgebra. This means that any hiral algebra W

G

S

an be realized in

104



a generalized Toda theory assoiated to an integral grading.

� For the the sympleti and orthogonal Lie algebras suh halvings exist

only only for speial sl(2)-embeddings listed in the appendix.

It is interesting to observe that those theories whih an be alternatively

written in both forms (4.57) and (4.108) allow for several onformal stru-

tures. This is so sine in this ase at least two di�erent Virasoro densities,

namely L

H

and L

M

0

, survive the WZNW redution.

4.4.3 Two examples of generalized Toda theories

I wish to illustrate here the general onstrution of the previous setion by

working out two examples. First I shall desribe a generalized Toda theory

assoiated to the highest root sl(2) of sl(n + 2; R). This is a half-integral

sl(2) embedding, but, as we shall see expliitly, the theory (4.108) an in

this ase be reasted in the form (4.57), sine the orresponding halving is

H-ompatible. Note that theW-algebras de�ned by these sl(2) embeddings

have been investigated before by using auxiliary �elds in [45℄. Aording

to the group theoreti analysis in the appendix, the simplest ase when a

W

G

S

-algebra de�ned by a half-integral sl(2) embedding annot be realized

in a theory of the type (4.57) is the ase of G = sp(4; R). As our seond

example, I shall elaborate on the generalized Toda theory in (4.108) whih

realizes the W-algebra belonging to the highest root sl(2) of sp(4; R).

Highest root sl(2) of sl(n + 2; R) In the usual basis where the Cartan

subalgebra onsists of diagonal matries, the sl(2) subalgebra S is generated

by the elements

M

0

=

1

2

0

�

1 � � � 0

0 0

n

0

0 � � � �1

1

A

and M

+

=M

t

�

=

0

�

0 � � � 1

0 0

n

0

0 � � � 0

1

A

:

Note that here and below dots mean 0's in the entries of the various matries.

The adjoint of sl(n + 2) deomposes into one triplet, 2n doublets and n

2

singlets under this S. It is onvenient to parametrize the general element,

g

0

, of the little group of M

0

as

g

0

= e

�M

0

� e

 T

�

0

�

1 : : : 0

0 ~g

0

0

0 � � � 1

1

A

; where T =

1

2

+ n

0

�

n � � � 0

0 �2I

n

0

0 � � � n

1

A

is trae orthogonal to M

0

and ~g

0

is from sl(n). We note that T and M

0

generate the enter of the orresponding subalgebra, G

0

. We onsider the

halving of G

�

1

2

whih is de�ned by the subspaes P

�

1

2

and Q

�

1

2

onsisting

of matries of the following form:
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p
1

2

=

0

�

0 p

t

0

0 0

n

0

0 � � � 0

1

A

; q
1

2

=

0

�

0 � � � 0

0 0

n

q

0 � � � 0

1

A

;

p

�

1

2

=

0

�

0 � � � 0

~p 0

n

0

0 � � � 0

1

A

; q

�

1

2

=

0

�

0 � � � 0

0 0

n

0

0 ~q

t

0

1

A

;

(4.111)

where q and ~p are n-dimensional olumn vetors and p

t

and ~q

t

are n-

dimensional row vetors, respetively. One sees that the P and Q sub-

spaes of G

�

1

2

are invariant under the adjoint ation of g

0

, whih means

that the blok-matries in (4.106) and (4.107) are diagonal, and thus �

�

1

2

=

[M

�

; q

�

1

2

℄. One an also verify that X

11

= e

�

1

2

�� 

~g

0

, and that using this

the e�etive ation (4.108) an be written as follows:

I

e�

(g

0

; q
1

2

; q

�

1

2

) = S

WZ

(g

0

) �

Z

d

2

x

h

e

�

+ e

1

2

�+ 

~q

t

� ~g

�1

0

� q

� e

�

1

2

�+ 

(�

+

~q)

t

� ~g

�1

0

� (�

�

q);

i

(4.112)

where dot means usual matrix multipliation. With respet to the onfor-

mal struture de�ned by M

0

, e

�

has weights (1; 1), the �elds q and ~q have

half-integer weights (

1

2

; 0) and (0;

1

2

), respetively,  and ~g

0

are onformal

salars. In partiular, we see that � is the Liouville mode with respet to

this onformal struture.

