
Chapter 3

Lagrangian Symmetries of

First-Class Hamiltonian

Systems

In this hapter we show how the well-known loal symmetries of Lagrangian

systems, and in partiular the di�eomorphism invariane, emerge in the

Hamiltonian formulation. We show that only the onstraints whih are

linear in the momenta generate Lagrangian symmetries. The nonlinear on-

straints (whih we have, for instane, in (super)gravity and string theory)

rather generate the dynamis. Only in a very speial ombination with 'triv-

ial' ompensating transformations proportional to the equations of motions

do they lead to symmetry transformations. We reveal the importane of

these speial 'trivial' transformations for the interonnetion theorems [7℄

whih relate the symmetries of a system with its dynamis. In proving these

theorems for general Hamiltonian systems, we shall see that there is a deep

onnetion between the struture of the onstraints and the dynamis. For

example, in string theory some of the Hamiltonian equations and in gravity

all of them are automatially follow if we demand that the onstraints are

satis�ed everywhere and for any foliation of spae time. We apply the de-

veloped formalism to onrete physially relevant systems, e.g. Yang-Mills

theories, the relativisti partile, the bosoni string and gravity.

An interesting appliation of the onsidered formalism one ould �nd in

the quantized theories, in whih we are ultimately interested. For example,

in the funtional integral approah it an be advantageous to onsider the

phase spae integral as ompared to the Lagrangian one. This is true in

partiular for di�eomorphism invariant theories where the question of the
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orret measure in the Lagrangian formulation beomes nontrivial. On the

other hand, in phase spae at least the q; p part of the measure is just the

well-known Liouville measure. But then the question arises whih symme-

tries (the ones generated by the onstraints alone or the symmetries of the

Lagrangian system) should we use to onstrut the 'orret' path integral

or BRST harge. Only in the simple ases of the relativisti partile and

supersymmetri partile it has been demonstrated that the results in both

ases are the same [12℄. For �eld theories it is still an open question whether

the di�erent quantization lead to equivalent results.

To see more learly what are the problems with generally ovariant sys-

tems we onsider the simplest example, namely the relativisti partile. We

desribe the relativisti partile moving in 4-dimensional Minkowski spae-

time by 4 salar �elds �

�

(t), � = 0; 1; 2; 3, in 1-dimensional 'spaetime'. The

ation for the relativisti partile takes the form
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1-dimensional 'spaetime'.

S is invariant with respet to general oordinate transformations (repara-

metrization invariane). The in�nitesimal form of these transformations

reads
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where L

�

is the Lie-derivative. Introduing the lapse funtion N aording

to
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2

(3.3)

we get the following transformation law from (3.2)
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(N �) : (3.4)

The ation (3.1) leads to the primary onstraint �
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where the �

�

are the momenta onjugated to the �

�

,

f�

�

; �

�

g = Æ

�

�

: (3.6)

These are FCC. The partial gauge �xing F

1

= g

00

�1 = 0 and �

1

form a

onjugate seond lass pair and an be eliminated. Applying the standard

proedure one �nds then the following �rst order ation

S =

Z

[�

�

_

�

�

�N℄dt: (3.7)
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The Lagrangian multiplier N aompanying the onstraint  (the super-

Hamiltonian) reintrodues the lapse funtion.

The ation (3.7) is invariant with respet to the in�nitesimal o� mass-

shell gauge transformations

Æ

�

�

�

= f�

�

; �g = �

�

�; Æ

�

�

�

= f�

�

; �g = 0; Æ

N

=

_

�: (3.8)

With the identi�ation � = N � these transformations oinide with the

di�eomorphism transformations (3.4), but only on mass shell:

_

�

�

= N�

�

; _�

�

= 0: (3.9)

This is a general problem with di�eomorphism invariant theories. In�nites-

imal di�eomorphisms involve time derivatives of the anonial variables

whih annot be gotten by equal time ommutators with FCC. Only on-

shell an the transformations generated by the FCC be identi�ed with the

Lagrangian symmetries. On the tehnial side the diÆulty of identifying

gauge and di�eomorphism transformations an be traed bak to the nonlin-

ear dependene of the onstraint on the momentum. This is the important

di�erene between internal and spaetime symmetries. In the following se-

tion we shall see how the anonial transformations generated by the FCC

must be modi�ed to yield all Lagrangian symmetries.

3.1 Hamiltonian vs. Lagrangian symmetries

In this hapter I shall onsider a general FC system, the �rst order ation of

whih is given by (2.100). These ations desribes both systems with a �nite

or in�nite number of degrees of freedom if the following ondensed notation

[17℄ is assumed: For systems with a �nite number of degrees of freedom a

and i are disrete and for �eld theories they denote both internal indies and

spae-oordinates. To distinguish internal from omposite indies we shall

use tildes for the latter ones. For �eld theories

~

i = fi; ~xg and ~a = fa; ~xg,

where i and a are some disrete (internal) indies. For a salar �eld q

~

i

(t)=

'

x

(t)='(x; t) and for a vetor �eld q

~

i

(t) = A

i;x

(t) = A

i

(x; t). We adopt the

Einstein onvention and assume summation over disrete repeated indies

and integration over ontinuous ones, for example

�

x

p

i;x

_q

i;x

=
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i

Z

dx�(x)p

i

(x) _q
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i

(x)q

i

(x):

Also, we shall not distinguish q

i;x

and q

i

x

and use the position of the on-

tinuous index just to indiate when we should integrate. Sometimes it will

be onvenient to resolve the omposite index

~

i (or ~a) as i; x (or a; x). If
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the system ontains fermions then some of the variables p; q;N will be of

Grassmannian type.

In partiular the �rst order ation reads

S

e

=
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p

~
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i

�N
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~a

�H

�

dt: (3.10)

For FC systems the onstraints [1℄ and Hamiltonian form a losed algebra

(possibly extended to fermioni variables, in whih ase the algebra is graded

[14℄):
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The struture oeÆients may depend on the anonial variables p; q.

The equation of motion resulting from the variation of the ation (3.10)

with respet to q; p and the Lagrangian multipliers N
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~

b

+Hg = 0; (3.13)



~a

= 0:

We use the abbreviations EM(q) and EM(p) for the equations of motion.

Of ourse, on mass shell we have EM =0, but o� mass shell either EM(q)

or EM(p) (or both) does not vanish.

