
Chapter 2

Hamilton's Formalism for

Constraint Systems

2.1 Singular Lagrangian systems

The most general mathemati
al setting for gauge theories is Dira
's 
on-

straint formalism

1

. Here I review this formalism, also to prepare the ground

for the following 
hapters, and in parti
ular the one on the Hamiltonian re-

du
tion of WZNW theories.

Attempts to handle 
onstrained systems date ba
k more than forty years.

In his 
lassi
al works Dira
 set up a formalism to treat su
h systems self-


onsistently [18℄. Later Bergman et.al. in a series of papers investigated

the 
onne
tion between 
onstraints and invarian
es [3, 11, 13℄. After the

introdu
tion of Grassmann variables to des
ribe fermions [9℄, the formalism

has been extended to in
lude �elds with half-integer spins [25, 14, 10℄. The

development 
ulminated with the advent of the elegant and powerful BRST

formalism [7℄. These and other 
lassi
al results have been a prerequisite for

the quantization of gauge theories both in the path integral formalism [20, 6℄

and in the fun
tional S
hr�odinger pi
ture [47, 33℄.

There are several ex
ellent reviews on the treatment of 
onstrained sys-

tems of gauge theories besides Dira
 well-known le
tures [19℄. Some fo
us

more on systems with a �nite number of degrees of freedom [45℄, others on

�eld theories [30℄ and some on both [46, 27, 31℄. For generally 
ovariant

theories you may 
onsult [26℄.

We shall be 
on
erned with systems whose dynami
s 
an be derived

from Hamilton's variational prin
iple. I assume that all Lagrangians depend

1

For an alternative approa
h see [22℄
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at most on �rst derivatives, up to divergen
e terms

2

. Throughout this

work I shall use lo
al 
oordinates, unless I am for
ed to address global

questions, e.g. the Gribov problem or the role of topologi
ally nontrivial

�eld 
on�gurations.

With these assumptions the 
lassi
al traje
tories of a system with N

degrees of freedom make the a
tion

S =

t

2

Z

t

1

L(q

i

; _q

i

)dt , i = 1; : : : ; N (2.1)

stationary under variations Æq(t) whi
h vanish at the endpoints. The q

and _q are lo
al 
oordinates on the velo
ity phase spa
e TQ. The ne
essary


onditions for S to be stationary are the Euler-Lagrange equations

L

i

� �

d

dt

�

�L

� _q

i

�

+

�L

�q

i

= 0 (2.2)

whi
h 
an be rewritten as

L

i

= �

�

2

L

� _q

i

� _q

j

�q

j

�

�

2

L

� _q

i

�q

j

_q

j

+

�L

�q

i

� �W

ij

(q; _q)�q

j

+ V

i

= 0: (2.3)

We see that the a

elerations at a given time are uniquely determined by

(q; _q) at that time only if the Hessian (W

ij

) 
an be inverted. Su
h systems

are 
alled regular.

For singular systems detW = 0, and the a

elerations and hen
e time

evolution will not be uniquely �xed by (q; _q). For su
h systems di�erent

time evolutions will stem from the same initial 
onditions.

The rank R of W , whi
h we assume for simpli
ity to be 
onstant on TQ,

being R<N implies the existen
e of M=N�R null-eigenve
tors Y

m

of W :

Y

i

m

(q; _q)W

ij

(q; _q) = 0 , m = 1; : : : ;M: (2.4)

Contra
ting the E-L equations (2.3) with the Y

m

we get

�

m

(q; _q) � Y

i

m

V

i

= 0 , m = 1; : : : ;M: (2.5)

These equations do not 
ontain a

elerations. Assume thatM

0

�M relations

�

m

0

= 0 , m

0

= 1; : : : ;M

0

; (2.6)

are fun
tionally independent on the others, and the remaining ones are either

dependent or identi
ally ful�lled. The independent ones are the so-
alled

Lagrange 
onstraints.

2

For higher derivative theories, and in parti
ular for higher derivative gravity, see [26℄.
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For �eld theories the dynami
s is des
ribed by fun
tions '

a

(x) of spa
e-

time with values in a 
ertain target spa
e. The index a may belong to an

internal symmetry, it may be a spa
etime index or both internal and spa
e-

time index as in non-non-Abelian gauge theories. When going from point

me
hani
s to �eld theory one may think of repla
ing the dis
rete label i by

a 
ontinuous one (a; ~x):

q

i

(t) = q(t; i) �! q(t; a; ~x) = '

a

(t; ~x) = '

a

(x):

Summations be
ome spatial integrals, e.g.

X

i

_q

i

_q

i

�!

X

Z

dx _'

a

(~x) _'

a

(~x)

and fun
tions of (q; _q) be
ome fun
tionals of ' and _'. Also, derivatives with

respe
t to q

i

or _q

i

be
ome fun
tional derivatives, e.g.

�L

� _q

i

�!

ÆL

Æ _'

a

(~x)

The velo
ity phase spa
e TQ is 
hosen so that the Lagrange-fun
tional L is


ontinuous and suÆ
iently often di�erentiable. If the target spa
e is linear

one may 
hoose a Bana
h spa
e (typi
ally a Sobolov spa
e), otherwise one

tries to model the theory on a C

k

-Bana
h manifold [16, 37℄ sin
e the impli
it

fun
tion theorem still applies then. Bana
h manifolds are modeled over

Bana
h spa
es and are straightforward generalizations of �nite-dimensional

manifolds.

A fun
tional on a Bana
h spa
e X is 
alled 
ontinuous if

lim

n!1

F ['

n

℄ = F ['℄ for X 3 '

n

! ':

F is 
alled Fre
het-di�erentiable at ' if there exists a linear fun
tional F

0

'

su
h that

jF [' + Æ'℄� F ['℄ � F

0

'

[Æ'℄j = o(k Æ' k) for all k Æ' k! 0:

For lo
al theories the Lagrangian has the form

L['; _'℄ =

Z

dxL('; �

i

'; _') (2.7)

with a Lagrangian density L depending only on the �eld and its derivatives

at the same point. For su
h theories the Euler-Lagrange equations are

L

a

� �

�

�t

ÆL

Æ _'

a

+

ÆL

Æ'

a

= ��

�

�L

�(�

�

'

a

)

+

�L

�'

a

= 0; (2.8)
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where I adopted the 
ommon notation

F

0

'

[Æ'℄ �

Z

ÆF

Æ'(x)

Æ'(x): (2.9)

Rewriting the �eld equations as

L

a

= �

�

2

L

�(�

�

'

a

)�(�

�

'

b

)

�

�

�

�

'

b

�

�

2

L

�(�

�

'

a

)�'

b

�

�

'

b

+

�L

�'

a

� �W

��

ab

�

�

�

�

'

b

+ V

a

= 0

(2.10)

we 
an see that theories with x

0

taken as evolution parameter are regular if

W

00

ab

is invertible and singular if it is not. For singular systems there exist

(for ea
h ~x) M=N�R null-ve
tors

Y

a

m

('; �')W

00

ab

('; �') = 0 , m = 1; : : : ;M (2.11)

whi
h lead to nontrivial and independent Lagrangian 
onstraints

�

m

0

('; �') � Y

a

m

0

V

a

= 0 , m

0

= 1; : : : ;M

0

�M; (2.12)

involving only the �elds and their �rst derivatives.

How one pro
eeds for singular systems is neatly explained in [43, 46℄.

There are two points whi
h have to be 
onsidered. Firstly the rank of the

Hessian may de
rease if one takes the independent 
onstraints (2.6,12) into

a

ount. This may lead to new independent 
onstraints. Again the rank

may de
rease leading to further 
onstraints, et
. This pro
ess terminates as

soon as the rank does not 
hange anymore.

Se
ondly one needs to 
he
k whether the 
onstraints one has found after

the above algebrai
 pro
ess has terminated are respe
ted by the time evo-

lution. These may lead to new 
onstraints. Again and again di�erentiate

newly emerging 
onstraints until no new ones arise. Add those relations

involving a

elerations to those already present. Consisten
y of the old re-

lations with the new ones may lead to further 
onstraints. After all that one

needs again to 
he
k whether the rank of the Hessian has 
hanged. If this

is the 
ase one needs to start from the beginning et
.