In fat, the halving onsidered in (4.111) an be written like the one in

(4.100), by using the integral grading operator H given expliitly as

H =M

0

+

1

2

T =

1

n+ 2

�

n+ 1 0

0 �I

n+1

�

:

It is anH -ompatible halving as one an verify that it satis�es the onditions

(4.110). It follows that our redued WZNW theory an also be regarded

as a generalized Toda theory assoiated with the integral grading H. In

other words, it is possible to identify the e�etive ation (4.112) as a speial

ase of the one in (4.57). To see this in onrete terms,it is onvenient to

parametrize the little group of H as

b = exp(q
1

2

) � g

0

� exp(q

�

1

2

); where g

0

= e

�H

� e

�S

�

0

�

1 � � � 0

0 ~g

0

0

0 � � � 1

1

A

;

and S = M

0

� (

n+2

2n

)T is trae orthogonal to H. It is easy to hek that

by inserting this deomposition into the e�etive ation (4.57) and using

the Polyakov-Wiegmann identity one reovers indeed the e�etive ation
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(4.112), with

� = �+ � and  =

1

2

��

2 + n

2n

�:

The onformal struture de�ned by H is di�erent from the one de�ned by

M

0

. In fat, with respet to the former onformal struture � is the Liouville

mode and all other �elds, inluding q and ~q, are onformal salars.

Highest root sl(2) of sp(4; R) We use the onvention when the sympleti

matries have the form

g =

�

A B

C �A

t

�

; where B = B

t

; C = C

t

;

and the Cartan subalgebra is diagonal. The sl(2) subalgebra S orrespond-

ing to the highest root of sp(4; R) is generated by the matries

M

0

=

1

2

(e

11

� e

33

); M

+

= e

13

; and M

�

= e

31

;

where e

ij

denotes the elementary 4 � 4 matrix ontaining a single 1 in the

ij-position. The adjoint of sp(4) branhes into 3 + 2 � 2 + 3 � 1 under S.

The three singlets generate an sl(2) subalgebra di�erent from S, so that the

little group ofM

0

is GL(1)�SL(2). GL(1) is generated byM

0

itself and the

orresponding �eld is the Liouville mode. Using usual Gauss-parameters for

the SL(2), we an parametrize the little group of M

0

as

g

0

= e

�M

0

0

B

B

�

1 0 0 0

0 e

 

+ ��e

� 

0 �e

� 

0 0 1 0

0 �e

� 

0 e

� 

1

C

C

A

:

We deompose the G

�

1

2

subspaes (spanned by the two doublets) into their

P and Q parts as follows

p
1

2

+ q
1

2

=

0

B

B

�

0 p 0 q

0 0 q 0

0 0 0 0

0 0 �p 0

1

C

C

A

; p

�

1

2

+ q

�

1

2

=

0

B

B

�

0 0 0 0

~p 0 0 0

0 ~q 0 �~p

~q 0 0 0

1

C

C

A

:

Now the little group, or more preisely the SL(2) generated by the three

singlets, mixes the P and Q subspaes of G

�

1

2

so that the matries X

ij

and

Y

ij

in (4.106) and (4.107) possess o�-diagonal elements:

X

ij

= e

�

1

2

�

�

e

 

+ ��e

� 

�e

� 

�e

� 

e

� 

�

; Y

ij

= X

ji

:
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Inserting this into (4.108) yields the following e�etive ation:

I

S

e�

(g

0

; q; ~q) = S

WZ

(g

0

)�

Z

d

2

x

"

e

�

� 2e

�

1

2

�� 

(�

�

q) � (�

+

~q)

+ 2e

1

2

�

(~q + e

�

1

2

�� 

��

�

q) � (q + e

�

1

2

�� 

��

+

~q)

e

 

+ ��e

� 

#

;

(4.113)

for the Liouville mode �, the onformal salars  ; �; � and the �elds q, ~q

with weights (

1

2

; 0) and (0;

1

2

), respetively.

It is easy to see diretly from its formula that it is impossible to obtain the

above ation as a speial ase of (4.57). Indeed, if the expression in (4.113)

was obtained from (4.57) then the non-derivative term � ~q q(e

 

+��e

� 

)

�1

ould only be gotten from the seond term in (4.57), but, sine g

0

and b are

matries of unit determinant, this term ould never produe the denominator

in the non-derivative term in (4.113).