To go from the Hamiltonian to the Lagrangian formalism we should

express the momenta in terms of the veloities via the Hamiltonian equations

EM(q

~

i

) = 0. Thus not all o� mass-shell trajetories of the Hamiltonian

system an be onsidered in the Lagrangian formalism, but only those for

whih this equations hold. Hene one an say that the Lagrangian system

lives only in the subspae M of the 'extended phase spae' de�ned by the

onditions

M : EM(q) = _q

~

i

� fq

~

i

;N

~

b



~

b

+Hg = 0: (3.14)

The ation (3.10) invariant (up to boundary terms) with respet to the

in�nitesimal transformations generated by the onstraints if the Lagrangian

multipliers are transformed simultaneously [11, 2℄
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:

(3.15)

The parameters �

~a

= �

a

(N ; ~x; t) are the parameters of the in�nitesimal
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transformations. The order in whih � enters in (3.15) is important if some

of the variables are of Grassmannian type. We shall only onsider the ase

when the parameters � depend expliitly on spaetime oordinates and La-

grangian multipliers, sine this suÆes to over all known physially relevant

theories

1

. Beause of thisN -dependene we should keep � inside the Poisson

braket even for purely bosoni theories sine if we alulate the ommuta-

tor of two subsequent in�nitesimal transformations, then � of the seond

transformation will depend on q; p if the struture onstants depend on the

anonial variables.

It is not diÆult to see that the variation of the ation (3.10) under these

transformations leads only to the boundary terms

Æ

�
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i

: (3.16)

This term an be removed even if the parameters � do not vanish at the

boundaries if we add to the ation the total derivative of some funtion

Q(p; q) whih satis�es the equation
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The question whih naturally arise here is the following: do the symmetry

transformations (3.15) orrespond to Lagrangian symmetries, that is are

they, for instane, the di�eomorphism transformations in general relativity

and string theory?

As we shall see below the answer is no if some onstraints are nonlinear

in the momenta. The reason is that the transformations (3.15) generated

by a nonlinear onstraint take a trajetory on M away from it and the

transformed trajetory an not be viewed as a trajetory of the Lagrangian

system.

Atually the set of in�nitesimal o� mass-shell transformations whih

leave the �rst order ation invariant is muh bigger than (3.15). Any in-

�nitesimal transformation (Æq; Æp; ÆN ) orthogonal to the (funtional) gra-

dient rS = (�EM(p); EM(q);�C) leaves the ation invariant [5, 31℄ , as

an be easily seen from (3.12). Hene we ould add to the transformations

generated by the onstraints for example any transformation of the form
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1

In priniple, we ould onsider more general transformations for whih � would also

depend on the anonial variables. Then �rst order ation is also invariant with respet

to in�nitesimal transformations generated by the onstraints if the N
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where � are arbitrary 'matries' (kernels) and the �; � are antisymmetri.

Generially suh transformations are nonloal, and they exist for all systems

even for those without any symmetries.

We will show that in all theories ontaining only one nonlinear onstraint

(e.g. gravity and string theory) we need only very speial transformations

from (3.17), namely

Æ
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q

ix
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ix

)�

x

and Æ
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x

i

)�

x

(3.18)

to reover all Lagrangian symmetries. In the general ase with several non-

linear onstraints, e.g. in supergravity, one needs extra transformations from

(3.17).

The in�nitesimal transformations (3.18) are not important on their own,

but in a very speial ombination with the transformations (3.15) generated

by the FCC they lead to physially meaningful symmetries. To reover the

Lagrangian symmetries we onsider the ombined transformations

^

I

�;�

F (q; p;N ) = F (

^

I

�;�

q;

^

I

�;�

p;

^

I

�;�

N );

^

I

�;�

=

^

1 + Æ

�;�

+ � � � ; (3.19)
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The number of funtions (�; �

�

) whih appear here is equal to the number

of onstraints (per point of spae) plus one. This seems strange sine for

all onstrained theories the number of parameters for the symmetry trans-

formations is equal to the number of onstraints. To understand why we

need the 'trivial' transformations (3.18) and to reveal the onnetions be-

tween the parameters � and �

�

we derive the onditions under whih the

transformations (3.20) are Lagrangian symmetries.

For that the transformations (3.20) should leave any trajetory in the

subspae M in this subspae. The neessary onditions for this an be

gotten by varying (3.14) as follows
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(3.21)

The transformations Æq; Æp and ÆN should satisfy the equation (3.21) on

the hyper-surfae M.
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Substituting (3.20) into (3.21) this ondition simpli�es to

Æ
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(3.22)

and imposes a ertain funtional dependene between � and �

a

. If this on-

dition is ful�lled the phase spae transformations (3.20) an be interpreted

as Lagrangian symmetries. At the same time the number of free funtions

beomes equal to the number of onstraints as it should be.

Let us note that the 'trivial' transformations (3.17) and (3.18) do not

satisfy (3.22) for o� mass-shell trajetories if the Hamiltonian H and/or 

~a

are nonlinear in momenta. Hene these transformations alone annot be

identi�ed with Lagrangian symmetries.

On the other hand, if some onstraints 

~a

are nonlinear, then the trans-

formations (3.15) generated by the nonlinear onstraints also annot sat-

isfy (3.22). Hene they annot be viewed as Lagrangian symmetries either.

Only when they are taken in a very speial ombination with the 'trivial'

transformations an one satisfy this ondition. In other words, the 'trivial'

transformation bring the trajetories bak toM. Also we shall see that the

transformations (3.15) generate the dynamis for super-Hamiltonian sys-

tems. Now we would like to onsider two important examples:

Gauge Invariane. If the onstraints are linear and H at least quadrati

in the momenta then only for �

z

= 0 an equation (3.22) be satis�ed

2

. So,

in this ase the transformations (3.15) generated by the onstraints alone

are also Lagrangian symmetries. We shall all them gauge transformations.

For example, in Yang-Mills theories or the gauged Wess-Zumino-Novikov-

Witten models investigated in the following hapter, all onstraints are linear

and the Lagrangian gauge transformations are indeed the transformations

(3.15).

Let us add another remark onerning the gauge invariane. Assume

that we start with the anonial Hamiltonian and that N

~a

is onjugate to

the primary onstraint, now denoted by �

~a

. Then we know, that

_

�

~a

= f�

~a

;H



g = �

ÆH



ÆN

~a

� �

~a

are seondary onstraints

3

. Let us further assume that the onsisteny on-

dition does not lead to tertiary onstraints. Thus we know that the anonial

Hamiltonian must have the form

H



= H +N

~a



~a

2

If H and all onstraints are at most linear in momenta, as it is the ase for the

Chern-Simons theories, then the Hamiltonian system is strongly degenerate.

