Chapter 2

Hamilton’s Formalism for
Constraint Systems

2.1 Singular Lagrangian systems

The most general mathematical setting for gauge theories is Dirac’s con-
straint formalism '. Here I review this formalism, also to prepare the ground
for the following chapters, and in particular the one on the Hamiltonian re-
duction of WZNW theories.

Attempts to handle constrained systems date back more than forty years.
In his classical works Dirac set up a formalism to treat such systems self-
consistently [18]. Later Bergman et.al. in a series of papers investigated
the connection between constraints and invariances [3, 11, 13]. After the
introduction of Grassmann variables to describe fermions [9], the formalism
has been extended to include fields with half-integer spins [25, 14, 10]. The
development culminated with the advent of the elegant and powerful BRST
formalism [7]. These and other classical results have been a prerequisite for
the quantization of gauge theories both in the path integral formalism [20, 6]
and in the functional Schrodinger picture [47, 33].

There are several excellent reviews on the treatment of constrained sys-
tems of gauge theories besides Dirac well-known lectures [19]. Some focus
more on systems with a finite number of degrees of freedom [45], others on
field theories [30] and some on both [46, 27, 31]. For generally covariant
theories you may consult [26].

We shall be concerned with systems whose dynamics can be derived
from Hamilton’s variational principle. I assume that all Lagrangians depend

'For an alternative approach see [22]
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at most on first derivatives, up to divergence terms 2. Throughout this
work T shall use local coordinates, unless I am forced to address global
questions, e.g. the Gribov problem or the role of topologically nontrivial
field configurations.

With these assumptions the classical trajectories of a system with NV
degrees of freedom make the action

to
S:/L(qi,q'i)dt , i=1,...,N (2.1)
t1

stationary under variations d¢(¢) which vanish at the endpoints. The ¢
and ¢ are local coordinates on the velocity phase space T'QQ. The necessary
conditions for S to be stationary are the Euler-Lagrange equations

d /0L oL
Li=——[— — =0 2.2
=—a(a7) * 55 (22
which can be rewritten as
0’L .. O0’L ., OL N i
= J ¢ + — = -Wij(q,4)¢@ +V; =0. (2.3)

"T oo T agiog T T o

We see that the accelerations at a given time are uniquely determined by
(g,4) at that time only if the Hessian (W;;) can be inverted. Such systems
are called reqular.

For singular systems det W = 0, and the accelerations and hence time
evolution will not be uniquely fixed by (q,q). For such systems different
time evolutions will stem from the same initial conditions.

The rank R of W, which we assume for simplicity to be constant on T'Q),
being R< N implies the existence of M =N — R null-eigenvectors Y,,, of W:

Yi(q,d)Wij(g,4) =0 , m=1,..., M. (2.4)

Contracting the E-L equations (2.3) with the Y,, we get
b, d) =YV, =0 , m=1,...,M. (2.5)
These equations do not contain accelerations. Assume that M’ < M relations
by =0 , m' =1,...,M, (2.6)

are functionally independent on the others, and the remaining ones are either
dependent or identically fulfilled. The independent ones are the so-called
Lagrange constraints.

*For higher derivative theories, and in particular for higher derivative gravity, see [26].
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For field theories the dynamics is described by functions ¢%(x) of space-
time with values in a certain target space. The index a may belong to an
internal symmetry, it may be a spacetime index or both internal and space-
time index as in non-non-Abelian gauge theories. When going from point
mechanics to field theory one may think of replacing the discrete label i by
a continuous one (a, ¥):

qi(t) = Q(tai) — Q(taaaf) = (Pa(taf) = (Pa(x)'

Summations become spatial integrals, e.g.
i — Y [ do @)@
i

and functions of (¢, ¢) become functionals of ¢ and ¢. Also, derivatives with
respect to ¢* or ¢* become functional derivatives, e.g.

oL oL

9 op(3)
The velocity phase space T'Q) is chosen so that the Lagrange-functional L is
continuous and sufficiently often differentiable. If the target space is linear
one may choose a Banach space (typically a Sobolov space), otherwise one
tries to model the theory on a C*-Banach manifold [16, 37] since the implicit
function theorem still applies then. Banach manifolds are modeled over
Banach spaces and are straightforward generalizations of finite-dimensional
manifolds.
A functional on a Banach space X is called continuous if

Tim Flpp] = Flp] for X 5 ¢on — o

F is called Frechet-differentiable at ¢ if there exists a linear functional FL;,
such that

|Flep + d¢] = Fle] — F[o¢]| = o(|| 6 [|)  for all || 6p || 0.

For local theories the Lagrangian has the form

Lip, @] = [ do L(p, 01, 9) 2.7

with a Lagrangian density £ depending only on the field and its derivatives
at the same point. For such theories the Euler-Lagrange equations are

0 6L oL oL oL
L(l = _Eé‘(pa + W — _aﬂa(aﬂ(pa) + 8()00‘ - 07 (28)
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where I adopted the common notation

ﬂﬁﬂz/é&ﬁﬂ@. (2.9)

Rewriting the field equations as

0’L 9L
Ly = — 00" — o O+
N 0up)0(@r") Y T 0@,pM0 MY T Bt (2.10)

= -WH3,0,0" +V, =0

oL

we can see that theories with 20 taken as evolution parameter are regular if
W(?bo is invertible and singular if it is not. For singular systems there exist
(for each ) M =N — R null-vectors

Y (0, 00)Wa (0,09) =0, m=1,....M (2.11)
which lead to nontrivial and independent Lagrangian constraints
b (0, 09) =YV, =0 , m'=1,...,M' <M, (2.12)

involving only the fields and their first derivatives.

How one proceeds for singular systems is neatly explained in [43, 46].
There are two points which have to be considered. Firstly the rank of the
Hessian may decrease if one takes the independent constraints (2.6,12) into
account. This may lead to new independent constraints. Again the rank
may decrease leading to further constraints, etc. This process terminates as
soon as the rank does not change anymore.