4.5 Quantum redution of WZNW-theories

Here we study the quantum version of the WZNW redution in the path-

integral formalism. We �rst show that the on�guration spae path-integral

of the onstrained WZNW theory an be realized by the gauged WZNW

theory. We then point out that the e�etive ation of the redued theory,

(4.47), an be derived by integrating out the gauge �elds in a onvenient

gauge. We shall �nd that for the generalized Toda theories assoiated with

integral gradings the e�etive measure takes the form determined from the

sympleti struture of the redued theory. This means that in this ase the

quantum Hamiltonian redution results in the quantization of the redued

lassial theory; in other words, the two proedures, the redution and the

quantization, ommute. We shall also exhibit the W-symmetry of the ef-

fetive ation for this example. By using the gauged WZNW theory, we

an onstrut the BRST formalism for the WZNW redution in the general

ase. For onformally invariant redutions, this allows for omputing the

orresponding Virasoro enter expliitly. In partiular, we derive a general

formula for the Virasoro enter of W

G

S

for an arbitrary sl(2) embedding.

4.5.1 Path-integral for onstrained WZNW theory

In this setion we set up the path-integral formalism for the onstrained

WZNW theory. For this, we reall that lassially the redued theory has

been obtained by imposing a set of FCC in the Hamiltonian formalism.

Thus what we should do is to write down the path-integral of the WZNW

theory �rst in phase spae with the onstraints implemented and then �nd
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the orresponding on�guration spae expression. The phase spae path-

integral an formally be de�ned one the anonial variables of the theory

are spei�ed.

Classially, the onstrained WZNW theory has been de�ned as the usual

WZNW theory with its KM phase spae redued by the FCC (4.24). No

relationship is assumed here between the two subalgebras, � and

~

�. The

Hamiltonian is then given by (4.21) with A =

~

A = 0, that is has the usual

Sugawara form

H =

Z

dx

1

H =

1

4�

Z

dx

1

�

Tr J

2

+Tr

~

J

2

�

(4.114)

where the KM-urrents have been de�ned in (4.22) and the momenta on-

jugated to the

_

�

a

simplify to

�

a

= �N

p

a

N

bp

_

�

b

� �A

ab

�

0b

:

(4.115)

Now we write down the phase spae path-integral for the onstrainedWZNW

theory. Aording to Faddeev's presription [16℄ it is de�ned as

Z =

Z

d�d� Æ(�)Æ(

~

�)Æ(�)Æ(~�) det jf�; �gjdet jf

~

�; ~�gj

� exp

�

i

Z

d

2

x (�

a

_

�

a

�H)

�

;

(4.116)

where we implement the FCC by inserting Æ(�) and Æ(

~

�) in the path-integral.

The Æ-funtions of � and ~� refer to gauge �xing onditions orresponding to

the onstraints, � and

~

�, whih at as generators of gauge symmetries. By

introduing Lagrange-multiplier �elds, A = A

i



i

and

~

A =

~

A

i

~

i

, (4.116) an

be written as

Z =

Z

d�d�d

~

AdAÆ(�)Æ(~�) det jf�; �gjdet jf

~

�; ~�gj

� exp

�

i

R

d

2

x [Tr (�

_

� +A�+

~

A

~

�)�H℄

�

:

(4.117)

By hanging the momentum variable from �

a

to

P = P

a

T

a

= T

a

(N

�1

)

ab

(�

b

+ �A

b

�

1

�



)

the measure aquires a determinant fator, d� = dP detN , and the inte-

grand of the exponent in (4.117) beomes
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Tr (�

_

� +A�+

~

A

~

�)�H

= �Tr

h

�

1

2

(

1

�

P )

2

�

1

2

(�

1

g g

�1

)

2

+

1

�

P (A+ g

~

Ag

�1

+ �

0

g g

�1

)

+A(�

1

g g

�1

�M)�

~

A(g

�1

�

1

g +

~

M)

i

� (

_

�;A�

0

):

(4.118)

Sine the matrix N(�) is independent of P , we an easily perform the inte-

gration over P provided that the remaining Æ-funtions and the determinant

fators are also P -independent.We an hoose the gauge �xing onditions,

� and ~�, so that this is true. (For example, the physial gauge whih we

will hoose in the next setion ful�lls this demand.) Then we end up with

the following formula of the on�guration spae path-integral:

Z =

Z

d� detN d

~

AdAÆ(�)Æ(~�) det jf�; �gjdet jf

~

�; ~�gj e

iI(g;A;

~

A)

;

(4.119)

where I(g;A;

~

A) is the gauged WZNW ation (4.8). We note that the mea-

sure for the oordinates in this path-integral is the invariant Haar measure,

d�(g) =

Y

a

d�

a

detN =

Y

a

(dg g

�1

)

a

:

(4.120)

This is a onsequene of the fat that the phase spae measure in (4.116) is

invariant under anonial transformations to whih the group transforma-

tions belong.

The above formula for the on�guration spae path-integral means that

the gauged WZNW theory provides the Lagrangian realization of the Hamil-

tonian redution, whih we have already seen on the basis of a lassial

argument in setion 4.1.1.