3

we have hosen the last sign suh as to agree with the other onventions in this hapter
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On the other hand we may eliminate the seond lass pairs N

~a

;�

~a

by set-

ting them to zero. Then we remain with the extended Hamiltonian on the

partially redued phase spae

H

e

= H



(N = � = 0) +N
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~a

= H



where we denoted the Lagrangian multipliers of the seondary FCC again

by N . Let us know de�ne the �rst lass onstraint
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(3.23)

Now we prove the following
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vanish, �xes the �

~a

as funtion of the �

~a

. This the yields the FCC
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(3.25)

whih indeed generates the orret gauge transformations (3.15) for systems

with linear onstraints.

Reparametrization invariane. Usually the reparametrization invari-

ane of a Lagrangian system, if it exists, is identi�ed with the gauge invari-

ane (3.15) in the Hamiltonian formalism. As we shall see they are atually

very di�erent and this identi�ation an only be made on mass shell.

If some onstraints are nonlinear then it is obvious that the transforma-

tions generated by the onstraints only (� = 0) do not satisfy the ondition

(3.22) and hene are not Lagrangian symmetries. However, in all known

theories with nonlinear onstraints H = 0 and the ondition (3.22) an be

satis�ed if we impose some funtional dependene between � and � in (3.20).

Thus the nonlinear onstraints generate the Lagrangian symmetry only in

very speial ombination with 'trivial' �-transformations. The reason for

that is the following: a transformation generated by a nonlinear onstraints

takes o� mass-shell trajetories away from the subspae M and the extra

ompensating transformation returns the trajetories bak to it. More ex-

pliitly taking �

~e

to be �

ez

= N

ez

�

z

in (3.22) we redue this equation to

N

ez

(�

y

� �

z

)

Æ
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Æp

x

i

Æp

y

j

EM(p

y

j

) = 0: (3.26)
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One sees at one that if

Æ
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Æp
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y

j

� Æ(z � y) (3.27)

then even for nonlinear onstraints the equation (3.26) is satis�ed o� mass

shell (EM(p) 6= 0). From that it follows immediately that the transfor-

mations (3.20) with �

ez

= N

ez

�

z

are Lagrangian symmetries if H = 0.

We shall all the orresponding invariane reparametrization invariane:
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. The expliit form of the reparametrization transfor-

mations read
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:

These transformations are the orret ones for theories with non-linear on-

straints. For example, for the relativisti partile the transformations (3.28)

(and not the gauge transformations (3.8) generated by the FCC alone) o-

inide with (3.4) on M.

Algebra of transformations Clearly, the in�nitesimal transformations

an only be exponentiated to �nite ones if they for a lose algebra, that is the

ommutator of two subsequent transformations should be a transformation

of the same type. So let us alulate the result for the ommutator of

two subsequent in�nitesimal transformations (3.20) with parameters �

1

; �

1

and �

2

; �

2

, respetively. For an arbitrary algebrai funtion F (q; p) of the

anonial variables a rather lengthy but straightforward alulation yields
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;

^

I

�
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�

1

℄F

x
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�

ÆF

x

Æq
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EM(q
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) + (q ! p)

�
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_

�

z

1

�

z
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� �

z

1

_

�

z

2

)

+

�

(�

x

2

� �

y

2

)�

~

1

�N

~

�

x

2

�

y

1

� (1$ 2)

��

fF

x

;

Æ

~

Æq

jy

gEM(q

jy

) + (q ! p)

�

�(�

x

2

�

y

1

� �

x

1

�

y

2

)

�

fF

x

;

ÆH

Æq

jy

gEM(q

jy

) + (q ! p)

�

+ fF

x

;

�

�

~



~

g (3.29)

and orrespondingly for the Lagrangian multipliers one has

[
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�
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�

2

;

^

I

�
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�
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℄N

~a
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+ �

~

d
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�
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~

~

d
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~

~
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+Hg

�

�(�

~

2

�

x

1

� �

~

1

�

x

2

)

�

Æ

Æq

ix

(N

~

b

t

~a

~

b~

+ t

~a

~

)EM(q

ix

) + 2(q ! p)

�

;

(3.30)

where we have introdued

�

�

~a

= �

~e

1

�

~

b

2

t

~a

~

b~e

+

Æ�

~a

2

ÆN

~

b

Æ

�

1

N

~

b

�

Æ�

~a

1

ÆN

~

b

Æ

�

2

N

~

b

: (3.31)
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In deriving (3.29,3.30) we used the identities

(�

~

1

�

~

d

2

� �

~

2

�

~

d

1

)(ft

~a

~e~
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~

d

g+ t

~

b

~e~

t

~a

~

b

~

d

) = �

~

1

�

~

d

2

(t

~

b

~

~

d

t

~a

~e

~

b

� ft
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~

~

d
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~e
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~

1

�

~

d

2
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~
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�

~

d

1

)(ft
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~
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~

d
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~
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~

t

~a

~
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~
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�

~

d

2

(t

~

b

~

~

d

t

~a

~

b

� ft

~a

~

~

d

;Hg);

whih are onsequenes of the Jaobi identities for ff

~

b

; �

~

1



~

g; �

~e

2



~e

g and for

ffH;�

~

1



~

g; �

~e

2



~e

g.

4

Also we took into aount that if the anonial variables

are transformed, ~q = q +4q and ~p = p +4p, then the Poisson braket of

some quantities A(~q; ~p) and B(~q; ~p) with respet to ~q; ~p are onneted with

the Poisson braket of A(q; p) and B(q; p) with respet to the old variables

in �rst order in 4q; 4p in the following manner

fA(~q; ~p); B(~q; ~p)g

~q;~p

= fA(q; p); B(q; p)g

q;p

+

Æ

Æq

~

i

(fA;Bg)4q

~

i

+ (q ! p) +O(4q

2

;4p

2

):

(3.32)

We stress that when we are performing the seond transformation in (3.29,3.30)

whih follows the �rst one, then we must use the transformed variables. In

partiular, instead of �

2

(N ; x; t) we must take �

2

(

^

I

�

1

N ; x; t). This explains

the appearane of the last terms in (3.31)

When the struture oeÆients t

~a

~

b~

do not depend on the anonial vari-

ables then

�

� also does not depend on them and

_

t

~a

~

b~

= 0. Thus, in this

ase the ommutator of two transformations generated by the FCC only

(� = 0) yields again a transformation generated by the onstraints. Hene,

if the struture oeÆients do not depend on the anonial variables then

the transformations generated by the onstraints form a losed algebra o�

mass-shell. On the other hand, if the struture oeÆients depend on the

anonial variables that does not automatially imply that the algebra of

transformations will not lose. Atually, the q; p-dependene in the formula

(3.31) for

�

� an, in priniple, be aneled against an appropriate hoie of

the N -dependene of �. Atually this takes plae for gravity, where some of

the struture oeÆients depend on q. Also the last terms in (3.30) vanish

in this ase onM and the algebra of transformations generated only by the

FCC is losed, but only on M where the Lagrangian system lives.