Generalized Bian
hi identities If a theory possesses a lo
al gauge in-

varian
e we may map solutions into solutions without a�e
ting the initial


onditions. Thus we expe
t that gauge theories are singular systems. A
-

tually this follows from the generalized Bian
hi identity [50, 48℄ whi
h we

derive next.

The point transformations
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x

0

= x

0

(x) � x+ Æx

'

0

(x

0

) = '

0

('(x); x) � '(x) + Æ'

(2.13)

whi
h leave the a
tion invariant

Z

d

d

x

0

L('

0

; �

0

'

0

; x

0

) =

Z

d

d

xL('; �'; x) (2.14)

form a group whi
h we assume to be 
ontinuous. For transformations 
lose

to the identity d

d

x

0

=d

d

x(1 + �

�

Æx

�

), and the invarian
e (2.14) implies

ÆL+ L�

�

Æx

�

= �

�

�

�

(2.15)

with some �. Using

ÆL =

�L

�'

a

Æ'

a

+

�L

�(�

�

'

a

)

Æ(�

�

'

a

) + �

�

LÆx

�

it follows at on
e that

ÆL+ L�

�

Æx

�

= �

�

(LÆx

�

) + �

�

(

�L

�(�

�

'

a

)

�

Æ'

a

) + L

a

�

Æ'

a

;

where the Euler derivatives L

a

have been de�ned in (2.8) and

�

Æ'

a

= Æ'

a

� �

�

'

a

Æx

�

� '

a

0

(x)� '

a

(x) (2.16)

is the in�nitesimal di�eren
e of the old and the transformed �les at the same

point. We used that [

�

Æ; �

�

℄=0. Thus the gauge invarian
e implies

�

�

(LÆx

�

+

�L

�(�

�

'

a

)

�

Æ'

a

� �

�

) + L

a

�

Æ'

a

= 0 (2.17)

and these are the generalized Bian
hi identities. Nowhere did we use the

equation of motion and thus (2.17) are o�-shell identities.

First assume that S is invariant under global transformations forming a

n-dimensional Lie-group. Then

�

�

= �

�

�

��

; Æ

�

x

�

= �

�

A

��

; Æ

�

'

a

= �

�

B

�a

; (2.18)

where the �

�

; �= 1; : : : ; n are the 
onstant parameters of the in�nitesimal

transformations. Inserting this into (2.17) and going on shell, L

a

= 0, we


on
lude

�j

��

= 0; where j

��

=

�L

�(�

�

'

a

)

(B

�a

�A

��

�

�

'

a

)+LA

��

��

��

; (2.19)
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whi
h is Noether's �rst theorem. Note that we allowed for general point

transformation so that (2.19) applies to both spa
e-time and internal sym-

metries. However, when deriving (2.19) we imposed the equations of motion

so that the 
urrents are 
onserved only on-shell.

Let us now assume that the symmetry transformations are lo
al. In that


ase the parameters be
ome spa
e-time dependent and (2.18) generalizes to

Æ

�

x

�

= �

�

A

��

, Æ

�

'

a

= �

�

B

�a

+ �

�

�

�

C

�a�

; (2.20)

where the �

�

(x) parametrize the in�nitesimal lo
al gauge transformations

and B and C are the so-
alled des
riptors [3℄, whi
h in general depend on the

�elds and their derivatives. I assumed that no se
ond or higher derivatives

of � enter be
ause this 
overs most interesting examples. With

�

Æ

�

'

a

= �

�

(B

�a

� �

�

'

a

A

��

) + �

�

�

�

C

�a�

(2.21)

the integrated form of (2.17), after a partial integration, reads

0 =

Z

�

�

[L

a

(B

�a

� �

�

'

a

A

��

)� �

�

(L

a

C

�a�

)℄: (2.22)

Sin
e it must hold for arbitrary fun
tions �

�

this implies that the expression

between the square bra
kets must vanish. Inserting L

a

from (2.10) we end

up with

0 = L

a

(B

�a

� �

�

'

a

A

��

� �

�

C

�a�

)� C

�a�

�

�

V

a

+C

�a�

(�

�

W

���

ab

�

�

�

�

'

b

+W

��

ab

�

�

�

�

�

�

'

b

):

(2.23)

Sin
e these are o�-shell identities we 
on
lude

C

�a(�

W

��)

ab

= 0; (2.24)

where the bra
kets around the indi
es mean symmetrization. In parti
ular,

des
riptors C

�a0

whi
h are not identi
ally zero are null-eigenve
tors of the

Hessian,

C

�a0

W

00

ab

= 0 (2.25)

and render the system singular. If all C

�a�

vanish, then (2.23) redu
es to

0 = (B

�a

� �

�

'

a

A

��

)L

a

=) (B

�a

�A

��

�

�

'

a

)W

(��)

ab

= 0: (2.26)

Thus, if C � 0 but the B

�a

�A

��

�

�

'

a

are not identi
ally zero, we 
on
lude

again that the system is singular. So we have the important result that

gauge theories are ne
essarily singular. However, the 
onverse is not true.

Not all 
on
eivable singular systems are gauge theories.
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2.2 Primary and se
ondary 
onstraints

The departing point for the Hamiltonian formalism is to de�ne the 
anoni
al

momenta (densities) by

p

i

=

�L

� _q

i

(q; _q) resp. �

a

(~x) =

ÆL

Æ _'

a

(~x)

; (2.27)

where we assume that L 2 C

2

(TQ). Only if

W

ij

=

�p

i

� _q

j

resp. W

00

ab

(~x; ~y) =

Æ�

a

(~x)

Æ _'

b

(~y)

(2.28)

is invertible, that is for regular systems, 
an this relation be solved for all

velo
ities in terms of the phase spa
e variables

3

, _q = _q(q; p) resp. _' =

_'('; �). In the other 
ase not all momenta (2.27) are independent, but

there are some relations

�

m

(q; p) = 0 resp. �

m

('; �) = 0 , m = 1; : : : ;M (2.29)

that follow from the de�nition (2.27) of the momenta. I shall assume that

the 
onstraints (2.29) are independent.

In the following we restri
t ourselves to �nite dimensional systems and

only 
omment on the related results for �eld theories. The 
orresponding

�eld theoreti
al formulas, if they apply, are obtained if one uses deWitt's


ondensed notation [17℄ in whi
h i be
omes a 
omposite index.

The 
onditions (2.29) are the M = N �R primary 
onstraints. They

de�ne the 2N�M -dimensional primary 
onstraint surfa
e, denoted by �

p

.

The equations of motions have not been used to derive them and they imply

no restri
tion on the (q; _q). (2.27) maps the 2N -dimensional velo
ity phase

spa
e TQ to the lower-dimensional sub-manifold �

p

in the momentum phase

spa
e �. Hen
e the inverse images of a given point in �

p

form a manifold of

dimension M .

To pass to the Hamiltonian formalism we impose some regularity 
on-

ditions on the primary 
onstraints. They 
an be alternatively formulated

as:

1. the independent fun
tions �

m

;m = 1; : : : ;M 
an be lo
ally taken as

the �rst M 
oordinates of a new, regular, 
oordinate system in the

vi
inity of �

p

.

2. The gradients d�

1

; : : : ; d�

M

are lo
ally linearly independent on �

p

; i.e.,

d�

1

^ : : : ^ d�

M

6= 0 on �

p

.

3

for �eld theories we assume TQ to be a Bana
h manifold so that the inverse fun
tion

theorem applies

18



For example, if � is an admissible 
onstraint, �

2

is not, sin
e d(�

2

)=2�d�=0

on �

p

. If the 
onstraints are regular the following properties hold.

Theorem 1 If a smooth fun
tion F (q; p) vanishes on �

p

, then F = f

m

�

m

for some fun
tions f

m

.