4.5.2 E�etive theory in the physial gauge

We next disuss the e�etive theory whih arises when we eliminate all the

unphysial degrees of freedom in a partiularly onvenient gauge, the phys-

ial gauge. We shall re-derive, in the path-integral formalism, the e�etive

ation whih appeared in the lassial ontext earlier in this paper. For

this purpose, within this setion we restrit our attention to the left-right

dual redutions onsidered in setion 4.1.2 It, however, should be noted that

this restrition is not absolutely neessary to get an e�etive ation by the

method given below. In this respet, it is also worth noting that Polyakov's

2-dimensional gravity ation in the light-one gauge an be regarded as an

e�etive ation in a non-dual redution, whih is obtained by imposing a

onstraint only on the left-urrent for G = SL(2) [1, 20℄. We will not pur-

sue the non-dual ases here.
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To eliminate all the unphysial gauge degrees of freedom, we simply

gauge them away from g, i.e., we gauge �x the Gauss deomposed g in

(4.36) into the form

g = ab! b:

More spei�ally, with the parametrization a(x) = exp [�

i

(x)

i

℄, (x) =

exp [~�

i

(x)~

i

℄ we de�ne the physial gauge by

�

i

= �

i

= 0; ~�

i

= ~�

i

= 0:

Note that for this gauge the determinant fators in (4.117) are atually

onstants. Now the e�etive ation is obtained by performing the A

�

inte-

grations in (4.119). The integration of A gives rise to the delta-funtion,

Y

i

Æ

�

h

i

; b

~

Ab

�1

+ �

+

b b

�1

�Mi

�

;

with 

i

2 � normalized by the duality ondition (4.33). One then noties

that this delta-funtion implies exatly the ondition (4.39) with �

+

 

�1

replaed by

~

A. Hene, with the help of the matrix V

ij

(b) in (4.37) and T (b)

in (4.40), it an be rewritten as

(det V )

�1

Æ

�

~

A� b

�1

T (b)b

�

:

Finally, the integration of

~

A yields

Z =

Z

d�

e�

(b) e

I

e�

(b)

;

(4.121)

where I

e�

(b) is the e�etive ation (4.47)

9

, and d�

e�

(b) is the e�etive

measure given by

d�

e�

(b) = (det V )

�1

d�(g)Æ(�)Æ(~�) = (det V )

�1

d�(g)

d�d~�

�

�

�

�

�=~�=0

:

(4.122)

Of ourse, as far as the e�etive ation is onerned, the path-integral

approah should give the same result as the lassial one, beause the in-

tegration of the gauge �elds is Gaussian and hene equivalent to the las-

sial elimination of the gauge �elds by their �eld equations. However, a

non-trivial feature may arise at the quantum level when the e�etive path-

integral measure (4.122) is taken into aount. Let us examine the e�etive

9

Atually, the e�etive ation always takes the form (4.47) if one restrits the WZNW

�eld to be of the form g = ab with a 2 e

�

,  2 e

~

�

and b suh that V

ij

(b) is invert-

ible.The duality between � and

~

� is not neessary but an be used to ensure this tehnial

assumption.
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measure in the simple ase where the spae B in (4.34) forms a subalgebra of

G satisfying (4.52), and thus the e�etive ation in (4.121) simpli�es (4.57)

In this ase, the 1-form appearing in the measure d�(g) of (4.120),

dg g

�1

= da a

�1

+ a(db b

�1

)a

�1

+ ab(d 

�1

)b

�1

a

�1

;

turns out, in the physial gauge, to be

dg g

�1

j

�=~�=0

= 

i

d�

i

+ db b

�1

+ V

ij

(b)~

i

d~�

j

:

(4.123)

As a result, the determinant fator in (4.122) is aneled by the one oming

from (4.123), and the e�etive measure admits a simple form:

d�

e�

(b) = db b

�1

: (4.124)

The point is that this is exatly the measure whih is determined from the

sympleti struture of the e�etive theory (4.45) obtained by the lassial

Hamiltonian redution. This tells us that in this ase the quantum Hamil-

tonian redution results in the quantization of the redued lassial theory.

In partiular, sine the above assumption for B is satis�ed for the general-

ized Toda theories assoiated with integral gradings, we onlude that these

generalized Toda theories are equivalent to the orresponding onstrained

(gauged) WZNW theories even at the quantum level, i.e., inluding the

measure. This result has been established before in the speial ase of the

standard Toda theory (4.102) in [40℄, where the measure d�

e�

(b) is simply

given by

Q

i

d'

i

.