The algebra of transformations (3.29,3.30) an also be losed in all rele-

vant ases even when � 6= 0 if the �

~

b

and � are related in a ertain way. The

resulting transformations are atually the transformations orresponding to

Lagrangian symmetries when some FCC are nonlinear.

4

For simpliity we onsider only the bosoni ase from now on.
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An interesting question to whih I have no general answer is the follow-

ing: what are the onditions to exponentiate the in�nitesimal transforma-

tions to �nite ones. For the relativisti partile, string and for gravity the

�nite transformations for the orresponding Lagrangian systems are just the

familiar symmetries. These �nite symmetries an then be formulated in the

Hamiltonian formulation and this way one an �nd the �nite transformation

in the �rst order formalism. But in general it is not lear whether the los-

ing of the algebra of in�nitesimal transformations is suÆient to make them

�nite. I suppose that this annot be the ase sine for a free non-relativisti

partile, whih very probably does not admit any known �nite loal sym-

metry, the transformations (3.20) with � = 0 form a losed algebra. This

diÆult and very important question (i.e. for the funtional integral) what

are the onditions suh that the transformations an be made �nite needs

further investigation.

Constraints and the equations of motion. There is a very interest-

ing and non-trivial onnetion between the equations of motion EM(q) =

EM(p)=0 and the onstraints 

~a

=0. Clearly, sine _

~a

=0 the lassial tra-

jetories will stay on �



. Inversely, in some theories (e.g. gravity) we an get

the equations of motions if we only demand that the onstraints are ful�lled

for all t (i.e. everywhere) and that the symmetry transformations do not de-

stroy this property. For example, in di�eomorphism invariant theories this

means that we demand that the onstraints are valid everywhere and for any

hoie of spae-like hyper-surfaes, beause the symmetry transformations

an be interpreted as a hange of foliation of spae-time.

It is very easy to arrive at this onlusion using the developed formalism.

Let us onsider how the onstraints hange under the symmetry transfor-

mations (3.20):

Æ

�;�



~a

=

Æ

~a

Æq

ix

Æ

�;�

q

ix

+

Æ

~a

Æp

x

i

Æ

�;�

p

x

i

=

Æ

~a

Æq

ix

EM(q

ix

)�

x

+

Æ

~a

Æp

x

i

EM(p

x

i

)�

x

+ �

~

t

~

b

~a~



~

b

:

(3.33)

For the known theories the onstraints are loal in (q; p) and involve only

spae derivatives of q up to seond and p up to �rst order. It follows then

that the struture of the funtional derivative of the onstraints have the

form
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Æ

ay

Æq

ix

= A

ia

Æ(x; y) +B

�

ia

�

�y

�

Æ(x; y) +D

��

ia

�

2

�y

�

�y

�

Æ(x; y)

Æ

ay

Æp

x

i

= E

i

a

Æ(x; y) + F

i�

a

�

�y

�

Æ(x; y);

(3.34)

where A;B; : : : are funtions of q

y

and p

y

. Substituting (3.34) into (3.33) a

straightforward alulation yields

Æ

�;�



ay

= ( _

ay

+N

~

b

t

~

~

b;ay



~

+ t

~

ay



~

)�

y

+ �

~

t

~

b

ay;~



~

b

+

�

B

�

ia

EM(q

iy

) + F

i�

a

EM(p

y

i

)

�

��

y

�y

�

(3.35)

+ D

��

ia

�

2

�EM(q

iy

)

�y

�

��

y

�y

�

+EM(q

iy

)

�

2

�

y

�y

�

�y

�

�

:

Now we an reformulate our question in the following manner: when an the

equations of motion (or some of them) be the onsequene of the equations



~a

= 0 and Æ

�;�



~a

= 0: (3.36)

The �rst ondition just means that the onstraints are ful�lled everywhere

and the seond one that this statement does not depend on the hosen

foliation.

From (3.33) we an immediately onlude that the equations of motion

an be derived from (3.36) only if the following neessary onditions are

satis�ed:

� Some of the onstraints should be nonlinear in the momenta, sine, as

we showed earlier, only in this ase should we use the extra 'trivial'

transformations (and onsequently � 6= 0).

� The system should have an in�nite number of degrees of freedom.

Otherwise there are no spatial derivatives of � and the piees whih

are proportional to the equations of motion are absent.

� The onstraints should involve spatial derivatives of the p and/or the q.

Else all oeÆients B;F;D in (3.34) vanish and the piees proportional

to the equations of motion are again absent.

If we demand that (3.36) holds for arbitrary �, then from (3.33,3.34) we

immediately get the following set of equations

D

��

ia

EM(q

iy

) = 0

B

�

ia

EM(q

iy

) + 2D

��

ia

�EM(q

iy

)

�y

�

= 0

F

i�

a

EM(p

y

i

) = 0

(3.37)

53



whih an be solved to obtain the equations of motion. The equations

of motion whih we an get from (3.37) depends on the properties of the

matries D;B;F . Now we will briey review how the general results apply

to partiular systems:

Systems with a �nite number of degrees of freedom: In this ase no equa-

tions of motion follow from (3.36) even if � 6= 0 sine there are no

spatial derivatives of �.

Gauge theories: All of the onstraints are linear in the momenta and there-

fore the "trivial" transformations (3.17) are absent. Consequently,

none of the equations of motion an be obtained from (3.36).

Bosoni string: One onstraint is nonlinear in the momenta and hene

� 6= 0. The matries F;D are identially zero in this ase and B 6= 0.

Then only some relations between the EM(q) follow from (3.36).

