
Kapitel 3

Quantum Fields near Blak Holes

In the theory of quantum �elds in urved spaetimes one treats the gravitational �eld lassially.

The struture of spaetime is desribed by a manifold M on whih a metri g

��

with Lorentz

signature is de�ned. The matter �elds propagating in lassial spaetime are treated as quantum

�elds. For linear �elds a satisfatory theory an be onstruted.

The approximation in whih gravity is treated lassially should break down when the spaetime

urvature approahes Plank sales. But it should hold for a wide variety of phenomena, inluding

the partile reation near a blak hole with Shwarzshild radius muh greater than the Plank

length.

The diÆulties in the transition from at to urved spaetime lies in the absene of the notion of

global inertial observers or of Poinare transformations whih underlie the notion of partiles in

Minkowski spaetime. If one aepts that quantum �eld theory in general urved spaetime is a

quantum theory of �elds, not partiles, then one soon realizes that the the notion of global inertial

observers is irrelevant for the formulation of the theory.

For a �eld theory the Stone-von Neumann theorem does not hold and in�nitely many inequivalent

irreduible representation of the anonial ommutation relations exist. In at spaetime, Poinare

symmetry is used to pik out a preferred representation. This is ahieved by seleting a invariant

vauum state whih is equivalent to a seletion of a partile notion. In a general urved spaetime

there does not appear to be any preferred notion of partiles. Atually, in spaetimes whih are

at in the asymptoti past and the asymptoti future and for whih a natural notion of partiles

is available in both asymptoti regions, the orresponding two representations are, in general,

inequivalent.

A way out of these diÆulties in piking a partiular representation is to formulate the theory

via the algebrai approah. No partiular representation of the ommutation relations need to be

hosen and one needs not de�ne a preferred notion of partiles.

The framework and struture of Quantum �eld theory in urved spaetimes emerged from Parkers

analysis of partile reation in the very early universe [1℄. The theory reeived enormous impetus

from Hawking's disovery, that blak holes radiate as blakbodies due to partile reation [2℄. A
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omprehensive summary of the work in the 1970's an be found in the book of Birrell and Davies

[3℄ and a more up-to-date review an be found in Fulling [4℄.

3.1 The Unruh E�et

Any one-parameter group of Lorentz boost isometries in Minkowski spaetime has orbits whih are

timelike in a globally hyperboli region. Suh a region may be viewed as spaetime in its own right

and we may onstrut a quantum �eld theory on it. When we do that, we obtain a remarkable

onlusion, namely that the standard Minkowski vauum 


M

orresponds to a thermal state in

the new onstrution. This means, that an aelerated observer will feel himself to be immersed in

a thermal bath of partiles with temperature proportional to his aeleration a,

kT = �ha=2�:

The temperature tends to zero in the limit in whih Plank's onstant h tends to zero. Suh a

radiation has non-zero entropy. Sine the use of a aelerated frame seems to be unrelated to any

statistial average, the appearane of a non-vanishing entropy is rather puzzling.

The Unruh e�et shows, that at the quantum level there is deep relation between the theory of

relativity and the theory of utuations assoiated with states of thermal equilibrium, two major

aspets of Einstein's work: The distintion between quantum zero-point and thermal utuations

is not an invariant one, but depends on the motion of the observer.

The Unruh e�et was disovered in an attempt to gain more insight into the nature of the Hawking

radiation [5℄. Let us now onsider a one-parameter family of Lorentz boosts in the 1-diretion.

Sine x

2

and x

3

are not hanged by suh boosts, we need only onsider the hange of the �rst two

oordinates x = (T;X)

t

:

x =

�

osh(au) sinh(au)

sinh(au) osh(au)

�

x(0) = e

!u

x(0); (!

�

�

) =

�

0 a

a 0

�

:

Sine _x(u) = !x(u), the orbits are tangential to the Killing �eld

� = !x = a

�

X

T

�

with (�; �) = �a

2

(x; x):

Some typial orbits are depited in the �gure (3.1). The Killing �eld is timelike in the regions R;L

and spaelike in the regions F; P . It is timelike future direted in the Rindler wedge R, de�ned by

X � jT j � 0. Sine

(�x; �x) = a

4

(x; x) = �a

2

(�; �);

where dot is the derivative with respet to the variable u assoiated to the Killing �eld �, the

observers following orbits of � all undergo uniform aeleration, although this aeleration varies

from orbit to orbit. Sine on the orbit with (�; �) = 1 or (x; x) = �1=a

2

is a, it is onventional

to view the orbits of � as orresponding to a family of observers naturally assoiated with an

observer who aelerates uniformly with aeleration a. The notion of 'partiles' obtained from
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Abbildung 3.1: A Rindler-observer sees only a quarter of Minkowski spae

this quantum �eld onstrution are referred to as the 'partiles seen by an observer who undergoes

uniform aeleration a'.