We end this setion by noting that it is not lear whether the measure

determined from the sympleti struture of the redued lassial theory is

idential to the e�etive measure (4.122) in general. In the general ase both

measures in question ould beome quite involved and thus one would need

some geometri argument to see if they are idential or not.

4.5.3 The o�-shell W-symmetry of the generalized Toda the-

ory

Beause of the WZNW origin of the the generalized Toda theories they

possess W-urrents. It is thus natural to expet that their e�etive ations,

I

H

e�

in (4.57) and I

S

e�

in (4.108), allow for symmetry transformations yielding

the W-urrents as the orresponding Noether urrents. We demonstrate

below that this is indeed the ase for the integral graded theories, when the

ation takes a simple form. We however believe that there are symmetries of

the e�etive ation orresponding to the onserved hiral urrents inherited

from the KM algebra for any redued WZNW theory.

Let us onsider a gauge invariant di�erential polynomial W (J) in the

onstrained WZNW theory giving rise to the e�etive theory desribed by
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the ation in (4.57). In terms of the generalized Toda �eld b(x), this on-

served W-urrent is given by the di�erential polynomial

W

e�

(�) =W (M + �); where � � �

+

b b

�1

: (4.125)

This equality [42, 18℄ holds beause the onstrained urrent J and (M + �)

are related by a gauge transformation, as we have seen. By hoosing some

test funtion f(x

+

), we now assoiate to W

e�

(�) the following transforma-

tion of the �eld b(x):

Æ

W

b(y) =

h

Z

d

2

x f(x

+

)

ÆW

e�

(x)

Æ�(y)

i

� b(y) ;

(4.126)

and we wish to show that Æ

W

b is a symmetry of the ation I

H

e�

(b). Before

proving this, we notie, by ombining the de�nition in (4.126) with (4.125),

that (Æ

W

b)b

�1

is a polynomial expression in f , � and their �

+

-derivatives

up to some �nite order.

We start the proof by noting that the hange of the ation under an

arbitrary variation Æb is given by the formula

ÆI

H

e�

(b) = �

Z

d

2

y hÆb b

�1

(y) ; b(y)

ÆI

H

e�

Æb(y)

i

= �

Z

d

2

y hÆb b

�1

(y) ; �

�

�(y) + [b(y)

~

Mb

�1

(y);M ℄i :

(4.127)

In the next step, we use the �eld equation to replae �

�

� by �[b

~

Mb

�1

;M ℄

in the obvious equality

�

�

W

e�

(x) =

Z

d

2

y h

ÆW

e�

(x)

Æ�(y)

; �

�

�(y)i;

(4.128)

and then, from the fat that �

�

W

e�

= 0 on-shell, we obtain the following

identity:

Z

d

2

y h

ÆW

e�

(x)

Æ�(y)

; [b(y)

~

Mb

�1

(y);M ℄i = 0 ;

(4.129)

Of ourse, the previous argument only implies that (4.129) holds on-shell.

However,we now make the ruial observation that (4.129) is an o�-shell

identity, i.e., it is valid for any �eld b(x) not only for the solutions of the

�eld equation. This follows by notiing that the objet in (4.129) is a loal

expression in b(x) ontaining only x

+

-derivatives. In fat,any suh objet

whih vanishes on-shell has to vanish also o�-shell, beause one an �nd

solutions of the �eld equation for whih the x

+

-dependene of the �eld b is

presribed in an arbitrary way at an arbitrarily hosen �xed value of x

�

.
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By using the above observation, it is easy to show that Æ

W

b in (4.126) is

indeed a symmetry of the ation. First, simply inserting (4.126) into (4.127),

we have

Æ

W

I

H

e�

(b) = �

Z

d

2

x f(x

+

)

Z

d

2

y h

ÆW

e�

(x)

Æ�(y)

; �

�

�(y) + [b(y)

~

Mb

�1

(y);M ℄i:

We then rewrite this equation as

Æ

W

I

H

e�

(b) = �

Z

d

2

x f(x

+

)�

�

W

e�

(x);

with the aid of the identities (4.129) and (4.128). Hene the integrand is a

total derivative and this then proves that

Æ

W

I

H

e�

(b) = 0 :

One an also see, from equation (4.126), that W

e�

is the Noether harge

density orresponding to the symmetry transformation Æ

W

b of I

H

e�

(b).