Secondly one needs to check whether the constraints one has found after
the above algebraic process has terminated are respected by the time evo-
lution. These may lead to new constraints. Again and again differentiate
newly emerging constraints until no new ones arise. Add those relations
involving accelerations to those already present. Consistency of the old re-
lations with the new ones may lead to further constraints. After all that one
needs again to check whether the rank of the Hessian has changed. If this
is the case one needs to start from the beginning etc.

Generalized Bianchi identities If a theory possesses a local gauge in-
variance we may map solutions into solutions without affecting the initial
conditions. Thus we expect that gauge theories are singular systems. Ac-
tually this follows from the generalized Bianchi identity [50, 48] which we
derive next.

The point transformations
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¥ = 2'(z) ~z+ 0z

(2.13)
o'(z') = (o), r) ~ p(z) + dp
which leave the action invariant
/dda:'ﬁ((p',algol,x') = /ddI L(p, 0p, 1) (2.14)

form a group which we assume to be continuous. For transformations close
to the identity d’z'=d%z(1 + 9,0z"), and the invariance (2.14) implies

0L+ L0,0z" = O\ (2.15)
with some A. Using
oL oL

ot +

0oL =
ol d(0y ")

80y ") + 0, Loz
it follows at once that

oL + ﬁaﬂ&l?# == Bﬂ(ﬁ&v“) + (%(W&pa) + Lag(pa,
w

where the Euler derivatives L, have been defined in (2.8) and
0" = 0" — 0up" 0zt ~ " (z) — " () (2.16)

is the infinitesimal diffierence of the old and the transformed files at the same
point. We used that [0,0,]=0. Thus the gauge invariance implies

oL

o, (LoTH + —————
2 CXD)

5% — M) + Ladp® =0 (2.17)

and these are the generalized Bianchi identities. Nowhere did we use the
equation of motion and thus (2.17) are off-shell identities.

First assume that S is invariant under global transformations forming a
n-dimensional Lie-group. Then

M= € A et = e A, 60" = €, B?, (2.18)

where the €,,a=1,...,n are the constant parameters of the infinitesimal
transformations. Inserting this into (2.17) and going on shell, L, =0, we
conclude

oL

07" =0, where j* =
9(Oup™)

(B — A%, 0% + LA — X (2.19)
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which is Noether’s first theorem. Note that we allowed for general point
transformation so that (2.19) applies to both space-time and internal sym-
metries. However, when deriving (2.19) we imposed the equations of motion
so that the currents are conserved only on-shell.

Let us now assume that the symmetry transformations are local. In that
case the parameters become space-time dependent and (2.18) generalizes to

Sttt = €A™ | Gep® = € B + 0,6, CH, (2.20)

where the €,(z) parametrize the infinitesimal local gauge transformations
and B and C are the so-called descriptors [3], which in general depend on the
fields and their derivatives. T assumed that no second or higher derivatives
of € enter because this covers most interesting examples. With

Sep™ = €a(B™ — 0,0 A) + 0,6,,C (2.21)

the integrated form of (2.17), after a partial integration, reads

0= / €a[La(B® — 00" A®F) — §,(L,CoMY]. (2.22)
Since it must hold for arbitrary functions €, this implies that the expression
between the square brackets must vanish. Inserting L, from (2.10) we end

up with

0 = Lo(B™ — 8,0" A% — §,C°%) — C°9,V,

2.23
—i—Ca‘l“(@MWé’g’p@pB(,(pb + ngauapag¢b). ( )

Since these are off-shell identities we conclude
coaluyyro) — (2.24)

where the brackets around the indices mean symmetrization. In particular,
descriptors C®® which are not identically zero are null-eigenvectors of the
Hessian,

CoOWR =0 (2.25)

and render the system singular. If all C*®" vanish, then (2.23) reduces to
0= (B — 9,0"A) L, = (B — A® oM)W ) = 0. (2.26)

Thus, if C = 0 but the B** — A*?0,¢® are not identically zero, we conclude
again that the system is singular. So we have the important result that
gauge theories are necessarily singular. However, the converse is not true.
Not all conceivable singular systems are gauge theories.
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2.2 Primary and secondary constraints

The departing point for the Hamiltonian formalism is to define the canonical
momenta (densities) by

oL oL
i = =——(q,q) resp. m(¥) = —, 2.97
Pi = 5 (¢,9) resp (Z) 550(7) (2.27)

where we assume that L € C?(TQ). Only if

Op;

Wi; = BY

resp. WY (Z,9) = (2.28)

is invertible, that is for regular systems, can this relation be solved for all
velocities in terms of the phase space variables ®, ¢ = ¢(g,p) resp. ¢ =
¢(p,m). In the other case not all momenta (2.27) are independent, but
there are some relations

¢m(q,p) =0 resp. Pm(p,m) =0 , m=1,...,.M (2.29)

that follow from the definition (2.27) of the momenta. I shall assume that
the constraints (2.29) are independent.

In the following we restrict ourselves to finite dimensional systems and
only comment on the related results for field theories. The corresponding
field theoretical formulas, if they apply, are obtained if one uses deWitt’s
condensed notation [17] in which ¢ becomes a composite index.

The conditions (2.29) are the M = N — R primary constraints. They
define the 2N — M-dimensional primary constraint surface, denoted by I',.
The equations of motions have not been used to derive them and they imply
no restriction on the (g,q). (2.27) maps the 2N-dimensional velocity phase
space T'Q) to the lower-dimensional sub-manifold I';, in the momentum phase
space I'. Hence the inverse images of a given point in I';, form a manifold of
dimension M.

To pass to the Hamiltonian formalism we impose some regularity con-
ditions on the primary constraints. They can be alternatively formulated
as:

1. the independent functions ¢, ,m = 1,..., M can be locally taken as
the first M coordinates of a new, regular, coordinate system in the
vicinity of I'),.

2. The gradients d¢1, ..., d¢ys are locally linearly independent on I'y; i.e.,
dpir A ... ANdpyr #0 on Ty,

3for field theories we assume TQ to be a Banach manifold so that the inverse function
theorem applies
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For example, if ¢ is an admissible constraint, ¢ is not, since d(¢?) =2¢d¢p =0
on I'). If the constraints are regular the following properties hold.

Theorem 1 If a smooth function F(q,p) vanishes on 'y, then F = f™¢,
for some functions f™.