All inextendible ausal urves through any point in the Rindler wedge interset the hyperplane

�

R

(see �gure (3.2)) and this hyperplane is therefore a Cauhy surfae for the globally hyperboli

Rindler wedge R.

The null plane h

A

in this �gure is a Killing horizon for R. Every partile whih has left the Rindler

wedge (through h

A

) annot return to it.

We oordinatize the wedge by the aÆne parameter u on the orbits and by the invariant 'distane'

(x; x) of the orbits from the origin. The latter is negative on the Rindler wedge and thus we set

(x; x) = �e

av

=a so that v 2 R and the aeleration on the orbit with v = 0 is a. The transformation

from x to (u; v) reads

T =

1

a

e

av

sinh au , X =

1

a

e

av

oshau;

where we took u = 0 for T = 0. The inverse transformation is

u =

1

a

artanh

T

X

and v =

1

2a

log a

2

�

X

2

� T

2

�

:

The Rindler wedge is overed by (u; v) 2 R

2

and the future event horizon has u =1. To make the

problem simple, we begin with a free zero-mass salar �eld � in 2-dimensional Minkowski spae.

The Lagrangian L and Hamiltonian H are given by

L =

1

2

1

Z

�1

h

�

��

�T

)

2

�

�

��

�X

�

2

i

dX; H =

1

2

1

Z

�1

h

�

2

+

�

��

�X

)

2

i

dX;
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Abbildung 3.2: A Cauhy surfae �

R

and the horizons.

where � = ��=�T is the momentum-�eld onjugate to �. At equal Minkowski time T , we have the

usual ommutation relation

[�(T;X); �(T;X

0

)℄ = iÆ(X �X

0

): (3.1)

The transition from Minkowski- to Rindler spae is a onformal transformation,

ds

2

= dx

�

dx

�

= e

2�

�

du

2

� dv

2

�

; where � = av;

and as a onsequene the Lagrangian and Hamiltonian in Rindler spae have the same form as in

Minkowski spaetime

~

L =

1

2

1

Z

�1

h

�

��

�u

�

2

�

�

��

�v

�

2

i

dX

~

H =

1

2

1

Z

�1

h

~�

2

+

�

��

�v

�

2

i

dX;

where now ~� = ��=�u. The equal-time ommutation relation in Rindler spae is
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[�(u; v); ~�(u; v

0

)℄ = iÆ(v � v

0

): (3.2)

The �eld equations in both M and R take on the idential forms

�

2

�

�T

2

�

�

2

�

�X

2

= 0 and

�

2

�

�u

2

�

�

2

�

�v

2

= 0:

In the Heisenberg piture, the expansions in terms of annihilation and reation operators are

�(T;X) =

Z

dk

p

2!

�

a

k

f

k

(t; x) + h::

�

; where f

k

=

1

p

2�

e

�i!t+ikx

; ! = jkj

and

�(u; v) =

Z

dp

p

2�

�

~a

p

~

f

p

(u; v) + h::

�

; where

~

f

p

=

1

p

2�

e

�i�u+ipv

; � = jpj:

From the equal time ommutators (3.1) and (3.2) one derives the following ommutation relation

for the annihilation and reation operators

[a

k

; a

y

k

0

℄ = Æ(k � k

0

); [a

p

; a

y

p

0

℄ = Æ(p� p

0

); [a

k

; a

k

0

℄ = [a

p

; a

p

0

℄ = 0:

The vauum state in Minkowski spaetime is haraterized by

a

k




M

= 0 for all k

Assuming that this is the state of the system, the expetation value of the oupation number as

de�ned by the Rindler observer, n

p

� a

y

p

a

p

, is found to be

�




M

; n

p




M

�

= volume�

1

e

2��=a

� 1

: (3.3)

Thus for an aelerated observer the quantum �eld seems to be in an equilibrium state with

temperature proportional to a. This puzzling result is the Unruh e�et. We now give a proof of

this important result.