Theorem 2 If �

i

Æq

i

+ �

i

Æp

i

=0 for arbitrary variations Æq

i

; Æp

i

tangent to

the 
onstraint surfa
e, then

�

i

= u

m

��

m

�q

i

and �

i

= u

m

��

m

�p

i

on �

p

for some u

m

.

Before proving these two important theorems it is useful to distinguish be-

tween weak and strong equations. A fun
tion F (q; p) de�ned in the neigh-

borhood of �

p

is 
alled weakly zero if

F j

�

p

= 0() F � 0 (2.30)

and strongly zero if

F j

�

p

= 0 and (

�F

�q

i

;

�F

�p

i

)j

�

p

=0

() F ' 0: (2.31)

These de�nitions are useful sin
e the equations of motion 
ontain gradients

of fun
tions on �

p

. The primary 
onstraint surfa
e 
an itself be de�ned by

weak equations. We have

�

m

� 0 but �

m

'= 0 (2.32)

be
ause of our regularity 
onditions on the 
onstraints.

Sin
e r

x

(f

m

�

m

) � f

m

r

x

�

m

, where x = (q; p) denotes the phase spa
e


oordinates, the �rst theorem implies

Lemma 1 F � 0 =) F � f

m

�

m

' 0 for some fun
tions f

m

.

To prove the �rst theorem we 
hoose the independent 
onstraints �

m

as �rst


oordinates of a regular 
oordinate system x=(�; ~x) in the neighborhood of

�

p

. Sin
e F (0; ~x)=0 we have

F (�; ~x) =

1

Z

0

d

d�

F (��; ~x)d� = �

m

1

Z

0

F;

m

(��; ~x)d�

and thus

F = f

m

�

m

with f

m

=

1

Z

0

F;

m

(��; ~x)d�: (2.33)
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This proves theorem 1 in the neighborhood U of any point on �

p

. We 
over

the neighborhood of �

p

by open sets U

i

, on ea
h of whi
h theorem 1 applies.

Together with the open sets V

k

on whi
h �

k

6= 0 the U

i


over the whole

phase spa
e. On V

k

we 
an set F = (F=�

k

)�

k

and theorem 1 holds there.

Finally, to guarantee that the f

m

are the same on the overlap of U

i

and U

i

0

one uses a �nite partition of unity.

Theorem 2 follows immediately from the regularity 
ondition whi
h im-

plies that at a given point x on �

p

a basis of T

x

�

p

(the ve
tors tangent

to �

p

at x), together with the gradients r

x

�

m

form a basis of T

x

�. The

assumption in theorem 2 means that (�; �) are orthogonal to T

x

�

p

. Thus it

must be a linear 
ombination of the gradients r

x

�

m

.

For �eld theories one �nds

F [�; ~x℄ � 0) F =

Z

f

m

�

m

, f

m

(~x) =

Z

d�

ÆF

Æ�

m

(~x)

[��; ~x℄ (2.34)

and a weakly vanishing fun
tional is a linear 
ombination of smeared 
on-

straints. The test fun
tions should lie in the spa
e dual to the spa
e of the


onstraints [8℄.

2.2.1 Legendre transformation

The 
anoni
al Hamiltonian

H = _q

i

p

i

� L resp. H =

Z

dx �

a

(~x) _'

a

(~x)� L =

Z

dx H (2.35)

has the remarkable property that _q enters H only through the 
ombination

p(q; _q). This follows from

ÆH = _q

i

Æp

i

+ Æ _q

i

p

i

� Æ _q

i

�L

� _q

i

� Æq

i

�L

�q

i

= _q

i

Æp

i

� Æq

i

�L

�q

i

(2.36)

whi
h shows that H is a fun
tion of p and q only. Here Æp is to be regarded

as linear 
ombination of Æq and Æ _q so that Æq; Æp are tangent to �

p

. H is

only de�ned on �

p

sin
e we used the 
onstraints. We would like to extend

the formalism to the whole phase spa
e �.

The equation (2.36) 
an be rewritten as

(

�H

�q

i

+

�L

�q

i

)Æq

i

+ (

�H

�p

i

� _q

i

)Æp

i

= 0 (2.37)

with variations tangent to �

p

. H may be the restri
tion to the hyper-surfa
e

�

p

of a fun
tion

~

H de�ned all over phase spa
e. Then (2.37) holds with H

repla
ed by

~

H. Applying theorem 2 we 
on
lude that
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_q

i

�

�

~

H

�p

i

+ u

m

��

m

�p

i

, �

�L

�q

i

�

�

~

H

�q

i

+ u

m

��

m

�q

i

:

(2.38)

The �rst set of relations enables us to re
over the velo
ities from the (q; p) 2

�

p

and the parameters u

m

. Be
ause of the regularity 
onditions on the


onstraints two di�erent u yield di�erent _q and the �rst relation permits

us to express u as fun
tion of q and _q. This way one obtains an invertible

Legendre transformation from the 2N -dimensional velo
ity phase spa
e to

the 2N dimensional spa
e �

p

� fu

m

g:

p

i

=

�L

� _q

i

(q; _q) and u

m

= u

m

(q; _q) (2.39)

with inverse transformation

_q

i

=

�

~

H

�p

i

+ u

m

��

m

�p

i

and �

m

(q; p) = 0: (2.40)

We had to extend the Hamiltonian, whi
h was originally de�ned only on �

p

,

to a neighborhood of �

p

. A

ording to theorem 1 two possible extensions

di�er by a term 


m

�

m

. Thus the formalism should be un
hanged by the

repla
ement

~

H �!

~

H + 


m

(q; p)�

m

: (2.41)

Indeed, making this transformation in (2.38) just shifts the u to u+ 
.

Finally, the relations (2.38) allow us to rewrite the equation of motion

(2.2) in the equivalent Hamiltonian form

_q

i

�

�H

�p

i

+ u

m

��

m

�p

i

and _p

i

� �

�H

�q

i

� u

m

��

m

�q

i

; (2.42)

where we dropped the tilde atop H. The Lagrangian equations of motion

(2.2) are equivalent to (2.42). The phase spa
e fun
tion

H

p

� H + u

m

�

m

(2.43)

is the primary Hamiltonian.

Introdu
ing the Poisson bra
ket of two phase spa
e fun
tions

fF;Gg �

�F

�q

i

�G

�p

i

�

�F

�p

i

�G

�q

i

resp.

fF;Gg �

Z

dx

�

ÆF

Æ'

a

(~x)

ÆG

Æ�

a

(~x)

�

ÆF

Æ�

a

(~x)

ÆG

Æ'

a

(~x)

�

(2.44)

and using u

m

r

x

�

m

� r

x

(u

m

�

m

), the Hamiltonian equations of motion 
an

be rewritten as
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_q

i

� fq

i

;H

p

g � fq

i

;Hg+ fq

i

; �

m

gu

m

_p

i

� fp

i

;H

p

g � fp

i

;Hg+ fp

i

; �

m

gu

m

:

(2.45)

Besides there are still the equations de�ning �

p

:

�

m

(q; p) = 0: (2.46)

For an any phase-spa
e fun
tion F (q; p) the time evolution follows then from

_

F � fF;H

p

g � fF;Hg + u

m

fF; �

m

g: (2.47)

2.2.2 Dira
-Bergman algorithm

The 
onstraints must be 
onsistent with the time evolution, that is if initially

(q; p) is on �

p

it should remain there at later times. This means that the

equations of motion should preserve the 
onstraints and this gives rise to

the 
onsisten
y 
onditions [18, 3℄

_

�

m

� f�

m

;Hg+ f�

m

; �

n

gu

n

� h

m

+ C

mn

u

n

� 0: (2.48)

For non-admissible Lagrangians these relations will be in
onsistent. As an

example take L= _q�q whi
h leads to H=q and �=p�1 so that (2.48) reads

1 � 0. For su
h in
onsistent models the a
tion has no stationary points and

we shall ex
lude them.

