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Abstrat

This Shrift provides a rather self-ontained review and some reent results

about gauge theories. The �rst part ontains an introdution into the lassi-

al theory of onstrained systems stressing the relation between symmetries

in the Hamiltonian and Lagrangean formulations. Then I present some new

developments about the lassial and quantum Hamiltonian redution of

Wess-Zumino-Novikov-Witten theories to generalized Toda theories or of

Ka-Moody algebras to W algebras. In the seond part some new results

about 2-dimensional gauge theories and in partiular the hiral symmetry

breaking and thermodynami of suh models is investigated. In the last

hapter the funtional Shr�odinger equation for fermions in external gauge

�elds is studied and solutions to the time-dependent funtional Shr�odinger

equation and expliit expressions for the ground state funtional are given.
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Chapter 1

Introdution

The mother of �eld theories, namely quantum eletrodynamis, is a gauge

theory. All other fundamental �eld theories in physis are also invariant

with respet to some group of loal symmetry transformations. For Yang-

Mills theories these are the gauge transformations, for string theory and

gravity spae-time di�eomorphisms and for supersymmetri theories loal

supersymmetry transformations. Unfortunately we still have a poor un-

derstanding of these lasses of �eld theories. What we know best are the

perturbative expansions in powers of Plank's onstant or the gauge ou-

pling onstant. This presumably divergent formal power series expansions

ompare well with experimental data. However, we must admit that often

we have to rely on not well understood triks and methods, e.g. on partial

resummations in high temperature QCD, to arrive at meaningful results.

In this Shrift I shall not be onerned about perturbation expansions

and Feynman diagrams for gauge theories. Rather I shall be more onerned

about algebrai strutures, symmetries and non-perturbative aspets. The

most general mathematial setting for gauge theories is Dira's onstraint

formalism within the Hamiltonian formulation, sine any gauge theory is a

theory with �rst lass onstraints. Indeed, for gauge theories or more gener-

ally singular systems the loal symmetry relates di�erent solutions stemming

from the same initial onditions and the general solution of the equations

of motion ontains arbitrary time-dependent funtions. Hene there is a

ontinuous set of aelerations whih belong to the same initial position and

veloity and we expet that all aelerations orrespond only to a subset

of initial onditions. This subset is de�ned by the Lagrangian onstraints

so that all gauge theories are systems with onstraints. In the Hamiltonian

formalism this means that there are onditions on the allowed initial mo-

menta and positions. These onditions must then be onserved by the time

evolution, and this onsistene requirement may lead to further onstraints

[2℄.
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For gauge theories with internal symmetries all onstraints are linear in

the momenta and the Hamiltonian does not vanish. The loal symmetry

transformations are generated by the �rst lass onstraints.

For (non-topologial) generally ovariant theories at least one onstraint

is quadrati in the momenta and there are anonial variables for whih the

Hamiltonian H itself is a onstraint, usually alled super-Hamiltonian. This

leads to the question whether H generates the dynamial time-evolution or

kinemati loal symmetries as the other �rst lass onstraints. This question

is very muh related to the interpretation of time in generally ovariant

theories. We shall see that in super-Hamiltonian systems the onstraints

whih are nonlinear in the momenta do not generate kinemati symmetries

but rather generate the dynamis of suh systems.

In a gauge theory the gauge-related on�gurations must be identi�ed and

this identi�ation may be ahieved either by introduing gauge-invariant

variables or by �xing the gauge freedom. In most ases the theory gets

more ompliated on the redued spae of gauge �xed on�gurations. In-

deed, reent progress has been made in the quantization of nonlinear Toda-

type theories by interpreting them as gauged �xed versions of muh simpler

gauged Wess-Zumino-Novikov-Witten theories [1℄. The WZNW ! Toda

Hamiltonian redution is ahieved by imposing ertain �rst lass, onfor-

mally invariant onstraints on the Ka-Moody (KM) urrents of the WZNW

theories. The struture of the symmetry redutions to the redued phase

spae ontains all information of the redued theories. For example, one

easily understands the appearane of non-linear W symmetry algebras [23℄

as they are just the projetion of linear Ka-Moody symmetry algebras to

the redued phase spae.

There are several alternative ways of quantizing systems with onstraints.

In the onventional Shr�odinger representation quantization (see e.g. [11℄)

the dynamial quantities are expressed in terms of �xed-time anonial vari-

ables. The quantum �eld theory involves states j	i that are realized in the

Shr�odinger representation as funtionals 	(') of a -number �eld '(~x).

The �eld operator ats on these states by multipliation, while the anoni-

al momentum operator ats by funtional di�erentiation

�(~x)j	i �! '(~x)	(') and �(~x)j	i �!

1

i

Æ

Æ'(~x)

	('):

The �rst lass onstraints, e.g. the Gauss onstraint in quantum eletrody-

namis, should annihilate the physial states and this way de�ne the physial

Hilbert spae.