Theorem 2 If \;6q" + p'0p; =0 for arbitrary variations 6q*, dp; tangent to
the constraint surface, then
m OPm

Ai=1U B—ql and =

m OPm
Op;

on T

for some u™

Before proving these two important theorems it is useful to distinguish be-
tween weak and strong equations. A function F'(q,p) defined in the neigh-
borhood of T'), is called weakly zero if

Flr,=0<= F =0 (2.30)
and strongly zero if
OF OF
Flp, =0 and (aqz’ 3 —)|r,—0 <= F ~0. (2.31)

These definitions are useful since the equations of motion contain gradients
of functions on I',. The primary constraint surface can itself be defined by
weak equations. We have

dm =0 but ¢, %0 (2.32)

because of our regularity conditions on the constraints.
Since Vo (f"dm) = f™Vydm, where z = (q,p) denotes the phase space
coordinates, the first theorem implies

Lemmal Fx~0= F — f™¢,, ~0 for some functions f™.

To prove the first theorem we choose the independent constraints ¢,,, as first
coordinates of a regular coordinate system z=(¢, z) in the neighborhood of
I',. Since F(0,7) =0 we have

1 1
#) = [ R, 2)dr = b [ Fon (6, )dr
0 0
and thus )
F=fm, with fm= / Fo (7, &)d7. (2.33)
0
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This proves theorem 1 in the neighborhood U of any point on I',. We cover
the neighborhood of '), by open sets U;, on each of which theorem 1 applies.
Together with the open sets Vi on which ¢, # 0 the U; cover the whole
phase space. On V}, we can set F' = (F/¢)¢r and theorem 1 holds there.
Finally, to guarantee that the f™ are the same on the overlap of U; and Uy
one uses a finite partition of unity.

Theorem 2 follows immediately from the regularity condition which im-
plies that at a given point z on I', a basis of T,T', (the vectors tangent
to I’y at z), together with the gradients V¢, form a basis of T,I'. The
assumption in theorem 2 means that (A, ;) are orthogonal to T,;T',. Thus it
must be a linear combination of the gradients V ¢,,.

For field theories one finds

F[¢,:Z~]z0:>F:/fm¢m , fm(f):/dTMfTF@[ms,:z] (2.34)

and a weakly vanishing functional is a linear combination of smeared con-
straints. The test functions should lie in the space dual to the space of the
constraints [8].

2.2.1 Legendre transformation

The canonical Hamiltonian
H=gpi—L resp. H= /dm 7o (F) (&) — L = /d:z: H o (235

has the remarkable property that ¢ enters H only through the combination
p(q,q). This follows from

. . 0L 0L
SH = iidps + 0i'ps — 0’ o — 047

v 0L
o7 0 oq = q'opi — 0q" (2.36)

gt
which shows that H is a function of p and ¢ only. Here dp is to be regarded
as linear combination of d¢ and d¢ so that dq,dp are tangent to I',,. H is
only defined on I') since we used the constraints. We would like to extend
the formalism to the whole phase space I'.

The equation (2.36) can be rewritten as

(8H+8_L) Z.+(8H
ag o1 op;

—")opi =0 (2.37)

with variations tangent to I'y. H may be the restriction to the hyper-surface
I’y of a function H defined all over phase space. Then (2.37) holds with H
replaced by H. Applying theorem 2 we conclude that
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§' ~ ZH +uma¢m , - B_L ~ 8H +uma¢"?. (2.38)

i Ipi aq' 9q" d¢’
The first set of relations enables us to recover the velocities from the (g, p) €
I', and the parameters u™. Because of the regularity conditions on the
constraints two different v yield different ¢ and the first relation permits
us to express u as function of ¢ and ¢. This way one obtains an invertible
Legendre transformation from the 2N-dimensional velocity phase space to
the 2N dimensional space I'y, x {u™}:

oL

- ™(q,q) (2.39)

Di (¢,¢) and u™ =wu

with inverse transformation

. OH Obrm

~1

q = u
Op; Op;

and ¢ (q,p) = 0. (2.40)

We had to extend the Hamiltonian, which was originally defined only on I';,
to a neighborhood of I'). According to theorem 1 two possible extensions
differ by a term ¢™¢,,. Thus the formalism should be unchanged by the
replacement

H— H+™(q,p)pm. (2.41)

Indeed, making this transformation in (2.38) just shifts the u to u + c.
Finally, the relations (2.38) allow us to rewrite the equation of motion
(2.2) in the equivalent Hamiltonian form

. OH b . OH b
i mZPm - and  p A — e — M
T op; T ap; P o¢ " og

(2.42)

where we dropped the tilde atop H. The Lagrangian equations of motion
(2.2) are equivalent to (2.42). The phase space function

H,=H +u"¢n (2.43)

is the primary Hamiltonian.
Introducing the Poisson bracket of two phase space functions

9F 0G  OF 9G

dqt dp;  Op; O

(RO} = /d( SF  5G  §F  §G ) (2.44)
= ] S00 (@) 0ma(@)  0ma(7) 09 (3)

{F,G} =

resp.

and using vV ¢, = Vi (u™ ¢y, ), the Hamiltonian equations of motion can
be rewritten as
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i' ~{¢d,Hy} = {d,H} +{¢', pn}u™

i . (2.45)
pi ~A{pi, Hp} = {pi, H} + {pi, pm fu™.
Besides there are still the equations defining I',,:
¢m(q,p) = 0. (2.46)

For an any phase-space function F(q, p) the time evolution follows then from

F~{F,H,)} ~{F H} +u"{F,¢n}. (2.47)

2.2.2 Dirac-Bergman algorithm

The constraints must be consistent with the time evolution, that is if initially
(g,p) is on I', it should remain there at later times. This means that the
equations of motion should preserve the constraints and this gives rise to
the consistency conditions [18, 3]

m 2 {bm, HY + {bm, bn }u" = huy + Crpu™ 2 0. (2.48)

For non-admissible Lagrangians these relations will be inconsistent. As an
example take L= — q which leads to H=¢ and ¢$=p—1 so that (2.48) reads
1 = 0. For such inconsistent models the action has no stationary points and
we shall exclude them.