To dis
uss the 
onsisten
y relations (2.48) we distinguish the two follow-

ing 
ases:

� detC �= 0:

In this 
ase u is uniquely �xed by (2.48) to be u

n

� C

nm

h

m

, where

C

nm

is the inverse of C

nm

. The time evolution (2.47) of a phase spa
e

fun
tion be
omes

_

F � fF;Hg � fF; �

m

gC

mn

f�

n

;Hg: (2.49)

No additional 
onditions appear. For any initial data (q; p) on �

p

the

time evolution stemming from (2.49) is unambiguous and stays on �

p

.

� detC � 0:

In this 
ase u is not �xed and (2.48) is only solvable if h

m

w

m

a

� 0 for

all left null-eigenve
tors w

a

of C. Either these equations are ful�lled

or they lead to a 
ertain number K

1

of new 
onstraints

�

k

� 0 , k =M + 1; : : : ;M +K

1

� J

1

;
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alled se
ondary 
onstraints. The primary and se
ondary 
onstraints

�

j

� 0; j = 1; : : : ; J

1

de�ne a hyper-surfa
e �

1

� �

p

.

Now one has to 
he
k 
onsisten
y for the primary and newly generated

se
ondary 
onstraints on �

1

,

_

�

j

= f�

j

;Hg+ f�

j

; �

n

gu

n

� h

j

+C

jn

u

n

= 0 on �

1

with the re
tangular J

1

�M matrix C. The left null-eigenve
tors w

j

a

of

C

jn

imply further 
onditions w

j

a

h

j

=0 on �

1

and may lead to further,

so-
alled tertiary 
onstraints whi
h, together with the primary and

se
ondary 
onstraints, de�ne a hyper-surfa
e �

2

� �

1

, et
.

This pro
edure terminates after a �nite number of iterations and the follow-

ing situation is rea
hed: There is a hyper-surfa
e �




� � de�ned by

�

j

� 0 , j = 1; : : : ;M +K � J: (2.50)

For every left null-eigenve
tor w

j

a

of the re
tangular matrix C

jm

= f�

j

; �

m

g

the 
onditions w

j

a

f�

j

;Hg � 0 are ful�lled. For the multiplier �elds there

are the equations

f�

j

;Hg+ f�

j

; �

m

gu

m

� 0; (2.51)

where � now means equality on �




. We note that the primary 
onstraints

are merely 
onsequen
es of the de�nition of the momenta, whereas we used

the equations of motion to arrive at the se
ondary 
onstraints

4

.

We make the same regularity assumptions on the full set of 
onstraints

�

j

de�ning �




as we made on the primary 
onstraints �

m

de�ning �

p

. Also,

we assume that the rank of C is 
onstant on �




.

2.3 First and se
ond 
lass 
onstraints

The distin
tion between primary and se
ondary 
onstraints will be of minor

importan
e in the �nal form of the Hamiltonian theory. A di�erent 
lassi-

�
ation of 
onstraints, namely into �rst and se
ond 
lass [19℄, will play a


entral part. Let v

a

be a basis of the kernel of C,

f�

j

; �

m

g v

m

a

� 0 , a = 1; : : : ;dim KerC =M � rankC: (2.52)

The general solution for the multipliers u in (2.51) has then the form

u = ~u+ �

a

v

a

; (2.53)

where ~u is a parti
ular solution. We have separated the part of u that

remains undetermined by the 
onsisten
y 
onditions. This part 
ontains

M�rankC free fun
tions �

a

.

4

in the sequel I 
all all non-primary 
onstraints se
ondary
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The 
ombinations of primary 
onstraints

�

a

= v

m

a

�

m

(2.54)

weakly 
ommute with all other 
onstraints,

f�

a

; �

j

g � 0 , j = 1; : : : ; J: (2.55)

Moreover, sin
e the v

a

form a basis of KerC, the �

a

are a 
omplete set of

primary 
onstraints with this property. This leads to the 
on
ept of �rst


lass fun
tions and in parti
ular �rst 
lass 
onstraints (FCC). A fun
tion

F (q; p) is said to be �rst 
lass if its Poisson bra
ket with all 
onstraints

vanish weakly (on �




),

fF; �

j

g � 0 , j = 1; : : : ; J: (2.56)

The set of �rst 
lass fun
tions is 
losed under Poisson bra
ket [19℄. This is

proved as follows: if F;G are �rst 
lass, then a

ording to theorem 1

fF; �g = �

0

, fG;�g = �

00

for any 
onstraint �, where �

0

; �

00

are some linear 
ombinations of the 
on-

straints. Using the Ja
obi identity we have

ffF;Gg; �g = fF; fG;�gg � fG; fF; �gg = fF; �

00

g � fG;�

0

g � 0:

In parti
ular the 
onstraints �

a

are a 
omplete set of �rst 
lass primary


onstraints (modulo squares of se
ond 
lass 
onstraints). Also, as a result

of the Dira
-Bergman algorithm H

p

is �rst 
lass.

A fun
tion that is not �rst 
lass is 
alled se
ond 
lass. I use a notation

adapted to this new 
lassi�
ation. All primary and se
ondary FCC are

denoted by 


a

. The remaining 
onstraints are 
alled se
ond 
lass 
onstraints

(SCC) and I denote them by �

�

.

The �rst property we need is that the matrix of SCC

�

��

= f�

�

; �

�

g is non-singular. (2.57)

Indeed, if it was singular, then there would exist a null ve
tor r

�

�

��

�

fr

�

�

�

; �

�

g � 0. Sin
e r

�

�

�

also 
ommutes weakly with the FCC (by their

�rst 
lass property) it would weakly 
ommute with all 
onstraints and would

be �rst 
lass whi
h 
ontradi
ts our assumption. For 
ounting degrees of

freedom it is important to note that the number of SCC must be even.

Otherwise the antisymmetri
 � would be singular.

Now 
onsider the 
onsisten
y 
onditions (2.51). They are identi
ally

ful�lled for the 


a

. For the SCC we have

f�

�

;Hg+�

��

u

�

� 0; (2.58)
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where u

�

=0 if �

�

is a se
ondary SCC. Solving for the multipliers we obtain

�

��

f�

�

;Hg =

n

u

�

; �

�

primary

0; �

�

se
ondary ;

(2.59)

where �

��

�

�


= Æ

�




. Thus all multipliers belonging to the primary SCC

are determined by the 
onsisten
y 
onditions and we remain with the un-

dermined multipliers �

a

in (2.53). We have the important result that the

number of undetermined multipliers is equal to the number of independent

primary FCC.

Inserting that into the equations of motion (2.47) we end up with

_

F � fF;Hg + fF; �

a

g�

a

� fF; �

�

g�

��

f�

�

;Hg; (2.60)

where the �

a

are the primary FCC. One 
an easily 
he
k that all 
onstraints

are preserved in time.

2.3.1 Se
ond 
lass 
onstraints and Dira
 bra
ket

For purely SC systems no multipliers remain in the time evolution (2.60)

and there is no ambiguity in the dynami
s. The term in (2.60) 
ontaining

the inverse of � for
es the system to stay on �




. This surfa
e is the redu
ed

phase spa
e for SC systems.

Motivated by (2.60) one introdu
es the Dira
 bra
ket [18℄ for two phase

spa
e fun
tion as

fF;Gg

�

� fF;Gg � fF; �

�

g�

��

f�

�

; Gg; (2.61)

in terms of whi
h

_

F � fF;Hg

�

(2.62)

for SC systems. This bra
ket possess the same properties as the Poisson

bra
ket, i.e. they are antisymmetri
, bilinear and obey the Ja
obi identity

and produ
t rule. In addition we have

fF; �

�

g

�

= 0 ; fF;Gg

�

� fF;Gg ; fF; fG;Kg

�

g

�

� fF; fG;Kgg (2.63)

for arbitrary F and �rst 
lass G;K. These properties follow easily from the

de�nition (2.61) and the property that �rst 
lass fun
tions have vanishing

Poisson bra
ket with all 
onstraints, e.g.

fF; �

�

g

�

= fF; �

�

g � fF; �

�

g�

�


f�




; �

�

g = 0: (2.64)

Let us draw an immediate 
onsequen
e of (2.64). A

ording to theorem 1

any fun
tion 
an be repla
ed by its restri
tion to �




, up to a linear 
ombi-

nation of the 
onstraints. Thus when 
al
ulating the Dira
 bra
ket (2.61)
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between two fun
tions we may repla
e them by their restri
tion to �




sin
e

the other bra
kets vanish on a

ount of (2.64). It follows that the SCC 
an

be set equal to zero either before or after evaluating the Dira
 bra
ket.