Gravity: This is the most interesting ase. One onstraint is nonlinear

and leads to � 6= 0 for the di�eomorphism transformations. The ma-

tries F and D are non-singular. As is lear from (3.37) all Hamil-

tonian equations follow then from (3.36), that is the whole dynamis

of general relativity in the Hamiltonian formulation is hidden in the

requirement that the onstraints are satis�ed everywhere and for any

foliation. Let us stress that in distintion to [7℄ we did not assume

EM(q) = 0. These equations are also onsequenes of eqs. (3.36) and

thus the interonnetion theorem has been proved entirely within the

Hamiltonian formalism.

3.2 Yang-Mills Theories

We have seen that there is a big di�erene between systems with internal

symmetries and those whih are generally ovariant. All onstraints in the-

ories in the �rst lass are linear and generate the symmetries. The most

important theories with linear onstraints are the Yang-Mills theories. In

this setion I onsider YM theories [1℄ without oupling to matter and em-

phasize the role of the onstraints [30, 46℄. Pure non-Abelian YM theories

are interesting in their own right and they are non-trivial.

The YM ation for the gauge �elds is

S = �

1

4

Z

tr [F

��

F

��

℄d

3

xdt; (3.38)
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where

5

the �eld strength is Lie-algebra valued,

F

��

= �

�

A

�

� �

�

A

�

� i[A

�

; A

�

℄ , A

�

= A

a

�

T

a

, [T

a

; T



℄ = if



ab

T



;

(3.39)

and the ation is invariant under loal gauge transformations

A

�

�! e

�i�

A

�

e

i�

+ ie

�i�

�

�

e

i�

(3.40)

with � = �

a

(~x; t)T

a

. The in�nitesimal form of these gauge transformations

is

Æ

�

A

a

�

= �(�

�

�

a

+ f

a

b

A

b

�

�



) = �(D

�

�)

a

: (3.41)

The loal gauge invariane implies generalized Bianhi identitiesD

�

D

�

F

��

=

0 and renders the system singular. Among the �eld equations D

�

F

��

= 0

there are some ontaining seond time-derivatives of A,

D

�

F

�i

= 0 , i = 1; 2; 3 (3.42)

and whih therefore are dynamial equations of motion. The others

D

�

F

�0

= D

i

F

i0

or �

m

(A;

_

A) = �

i

F

i0

m

+ f

m

ab

A

a

i

F

i0

b

= 0; (3.43)

where m = 1; : : : ; N=dim(Gauge Group), are Lagrangian onstraints. No

further onstraints appear sine the time derivatives of the �

m

vanish on

aount of the �eld equations and the onstraints themselves.

The anonial momenta onjugate to the A's are

�

�

a

= �F

0�

a

, fA

a

�

(~x); �

�

b

(~y)g = Æ

a

b

Æ

�

�

Æ(~x � ~y): (3.44)

Sine the �eld strength tensor is antisymmetri we obtain N primary on-

straints

�

m

(A; �) = �

0

m

� 0: (3.45)

After a partial integration the anonial Hamiltonian is found to be

H =

Z

dx

�

1

2

�

a

i

�

a

i

+

1

4

F

a

ij

F

a

ij

�A

a

0

D

i

�

i

a

�

; (3.46)

and determines the time evolution

_

F = fF;H

p

g , H

p

= H +

Z

d~x u

m

�

m

: (3.47)

We need to hek the onsisteny of the primary onstraints:

_

�

m

= f�

m

;H

p

g = 0 =)

~

�

m

= (D

i

�

i

)

m

� 0: (3.48)

5

a; b; : : : denote internal indies, �; � : : : spae-time indies. The T

a

are hermitian

generators and the struture onstants f



ab

are totally antisymmetri.
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These N seondary onstraints are the generalizations of the Gauss on-

straint in eletrodynamis.

The only non-trivial Poisson brakets of the algebra of onstraints are

f

~

�

m

(~x);

~

�

n

(~y)g = f

p

mn

~

�

p

(~x)Æ(~x � ~y): (3.49)

The algebra is losed and therefore the 2N onstraints (�

m

;

~

�

n

) form a FC

system. Their Poisson brakets with H are omputed to be

f�

m

;Hg =

~

�

m

� 0 , f

~

�

m

;Hg = �f

p

mn

A

n

0

~

�

p

� 0: (3.50)

Let us now investigate the relation between the Hamiltonian gauge sym-

metries generated by the FCC and the Lagrangian gauge transformations

(3.41). A general ombination of the FCC � =

R

(�

m

1

�

m

+ �

m

2

~

�

m

) generates

the anonial symmetries

ÆA

a

�

= f�;A

a

�

g = Æ
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a

1

� Æ

i
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a
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Æ�

�

a

= f�; �
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a

g = Æ
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ab
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b
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+

Z

�

m

f�

m

1

; �

m

a

g;

(3.51)

where we have already antiipated that �

1

depends on A

0

. From (3.41)

we read o� how the �'s must be hosen to orrespond to Lagrangian gauge

transformations. We �nd that the partiular ombination

G = D

0

�

m

�

m

� �

m

~

�

m

(3.52)

generates those transformations. Both primary and seondary FCC enter

the Lagrangian gauge transformations similarly as for the CS theory.

Alternatively we an introdue gauge invariant variables, e.g. the Wilson

loops [53℄, or �x the gauge. To �x the gauge freedom we need 2N gauge �xing

onditions on the phase spae variables (A; �). Contrary to the situation in

eletrodynamis the gauge �xing in YM theories is rather subtle due to the

Gribov problem. Let F

a

(A

�

) be loal gauge �xings (whih we assume not

to depend on the momenta). Then the following problem may arise:

There are several �eld A

(j)

�

whih are related by �nite gauge transformations

and all of them obey the gauge �xing.

This happens for the Coulomb (bakground) gauge onditions [28℄. It

already happens for QED

2

on the Eulidean torus where an arbitrary gauge

�eld an be deomposed as in (2.118). The loal ondition �

�

A

�

eliminates

the gauge funtion � but does not onstrain the q

i

. But 2� and q

i

+2�

are gauge equivalent on�guration and this freedom annot be �xed by a

loal gauge onditions. This is an example to a more general situation

whih has been proven by Singer [44℄: For ompati�ed YM-theories no

global ontinuous gauge hoie of the (loal) form F

a

(A) = 0 exists whih
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ompletely spei�es the gauge. This is due to the nontrivial topologial

nature of the �bration A ! C = A=G, where A is the aÆne spae of gauge

potentials andG the group of loal gauge transformations. For mathematial

investigations onerning these strutures I refer to [5, 38℄. There were

attempt to irumvent the Gribov problem by restriting the gauge potential

to lie within the Gribov horizon [54℄. Unfortunately, until now all attempts

to make this idea in a funtional integration rigorous failed.