To discuss the consistency relations (2.48) we distinguish the two follow-
ing cases:

o det C #£0:

In this case u is uniquely fixed by (2.48) to be u™ ~ C™"h,,, where
C™™ is the inverse of Cy,. The time evolution (2.47) of a phase space
function becomes

FmA{F,H} = {F, ¢ }C""{$n, H}. (2.49)

No additional conditions appear. For any initial data (g,p) on I', the
time evolution stemming from (2.49) is unambiguous and stays on T',.

e det C' = 0:

In this case u is not fixed and (2.48) is only solvable if hpw]"* = 0 for
all left null-eigenvectors w, of C. Either these equations are fulfilled
or they lead to a certain number K; of new constraints

or~0 , k=M4+1,....M+ K, =Ji,
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called secondary constraints. The primary and secondary constraints
¢j =0, 5=1,...,J1 define a hyper-surface I'y C T',.

Now one has to check consistency for the primary and newly generated
secondary constraints on I'y,

¢; = {dj, H} +{dj, du}u" = hj + Cjuu” =0 on Iy

with the rectangular J; x M matrix C. The left null-eigenvectors w? of
Cjn imply further conditions wghj =0 on I'y and may lead to further,
so-called tertiary constraints which, together with the primary and
secondary constraints, define a hyper-surface I'y C T'y, etc.

This procedure terminates after a finite number of iterations and the follow-
ing situation is reached: There is a hyper-surface I'. C I" defined by

$;i~0 , j=1,....M+K=.] (2.50)

For every left null-eigenvector w) of the rectangular matrix Cim = {dj, dm}
the conditions w{¢;, H} ~ 0 are fulfilled. For the multiplier fields there
are the equations
{¢j7H} + {¢j7 ¢m}um ~ 0, (2-51)

where &~ now means equality on I'.. We note that the primary constraints
are merely consequences of the definition of the momenta, whereas we used
the equations of motion to arrive at the secondary constraints*.

We make the same regularity assumptions on the full set of constraints
¢ defining ', as we made on the primary constraints ¢,, defining I',,. Also,
we assume that the rank of C is constant on I'..

2.3 First and second class constraints

The distinction between primary and secondary constraints will be of minor
importance in the final form of the Hamiltonian theory. A different classi-
fication of constraints, namely into first and second class [19], will play a
central part. Let v, be a basis of the kernel of C,

{¢j,pm}v =0 , a=1,...,dim KerC =M —rankC. (2.52)
The general solution for the multipliers » in (2.51) has then the form
u =10+ pvg, (2.53)

where @ is a particular solution. We have separated the part of u that
remains undetermined by the consistency conditions. This part contains
M —rank C free functions p®.

*in the sequel I call all non-primary constraints secondary

23



The combinations of primary constraints

ba =g Pm (2.54)
weakly commute with all other constraints,
{QSUJQS]} %0 7 j: ]‘7"'7J' (2'55)

Moreover, since the v® form a basis of Ker C, the ¢, are a complete set of
primary constraints with this property. This leads to the concept of first
class functions and in particular first class constraints (FCC). A function
F(q,p) is said to be first class if its Poisson bracket with all constraints
vanish weakly (on T'),

(Figj} =0 |, j=1,...,J (2.56)

The set of first class functions is closed under Poisson bracket [19]. This is
proved as follows: if F, G are first class, then according to theorem 1

{F.ot=4" , {Got=9"

for any constraint ¢, where ¢, ¢" are some linear combinations of the con-
straints. Using the Jacobi identity we have

{F.G}.¢} = {F{G,¢}} —{G.{F, ¢}} ={F.¢"} - {G.¢'} = 0.

In particular the constraints ¢, are a complete set of first class primary
constraints (modulo squares of second class constraints). Also, as a result
of the Dirac-Bergman algorithm H,, is first class.

A function that is not first class is called second class. T use a notation
adapted to this new classification. All primary and secondary FCC are
denoted by 7,. The remaining constraints are called second class constraints
(SCC) and I denote them by xq.

The first property we need is that the matrix of SCC

Aqg = {Xa,xp} is non-singular. (2.57)

Indeed, if it was singular, then there would exist a null vector r*A,z ~
{r®xa, xs} = 0. Since r*x, also commutes weakly with the FCC (by their
first class property) it would weakly commute with all constraints and would
be first class which contradicts our assumption. For counting degrees of
freedom it is important to note that the number of SCC must be even.
Otherwise the antisymmetric A would be singular.

Now consider the consistency conditions (2.51). They are identically
fulfilled for the +,. For the SCC we have

{Xa» H} + Agpu’ =0, (2.58)
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where u® =0 if x? is a secondary SCC. Solving for the multipliers we obtain

B rimary
APy HY={ " X8 P 2.59
{Xa, H} { 0, Xg secondary ( )

where AaﬁA/g,y = 0%. Thus all multipliers belonging to the primary SCC
are determined by the consistency conditions and we remain with the un-
dermined multipliers p® in (2.53). We have the important result that the
number of undetermined multipliers is equal to the number of independent
primary FCC.

Inserting that into the equations of motion (2.47) we end up with

F e A{F,H} +{F,¢a}p" — {F, xa} A" {x5, H}, (2.60)

where the ¢, are the primary FCC. One can easily check that all constraints
are preserved in time.

2.3.1 Second class constraints and Dirac bracket

For purely SC systems no multipliers remain in the time evolution (2.60)
and there is no ambiguity in the dynamics. The term in (2.60) containing
the inverse of A forces the system to stay on I'.. This surface is the reduced
phase space for SC systems.

Motivated by (2.60) one introduces the Dirac bracket [18] for two phase
space function as

{F,G}* ={F,G} — {F,xa}A{x5,G}, (2.61)

in terms of which

F~{F H} (2.62)

for SC systems. This bracket possess the same properties as the Poisson
bracket, i.e. they are antisymmetric, bilinear and obey the Jacobi identity
and product rule. In addition we have

{F,xa}" =0, {F,G} = {F,G} , {F,{G,K}"}" ~{F,{G,K}} (2.63)

for arbitrary F' and first class G, K. These properties follow easily from the
definition (2.61) and the property that first class functions have vanishing
Poisson bracket with all constraints, e.g.