To understand the geometri
 meaning of SCC we re
all some fa
ts from

symple
ti
 geometry [4℄:

In most 
ases the phase spa
e � is the 
otangental bundle T

�

Q over

the 
on�guration spa
e Q and hen
e is equipped with a natural symple
ti


stru
ture (a non-degenerate 
losed two-form)

! = !

��

dx

�

^ dx

�

(2.65)

whi
h, a

ording to Darboux, 
an lo
ally be written as ! = dq

i

^dp

i

: Given

!, we 
an assign to a fun
tions F its 
orresponding Hamiltonian ve
tor �eld

X

F

by

i

X

F

! = dF; (2.66)

where i

X

and d are the interior and exterior derivatives, respe
tively. In

lo
al 
oordinates we �nd

i

X

F

!(Y ) = !(X

F

; Y ) = !

��

X

�

F

Y

�

and dF (Y ) = �

�

F Y

�

(2.67)

for any ve
tor �eld Y , so that

X

�

F

= �!

��

�

�

F; where !

��

!

��

= Æ

�

�

: (2.68)

The Poisson bra
ket of two fun
tions is

fF;Gg = ��

�

F!

��

�

�

G = !

��

!

��

�

�

F!

��

�

�

G = !(X

F

;X

G

): (2.69)

In parti
ular, the 
hange of F under the Hamiltonian 
ow generated by G


an be written as

F

0

� fF;Gg = !(X

F

;X

G

) = i

X

F

!(X

G

) = dF (X

G

) = X

�

G

�

�

F: (2.70)

In other words, the 
ows generated by G are just the motions along the

Hamiltonian ve
tor �eldX

G

. For G=H these are the Hamiltonian equations

of motion.

Finally there is an important relation between the Poisson and Lie

bra
ket,

[X

F

;X

G

℄ = �X

fF;Gg

; where [X;Y ℄

�

= X

�

�

�

Y

�

� Y

�

�

�

Y

�

(2.71)

are the Lie bra
ket. This relation follows from the Ja
obi identity.

Let us now return to the SC systems. The in
lusion map j : �




�! �

indu
es a two-form on �




, namely the pull ba
k of the symple
ti
 form !

on �, !




= j

�

!. !




is 
losed sin
e ! has this property, but it may be

degenerate. In this 
ase it is 
alled pre-symple
ti
. However, for SCC it is

indeed symple
ti
, as follows from
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Theorem 3 The �

�

are se
ond 
lass if and only if !




= j

�

! is non-

degenerate.

A
tually, we shall see that the Dira
 bra
ket belongs to !




. Most properties

of the Dira
 bra
ket, and in parti
ular the Ja
obi identity follow then at

on
e from the 
orresponding properties of !.

To prove this theorem we must show that ! is non-degenerate on the

ve
tors tangent to �




. A ve
tor �eld Y is tangent to �




if Y

�

�

�

�

�

vanishes

for all 
onstraints �

�

. With (2.70) this is equivalent to

!(X

�

; Y ) � 0 for all X

�

� X

�

�

: (2.72)

On the other hand, from (2.69) follows that

!(X

�

;X

�

) = f�

�

; �

�

g � �

��

�= 0 (2.73)

so that the Hamiltonian ve
tor �elds of the 
onstraints are not tangent. Let

us now determine the ve
tors X whi
h obey

!(X;Y ) � 0 for all tangent Y: (2.74)

Sin
e ! is non-degenerate (2.74) 
an have dim�-dim�




independent solutions

X. But be
ause of our regularity 
onditions on the 
onstraints the dim�-

dim�




Hamiltonian ve
tor �elds X

�

, whi
h are not tangent, are independent

solutions. Thus anyX whi
h obeys (2.74) is a 
ombination of the X

�

. Hen
e

there 
annot be a tangent X obeying (2.74) and this proves that j

�

! is non-

degenerate.

Note that we used the SC nature of the 
onstraints and in parti
ular

that the 
ows generated by the SCC lead o� the 
onstraint surfa
e.

Now it is easy to prove that the Dira
 bra
ket furnishes an expli
it

representation for the indu
ed Poisson bra
ket. For that 
onsider

fF;Gg

�

= !(X

F

;X

G

)� !(X

F

;X

�

)�

��

!(X

�

;X

G

) � !

�

(X

F

;X

G

): (2.75)

It is easy to see, that !

�

(X

F

+X

�

;X

G

)=!

�

(X

F

;X

G

) for any Hamiltonian

ve
tor �eld belonging to the 
onstraints. Thus !

�

depends only on the

tangent 
omponents of X

F

;X

G

. But for tangent X

F

we have !(X

F

;X

�

) � 0

(see (2.72)) and !

�


an be repla
ed by ! without 
hanging the value of (2.75).

This proves that !

�

is just the pull-ba
k of !.

2.3.2 First 
lass 
onstraints and gauge transformations

Purely FC systems are relevant sin
e gauge theories are of this type. Gauge

related point should be identi�ed and this leads to the problem of gauge

invariant fun
tions and/or the gauge �xing problem. The FCC together
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with a 
omplete set of gauge �xing 
onditions form then a SC system. Hen
e

for FC systems the gauge �xing de�ne a subset �

r

2 �




and this set is the

redu
ed phase spa
e.

For purely FC systems the time evolution is governed by

_

F � fF;Hg+ fF; �

a

g�

a

; (2.76)

with primary FCC �

a

. For the same initial 
onditions we get di�erent evolu-

tions, depending on the multipliers �

a

. The presen
e of arbitrary fun
tions

�

a

in the primary Hamiltonian tells us that not all x=(q; p) are observable,

i.e. there are several x representing a given physi
al state. Assume that the

initial value x(0) is given and represents a 
ertain state. Then the equation

of motion should fully determine the physi
al state at later times. So if

x

0

(t) 6= x(t) stem from the same physi
al state x(0) then they should be

identi�ed.

Consider two in�nitesimal time evolutions of F = F (0) given by H

p

with

di�erent values of the multipliers,

F

i

(t) = tfF;Hg+ tfF; �

a

g�

a

i

; i=1,2 : (2.77)

The di�eren
e F

2

(t)�F

1

(t) between the values is then

Æ

�

F = fF; �

a

�

a

g; , � = t(�

2

� �

1

): (2.78)

Sin
e su
h a transformation does not alter the the physi
al state at time t

it is a gauge transformation [19℄. Now we 
al
ulate

[Æ

�

; Æ

�

℄F = ff�

a

�

a

; �

b

�

b

g; Fg (2.79)

and 
on
lude that the 
ommutator of any two primary FCC also generate

gauge transformations. Also, performing a gauge transformation at t = 0

with multipliers � and then time evolve with multipliers � should lead to

the same state as doing these transformations in the reverse order. We �nd

[Æ

t;�

; Æ

�

℄F = tf _�

a

�

a

� f�

a

�

a

;Hg+ f�

a

�

a

; �

b

�

b

g; Fg (2.80)

and 
on
lude that the 
ommutators f�

a

;Hg also generate gauge transfor-

mations.

We have seen that the �rst 
lass fun
tions are 
losed with respe
t to the

Poisson bra
ket and thus the f�

a

; �

b

g and f�

a

;Hg are linear 
ombinations

of the FCC. However, in general there will appear se
ondary FCC in these


ombinations. Also, if we 
ompared the higher order terms in the time evo-

lutions (2.77) we would �nd that time derivatives of f�

a

;H

p

g generate gauge

transformations. This way se
ondary FCC show up as gauge transforma-

tions in all relevant systems and this lead Dira
 to 
onje
ture that all FCC
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a

generate gauge transformations. We shall assume this 
onje
ture to hold

in what follows although there are some exoti
 
ounterexamples [2, 15℄.