4.5.4 BRST formalism for WZNW redutions

Sine the onstrained WZNW theory an be regarded as the gauged WZNW

theory (4.8), one is naturally led to onstrut the BRST formalism for the

theory as a basis for quantization.Below we disuss the BRST formalism

based on the gauge symmetry (4.6) and thus return to the general situation

where no relationship between the two subalgebras, � and

~

�, is supposed.

Prior to the onstrution we here note how the onformal symmetry is

realized in the gauged WZNW theory when there is an operator H satis-

fying the ondition (4.62). (For simpliity, in what follows we disuss the

symmetry assoiated to the left-moving setor.) In fat, with suh H and a

hiral test funtion f

+

(x

+

) one an de�ne the following transformation,

Æg = f

+

�

+

g + �

+

f

+

Hg;

ÆA = f

+

�

+

A+ �

+

f

+

[H;A℄;

Æ

~

A = f

+

�

+

~

A+ �

+

f

+

~

A;

(4.130)

whih leaves the gauged WZNW ation I(g;A;

~

A) invariant. This orre-

sponds exatly to the onformal transformation in the onstrained WZNW

theory generated by the Virasoro density L

H

in (4.59), as an be on�rmed

by observing that (4.130) implies the onformal ation (4.60) for the urrent

with f(x

+

) = f

+

(x

+

). We shall derive later the Virasoro density as the

Noether harge density in the BRST system.

Turning to the onstrution of the BRST formalism, we �rst hoose

the spae �

�

� G whih is dual to � with respet to the Cartan-Killing
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form (and similarly

~

�

�

dual to

~

�). Following the standard proedure [31℄

we introdue two sets of ghost, anti-ghost and Nakanishi-Lautrup �elds,

f 2 �; �

+

; B

+

2 �

�

g and fb 2

~

�;

�

b

�

; B

�

2

~

�

�

g. The BRST transformation

orresponding to the (left-setor of the) loal gauge transformation (4.6) is

given by

Æ

B

g = �g ; Æ

B

�

+

= iB

+

;

Æ

B

A = D

�

 ; Æ

B

B

+

= 0;

Æ

B

 = �

2

; Æ

B

(others) = 0;

(4.131)

with D

�

= �

�

+ [A; ℄. and D + � = �

+

� [

~

A; ℄. After de�ning the

BRST transformation

�

Æ

B

for the right-setor in an analogous way, we write

the BRST ation by adding a gauge �xing term and a ghost term to the

gauged ation,

I

BRST

= I(g;A;

~

A) + I

gf

+ I

ghost

:

The additional terms an be onstruted by the manifestly BRST invariant

expression,

I

gf

+ I

ghost

= �i�(Æ

B

+

�

Æ

B

)

Z

d

2

x (h�

+

; Ai+ h

�

b

�

;

~

Ai)

= �

R

d

2

x (hB

+

; Ai+ hB

�

;

~

Ai+ ih�

+

;D

�

i+ ih

�

b

�

;D

+

bi);

(4.132)

where we have hosen the gauge �xing onditions as A

�

= 0. Then the

path-integral for the BRST system is given by

Z =

Z

d�(g) d

~

AdAd d�

+

db d

�

b

�

dB

+

dB

�

e

iI

BRST

;

(4.133)

whih, upon integration of the ghosts and the Nakanishi-Lautrup �elds,

redues to (4.119). (Stritly speaking, for this we have to generalize the

gauge �xing onditions in (4.119) to be dependent on the gauge �elds.) By

this onstrution the nilpoteny, Æ

2

B

= 0, and the BRST invariane of the

ation, Æ

B

I

BRST

= 0, are easily heked.

It is, however, onvenient to deal with the simpli�ed BRST theory ob-

tained by performing the trivial integrations of A

�

and B

�

in (4.133),

I

BRST

(g; ; �

+

; b;

�

b

�

) = S

WZ

(g) + i�

Z

d

2

x (h�

+

; �

�

i+ h

�

b

�

; �

+

bi):

(4.134)

We note that this e�etive BRST theory is not merely a sum of a free

WZNW setor and free ghost setor as it appears, but rather it onsists

of the two interrelated setors in the physial spae spei�ed by the BRST

harge de�ned below. At this stage the BRST transformation whih leaves

the simpli�ed BRST ation (4.134) invariant reads

115



Æ

B

g = �g ; Æ

B

�

+

= ��

�

�

h

i(�

+

g g

�1

�M

�

) + (�

+

+ �

+

)

i

;

Æ

B

 = �

2

; Æ

B

(others) = 0;

(4.135)

where �

�

�

=

P

i

j

�

i

ih

i

j is the projetion operator onto the dual spae �

�

with the normalized bases, h

i

; 

�

j

i = Æ

ij

. From the assoiated onserved

Noether urrent, �

�

j

B

+

= 0, the BRST harge Q

B

is de�ned to be

Q

B

=

Z

dx

+

j

B

+

(x) =

Z

dx

+

h; �

+

g g

�1

�M � �

+

i:

(4.136)

The physial spae is then spei�ed by the ondition,

Q

B

jphysi = 0:

In the simple ase of the WZNW redution whih leads to the standard

Toda theory, the BRST harge (4.136) agrees with the one disussed earlier

[7℄.