{Fixa} = {F.xa} = {F x5} Xy, Xa} = 0. (2.64)

Let us draw an immediate consequence of (2.64). According to theorem 1
any function can be replaced by its restriction to I'c, up to a linear combi-
nation of the constraints. Thus when calculating the Dirac bracket (2.61)
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between two functions we may replace them by their restriction to I'. since
the other brackets vanish on account of (2.64). It follows that the SCC can
be set equal to zero either before or after evaluating the Dirac bracket.

To understand the geometric meaning of SCC we recall some facts from
symplectic geometry [4]:

In most cases the phase space I' is the cotangental bundle T*(Q over
the configuration space ) and hence is equipped with a natural symplectic
structure (a non-degenerate closed two-form)

w = wyy dz? A dz” (2.65)

which, according to Darboux, can locally be written as w = d¢’ A dp;. Given
w, we can assign to a functions F' its corresponding Hamiltonian vector field
Xr by

ixpw = dF, (2.66)

where 7x and d are the interior and exterior derivatives, respectively. In
local coordinates we find

ixpw(V)=wXp,Y) =w,XpY” and dF(Y)=0,FY" (2.67)
for any vector field Y, so that
Xp = —w"0,F, where w'w,,=d". (2.68)
The Poisson bracket of two functions is
{F,G} = —0,Fw"” 0,G = wyw"?0,Fw"’ 0,G = w(XFp, Xq). (2.69)

In particular, the change of F' under the Hamiltonian flow generated by G
can be written as

F' ={F,G} = w(Xr, X¢) = ixpw(Xq) = dF (Xg) = XL0,F.  (2.70)

In other words, the flows generated by G are just the motions along the
Hamiltonian vector field X . For G = H these are the Hamiltonian equations
of motion.

Finally there is an important relation between the Poisson and Lie
bracket,

[Xr,Xc) = —Xpag), where [X,Y]#=X9,YF Y9, YF (2.71)

are the Lie bracket. This relation follows from the Jacobi identity.

Let us now return to the SC systems. The inclusion map 5 : I'c — T
induces a two-form on I'., namely the pull back of the symplectic form w
on I', we = j*w. w, is closed since w has this property, but it may be
degenerate. In this case it is called pre-symplectic. However, for SCC it is
indeed symplectic, as follows from
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Theorem 3 The x, are second class if and only if w. = j*w is non-
degenerate.

Actually, we shall see that the Dirac bracket belongs to w.. Most properties
of the Dirac bracket, and in particular the Jacobi identity follow then at
once from the corresponding properties of w.

To prove this theorem we must show that w is non-degenerate on the
vectors tangent to I'.. A vector field Y is tangent to I'. if Y#0,x, vanishes
for all constraints y,. With (2.70) this is equivalent to

w(Xa,Y)~0 forall X,=X,,. (2.72)
On the other hand, from (2.69) follows that

w(Xa,Xg) = {XaaXB} = Aa,g f-;é 0 (2.73)

so that the Hamiltonian vector fields of the constraints are not tangent. Let
us now determine the vectors X which obey

w(X,Y)~0 forall tangent Y. (2.74)

Since w is non-degenerate (2.74) can have dimI'-dimI". independent solutions
X. But because of our regularity conditions on the constraints the dimI'-
dimI". Hamiltonian vector fields X, which are not tangent, are independent
solutions. Thus any X which obeys (2.74) is a combination of the X,. Hence
there cannot be a tangent X obeying (2.74) and this proves that j*w is non-
degenerate.

Note that we used the SC nature of the constraints and in particular
that the flows generated by the SCC lead off the constraint surface.

Now it is easy to prove that the Dirac bracket furnishes an explicit
representation for the induced Poisson bracket. For that consider

{(F,G} = w(Xp, Xg) — w(Xp, Xo) A%w(X 5, Xg) = w*(XF, Xa). (2.75)

It is easy to see, that w*(Xr + X, X¢)=w*(Xp, X¢) for any Hamiltonian
vector field belonging to the constraints. Thus w* depends only on the
tangent components of X, X. But for tangent Xz we have w(Xp, X,) = 0
(see (2.72)) and w* can be replaced by w without changing the value of (2.75).
This proves that w* is just the pull-back of w.

2.3.2 First class constraints and gauge transformations

Purely FC systems are relevant since gauge theories are of this type. Gauge
related point should be identified and this leads to the problem of gauge
invariant functions and/or the gauge fixing problem. The FCC together
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with a complete set of gauge fixing conditions form then a SC system. Hence
for FC systems the gauge fixing define a subset I', € T’ and this set is the
reduced phase space.

For purely FC systems the time evolution is governed by

F~ {F,H} + {F, o}, (2.76)

with primary FCC ¢,. For the same initial conditions we get different evolu-
tions, depending on the multipliers u®. The presence of arbitrary functions
1 in the primary Hamiltonian tells us that not all x =(q, p) are observable,
i.e. there are several x representing a given physical state. Assume that the
initial value z(0) is given and represents a certain state. Then the equation
of motion should fully determine the physical state at later times. So if
z'(t) # z(t) stem from the same physical state x(0) then they should be
identified.

Consider two infinitesimal time evolutions of F' = F(0) given by H,, with
different values of the multipliers,

Fl(t) = t{Fa H} + t{Fa ¢a}:u;'l7 =12 . (277)
The difference F5(t)— Fy(t) between the values is then

6MF = {Fa Ma¢a}a y M= t(:u2 - :ul)' (2.78)

Since such a transformation does not alter the the physical state at time ¢
it is a gauge transformation [19]. Now we calculate

[0 6 1F = {1 pa, "o}, F} (2.79)

and conclude that the commutator of any two primary FCC also generate
gauge transformations. Also, performing a gauge transformation at ¢ =0
with multipliers v and then time evolve with multipliers p should lead to
the same state as doing these transformations in the reverse order. We find

[0t,s 00 F = {0 " o — {0, H} + {v" G0, "}, F} (2.80)

and conclude that the commutators {¢,, H} also generate gauge transfor-
mations.