Note, however, that if the stru
ture 
onstants in

f


a

; 


b

g = t




ab







(2.81)

depend on the 
anoni
al variables, then [Æ

�

; Æ

�

℄F is a gauge transformation

only on the 
onstraint surfa
e. Also, above we made the hidden assumption

that time (or the spa
e-time 
oordinates in �eld theory) is not transformed.

Else we would have to take F + Æ

�

F at the transformed time t + Æ

�

t be-

fore 
al
ulating the se
ond variation Æ

�

. We 
ome ba
k to this point when

dis
ussing generally 
ovariant theories.

We 
on
lude that the most general physi
ally permissible motion should

allow for an arbitrary gauge transformation to be performed during the time

evolution. But H

p


ontains only the primary FCC. We thus have to add to

H

p

the se
ondary FCC multiplied by arbitrary fun
tions. This led Dira
 to

introdu
e the extended Hamiltonian

H

p

�! H

e

= H +N

a




a

(2.82)

whi
h 
ontains all FCC [19℄. H

e

a

ounts for all the gauge freedom.

Clearly, H

p

andH

e

should imply the same time evolution for the 
lassi
al

observables. Observables are gauge invariant fun
tions on �




, that is phase

spa
e fun
tions that weakly 
ommute with the gauge generators,

F observable () fF; 


a

g � 0 for all FCC 


a

: (2.83)

Sin
e H

e

�H

p

is a 
ombination of the se
ondary FCC, we have

_

F � fF;H

p

g � fF;H

e

g (2.84)

for any observable F , as required. In the extended formalism one makes

no distin
tion between primary and se
ondary FCC sin
e they are treated

symmetri
ally. The introdu
tion of H

e

is a new feature of the Hamiltonian

s
heme. It does not follow from the Lagrangian formalism.

At this point the following remark is in order. The number of time de-

pendent fun
tions whi
h enter the Lagrangian o� mass-shell gauge transfor-

mation is equals to the number of Lagrangian 
onstraints and hen
e equals

to the number of primary 
onstraints. Hen
e, if there are se
ondary FCC

it 
annot be that any 
onstraint G = N

a

(t)


a

generate o� mass-shell trans-

formations. Indeed, when dis
ussing the 
onsisten
y 
onditions we assumed

that the primary 
onstraints must be 
onserved only for on mass-shell tra-

je
tories. Hen
e for arbitrary o� mass-shell variations the se
ondary 
on-

straints do not guarantee that the primary 
onstraints are respe
ted. We


ome ba
k to this important point in 
hapter 4.
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Let us now investigate the geometri
 meaning of FC systems. As a

preparation we show:

The indu
ed 2-form j

�

! has rank � N � 2M , where M is the number of

independent �rst or se
ond 
lass 
onstraints.

Let us assume that the tangent ve
tors X

p

; p=1; : : : ; P form a basis for the

null-eigenve
tors of j

�

!, i.e. j

�

!(X

p

; Y ) =!(X

p

; Y ) = 0 for all tangent Y .

Let us now see how big P 
an be. For that we 
onsider

a

p

!(X

p

; Z

q

) = 0; where the Z

q

; q = 1; : : : ;M

together with the tangent ve
tors form a basis of T� at the point under


onsideration. These are M equations for P unknown. So, if P � M then

there would always exist a solution X=a

p

X

p

with !(X;Z

q

) = 0 for all Z

q

.

Being also a null-eigenve
tor of j

�

! we would 
on
lude that !(X;Z)=0 for

all ve
tors Z 2 T� or that ! is degenerate. This then proves the statement

above. Now we have the following

Theorem 4 For a FC system the indu
ed two-form j

�

! is maximally de-

generate. The kernel is spanned by the Hamiltonian ve
tor �elds belonging

to the FCC.

First, if X

�

�

�




b

� 0 for all 
onstraints, then X is tangent. But sin
e

X

�

a

�

�




a

� f


a

; 


b

g � 0, all Hamiltonian ve
tor �elds belonging to the 
on-

straints are tangent. Se
ond, for an arbitrary tangent ve
tor X we have

!(X

a

;X) = i

X

a

(X) = �

�

�

a

X

�

� 0. Thus the M X

a

's are null-eigenve
tors

of the indu
ed two-form and the rank of j

�

! equals 2N �2M , i.e. it is

maximally degenerate.

Thus we have the following situation: The M FCC generate 
ows whi
h

stay on the 
onstraint surfa
e and whi
h we identi�ed with gauge transfor-

mations. The Hamiltonian ve
tor �elds belonging to the 
onstraints are the

null-dire
tions of the indu
ed pre-symple
ti
 2-form. That these null-ve
tor

�elds generate gauge orbits follows from

Theorem 5 On �




the ve
tors X

a

generate M -dimensional manifolds.

The proof uses the Frobenius integrability 
ondition, whi
h says that M

linearly independent ve
tor �elds are integrable (through ea
h point in �




there is a surfa
e, the gauge orbit, to whi
h the X

a

are tangent) i� all Lie

bra
kets [X

a

;X

b

℄ are linear 
ombinations of (X

1

; : : : ;X

M

). Indeed,

[X

a

;X

b

℄ = �X

f


a

;


b

g

= �t




ab

X




+ 





!

��

�

�

t




ab

� �t




ab

X




; (2.85)

where we used (2.81). Note that for (q; p)-dependent stru
ture 
onstant (as

in gravity) the null ve
tor �elds are integrable only on the 
onstraint surfa
e.
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In a next step one wants to eliminate the gauge degrees of freedom that

is identify points on the same gauge orbit. This 
an in prin
iple be a
hieved

by introdu
ing gauge invariant variables, e.g. the transverse potential or

holonomies in ele
trodynami
s, or alternatively by �xing the gauge. A gauge

�xing must obey two 
onditions: �rst it must be attainable and se
ond it

should �x the gauge uniquely

5

. We 
an �x the gauge by imposing the

independent 
onditions

F

a

(q; p) = 0; a=1,. . . ,M. (2.86)

The surfa
e de�ned by these 
onditions should interse
t every gauge orbit

in exa
tly one point. A ne
essary 
ondition is that at least one gauge �xing

fun
tion F

b

should 
hange in the dire
tion of all null-ve
tors X

a

. In other

words, there is at least one F

b

so that

�

a

(X

a

;rF

b

) = �

a

f


a

; F

b

g 6= 0 (2.87)

for all �. This implies that

detf


a

; F

b

g � det F

ab

6= 0: (2.88)

In parti
ular, if we 
ould 
hoose gauge �xings 
anoni
ally 
onjugated to the


onstraints, f


a

; F

b

g = Æ

ab

, then the gauge orbits would interse
t the gauge

�xing surfa
es orthogonal and in this 
ase detF

ab

= 1. The determinant of

F plays an important part in the quantization of gauge systems and is the

well-known Faddeev-Popov determinant [21℄.