Rather then dwelling on the various gauge �xings, their merits and draw-

baks, and to whih we ome bak in the funtional quantization of gauge

theories, let me make here some remarks about the variational problem.

The primary FCC �

m

are sort of uninteresting, sine the SC pair (�

0

; A

0

)

an easily be eliminated. The Dira braket for the remaining variables are

just the Poisson braket.

After this elimination we �nd the �rst order ation

S =

Z

h

�

i

a

_

A

a

i

�N

a



a

�

1

2

(�

i

a

�

a

i

+B

i

a

B

a

i

)

i

, 

a

=

~

�

a

= (D

i

�

i

)

a

; (3.53)

with multiplier �elds N

a

. This form of the ation is the one whih is usually

met in the literature (for example, in gravity one does not keep the momenta

onjugated to the lapse and shift funtions in the �rst order ation). After

having eliminated one pair of anonial variables one may wonder how one

an reover the full set of Lagrangian gauge transformation (3.41). Of ourse,

that is exatly what we have ahieved earlier. Indeed, applying (3.15) we

obtain the following symmetry transformations for the system (3.53)

Æ

~

A

~a

= f

~

A

~a

; �

~

b



~

b

g = �(

~

D�)

~a

ÆA

0

~a

= ÆN

~a

=

_

�

~a

� t

~a

~

b~

A

0

~

b

�

~

Æ~�

~a

= f~�

~a

; �

~

b



~

b

g = �f

a

b

~�

bx

�

x

;

(3.54)

where we have set A

a

�

= (A

a

0

;

~

A

a

) and �

i

a

= ~�

a

. These transformations or-

respond to symmetries of the orresponding Lagrangian system sine the

onstraints are linear in the momenta. The transformations (3.54) oinide

with (3.41) if we identify � = � and hene the whole group of gauge trans-

formations (inluding time dependent ones) is generated by the seondary

FCC. It is easy to verify that the transformations for the momenta follow

from the �rst equation in (3.54) if we use the relation between veloities

~

A

~a

;

t

and momenta ~�

~a

(the �rst Hamiltonian equation) whih de�nes the

subspae M where the Lagrangian system lives. To ompare the symme-

tries in the Lagrangian and Hamiltonian formulations we need to use these

equations. However, the Lagrangian system lives in the subspae M while

the transformations (3.54) an be viewed as symmetries in the whole phase

spae.
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The transformations (3.54) an be made �nite in phase spae o� the

hyper-surfae M. Atually the ation (3.53) is invariant under the global

transformation (2.123) if simultaneously the momenta are transformed as

� �! e

�i�

�e

i�

:

To prove this we do not need to use any of the Hamiltonian equations. So

this symmetry holds for all trajetories in phase spae.

3.3 Generally ovariant theories

Here we apply the general results about the relation between Hamiltonian

and Lagrangian symmetries to the bosoni string and gravity

6

3.3.1 The bosoni string

The bosoni string propagating in a D-dimensional at target spae an be

viewed as the theory for D mass-less salar �elds �

�

; � = 0; : : : ;D � 1 on

a 2-dimensional world-sheet spaetime with metri g

��

. The ation for this

theory an be written in an invariant form with respet to di�eomorphism

transformations as [10℄

S = �

1

2

Z

p

�gg

��

��

�

�x

�

��

�

�x

�

d

2

x; (3.55)

where x

�

� (t; x) are the oordinates in the 2-dimensional spaetime. To

simplify the formulas we shall skip the target-spae index � sine it always

appears in a trivial way and an easily be reinserted.

The di�eomorphism transformations whih are manifest o� mass-shell

symmetries of the ation (3.55) are

x

�

! x

�

� �

�

; g

��

! g

��

+ L

�

g

��

; �! �+ L

�

�; (3.56)

where �

�

is the in�nitesimal parameter of the transformations. In addition

the ation is invariant with respet to Weyl transformations

g

��

! 


2

(x)g

��

and �! �: (3.57)

To arrive at the �rst order formulation it is onvenient to use the 1 + 1-

deomposition for the world-sheet metri as [3℄

g

��

= �(N

2

�N

1

N

1

)dt

2

+ 2N

1

dxdt+ 

11

dx

2

; (3.58)

6

In this setion we shall use the sign onvention (�;+;+; : : :) for the signature of

spae-time as favored by most relativists
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where N and N

1

are the lapse and shift funtions, respetively. We rise and

lower the spatial index '1' using the metri 

11

�  of the 1-dimensional

hyper-surfae t=onstant in 2-dimensional spaetime. Correspondingly we

have



11

=

1



; N

1

=

1



N

1

;

p

�g = N

p

: (3.59)

Using (3.56) an easy alulation yields the following expliit transformations

laws for

N

0

=

N

p



; (3.60)

N

1

and � under di�eomorphism transformations x

�

! x

�

� �

�

; �

�

=

(�

0

; �

1

):

ÆN

0

= Æ(

N

p



) = (N

0

�

0

)

�

+N

10

(N

0

�

0

)�N

1

(N

0

�

0

)

0

+N

00

(�

1

+N

1

�

0

)�N

0

(�

1

+N

1

�

0

)

0

;

ÆN

1

= (�

1

+N

1

�

0

)

�

+N

10

(�

1

+N

1

�

0

)�N

1

(�

1

+N

1

�

0

)

0

(3.61)

+N

00

(�

1

+N

1

�

0

)�N

0

(�

1

+N

1

�

0

)

0

;

Æ� =

_

��

0

+ �

0

�

1

:

Here dot and prime mean the di�erentiations with respet to the time and

spae oordinates x

0

= t and x

1

= x, respetively. The transformation law

for the momentum � onjugate to �,

� =

�L

�

_

�

=

p



N

(

_

��N

1

�

0

) (3.62)

follows immediately from (3.61):

Æ� = _��

0

+ (��

1

)

0

+ (N

1

� +N

0

�

0

)�

00

: (3.63)

In the �rst order Hamiltonian formulation the ation (3.55) takes the form

S =

Z

(�

_

��N

a



a

)dxdt; (3.64)

where the Lagrangian multipliersN

a

are just the funtions de�ned in (3.59,3.60)

(that is they are the lapse and shift funtions up to

p

). The onstraints



0

=

1

2

(�

2

+ �

02

); and 

1

= ��

0

(3.65)

form a losed algebra, i.e. are FCC, with respet to the standard Poisson

brakets f�(x); �(y)g = Æ(x; y):
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f

i

(x); 

i

(y)g = 

1

(x)

�

�x

Æ(x; y)� 

1

(y)

�

�y

Æ(x; y) i=0,1

f

0

(x); 

1

(y)g = 

0

(x)

�

�x

Æ(x; y)� 

0

(y)

�

�y

Æ(x; y):

(3.66)

Rewriting these relations in terms of the light-one onstraints 

0

� 

1

we

immediately reognize them as Virasoro algebra [4℄.