We have seen that the first class functions are closed with respect to the
Poisson bracket and thus the {¢,, ¢} and {¢,, H} are linear combinations
of the FCC. However, in general there will appear secondary FCC in these
combinations. Also, if we compared the higher order terms in the time evo-
lutions (2.77) we would find that time derivatives of {¢,, H),} generate gauge
transformations. This way secondary FCC show up as gauge transforma-
tions in all relevant systems and this lead Dirac to conjecture that all FCC
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va generate gauge transformations. We shall assume this conjecture to hold
in what follows although there are some exotic counterexamples [2, 15].
Note, however, that if the structure constants in

{Yas W} = tapve (2.81)

depend on the canonical variables, then [0,,d,]F is a gauge transformation
only on the constraint surface. Also, above we made the hidden assumption
that time (or the space-time coordinates in field theory) is not transformed.
Else we would have to take F' + ¢,F at the transformed time ¢ 4 d,t be-
fore calculating the second variation d,. We come back to this point when
discussing generally covariant theories.

We conclude that the most general physically permissible motion should
allow for an arbitrary gauge transformation to be performed during the time
evolution. But H), contains only the primary FCC. We thus have to add to
H), the secondary FCC multiplied by arbitrary functions. This led Dirac to
introduce the extended Hamiltonian

H, — H, = H+ N, (2.82)

which contains all FCC [19]. H, accounts for all the gauge freedom.

Clearly, H,, and H, should imply the same time evolution for the classical
observables. Observables are gauge invariant functions on I';, that is phase
space functions that weakly commute with the gauge generators,

F observable <= {F,v,} =0 forall FCC ~,. (2.83)
Since H, — H) is a combination of the secondary FCC, we have
F~{F,H,} ~{F H} (2.84)

for any observable F', as required. In the extended formalism one makes
no distinction between primary and secondary FCC since they are treated
symmetrically. The introduction of H, is a new feature of the Hamiltonian
scheme. It does not follow from the Lagrangian formalism.

At this point the following remark is in order. The number of time de-
pendent functions which enter the Lagrangian off mass-shell gauge transfor-
mation is equals to the number of Lagrangian constraints and hence equals
to the number of primary constraints. Hence, if there are secondary FCC
it cannot be that any constraint G = N%(t)v, generate off mass-shell trans-
formations. Indeed, when discussing the consistency conditions we assumed
that the primary constraints must be conserved only for on mass-shell tra-
jectories. Hence for arbitrary off mass-shell variations the secondary con-
straints do not guarantee that the primary constraints are respected. We
come back to this important point in chapter 4.
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Let us now investigate the geometric meaning of FC systems. As a
preparation we show:

The induced 2-form j*w has rank > N — 2M, where M is the number of
independent first or second class constraints.

Let us assume that the tangent vectors X,, p=1,..., P form a basis for the
null-eigenvectors of j*w, i.e. j*w(X,,Y)=w(X,,Y) = 0 for all tangent Y.
Let us now see how big P can be. For that we consider

d’w(X,,Z,) =0, wherethe Z, ¢=1,....M

together with the tangent vectors form a basis of TT' at the point under
consideration. These are M equations for P unknown. So, if P > M then
there would always exist a solution X =aPX,, with w(X, Z,) = 0 for all Z,.
Being also a null-eigenvector of j*w we would conclude that w(X, Z)=0 for
all vectors Z € TT or that w is degenerate. This then proves the statement
above. Now we have the following

Theorem 4 For o FC system the induced two-form j*w is mazimally de-
generate. The kernel is spanned by the Hamiltonian vector fields belonging

to the FCC.

First, if X*0,7v, ~ 0 for all constraints, then X is tangent. But since
XE0uYa = {Yar 1} = 0, all Hamiltonian vector fields belonging to the con-
straints are tangent. Second, for an arbitrary tangent vector X we have
w(Xg, X) =1x,(X) =0,xe X" =~ 0. Thus the M X,’s are null-eigenvectors
of the induced two-form and the rank of j*w equals 2N —2M, ie. it is
maximally degenerate.

Thus we have the following situation: The M FCC generate flows which
stay on the constraint surface and which we identified with gauge transfor-
mations. The Hamiltonian vector fields belonging to the constraints are the
null-directions of the induced pre-symplectic 2-form. That these null-vector
fields generate gauge orbits follows from

Theorem 5 On I'; the vectors X, generate M -dimensional manifolds.

The proof uses the Frobenius integrability condition, which says that M
linearly independent vector fields are integrable (through each point in ',
there is a surface, the gauge orbit, to which the X, are tangent) iff all Lie
brackets [X,, X3] are linear combinations of (X1,..., Xy). Indeed,

[Xay Xp] = =Xy, ) = —tapXe + Y™ 0oty = —tgp X, (2.85)

where we used (2.81). Note that for (¢, p)-dependent structure constant (as
in gravity) the null vector fields are integrable only on the constraint surface.
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In a next step one wants to eliminate the gauge degrees of freedom that
is identify points on the same gauge orbit. This can in principle be achieved
by introducing gauge invariant variables, e.g. the transverse potential or
holonomies in electrodynamics, or alternatively by fixing the gauge. A gauge
fizing must obey two conditions: first it must be attainable and second it
should fix the gauge uniquely °. We can fix the gauge by imposing the
independent conditions

F,(q,p) =0, a=L,... M. (2.86)

The surface defined by these conditions should intersect every gauge orbit
in exactly one point. A necessary condition is that at least one gauge fixing
function F} should change in the direction of all null-vectors X,. In other
words, there is at least one F} so that

A (X, VE) = Xy, Fp} #0 (2.87)
for all A. This implies that
det{~,, Fp} = det Fyy, # 0. (2.88)

In particular, if we could choose gauge fixings canonically conjugated to the
constraints, {74, Fy} = dap, then the gauge orbits would intersect the gauge
fixing surfaces orthogonal and in this case det F,; = 1. The determinant of
F' plays an important part in the quantization of gauge systems and is the
well-known Faddeev-Popov determinant [21].