Be
ause of (2.88) the FCC together with the gauge �xings form a SC

system and we 
an take over the result from the previous subse
tion. The

redu
ed phase spa
e �

r


onsists of the points ful�lling the 
onstraints and

gauge �xings. Colle
ting the 


a

and F

a

into one ve
tor, 


p

; p = 1; : : : ; 2M ,

we �nd for the Hamiltonian equation of motion for any phase spa
e fun
tion

_

F = fF;Hg � fF;


p

gG

pq

f


q

;Hg: (2.89)

Mixed se
ond and �rst 
lass 
onstraints Before gauge �xing the evo-

lution is governed by the �rst 
lass partner of the extended Hamiltonian

H

�

e

= H + 


a

N

a

� �

�

�

��

f�

�

;Hg (2.90)

sin
e we have

_

F = fF;H

�

e

g = fF;Hg+ fF; 


a

gN

a

� fF; �

�

g�

��

f�

�

;Hg: (2.91)

5

There may be obstru
tions to ful�lling these requirements as has been demonstrated

by Gribov and Singer [28, 44℄.
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For a dis
ussion of the starred variables see [12℄. After gauge �xing one


an again introdu
e starred variables with respe
t to the SC system  

I

=

(�

�

; 


a

; F

b

). Denoting the Poisson bra
kets matrix of all these 
onstraints

 

I

by

~

�, we have

_

F = fF;H

�

g; where H

�

= H +  

I

~

�

IJ

f 

J

;Hg: (2.92)

2.4 First order a
tion prin
iples

The solutions to the primary Hamiltonian equations of motion (2.45, 2.46)

extremize the primary (or total) �rst order a
tion,

ÆS

p

= Æ

t

2

Z

t

1

�

_q

i

p

i

�H �

X

primary

u

m

�

m

�

dt = 0 (2.93)

with respe
t to variations Æq; Æp; Æu subje
t only to the restri
tion Æq(t

1

)=

Æq(t

2

) = 0. The variables u

m

whi
h have been introdu
ed to make the

Legendre transformation invertible appear now as Lagrange multipliers en-

for
ing the primary 
onstraints. It is 
lear that the theory is invariant under

H ! 


m

�

m

sin
e su
h a 
hange 
an be absorbed into the Lagrange multi-

pliers.

The variational prin
iple (2.93) is equivalent to

Æ

Z

�

_q

i

p

i

�H

�

dt = 0 subje
t to �

m

= Æ�

m

= 0: (2.94)

There is yet another variational prin
iple whi
h for gauge invariant observ-

ables leads to the same time evolution, namely the extended a
tion prin
iple.

The equations of motion for the extended formalism follow from

ÆS

e

= Æ

Z

�

_q

i

p

i

�H �

X

all 
onstr:

u

j

�

j

�

dt = 0; (2.95)

where the sum extends over all 
onstraints.

Take the 
ase of purely SCC and let y

i

! x

�

(y

p

) be the embedding of

�

r

� �. The Lagrange multiplier method guarantees that the implementa-

tion of the 
onstraints �

�

, either dire
tly or via the Lagrange multipliers,

are equivalent. Now let us solve the 
onstraint dire
tly in (2.95). Re
all

that a symple
ti
 2-form 
an lo
ally be written as ! = d�. The pull-ba
k of

the one-form potential � is

j

�

(�) = j

�

(p

i

dq

i

) � j

�

(a

�

dx

�

) = a

�

(x(y))

�x

�

�y

p

dy

p

: (2.96)
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Inserting this into the extended a
tion one �nds

S

e

[y℄ =

Z

f� �H(x(y))dtg =

Z

(a

p

_y

p

� h)dt: (2.97)

The 
orresponding variational prin
iple yield then the equation of motion

for SC systems:

ÆS

e

[y℄ = 0() _y

p

= fy

p

; h(y)g

�

: (2.98)

This 
an be 
he
ked dire
tly by using

j

�

! = j

�

d� = d j

�

� = d a

p

(y)dy

p

: (2.99)

The fa
t that (2.95) yields (2.97) is of pra
ti
al use when 
al
ulating Dira


bra
ket. One solves for the 
onstraints inside the a
tion and from the new

kineti
 term one reads o� the indu
ed potential form on �




. From (2.99)

one 
omputes the indu
ed symple
ti
 form and thus the Dira
 bra
ket.

For FC systems it is also legitimate to solve the FCC inside the a
tion

S

e

=

Z

�

q

i

p

i

�H �N

a




a

�

dt: (2.100)

However, sin
e the indu
ed 2 form is degenerate the equations of motion

on �




are not 
anoni
al. To get Hamiltonian equations one needs to go to

�

r

by imposing additional gauge 
onditions. Then one may write down the


orresponding a
tion for the SC system as dis
ussed above.

2.5 Abelian Chern-Simons Theory with Sour
es

To see how the general formalism works in an expli
it example I 
onsider

the Abelian Chern-Simons model [29, 41, 32, 24℄. This is a �eld theory

for a gauge potential A

a

in 3 spa
e-time dimensions with 
oordinates x=

(x

0

; x

1

; x

2

) � (t; ~x) with �rst order Lagrangian density

L =

�

4

A

a

�

ab


F


b

+A

a

J

a

; where

F

ab

= �

a

A

b

� �

b

A

a

, �

a

J

a

= 0:

(2.101)

Indi
es are lowered with the metri
 �

ab

= diag(1;�1;�1) and �

ab


is the Levi-

Civita symbol, �

012

=1. We en
lose the system in a �nite box [0; L℄� [0; L℄.

The quantum theory is sensitive to the value of the 
oupling 
onstant �. For

rational 2�� and vanishing external 
urrent J the Hilbert spa
e be
omes

�nite-dimensional [41℄.

For arbitrary periodi
 
urrents the a
tion is invariant under U(1)-gauge

transformations

A

a

! A

a

+ �

a

� , S ! S +

I

n

a

(

�

4

��

ab


F


b

+ �J

a

) (2.102)

provided � vanishes at the initial and �nal times and �; F

01

; F

02

are periodi


in x

1

; x

2

with period L. So we shall assume that � and F

ab

are both periodi
.
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2.5.1 Dira
 theory for U(1)-Chern-Simons theory

Sin
e L is linear in the �rst derivatives the Hessian vanishes identi
ally and

the model is singular. Thus we expe
t 3 independent primary 
onstraints

(per spa
e point). More expli
itly, the 
anoni
al momentum densities are

�

a

(~x) =

ÆL

Æ

_

A

a

(~x)

=

�

2

A

b

(~x)�

ba0

(2.103)

and immediately lead to the primary 
onstraints

f�

m

g = f�

0

; �

1

+

�

2

A

2

; �

2

�

�

2

A

1

g , m = 1; 2; 3: (2.104)

The 
anoni
al Hamiltonian be
omes

H =

Z

d

2

x

�

�

a

(~x)

_

A

a

(~x)�L

�

=

Z

d

2

xH

= �

Z

d

2

x

�

�

2

A

a

�

abi

�

i

A

b

+A

a

J

a

�

, i = 1; 2:

(2.105)

and the time evolution is determined by (2.47) with primary Hamiltonian

H

p

=

Z

d

2

xH

p

, H

p

= H+ u

m

�

m

; (2.106)

and fundamental Poisson bra
ket

fA

a

(~x); �

b

(~y)g = Æ

a

b

Æ(~x � ~y): (2.107)

Let us now see whether se
ondary 
onstraints arise from the 
onsisten
y


onditions

_

�

m

� 0. One 
omputes

_

�

1

(~x) =

Z

d

2

y f�

0

(~x);H

p

(~y)g

= �

Z

d

2

y f�

0

(~x); �A

0

(~y)�

0ji

�

i

A

j

(~y) + J

0

(~y)A

0

(~y)g

=

Z

d

2

y

�

��

0ji

�

i

A

j

(~y) + J

0

(~y)

�

Æ(~x � ~y)

= �

0ji

��

i

A

j

(~x) + J

0

(~x)

leading to the se
ondary 
onstraint

�

4

(~x) = �F

12

� J

0

(~x): (2.108)

There is a qui
ker way to arrive at this 
on
lusion, sin
e

_

�

1

= ��H

p

=�A

0

.

The time derivative of the other two primary 
onstraints are
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_

�

2

(~x) = �(u

3

� �

2

A

0

(~x)) + J

1

(~x)

_

�

3

(~x) = �(� u

2

+ �

1

A

0

(~x)) + J

2

(~x)

(2.109)

and putting them weakly to zero �xes the multipliers u

2

; u

3

. Finally, we

must have

_

�

4

(~x) = ��

2

u

2

(~x)� ��

1

u

3

(~x) + �

0

J

0

(~x) � 0: (2.110)

Inserting u

2

; u

3

from (2.109) this be
omes �

a

j

a

= 0 and yields no further


ondition. Thus the Dira
-Bergman algorithm leads to 3 primary and 1

se
ondary 
onstraint.