Conerning the symmetries we �rst note that the Weyl symmetry (3.57)

takes the trivial form in the Hamiltonian formalism

N

0

=

N

p



!


N




p



= N

0

; N

1

=

N

1

p



! N

1

; (3.67)

so that all variables in the �rst order ation are Weyl invariant.

Beause one of the onstraints, namely 

0

, is quadrati in the momen-

tum, we need to ombine gauge and reparametrization transformations as

in (3.20) to reover the di�eomorphism invariane (3.61,3.62) in the Hamil-

tonian formalism. For the bosoni string the expliit transformation (3.20)

reads

ÆN

0

=

_

�

0

+N

10

�

0

�N

1

�

00

+N

00

�

1

�N

0

�

10

ÆN

1

=

_

�

1

+N

10

�

1

�N

1

�

10

+N

00

�

0

�N

0

�

00

(3.68)

Æ� = (

_

��N

0

� �N

1

�

0

)� + ��

0

+ �

0

�

1

;

Æ� = ( _� � (N

0

�

0

+N

1

�)

0

)� + (�

0

�

0

)

0

+ (��

1

)

0

;

where we need to assume that the parameters are related by the ondition

(3.22). This ondition is solved if we express the parameters �; �

0

; �

1

in

terms of two independent parameters as

� = �

0

; �

0

= N

0

�

0

=

N

p



�

0

; �

1

= �

1

+N

1

�

0

; (3.69)

and then we immediately reognize the transformations (3.68) as di�eomor-

phism transformations (3.61,3.62) without using the Hamiltonian equations.

One again we emphasize that the transformations (3.68) are in�nitesimal

symmetry transformations on the whole phase spae whereas the transfor-

mations (3.61,3.62) are appliable only to trajetories on M.

As a �rst step toward exponentiating the in�nitesimal transformations

(3.68), i.e. make them �nite, we should hek their algebra. Using the

formulas for the partiular hoie (3.69) of parameters it easy to �nd that

the ommutator of two subsequent transformations

^

I

�;�

�

^

I(

~

�), where

~

� =

(�

0

; �

1

) beomes

[

^

I(~�);

^

I(

~

�)℄ =

^

I(L

~�

~

�)�

^

1;
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ompletely o� mass shell. Hene the algebra of transformations (3.68) forms

a (in�nite dimensional) Lie-algebra even o� the subspae M.

The last remark onerns the onnetion between the onstraints and the

equations of motion for the string theory. Calulating the �rst funtional

derivative of the onstraints with respet to the anonial variables we see

that the B and E oeÆients in (3.34) are

B

0

= E

1

= �

0

y

; B

1

= E

0

= �

y

; (3.70)

while the D and F oeÆients vanish. Then the eqs.(3.37) redue to

�

0�

EM(�

�

) = 0 and �

�

EM(�

�

) = 0 (3.71)

where � is the target-spae index. From these equations we annot on-

lude that all eqs. of motion should be satis�ed. However, they put ertain

restritions on the allowed EM(�). Sine the oeÆients F are equal zero

(the onstraints do not involve any spatial derivatives of the momenta) the

requirement that the onstraints are satis�ed everywhere and for any foli-

ation does not tell us anything about the eqs. of motion EM(�) = 0. We

will see in the next setion that the interonnetion theorem, whih we just

disussed, is muh more interesting in gravity.

3.3.2 Gravity

General relativity without matter has the ation

7

S =

Z

R

p

�gd

4

x (3.72)

and is invariant with respet to oordinate (or di�eomorphism) transforma-

tions, the in�nitesimal form of whih read

x

�

! x

�

� �

�

; g

��

! g

��

+ L

�

g

��

: (3.73)

Rewriting the metri g

��

in the 3 + 1-split form [3℄

ds

2

= �(N

2

�N

i

N

i

)dt

2

+ 2N

i

dx

i

dt+ 

ij

dx

i

dx

j

; (3.74)

where N is the lapse funtion, N

i

are the shift funtions, N

i

= 

ij

N

j

, and



ij

is the metri of the 3-dimensional hyper-surfae �

t

of onstant time t,

we derive from (3.73) the following expliit transformations for N , N

i

, and



ij

:

ÆN = (N �

0

)

�

�N

i

(N �

0

);

i

+N ;

m

(�

m

+N

m

�

0

) ;

ÆN

i

= (�

i

+N

i

�

0

)

�

� (�

i

+N

i

�

0

);

m

N

m

+N

i

;

k

(�

k

+N

k

�

0

)

�N

ij

(N �

0

);

j

+

ij

N ;

j

(N �

0

) ; (3.75)

Æ

ij

= ( _

ij

�N

ijj

�N

jji

)�

0

+

(3)

L

�+N �

0


ij

:

7

we adapt the sign and units onventions in [13℄
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Here the omma denotes ordinary di�erentiation with respet to the or-

responding spae oordinate, the bar denotes ovariant derivative in the 3

dimensional spae �

t

with metri 

ij

, 

ij

is the inverse 3-dimensional metri

on �

t

and

(3)

L is the Lie derivative in �

t

. This Lie derivative is to be taken

in the diretion � +N �

0

� f�

i

+N

i

�

0

g.