Sine the Lorentz invariane is blurred in the non-ovariant Shr�odinger

representation the regularization program is not very transparent. This may

explain why this physially intuitive way of quantizing gauge theories has

not been popular in the past. However, at least for pure Yang-Mills theories
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it has been shown that the Shr�odinger funtional an be renormalized by

adding the usual ounter-terms to the ation plus a set of further terms that

are integrals of loal polynomials in the �eld and its derivatives over the

boundary of spae-time [20, 14, 15, 21℄.

More popular has been the path integral quantization, in partiular after

the important ontributions of Slavnov, Faddeev and Popov and later of

Behi, Rouet, Stora and Tyutin. For onstraint systems Faddeev's expres-

sion

Z

D�D�Æ()Æ(F )jdetf; Fgj exp

�

i

�h

Z

t0

t

d�d

3

x(�

_

��H)

�

;

where the F 's are gauge �xing onditions for the gauge transformations gen-

erated by the �rst lass onstraints , is the starting point for perturbative

expansions after introduing ghosts and auxiliary �elds to rewrite the deter-

minant and gauge-�xing delta funtion. Any serious attempt to alulate in

the standard model involves Faddeev-Popov ghosts, objets whih appear

in ovariant gauges in order to guarantee gauge invariane. However, when

addressing non-perturbative questions, e.g. the hiral symmetry breaking in

gauge theories with fermions or the on�nement problem in QCD, one must

be autious in summing over all gauge �eld on�gurations, inluding those

with windings. Reently arguments have been put forward whih show that,

depending on the urrent quark masses, on�gurations with windings may

be essential in �nite-volume QCD [12℄.

In the seond hapter of this Habilitationsshrift I review the lassial

theory of onstraints systems. First we disuss singular Lagrangian theories

and in partiular the o�-shell Bianhi identities and show that all gauge

theories are onstrained systems. Then some important fats about on-

strained Hamiltonian systems are reviewed and disussed. In partiular pri-

mary/seondary and �rst/seond lass onstraints, the generalized Legendre

transformation and the Dira-Bergman algorithm are introdued. Then we

disuss the redued phase spae for �rst and seond lass systems. Here

the important Dira braket for seond lass (SC) systems, the onept of

observables and gauge transformations for �rst lass (FC) systems and the

�rst order formalism for mixed SC and FC systems are disussed. The de-

veloped formalism is then applied to the Abelian Chern-Simons model with

soures [8, 22℄. It has been argued that these type of models ath the

long wavelength features of the Quantum-Hall e�et [7, 6℄ and high tem-

perature superondutors [16℄. Here I am not elaborating on these very

important aspets but rather use these models just to illustrate the general

onstraint formalism. This way the reader may beome aquainted with

the onstrained dynamis by way of example. We will go through Dira's

program, step by step, and will arrive at a �nite dimensional redued phase

spae. Also, we argue that in the 'ompat' version the only observables are
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the Wilson-loops.

This review about Hamilton's formalism for onstraint systems in the seond

hapter is an extended version of a series of letures given by the author at

the 1993-Bad Honnef meeting on quantum gravity.

In hapter 3 I investigate the relation between Lagrangian symmetries

and the Hamiltonian gauge transformations generated by the �rst lass on-

straint [9℄. We shall see that for generally ovariant theories the latter

must be supplemented by transformations whih vanish on-shell in order

to reover the Lagrangian symmetries. The preise relation between the

gauge transformations in the Lagrangian and Hamiltonian form is derived

for general gauge gauge theories. We will see that the Hamiltonian gauge

transformations whih an be identi�ed with Lagrangian symmetries form

a losed algebra o� mass-shell. Also, we shall see that in general relativ-

ity the whole dynamis follows from the requirement that the onstraints

are satis�ed everywhere and they are preserved under di�eomorphisms [10℄.

More generally, I will disuss for whih theories the equations of motion

follow from the loal symmetries. The general results are then applied to

relevant theories, i.e. Yang-Mills theories, string theory and Einstein`s the-

ory of gravity. Some of the results are new and have not previously been

published. I feel that the results o�ered are somewhat novel.

Reently it has been disovered that onformal Toda �eld theories an be

naturally viewed as Hamiltonian redutions of the Wess-Zumino-Novikov-

Witten (WZNW) theory [3, 1, 17℄ The main feature of the WZNW theory

is its aÆne Ka-Moody (KM) symmetry, whih underlies its integrability

[13℄. The redution WZNW! generalized Toda theories, whih we onsider

in hapter 4, is ahieved by imposing ertain �rst lass and onformally

invariant onstraints on the KM urrents. The onstrained theory is a gauge

theory and the gauge transformations are generated by the imposed �rst

lass onstraints. The redued phase spae arries then a hiral W-algebra

as its Poisson braket struture. This algebra is related to the phase spae

of the generalized Toda theory in the same way as the KM algebra is related

to the phase spae of the WZNW theory. This way of looking at Toda

theories has numerous advantages, e.g. it allows for an easy onstrution of

the general solution to the nonlinear Toda-�eld equation, the W-algebra of

Toda theory arises immediately as the algebra formed by the gauge invariant

polynomials of the onstrained KM urrents and their derivatives and �nally

there are natural gauges whih failitate the analysis of the the theory.