Obviously �

1

� 


1

is �rst 
lass. Also the 
ombination




2

= �

1

�

2

+ �

2

�

3

+ �

4

= �

i

�

i

+

�

2

F

12

� J

0

(2.111)

is �rst 
lass and is the analog of the Gauss 
onstraint in ele
trodynami
s.

As SCC we may take

�

1

= �

2

and �

2

= �

3

=) �

��

= �

�

0 1

�1 0

�

Æ(~x � ~y): (2.112)

� has inverse �

�1

=��=� and (2.91) reads

_

F � fF;Hg + fF; 


a

gN

a

+

1

�

Z

d

2

y fF; �

i

(~y)g �

ij

f�

j

(~y);Hg: (2.113)

Sin
e the FCC 
ommute with all 
onstraints they generate transformations

on �




, i.e. if (A; �) is on �




then

Æ

N

A(~x) =

R

d

2

y fA(~x); 


a

(~y)g N

a

(~y)

Æ

N

�(~x) =

R

d

2

y f�(~x); 


a

(~y)g N

a

(~y)

(2.114)

are variations tangent to it. This follows from Æ

N

�

j

=

R

f�

j

; 


a

gN

a

� 0.

Also, sin
e these transformations 
ommute with H

p

, one expe
ts that they

are related to in�nitesimal gauge transformations (2.102). Indeed, de�ning

G =

Z

d

2

y

�

�

0

�(~y)


1

(~y) + �(~y)


2

(~y)

�

(2.115)

one �nds

Æ

�

A

a

(~x) = �

a

�(~x): (2.116)

Only the parti
ular 
ombination (2.115) of the FCC generate the o� mass-

shell gauge transformations (2.102). This parti
ular 
ombination has the

property that

_

G is a 
ombination of the primary FCC 
onstraints only. In


hapter 4 we shall show more generally that for systems with FCC whi
h are

linear in the momenta a 
ombination of FCC generate Lagrangian o� mass-

shell symmetries if its time-derivative is a 
ombination of primary FCC.
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2.5.2 Gauge �xing of Chern-Simons theory

We have seen that the Chern-Simons theory possesses two SCC and two

FCC. Now we supplement those by two gauge �xing 
onditions, namely

F

1

= A

0

and F

2

= �

i

A

i

: (2.117)

Altogether the 
onditions (�

1

; �

2

; 


1

; F

1

; 


2

; F

2

) form a SC system and de�ne

�

r

. The surfa
e de�ned by �

i

; 


1

and F

1


an be parametrized by the spatial


omponents of the gauge potential whi
h 
an be de
omposed as

A

i

= �

ij

�

j

'+ �

i

�+

1

L

q

i

(2.118)

with 
onstant q

i

6

. Imposing further 


2

and F

2

we see that

A

i

= �

1

�

�

ij

�

j

1

4

J

0

+

1

L

q

i

(2.119)

so that �

r

= fq

1

; q

2

g is �nite-dimensional. Furthermore, 


2

= 0 and the

periodi
ity of the A

i

imply that the total 
harge Q=

R

d

2

xJ

0

must vanish.

The inverse Poisson bra
ket 'matrix' reads

(

~

�

IJ

)(x; y) =

1

�

0

B

B

B

B

B

B

B

B

�

0 �1 0 0

1

4

�

2

0

1 0 0 0 �

1

4

�

1

0

0 0 0 � 0 0

0 0 �� 0 0 0

1

4

�

2

�

1

4

�

1

0 0 0 ��

1

4

0 0 0 0 �

1

4

0

1

C

C

C

C

C

C

C

C

A

Æ(x� y)

and one �nds the following Dira
 bra
ket for the 
oordinates on �

r

fq

i

; q

j

g = �Æ

ij

: (2.120)

When 
al
ulating the starred Hamiltonian, one should re
all that for a pe-

riodi
 fun
tion 4

�1

4f = f � V

�1

R

f . After some algebra one �nds

H

�

= �

Z

d

2

x

n

A

0

(�F

12

� J

0

) +

1

�

J

0

1

4

�

ij

�

i

J

j

o

�

1

2

j

i

q

i

�

1

�

�

ij

j

i

p

j

; (2.121)

where we have introdu
ed the mean '
uxes'

j

i

�

1

L

Z

d

2

xJ

i

, q

i

�

1

L

Z

d

2

xA

i

and p

i

�

1

L

Z

d

2

x�

i

: (2.122)

6

The U(1)-bundle over the torus is non-trivial and A must be periodi
 only up to non-

trivial gauge transformations [42℄. For simpli
ity we assume here that A is periodi
 and

hen
e

R

F

12

=0
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After imposing the 
onstraints �

i

; 


2

and F

1

the non-trivial equations of

motion take the simple form

_q

i

= �

1

�

�

ij

j

j

: (2.123)

Of 
ourse, the evolution belonging to H

�

stays on �

r

. Sin
e �

r

is 2-

dimensional the (topologi
al) Chern-Simons theory is e�e
tively a simple

me
hani
al system. This was expe
ted from the beginning sin
e there are 6


onstraints and gauge �xings for 6 degrees of freedom (per ~x).

To see the meaning of this result more 
learly, let us see what the ob-

servables are. As 
oordinates on �




we may take � and q

i

in (2.118), so that

we are 
onsidering fun
tionals F [A

0

; �; q

i

; J

a

℄. Su
h F 
ommute with the

FCC if they are independent of � and A

0

. Hen
e observables have the form

F = F [J

a

; q

i

℄ (2.124)

and depend only on the zero-modes of the A

i

.

Let us �nally remark that for a pure CS theory (J =0) the Lagrangian

density is invariant, up to a total time derivative, under gauge transfor-

mations for whi
h only e

i�

must be periodi
. This introdu
es global gauge

transformations with windings around the handles of the torus (the box with

opposite points identi�ed). Hen
e we must identify gauge potentials whi
h

are related by su
h global gauge transformations

A

i

� A

i

+

2�

L

n

i

or q

i

� q

i

+ 2�n

i

: (2.125)

Gauge invariant fun
tionals must be invariant under su
h transformations.

Thus they depend only on exp(i

P

m

i

q

i

). For pure Chern-Simons theories

we have

e

i

P

m

i

q

i

=W (C;A) = exp

n

i

I

C

A

o

(2.126)

on the 
onstraint surfa
e (F

12

=0) if the loop C winds m

i

-times around the

torus in the dire
tion i. For a 
ontra
tible loop W (C;A) vanishes. Thus,

observables have the form

F (A) = F

�

e

i

H

C

A

�

: (2.127)

Let C;D be 2 loops whi
h windm

i

; n

i

-times around the torus in the dire
tion

i. We parametrize them by x(�); y(s). We 
ompute

I

C

I

D

fA(x(�)); A(y(s))g = �

I

C

I

D

�

ij

_x

i

(�) _y

j

(s)d�ds = �(n

1

m

2

� n

2

m

1

):

Upon deformation of the 
urves the 
ommutator is invariant and therefore is

a topologi
al invariant. This 
an be understood by noting that for J=0 the
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Chern-Simons model (2.101) is invariant under spa
e-time di�eomorphisms.

In parti
ular the spatial ones are generated by

G

diff

=

Z

d

2

x �

i

A

i




2

(2.128)

and hen
e observables must be invariant under spatial di�eomorphisms.

Finally note, that for the pure Chern-Simons theory the phase spa
e

variables q

i

lie in [0; 2�℄, that is �

r

is 
ompa
t and as a 
onsequen
e the

Hilbert spa
e be
omes �nite dimensional.

A
tually there is a qui
ker way to arrive at these results if one inserts

the �elds on the redu
ed phase spa
e (2.119) into the �rst order a
tion. One

easily �nds

S =

Z

dt(

�

2

q

i

�

ij

_q

j

� q

i

j

i

) +

1

�

Z

dtd

2

xJ

0

1

4

�

ij

�

i

J

j

(2.129)

whi
h of 
ourse reprodu
es the 
orre
t equations of motion (2.123).
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