In the �rst order Hamiltonian formalism the ADM ation for pure grav-

ity takes the form

8

S =

Z

(�

ij

_

ij

�N

s

H

a

)d

3

xdt; (3.76)

where �

ij

are the momenta onjugated to 

ij

and the 4 Lagrangian multi-

pliers are

N

0

= N ; and N

i

= 

ij

N

j

(3.77)

that is the lapse and shift funtion. Correspondingly the onstraints H

a

are

[3, 13℄

H

0

= G

ijkl

�

ij

�

kl

�

p



(3)

R; H

i

= �2

ij

�

jl

jl

; (3.78)

where

G

ijkl

=

1

2

p



(

ik



jl

+ 

il



jk

� 

ij



kl

);  = det(

ij

) (3.79)

is the metri in super-spae [13℄ and

(3)

R the intrinsi urvature of the

hyper-surfae �

t

of onstant time t. With the help of the fundamental

Poisson brakets

f

ij

(x); �

kl

(y)g = Æ

(k

i

Æ

l)

j

Æ(x; y) =

1

2

(Æ

k

i

Æ

l

j

+ Æ

l

i

Æ

k

j

)Æ(x; y) (3.80)

one heks that the onstraints (3.78) are �rst lass [13℄

fH

0

(x);H

0

(y)g = 

ij

(x)H

j

(x)

�

�x

i

Æ(x; y) � 

ij

(y)H

j

(y)

�

�y

i

Æ(x; y)

fH

i

(x);H

0

(y)g = H

0

(x)

�

�x

i

Æ(x; y) (3.81)

fH

i

(x);H

j

(y)g = H

j

(x)

�

�x

i

Æ(x; y) �H

i

(y)

�

�y

j

Æ(x; y):

(3.82)

Let us note that if we add matter (ovariantly oupled to gravity) to (3.72)

then the onstraints ontain extra piees, but their algebra remains un-

hanged. Another interesting observation is the following: If we use

p

H

0

instead of H

0

as a onstraint then the algebra of onstraints looks very muh

8

in this setion we denote the onstraints by H

a

, a notation whih is widely used in

gravity [13, 8, 9℄
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like a natural generalization of the Virasoro algebra (3.66) to four dimen-

sions. It is a nontrivial problem where the di�eomorphism invariane of the

original ation (3.72) is hidden in the �rst order Hamiltonian reformulation

of gravity. There have been various attempts to �nd this symmetry (see, for

instane [8, 9℄)

Three of the onstraints, namely the H

i

, are linear in momenta, so they

should generate transformations whih oinide with di�eomorphism trans-

formations. This has been realized for time independent transformations

some time ago [6℄. However, the fourth onstraint, namely H

0

, is quadrati

in the momenta and hene annot generate a symmetry of the orrespond-

ing Lagrangian system aording to our general results. Only ombined

with a ompensating transformation does it generate the symmetry we are

looking for. Sine the Hamiltonian is zero, this symmetry is exatly the

reparametrization invariane (3.28). Assuming that the parameters in (3.20)

are onneted suh that the ondition (3.22) is satis�ed, we an write this o�

shell symmetry transformation for gravity in the following expliit manner

ÆN =

_

�

0

�N

j

�

0

;

j

+N ;

j

�

j

;

ÆN

i

=

_

�

i

�N

j

�

i

;

j

+N

i

;

j

�

j

�N

ij

�

0

;

j

+

ij

N ;

j

�

0

;

Æ

ij

= EM(

ij

)� + f

ij

; �

~a

H

~a

g (3.83)

= EM(

ij

)� +

1

p



(2�

ij

� 

ij

�)�

0

+

(3)

L

�



ij

and

Æ�

ij

= EM(�

ij

)� + f�

ij

; �

~a

H

~a

g: (3.84)

Here the 5 parameters �; �

�

are to be expressed in terms of the four inde-

pendent parameters �

�

as

� = �

0

; �

0

= N �

0

; �

i

= �

i

+N

i

�

0

(3.85)

and then it beomes evident that (3.83) is idential to (3.75). Again we

need not use any of the Hamiltonian equations. A rather lengthy alulation

shows that the transformation law one �nds for the momenta by using their

de�nition in terms of 

ij

; N

k

and (3.75) oinides with (3.84) also o� mass

shell.

Thus we found that in gravity the three onstraints whih are linear in

the momenta generate the di�eomorphism transformations while the forth

onstraintH

0

does it only in a partiular ombination with the 'trivial' trans-

formation (3.18). This nonlinear in momenta onstraint itself is responsible

for the origin of the dynamis inM in the super-Hamiltonian reformulation

of gravity.

In gravity the struture oeÆients depend on the anonial variables

and one might expet that the algebra of in�nitesimal transformations (3.83-
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3.85) annot lose in this ase. Fortunately, this expetation is not on-

�rmed. In partiular, in the formula (3.31) for the

�

�-parameter this -

dependene of the various terms on the right hand side anels for the on-

rete hoie (3.85) for the N -dependene of the parameters �. The prie

we pay for that is the expliit dependene of the parameters of transforma-

tions on the Lagrangian multipliers, but not on the anonial variables ; �.

Starting from the general formulas (3.29-3.31) a straightforward but rather

lengthy alulation shows that the transformations (3.83-3.85) form a Lie

algebra ompletely o� mass shell:

[

^

I(�);

^

I(�)℄ =

^

I(L

�

�)�

^

1; � = (�

0

; : : : ; �

3

); � = (�

0

; : : : ; �

3

); (3.86)

where �

0

; �

i

and �

0

; �

i

are de�ned in (3.85), as it should be for di�eomor-

phisms. The formula (3.86) holds even for paths whih are not inM.

There is a deep onnetion between the onstraints and equations of

motion in gravity. Calulating the derivative of the onstraints in this ase

we shall �nd that all of the oeÆients A; � � � ; F in (3.34) do not vanish.

In partiular, taking into aount that the index k in the formulas

(3.34,3.15) is a omposite one, i � (j; k); a; b run over the same spatial

index l and alulating the derivatives of H

i

with respet to �

jk

and H

0

with respet to 

np

we �nd

F

l

ijk

= �2

i(j

Æ

l

k)

and D

nplk

0

= �G

nplk

; (3.87)

where G

nplk

is the inverse of the superspae-metri, G

nplk

G

lkij

= Æ

(n

i

Æ

p)

j

.

Then the �rst and last equations in (3.37) take the form

G

nplk

EM(

np

) = 0 and 

ij

EM(�

jl

) = 0: (3.88)

Sine the determinants det G and det  are not equal zero the eqs. (3.88)

have the unique solution

EM(

np

) = 0 and EM(�

jl

) = 0: (3.89)

The remaining equations in (3.37) are then automatially ful�lled. Thus, we

see that in general relativity the whole dynamis follows from the require-

ment that the onstraints are satis�ed everywhere and they are preserved

under di�eomorphisms.
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