In the ase where there is an H operator whih guarantees the on-

formal invariane, the BRST system also has the orresponding onformal

symmetry,

Æg = f

+

�

+

g + �

+

f

+

Hg ; Æb = f

+

�

+

b;

Æ = f

+

�

+

+ �

+

f

+

[H; ℄ ; Æ

�

b

�

= f

+

�

+

�

b

�

;

Æ�

+

= f

+

�

+

�

+

+ �

+

f

+

(�

+

+ [H; �

+

℄)

(4.137)

inherited from the one (4.130) in the gauged WZNW theory. If the H

operator further provides a grading, one �nds from (4.137) that the urrents

of grade �h have the (left-) onformal weight 1�h, exept theH-omponent,

whih is not a primary �eld. Similarly, the ghosts , �

+

of grade h, �h have

the onformal weight h, 1 � h, respetively, whereas the ghosts b,

�

b are

onformal salars. Now we de�ne the total Virasoro density operator L

tot

from the assoiated Noether urrent, �

�

j

C

+

= 0, by

Z

dx

+

j

C

+

(x) =

1

�

Z

dx

+

f

+

(x

+

)L

tot

(x):

The (on-shell) expression is found to be the sum of the two parts, L

tot

=

L

H

+L

ghost

, where L

H

is indeed the Virasoro operator (4.59) for the WZNW

part, and

L

ghost

= i�(h�

+

; �

+

i+ �

+

hH; �

+

+ �

+

i);

(4.138)

is the part for the ghosts. The onformal invariane of the BRST harge,
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ÆQ

B

= 0, or equivalently, the BRST invariane of the total onformal harge,

Æ

B

L

tot

= 0, are readily on�rmed.

Let us �nd the Virasoro enter of our BRST system. The total Virasoro

enter 

tot

is given by the sum of the two ontributions,  from the WZNW

part and 

ghost

from the ghost one. The Virasoro enter from L

H

is given

by

 =

k dimG

k + g

� 12khH;Hi;

(4.139)

where k is the level of the KM algebra and g is the dual Coxeter number.

On the other hand, the ghosts ontribute to the Virasoro enter by the usual

formula,



ghost

= �2

X

�

[1 + 6h(h� 1)℄;

(4.140)

where the summation is performed over the eigenvetors of ad

H

in the sub-

algebra �. (One an on�rm (4.140) by performing the operator produt

expansion with L

ghost

in (4.138).)

4.5.5 The Virasoro enter in 2 examples

By elaborating on the general result of the previous setion, we here derive

expliit formulas for the total Virasoro enter in two important speial ases

of the WZNW redution.

The generalized Toda theory I

H

e�

(b) In this ase the summation in

(4.140) is over the eigenstates of ad

H

with eigenvalues h > 0, sine � = G

H

>0

.

We an establish a onise formula for 

tot

, (4.143) below, by using the

following group theoreti fats.

First, we an assume that the grading operator H 2 G is from the Cartan

subalgebra of the omplex simple Lie algebra G



ontaining G. Seond, the

salar produt h ; i de�nes a natural isomorphism between the Cartan subal-

gebra and the spae of roots, and we introdue the notation

~

Æ for the vetor

in root spae orresponding to H under this isomorphism. More onretely,

this means that we set H =

P

i

Æ

i

H

i

by using an orthonormal Cartan basis,

hH

i

;H

j

i = Æ

ij

. Third, we reall the strange formula of Freudenthal-deVries

[21℄, whih (by taking into aount the normalization of h ; i and the duality

between the root spae and the Cartan subalgebra) reads

dim G =

12

g

j~�j

2

;

(4.141)

where ~� is the Weyl vetor, given by half the sum of the positive roots.
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Fourth, we hoose the simple positive roots in suh a way that the or-

responding step operators, whih are in general in G



and not in G, have

non-negative grades with respet to H.