First we express the annihilation and reation operators in Rindler spae in terms of the �eld

operator and its u-derivative as

1

p

2�

�

~a

p

e

�i�u

+ ~a

y

�p

e

i�u

�

=

1

p

2�

1

Z

�1

dv �(u; v)e

�ipv

i

r

�

2

�

� ~a

p

e

�i�u

+ ~a

y

�p

e

i�u

�

=

1

p

2�

1

Z

�1

dv

��(u; v)

�u

e

�ipv

:

We insert the expansion of the �eld operator in terms of the reation and annihilation operators

in Minkowski spaetime. Using, that at u = 0

T = 0; X =

1

a

e

av

;

�T

�u

= e

av

and

�X

�u

= 0
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one arrives at the following Bogolubov transformation relating (a

k

; a

y

k

) with (~a

p

; ~a

y

p

):

~a

p

+ ~a

y

�p

=

1

Z

�1

dvdk

r

�

!

�

a

k

f(k; p; v) + a

y

k

f(�k; p; v)

�

~a

p

� ~a

y

�p

=

1

Z

�1

dvdk

r

!

�

�

a

k

f(k; p; v)� a

y

k

f(�k; p; v)

�

e

av

:

We have introdued the funtion

f(k; p; v) =

1

2�

exp

�

i[

k

a

e

av

� pv℄

�

:

The Bogolubov transformation an be solved for the annihilation operators in Rindler spae:

~a

p

=

Z

dkdv

�

�

r

�

!

+

r

!

�

e

av

�

a

k

f(k; p; v) +

�

r

�

!

�

r

!

�

e

av

�

a

y

k

f(�k; p; v)

�

:

Setting y = exp(av) and using the formula

1

Z

0

dx x

��1

e

�(�+i�)x

= �(�)(�

2

+ �

2

)

��=2

e

�i� artan(�=�)

valid for � � 0 and 0 < � < 1 we �nd for � ! 0

Y (k; p) =

Z

dvf(k; p; v) =

1

2�a

Z

dye

iky=a

y

�1�ip=a

=

(

1

2�a

�

!

a

�

ip=a

�(�

ip

a

)e

�p=2a

if k > 0

1

2�a

�

!

a

�

ip=a

�(�

ip

a

)e

��p=2a

if k < 0.

Analogously, one �nds

Z

dv e

av

f(k; p; v) =

p

k

Y (k; p):

A short alulation shows that

~a

p

= 2

1

Z

0

r

�

!

�

Y (k; p)a

k

+ Y (�k; p)a

y

k

�

; p > 0

~a

p

= 2

1

Z

0

r

�

!

�

Y (�k; p)a

�k

+ Y (k; p)a

y

�k

�

; p < 0:

Using the ommutator-relation for the a

k

and a

y

k

0

and that the a

k

annihilate the Minkowski vauum

allows us to alulate the expetation value (


M

; n

p




M

). Using �nally that

j�(iy)j

2

= �(iy)�(�iy) =

�

y sinh(�y)
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one �nds the following expression for this expetation value

(


M

; n

p




M

) �

1

e

2��=a

� 1

: (3.4)

We will ome bak to the Unruh e�et and its physial interpretation later on.

3.1.1 Bogolubov Transformations

Using the Klein-Gordon �eld equation it is easily seen, that the inner produt

(u

1

; u

2

) � i

Z

�

�

�u

1

n

�

r

�

u

2

� (n

�

r

�

�u

1

)u

2

�

p

h d

3

x

is onserved for two (omplex) solutions. Here � is some spaelike Cauhy hypersurfae in spae-

time, n

�

is the future direted unit-vetor �eld normal to � and h

��

the indued metri on the

hypersurfae. This inner produt will not be positive de�nite for boson �elds. Let us introdue a

omplete set of onjugate pairs of solutions (u

k

; u

y

k

) of the Klein-Gordon equation

1

satisfying the

following orthonormality onditions

(u

k

; u

k

0

) = Æ(k; k

0

)) (�u

k

; �u

k

0

) = �Æ(k; k

0

) (u

k

; �u

k

0

) = 0:

There will be an in�nity of suh sets. Now we expand the �eld operator in terms of these modes:

� =

Z

d�(k)

�

a

k

u

k

+ a

y

k

�u

k

�

;

so that

(u

k

; �) = a

k

and (�u

k

; �) = �a

y

k

:

By using the anonial ommutation relations it is then easy to show that the operator oeÆients

(a

k

; a

y

k

) satisfy the usual ommutation relations.