Because of (2.88) the FCC together with the gauge fixings form a SC
system and we can take over the result from the previous subsection. The
reduced phase space I', consists of the points fulfilling the constraints and
gauge fixings. Collecting the 7, and F, into one vector, Q2,, p=1,...,2M,
we find for the Hamiltonian equation of motion for any phase space function

F={F,H} - {F,Q,}G"{Q,, H}. (2.89)

Mixed second and first class constraints Before gauge fixing the evo-
lution is governed by the first class partner of the extended Hamiltonian

H! = H+ v, N — xaA*{x5, H} (2.90)
since we have

F= {F.H;} ={F,H} + {Fa’Ya}Na - {FaXa}Aaﬁ{XB’H}' (2.91)

®There may be obstructions to fulfilling these requirements as has been demonstrated
by Gribov and Singer [28, 44].
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For a discussion of the starred variables see [12]. After gauge fixing one
can again introduce starred variables with respect to the SC system ; =
(XasYa, Fp). Denoting the Poisson brackets matrix of all these constraints
11 by A, we have

F ={F,H*}, where H*=H+ ;A" {y; H}. (2.92)

2.4 First order action principles

The solutions to the primary Hamiltonian equations of motion (2.45, 2.46)
extremize the primary (or total) first order action,

to
55, = 5/ (dpi—H — Y " )dt =0 (2.93)
t1

primary

with respect to variations dq, dp, du subject only to the restriction dq(t1) =
dq(t2) = 0. The variables 4™ which have been introduced to make the
Legendre transformation invertible appear now as Lagrange multipliers en-
forcing the primary constraints. It is clear that the theory is invariant under
H — c™¢y, since such a change can be absorbed into the Lagrange multi-
pliers.

The variational principle (2.93) is equivalent to

5 / ((jipi - H) dt =0 subject to ¢ = 0 = 0. (2.94)

There is yet another variational principle which for gauge invariant observ-
ables leads to the same time evolution, namely the extended action principle.
The equations of motion for the extended formalism follow from

58, = 5/ (dpi— 1~ Y wig;)dt =0, (2.95)

all constr.

where the sum extends over all constraints.

Take the case of purely SCC and let y* — z#(y”) be the embedding of
I', ¢ I'. The Lagrange multiplier method guarantees that the implementa-
tion of the constraints y,, either directly or via the Lagrange multipliers,
are equivalent. Now let us solve the constraint directly in (2.95). Recall
that a symplectic 2-form can locally be written as w = df. The pull-back of
the one-form potential 6 is

ox#

§7°(0) = §*(pidq") = j* (apda™) = au(x(y))a—?ﬂ,dy”- (2.96)
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Inserting this into the extended action one finds

Selyl = [ 16~ Ha(w)dt) = [ (i ~ ). (2.97)

The corresponding variational principle yield then the equation of motion
for SC systems:

0Se[y] = 0 = ¢ = {y*,h(y)}". (2.98)
This can be checked directly by using
Jw=7%"d0 =dj*0 =da,(y)dy’. (2.99)

The fact that (2.95) yields (2.97) is of practical use when calculating Dirac
bracket. One solves for the constraints inside the action and from the new
kinetic term one reads off the induced potential form on TI'.. From (2.99)
one computes the induced symplectic form and thus the Dirac bracket.

For FC systems it is also legitimate to solve the FCC inside the action

&:/(ﬁ%—H—N%Qﬁ (2.100)

However, since the induced 2 form is degenerate the equations of motion
on ', are not canonical. To get Hamiltonian equations one needs to go to
I'; by imposing additional gauge conditions. Then one may write down the
corresponding action for the SC system as discussed above.

2.5 Abelian Chern-Simons Theory with Sources

To see how the general formalism works in an explicit example I consider
the Abelian Chern-Simons model [29, 41, 32, 24]. This is a field theory
for a gauge potential A, in 3 space-time dimensions with coordinates z =

(20, 2", 2?) = (¢, %) with first order Lagrangian density

L = %A“eabCFCb + A%J,, where (2.101)
F,, = 0,Ay— 04, , 0°J,=0.

Indices are lowered with the metric 7y, = diag(1, —1, —1) and €y, is the Levi-
Civita symbol, €y12=1. We enclose the system in a finite box [0, L] x [0, L].
The quantum theory is sensitive to the value of the coupling constant . For
rational 27k and vanishing external current .J the Hilbert space becomes
finite-dimensional [41].

For arbitrary periodic currents the action is invariant under U(1)-gauge
transformations

A% 5 A% 4 90\ ,S%S+%M€MWWM%%) (2.102)

provided A vanishes at the initial and final times and A, Fy1, Fy2 are periodic
in 2!, 22 with period L. So we shall assume that X and F,; are both periodic.
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2.5.1 Dirac theory for U(1)-Chern-Simons theory

Since L is linear in the first derivatives the Hessian vanishes identically and
the model is singular. Thus we expect 3 independent primary constraints
(per space point). More explicitly, the canonical momentum densities are

7o (Z) = .(SL =

K
~Ab(z 2.103

and immediately lead to the primary constraints
K o K
{pm} = {mo, ™1 + §A y T2 — §A }, m=1,2,3. (2.104)

The canonical Hamiltonian becomes

/d;mra A% (& /d%:%

= —/d%: §A“eabi81Ab+A“Ja) . i=12.

H

(2.105)

and the time evolution is determined by (2.47) with primary Hamiltonian
H, = /d%: Hy o Hp=H+u"dn, (2.106)
and fundamental Poisson bracket
{AY(Z), m(9)} = 0%0(Z — 7). (2.107)

Let us now see whether secondary constraints arise from the consistency
conditions ¢, = 0. One computes

biim) = [ dy {ml@), 1)}
= — [y {ml@). 5 A @00 4 ) + To() A" )}
[ 2y (se0ssd 473 + Jo(@)) 505 - )
= €ik0 AT (T) + Jo(7)
leading to the secondary constraint
b4 (%) = kF15 — Jo(F). (2.108)

There is a quicker way to arrive at this conclusion, since ¢ = —0H,/0A°.
The time derivative of the other two primary constraints are
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bo(7) = w(u® - 0?AY@)) + Ji(7)
(@) = K-+ 0 A) + (@) (2.109)

and putting them weakly to zero fixes the multipliers u?,u?. Finally, we

must have _
b4 (%) = kO*u?(Z) — kO U3 (Z) + 0y Jo(Z) ~ 0. (2.110)

Inserting u?,u? from (2.109) this becomes d,7% = 0 and yields no further
condition. Thus the Dirac-Bergman algorithm leads to 3 primary and 1
secondary constraint.