By using the above onventions, it is straightforward to obtain the fol-

lowing expressions

X

h>0

1 = dim� =

1

2

(dimG � dim G

H

0

);

X

h>0

h = 2(~� �

~

Æ);

X

h>0

h

2

=

1

2

tr (ad

H

)

2

= ghH;Hi = gj

~

Æj

2

;

(4.142)

for the orresponding terms in (4.140). Substituting these into (4.140) and

also (4.141) into (4.139), one an �nally establish the following nie formula

of the total Virasoro enter [39℄:



tot

= + 

ghost

= dim G

H

0

� 12

�

�

�

p

k + g

~

Æ �

1

p

k + g

~�

�

�

�

2

: (4.143)

In partiular, in the ase of the redution leading to the standard Toda

theory (4.102) the result (4.143) is onsistent with the one diretly obtained

in the redued theory [35, 9℄

10

.

The W

G

S

-algebra for half-integral sl(2) embeddings For sl(2) embed-

dings the role of the H is played byM

0

and in the half-integral ase we have

� = G

�1

+ P
1

2

= G

>0

� Q
1

2

. It follows that the value of the total Virasoro

enter an now be obtained by subtrating the ontribution of the `miss-

ing ghosts orresponding to Q
1

2

, whih is

1

2

dim G
1

2

, from the expression in

(4.143). We thus obtain that in this ase



tot

= N

t

�

1

2

N

s

� 12

�

�

�

p

k + g

~

Æ �

1

p

k + g

~�

�

�

�

2

; (4.144)

where

N

t

= dim G

0

; and N

s

= dim G
1

2

;

are the number of tensor and spinor multiplets in the deomposition of the

adjoint of G under the sl(2) subalgebra S, respetively. We note that, as

proven by Dynkin [34℄, it is possible to hoose a system of positive simple

roots so that the grade of the orresponding step operators is from the

10

more preisely, the enter (4.143) agrees with that of refs. [35, 9℄ if the "oupling

onstant" of the Toda theory k is replaed by k+ g. The ause of the shift in the WZNW

redution is disussed, e.g. in [27℄
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set f0;

1

2

; 1g, and that

~

Æ is (

1

2

�) the so alled de�ning vetor of the sl(2)

embedding in Dynkin's terminology.

As has been mentioned in setion 4.3.1, Bais et al [5℄ (see also [45℄)

studied a similar redution of the KM algebra for half-integral sl(2) embed-

dings where all the urrent omponents orresponding to G

>0

are onstrained

from the very beginning. In their system, the onstraints (4.88) of G
1

2

, being

inevitably seond-lass, are modi�ed into �rst-lass by introduing an aux-

iliary �eld to eah onstraint of G
1

2

. Aordingly, the auxiliary �elds give

rise to the extra ontribution �

1

2

dim G
1

2

in the total Virasoro enter. It is

lear that adding this to the sum of the WZNW and ghost parts (whih is

of the form (4.143) with M

0

substituted for H), renders the total Virasoro

enter of their system idential to that of our system, given by (4.144). This

result is natural if we reall the fat that their redued phase spae (after

omplete gauge �xing) is atually idential to ours. It is obvious that our

method, whih is based on purely �rst-lass KM onstraints and does not

require auxiliary �elds, provides a simpler way to reah the idential redued

theory.

The W

l

n

-algebras By using the results of setion 4.3.2 we an easily om-

pute the Virasoro enter of the W

l

n

algebras. We onsider the onformal

struture given by L

M

0

, where M

0

is the sl(2) generator (4.94), and intro-

due ghosts for FCC de�ned by �, eq. (4.98). The ontribution to the

Virasoro enter from L

M

0

is given by

 =

(n

2

� 1)k

k + n

� km(m+ 1)[3n� (2m+ 1) l℄:

Taking into aount the multipliities of the grades in �, we �nd from (4.140)



ghost

= �2dim D

0

+ dim P

1=2

� 2

m

X

i=1

[l + 6i(i� 1)℄ dim G

i

= �(m

3

+ 4m

2

+ 3m+ 1) l

2

� n

2

(3m

2

+ 2)

+[n(2m

3

+ 3m

2

+ 6m+ 2) + 1℄ l:

(4.145)

This result disagrees with the one obtained for W

2

n

in ref. [8℄, where instead

of our L

M

0

a di�erent L

H

was adopted for de�ning the onformal struture

and a set of auxiliary �elds has been introdued to render the onstraints

�rst lass. This disagreement is not surprising beause of the ambiguity in

de�ning the onformal struture of W

l

n

, i.e. in hoosing H in (4.59), whih

eventually reets in the value of . In addition, there is also an arbitrariness

in the number of auxiliary �elds introdued, and the Virasoro enter agrees

only when one uses the minimal number of �elds (with the same H).
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