If (v

p

; �v

p

) is a seond set of basis funtions we may as well expand the �eld operator in terms of

this set

� =

Z

d�(p)

�

b

p

v

p

+ b

y

p

�v

p

�

:

The seond set will be linearly related to the �rst one by

v

p

=

Z

d�(k)

�

(u

k

; v

p

)u

k

� (�u

k

; v

p

)�u

k

�

=

Z

d�(k)

�

�(p; k)u

k

+ �(p; k)�u

k

�

�v

p

=

Z

d�(k)

�

(u

k

; �v

p

)u

k

� (�u

k

; �v

p

)�u

k

�

=

Z

d�(k)

�

�

�(p; k)u

k

+ ��(p; k)�u

k

�

:

1

the k are any labels, not neessarily the momentum
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The inverse transformation reads

u

k

=

Z

d�(p)

�

v

p

��(p; k)� �v

p

�(p; k)

�

�u

k

=

Z

d�(p)

�

� v

p

�

�(p; k) + �v

p

�(p; k)

�

:

If the �(k; p) vanish the 'vauum' is left unhanged, but if they do not vanish we have a nontrivial

Bogolubov transformations

( a a

y

) = ( b b

y

)

�

� �

�

� ��

�

and

�

b

b

y

�

=

�

�� �

�

�

�� �

��

a

a

y

�

:

(3.5)

whih mixes the annihilation and reations operators. If one de�nes a Fok spae and a 'vauum'

orresponding to the �rst mode expansion,

a

k




u

= 0;

then the expetation of the number operator b

y

p

b

p

de�ned with respet to the seond mode expan-

sion is

�




u

; b

y

p

b

p




u

�

=

Z

d�(k)j�(p; k)j

2

:

That is, the old vauum ontains new partiles. It may even ontain an in�nite number of new

partiles, in whih ase the two Fok spaes annot be related by a unitary transformation.

3.1.2 Green funtions

The Green funtions of the Klein-Gordon operator, generially denoted by G(x; x

0

), are solutions

of

(2+m

2

)G(x; x

0

) = Æ

4

(x� x

0

) (3.6)

and allow for a solution of the Klein-Gordon equation with soures:

(2+m

2

)�(x) = j(x) =) �(x) = �

(0)

(x) +

Z

d

4

x

0

G(x; x

0

)j(x

0

);

where �

(0)

obey the homogeneous equation and is hosen in suh a way that � satis�es the boundary

onditions.

Making use of translation invariane, (3.6) is solved through a Fourier transformation. Setting

G(�) =

1

(4�)

2

Z

d

4

p e

�ip�

~

G(p)

we get

(�p

2

+m

2

)

~

G(p) = 1:
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In lassial �eld theory the retarded and advaned Green funtions

2

G

ret

adv

(x) = �

1

(2�)

4

Z

d

4

p

e

�ipx

(p

0

� i�)

2

� ~p

2

�m

2

play an important role. These distributions are Lorentz invariant. G

ret

vanishes outside the forward

light one and G

adv

outside of the bakward light one. Both Green funtions are real, with

G

adv

(x) = G

ret

(�x). For massless partiles

G

ret

adv

(x) =

1

2�

�(�x

0

)Æ(x

2

):

The mass term is responsible for the fat that the support is not onentrated on the light one,

but also involves signals propagating at a speed smaller than one.