Obviously ¢1 = v is first class. Also the combination

K
12 = 012 + Oogps + ¢a = Oimi + 5 Fia — Jo (2.111)
is first class and is the analog of the Gauss constraint in electrodynamics.

As SCC we may take

0 1 S
X1 = ¢2 and X2:¢3=>Aa5=k&<_1 0)6(x—y). (2.112)

A has inverse A =—A/k and (2.91) reads

F o (B HY (N + o [ @y (F @) es (6@, B (2113)

Since the FCC commute with all constraints they generate transformations
on I', i.e. if (A, 7) is on T'. then

on A@) = [ d®y {AZ), 7} N()
Inm(@) = [d*y{n(Z), 7§} N)
are variations tangent to it. This follows from dn¢; = [{d;, 7N = 0.

Also, since these transformations commute with Hj,, one expects that they
are related to infinitesimal gauge transformations (2.102). Indeed, defining

(2.114)

G = [ @y(9A@M @ + A0 (2.115)

one finds
INAY(T) = I"N(T). (2.116)

Only the particular combination (2.115) of the FCC generate the off mass-
shell gauge transformations (2.102). This particular combination has the
property that G is a combination of the primary FCC constraints only. In
chapter 4 we shall show more generally that for systems with FCC which are
linear in the momenta a combination of FCC generate Lagrangian off mass-
shell symmetries if its time-derivative is a combination of primary FCC.
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2.5.2 Gauge fixing of Chern-Simons theory

We have seen that the Chern-Simons theory possesses two SCC and two
FCC. Now we supplement those by two gauge fixing conditions, namely

F1 = AO and FQ = 81AZ (2117)

Altogether the conditions (x1, x2,v1, 1,72, F») form a SC system and define
[';. The surface defined by x;,v1 and F} can be parametrized by the spatial
components of the gauge potential which can be decomposed as

1
A; = Eijaj(p-l-ai)\-l- Zqi (2.118)
with constant ¢; ©. Imposing further 5 and F5> we see that
1 1 1
A = ——€;0,—J° + —q 2.119
i Hezg N + qu ( )

so that T, = {q1,¢2} is finite-dimensional. Furthermore, v = 0 and the
periodicity of the A; imply that the total charge Q= [ d?z.J° must vanish.
The inverse Poisson bracket 'matrix’ reads

0 -1 0 0 %0 0
1 1 0 0 0 —%&1 0
1T _ 0 0 0 K 0 0 .
+0 —x0 0 0 0  —kx
0 0 0 0 kx 0

and one finds the following Dirac bracket for the coordinates on I,

{gi,q;} = —dij. (2.120)

When calculating the starred Hamiltonian, one should recall that for a pe-
riodic function A“'Af = f — VL[ f. After some algebra one finds

* 1 |
H* = —/dQ:L'{AO(IiFlQ - Jo) + ;Jozeijaijj} - §jiqz - ;Eijjipj, (2.121)

where we have introduced the mean "fluxes’

1 1 ) 1
ji = f/dQ:ch , ¢ = f/deAZ and p; = f/dem. (2.122)

®The U(1)-bundle over the torus is non-trivial and A must be periodic only up to non-
trivial gauge transformations [42]. For simplicity we assume here that A is periodic and
hence [ Fi>=0
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After imposing the constraints x;,v2 and F; the non-trivial equations of
motion take the simple form

. .
Gi = ——€ijjj. (2.123)

Of course, the evolution belonging to H* stays on I',. Since I', is 2-
dimensional the (topological) Chern-Simons theory is effectively a simple
mechanical system. This was expected from the beginning since there are 6
constraints and gauge fixings for 6 degrees of freedom (per 7).

To see the meaning of this result more clearly, let us see what the ob-
servables are. As coordinates on I'. we may take A and ¢; in (2.118), so that
we are considering functionals F[A?, ), ¢, J,]. Such F commute with the
FCC if they are independent of A and A°. Hence observables have the form

F = F[J,,qi (2.124)

and depend only on the zero-modes of the A;.

Let us finally remark that for a pure CS theory (J=0) the Lagrangian
density is invariant, up to a total time derivative, under gauge transfor-
mations for which only e** must be periodic. This introduces global gauge
transformations with windings around the handles of the torus (the box with
opposite points identified). Hence we must identify gauge potentials which
are related by such global gauge transformations

2
A~ A+ %n or g~ g + 2mn;. (2.125)

Gauge invariant functionals must be invariant under such transformations.
Thus they depend only on exp(i Y m;q;). For pure Chern-Simons theories
we have

el Ml = W (C, A) = exp {z% A} (2.126)

c
on the constraint surface (Fi2=0) if the loop C' winds m;-times around the
torus in the direction 7. For a contractible loop W (C, A) vanishes. Thus,
observables have the form

F(4) = F(¢ $o 4. (2.127)

Let C, D be 2 loops which wind m;, n;-times around the torus in the direction
i. We parametrize them by z(7),y(s). We compute

§ FLAG), AN} = = § § i (1) (s)drds = —(mma — nymn).
C D C D

Upon deformation of the curves the commutator is invariant and therefore is
a topological invariant. This can be understood by noting that for J=0 the
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Chern-Simons model (2.101) is invariant under space-time diffeomorphisms.
In particular the spatial ones are generated by

Gaiff = /d2x EiAZ")/Q (2.128)

and hence observables must be invariant under spatial diffeomorphisms.
Finally note, that for the pure Chern-Simons theory the phase space
variables ¢; lie in [0, 2], that is ', is compact and as a consequence the
Hilbert space becomes finite dimensional.
Actually there is a quicker way to arrive at these results if one inserts
the fields on the reduced phase space (2.119) into the first order action. One
easily finds

K . . 1 1
S = /dt(§Qifiij - Qi]i) + E /dtd2$ Jozeijaijj (2.129)

which of course reproduces the correct equations of motion (2.123).
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