In setion 4.1 we gauge the WZNW theory, study the Hamiltonian struture

of the resulting gauge theory and give Lie-algebrai ondition for the on-

straints, whih generate the gauge transformations, to be �rst lass. Next

we derive the e�etive theories for the gauge invariant �elds. These turn

out to be generalizations of the well-known Toda theories. In setion 4.2

we give Lie-algebrai onditions for the resulting theories to be onformally
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invariant and for the gauge invariant funtion to be generated by polynomi-

als. The Poisson braket algebras of these gauge invariant polynomials, the

so-alled W-algebras have been introdued by Zamolodhikov [23℄ and are

non-linear extensions of the Virasoro algebra. In the rest of the hapter I

present a systemati study of the onformally invariant Hamiltonian redu-

tions of the WZNW-theory. In partiular we shall onstrut the nonlinear

e�etive �eld theories whih possess the W algebras as symmetry algebras,

investigate the quantum redution of WZNW theories and �nally derive the

general formula for the entral harge of the redued onformal �eld theo-

ries. The results presented in this hapter have been obtained in a series of

papers [3, 17, 1, 4, 18, 5℄ with various ollaborators.

It is supposed that 2-dimensional U(1)-gauge theories mimi ertain as-

pets of one-avor QCD [12℄. In partiular, gauge �elds with windings, the

so-alled instantons, should be responsible for the non-vanishing ondensate

in both theories. In hapter 5 an idealized interating 2-dimensional U(1)

gauge theory is investigated in detail. For ertain values of the oupling

onstants the theory redues to the gauged Thirring model, the Shwinger

model or onformal �elds oupled to a bakground urvature. Similarly as

QCD the model possess so-alled �-vaua, �eld on�gurations with wind-

ings and shows a hiral symmetry breaking at �nite temperature. Due to

the non-trivial topology of the on�guration spae a areful quantization of

these generalized gauged Thirring models at �nite temperature turns out

to be rather subtle. For example, when introduing a hemial potential

for the onserved U(1)-harge, there arise ambiguities in the de�nition of

fermioni determinants [19℄. Also, the same problem arises if one introdues

twisted boundary onditions for the Dira-fermions.

By using funtional tehniques I shall solve the �nite temperature and den-

sity model and in partiular derive the exat equation of state and expliit

temperature and urvature dependene of the hiral ondensate. It turns

out the ondensate vanishes exponentially for high temperature and/or big

urvature of spae time. Indeed, we an assoiate an e�etive temperature to

the urvature and this way arrive at a non-perturbative identi�ation of the

Hawking temperature in deSitter spae time. If the eletri harge is set to

zero then the model redues to a generalization of the ordinary onformally

invariant Thirring model. Besides the Virasoro algebra the model ontains

an U(1) Ka-Moody symmetry algebra. At the end of hapter 5 I investi-

gate the onformal struture of these un-gauged models and determine the

onformal weights and U(1)-harges of the fundamental �elds.

In the last hapter of this Shrift I disuss the Shr�odinger piture for

fermioni �elds [11℄ in external gauge �elds for both stationary and time-

dependent problems. I give formal results for the ground state and the

solution of the time-dependent Shr�odinger equation for QED in arbitrary

dimensions, while more expliit results are obtained in two dimensions. For
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both the mass-less and massive Shwinger model I give an expliit expres-

sion for the ground state funtional as well as for the expetation values of

energy, eletri and axial harge. I also give the orresponding results for

non-Abelian �elds. Then I solve the funtional Shr�odinger equation for a

onstant external �eld in four dimensions and obtain the amount of partile

reation. Next, the Shr�odinger equation for arbitrary external �elds for

mass-less QED

2

is solved and a areful disussion of the anomalous partile

reation rate follow. Finally, I disuss some subtleties onneted with the

interpretation of the quantized Gauss onstraint.

At the end of eah hapter I added the referenes relevant for that hapter.

I am indebted to J. Balog, A. Dettki, L. Feher, P. Forgas, J. Fr�ohlih,

C. Kiefer, E. Mottola, V. Mukhanov, L. O'Raifeartaigh, D. Ruelle, I. Sahs,

M.V. Saveliev, E. Seiler, C. Shmid, R. Stora, N. Straumann and I. Tsutsui

for disussions and ollaborations. This work has been supported by the

Swiss National Foundation.
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