These Green funtions an be gotten from the Pauli-Jordan (Shwinger) funtion

iG(x; x

0

) =

�




M

; [�(x); �(x

0

)℄


M

�

as follows

G

ret

(x; x

0

) = ��(t� t

0

)G(x; x

0

) and G

adv

(x; x

0

) = �(t

0

� t)G(x; x

0

):

G is the di�erene of its positive and negative frequeny parts,

iG = G

+

�G

�

;

and these parts are just the Wightman funtions

G

+

(x; x

0

) = (


M

; �(x)�(x

0

)


M

) and G

�

(x; x

0

) = (


M

; �(x

0

)�(x)


M

):

In the quantum theory one enounters another solution to the same equation, �rst introdued by

Stuekelberg and Feynman:

iG

F

(x; x

0

) =

�




M

; T

�

(�(x)�(x

0

)

�




M

�

=

i

(2�)

4

Z

d

4

p

e

�ipx

p

2

�m

2

+ i�

:

Contrary to the retarded and advaned Green funtions G

F

is omplex and has an exponential

tail for negative x

2

. In terms of the Wightman funtions it is

iG

F

= �(t� t

0

)G

+

(x; x

0

) + �(t

0

� t)G

�

(x; x

0

):

The Feynman propagator G

F

obeys the di�erential equation

(2+m

2

)G

F

(x; x

0

) = �Æ(x� x

0

):

For massless partiles the Feynman propagator and Hadamard's elementary funtion G

(1)

= G

+

+

G

�

beome

2

better: distributions
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G

F

(x; x

0

) =

i

4�

2

1

�

2

� i�

and G

(1)

(x; x

0

) = �

1

2�

2

�

2

;

(3.7)

where � = x� x

0

. For massive �eld the Feynman propagator is given in term of Hankel funtions.

In urved spaetime some, but not all, of these Green funtions are intrinsially determined by the

manifold. The Pauli-Jordan ommutator funtion

iG(x; x

0

) =

�




M

; [�(x); �(x

0

)℄


M

�

is a -number alulable from �eld equation and the anonial ommutation relations. The retarded

and advaned Green funtions are uniquely de�ned by the purely geometrial restritions on their

supports. However, the positive frequeny part of G, i.e. the Wightman funtion, requires for its

de�nition either a distinguished vauum vetor of a notion of positive frequeny. These elements

are either absent (for time-dependent models) or ambiguous (as in Rindler spaetime). Similar

remarks apply to the Feynman propagator.

3.2 The KMS ondition

Consider an arbitrary quantum mehanial system with time-independent Hamiltonian H . The

time evolution of an observable, represented by A, in the Heisenberg piture is

A(z) = e

izH

Ae

�izH

;

where z = t+i� is a omplex time. If � = 0 then this is the time-evolution in a stati spaetime with

Lorentzian signature, if t = 0 then it is the time-evolution in the orresponding stati spaetime

with eulidean signature. If exp(��H); � > 0 is trae lass, one an de�ne the equilibrium state of

temperature T = 1=�:

hAi

�

=

1

Z

tr e

��H

A; Z = tr e

��H

:

(3.8)

For two observables A and B we de�ne the thermal expetation values

G

�

+

(z; A;B) = hA(z

2

)B(z

1

)i

�

=

1

Z

tr

�

e

��H

e

iz

2

H

Ae

�i(z

2

�z

1

)H

Be

�iz

1

H

�

=

1

Z

tr

�

e

i(z+i�)H

Ae

�izH

B

�
(3.9)

and

G

�

�

(z; A;B) = hB(z

1

)A(z

2

)i

�

=

1

Z

tr

�

e

��H

e

iz

1

H

Be

�i(z

1

�z

2

)H

Ae

�iz

2

H

�

=

1

Z

tr

�

Be

izH

Ae

�i(z�i�)H

�
(3.10)

where we have used the yliity of the trae and introdued z = z

2

� z

1

. Both exponents in (3.9)
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have negative real parts if �� < � < 0; for (3.10) the ondition is 0 < � < �. Therefore, these two

formulas de�ne holomorphi funtions in those respetive strips. G

�

�

(t; A;B) are their boundary

values. From (3.9,3.10) it follows immediately, that

G

�

�

(z; A;B) = G

�

+

(z � i�; A;B)

(3.11)

For z = t this reads

hBA(t)i

�

= hA(t� i�)Bi

�

:
(3.12)

Condition (3.11) is alled the KMS ondition after Kubo, Martin and Shwinger [9℄. It an be

given a preise sense in terms of C

�

algebras and their states for systems for whih exp(��H)

is not trae-lass. The KMS-ondition is now aepted as a de�nition of 'thermal equilibrium at

temperature 1=�'.

So far the analyti funtions G

�

have been de�ned in disjoint, adjaent trips in the omplex time

plane. The KMS-ondition states that one of these is the translate of the other and this allows

us to de�ne a periodi funtion throughout the omplex plane, with the possible exeption of the

lines � = =(z) = n�. Suppose, that

[A(t); B℄ = 0 for t 2 I � R:

Then the boundary values of G

�

+

and G

�

�

oinide on I and we onlude (by the edge-of-the-wedge

theorem) that G

�

�

are restritions of a single holomorphi, periodi funtion, G

�

(z; A;B), de�ned

in a onneted region in the omplex time plane exept parts of the lines � = n�.

3.3 Stati spaetimes

In a stati spaetime we may hoose oordinates, suh that the metri has the form

(g

��

) =

�

g

00

0

0 g

ij

�

with time-independent entries. Suh a metri is onformally equivalent to a ultra-stati metri ĝ

��

,

g

��

= g

00

ĝ

��

= g

00

�

1 0

0 �h

ij

�

:

Sine

2

g

+m

2

= g

�(d+2)=4

00

�

2

ĝ

+ g

00

m

2

+ urvature terms

�

g

(d�2)=4

00

the Klein-Gordon equation

(2

g

+m

2

)� = 0

is equivalent to
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�

2

�t

2

u = Ku; where K = �4

ĝ

+ V (~x) and � = (g

00

)

(2�d)=4

u:

(3.13)

The solutions of this equation have the form

u

�

(t; ~x) = e

�i!

�

t

 

�

(~x)

where the  

�

are normalized eigenfuntions of the hermitian operator K:

K 

�

= !

2

�

 

�

:

The onserved Klein-Gordon inner produt

(�

�

1

; �

�

2

) � i

Z

�

�

�

y

�

1

n

�

r

�

�

�

2

� ..

�

q

� det(g

ij

) d

3

x

is then proportional to the L

2

-salar produt on the hypersurfaes t =onstant:

(�

�

1

; �

�

2

) = 2!

�

Z

d

3

x

p

h  

y

�

1

 

�

2

= 2!

�

h 

�

1

;  

�

2

i:

The Green funtions of the �eld operator

�(x) =

X

1

p

!

�

�

 

�

e

�i!

�

t

a

�

+  

y

�

e

i!

�

t

a

d

�

agger

(3.14)

namely

G

1

+

(t; x; y) = h0j�(x)�(y)j0i =

X

 

�

(~x) 

y

�

(~y)e

�i!

�

t

G

1

�

(t; x; y) = h0j�(y)�(x)j0i =

X

 

�

(~y) 

y

�

(~x)e

i!

�

t

;

where t = x

0

� y

0

, are eah analyti funtion on a half plane. G

+

is analyti in z = t+ i� for � < 0

and G

�

for � > 0. The distributions G

1

�

are boundary values of these analyti funtions as the

real axis is approahed from their respetive diretions. If ~x 6= ~y then the x and y will be spaelike

for suÆiently small t = x

0

� y

0

. Sine �(x) and �(y) must ommute for spaelike separated x; y,

we have

G

1

+

(z; ~x; ~y) = G

1

�

(z; x; y)

for z on a ertain interval (�d; d) of the real axis. Therefore, eah of these funtions is an analyti

ontinuation of the other. That is, for �xed ~x 6= ~y there is a single holomorphi G

1

(z; ~x; ~y), de�ned

on a onneted region of the omplex time plane, suh that

G

1

(z; ~x; ~y) =

�

G

1

+

(z; ~x; ~y) if =(z) < 0

G

1

�

(z; ~x; ~y) if =(z) > 0,

and both equalities hold on the interval on the real axis. In general there will be branh uts along

the real axis from z = �d to z = �1. On the imaginary axis

G

1

(�; ~x; ~y) = G

1

(i�; ~x; ~y) =

X

 

�

(~x) 

y

�

(~y) e

�!

�

j� j
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and this eulidean Green funtion (often alled two-point Shwinger funtion) is the unique solution

of

�

�

2

��

2

+K)G

1

(x; y) = Æ(�)Æ(~x � ~y)

1

p



; � = x

0

� y

0

;

whih deays for j� j ! 1.

G_

G+ +

euclidean time

real time

τ

tG_

G

d-d

Abbildung 3.3: The various two-point funtions are boundary values of the analyti G

1

.

3.3.1 Flat spaetime

For simpliity we onsider a massless �eld. Then

G

1

(�;

~

�) =

1

4�

2

1

�

2

+

~

�

2

;

~

� = ~x� ~y

from whih follows, that

G(z;

~

�) = �

1

4�

2

1

z

2

�

~

�

2

:

From this we read of, that

�4�

2

G

1

+

(x; y) =

(

�

(x � y)

2

� i�

�

�1

if x

0

> y

0

�

(x � y)

2

+ i�

�

�1

if x

0

< y

0

,
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and

�4�

2

G

1

�

(�;

~

�) =

(

�

(x � y)

2

+ i�

�

�1

if x

0

> y

0

�

(x � y)

2

� i�

�

�1

if x

0

< y

0

.

All other Green funtions are obtained similarly. For example, the Feynman-Greenfuntion

i�

F

(x; y) = h0jT

�

�(x)�(y)

�

j0i

is

�

F

(x; y) =

i

4�

2

1

(x � y)

2

� i�

:

Appliation to the Rindler wedge Let p and p

0

be two events on the world line of an aelerated

observer with �xed v. The event p happens at Rindler time u and the earlier event p

0

at Rindler

time u

0

. Expressed in Rindler oordinates, the invariant distane between p and p

0

is

(�T )

2

� (�X

1

)

2

=

4

a

2

e

2av

sinh

2

a

2

(u� u

0

)

and the free massless Feynman propagator, used by an inertial observer, is

G

F

(p; p

0

) =

i

16�

2

a

2

e

�2av

1

sinh

2

a

2

(u� u

0

)� i�

:

(3.15)

Now let us rewrite the right hand side. First, speializing the results for the massless Feynman

propagator to points on the world line of an aelerated observer, we immediately obtain

Z

d

4

p e

�iE(u�u

0

)

i

p

2

+ i�

= �

4�

2

(u� u

0

)

2

� i�

:

Now we integrate in

Z

d

4

p e

�iE(u�u

0

)

2�Æ(p

2

)

e

�jEj

� 1

over p

0

= E, introdue polar oordinates, and expand the resulting denominator in powers of e

��p

.

This way the integral beomes

4�

2

1

Z

0

dp

p

e

�p

� 1

�

e

ip(u�u

0

)

+ e

�ip(u�u

0

)

�

= �4�

2

X

n6=0

1

(u� u

0

+ in�)

2

:

With

a

2

4

1

sinh

2

a

2

(u� u

0

)� i�

=

1

(u� u

0

)

2

� i�

+

1

X

n6=1

1

(u� u

0

+ in�)

2

;

where � = 2�=a, we �nally end up with the following spetral representation of the Feynman-

propagator as seen by the Rindler observer
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G

F

(p; p

0

) =

e

�2av

(2�)

4

Z

d

4

p e

�iE(u�u

0

)

�

1

p

2

+ i�

� 2�i

Æ(p

2

)

e

�jEj

� 1

�

:

(3.16)

This is the �nite temperature propagator. It follows, that, in equilibrium, atoms dragged along the

world line �nd their exited levels populated as predited by temperature �

�1

= a=2�.

The propagator is a sum of amplitudes for the path onneting p with p

0

. We shall ontinue to

Eulidean spaetime, in whih

G

E

(p; p

0

) = hX j

1

�4

jX

0

i =

1

Z

0

ds hX je

s4

jX

0

i =

1

Z

0

ds

Z

DX

�

exp

�

�

1

4

s

Z

0

_

X

2

�

;

where the paths start at p

0

and end at p. The path integral splits into piees, eah piee orrespon-

ding to an integration over paths whose projetion on the X

0

; X

1

plane winds n times around the

origin. If p; p

0

lie in the X

0

; X

1

plane, then

p

p 

F

P

RL

Abbildung 3.4: Path orresponding to winding number +2 and 0

Z

DX

�

e

�

1

4

R

_

X

�

_

X

�

=

1

4�s

X

n

Z

DX Æ(n(X)�n��) exp

�

�

1

4

s

Z

0

_

X

2

�

;

where the last path integral is only over path in the (X

0

; X

1

) plane,

n(X) =

Z

s

0

X

0

_

X

1

�X

1

_

X

0

X

2

0

+X

2

1

is the winding number of the path X(s) and � the angle between its endpoints. The path integral

for path with �xed windings an be alulated and then ontinued bak to Minkowski spaetime.
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The result is

G

n

[(u; v; 0; 0); (u

0

; v

0

; 0; 0)℄ = �

1

4�

2

1

e

2av

� e

2av

0

1

(u� u

0

� in�)

2

:

Speializing to the two events on the world line of an observer with v = 0, one has the result

G

n

[(u; 0; 0; 0); (u

0

; 0; 0; 0)℄ = �

1

4�

2

1

(u� u

0

� in�)

2

:

whih is what we wanted to show. Let us interpret the result for winding number 2 in �gure (3.4).

Limiting ourselves to the Rindler wedge, we see a line being absorbed at p

0

oming from u = �1,

one being emitted at p going to u = 1 and an extra spetator going from u = �1 to u = 1.

This an be extended to general values of n.

Earlier on we have already argued, that the Feynman propagator requires for its de�nition either

a distinguished vauum or a notion of positive frequeny. Hene, the diÆulty with the Unruh-

e�et annot be resolved merely by shifting attention from annihilation-reation operators to Green

funtions. Indeed, we have just seen that the two methods yield the same result: an aelerated

observer will 'see' thermal radiation, even though the �eld � is in the vauum state 


M

and an

inertial observer detets no partiles. Sine both the aelerated and unaelerated observer agree

that the stress-energy-momentum of � vanishes this has led to the desription 'quasi' or '�tious'

partiles for the quanta that exite the aelerated detetor. Later we shall reonsider the Unruh

e�et and will have to say more about interpretational issues.

3.4 Quantum Fields in Curved Spaetime

Sine no analog of either a plane wave basis or a hoie of a 'positive frequeny subspae' is available

in a general urved spaetime, we reformulate quantum �eld theory without using a plane wave

expansion. A partile interpretation an be given in a stationary, urved spaetime. But in a general,

non-stationary spaetime, the states of the quantum �eld will not possess a physially meaningful

partile interpretation. It is neessary, that the ausal struture of spaetime is well behaved so

that the spae of lassial solutions have the same basi struture as in Minkowski spaetime. The

onditions of global hyperboliity ensures that this is the ase.

In an arbitrary urved spaetime, the properties of the lassial solutions an be very di�erent

form those in Minkowski spaetime. Let us have a look at two examples:

1. LetM be a at 4-torus, with spatial periodiity L and time periodiity T . Then exp(�i!t+

i

~

k~x) is a periodi solution of the Klein-Gordon equation with m = 0 only if

! =

2�m

0

T

;

~

k =

2�~m

L

and

m

2

0

T

2

=

~m

2

L

2

; where m

�

2 Z:

Thus, for irrational T

2

=L

2

only the solution � =onstant is admitted.

2. Consider any spaetime with a 'timelike singularity'. Sine anything an emerge from suh

a singularity, uniqueness for solutions of the �eld equation with given initial onditions on a

spaelike hypersurfae annot hold.
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Fortunately, there is a simple ondition on (M; g

��

) whih guarantees that the �eld equations have

a well posed initial value formulation. First, we assume that spaetime is time orientable, suh that

a ontinuous hoie an be made throughout spaetime of whih half of eah light one onstitutes

the 'future' diretion and whih half the 'past'. Let � �M be ahronal hypersurfae

3

. We de�ne

the domain of dependene of � by

D(�) = fp 2 Mjevery inextendible ausal urve through p intersets �g:

Reall, that a urve is ausal if its tangent is everywhere either timelike or null. If D(�) =M, then

� is alled a Cauhy surfae for the spaetime (whih is automatially C

0

.) IfM admits a Cauhy

surfae, then it is said to be globally hyperboli. Then the following theorem, due to Geroh (1970),

holds:

Theorem If (M; g

��

) is globally hyperboli with Cauhy surfae �, thenM has topology R��.

Furthermore, M an be foliated by a one-parameter family of smooth Cauhy surfaes �

t

, i.e. a

smooth 'time oordinate' t an be hosen on M suh that eah surfae of onstant t is a Cauhy

surfae.

In a globally hyperboli spaetime with smooth, spaelike Cauhy surfae � there is a well posed

initial value problem for the Klein-Gordon equation (Hawking and Ellis 1973): Given smooth initial

data �

0

;

_

�

0

2 C

1

(�), then there exists a unique solution � of (3.17), de�ned on all of M, suh

that on � we have

� = �

0

and n

�

r

�

� =

_

�

0

;

where n

�

is the unit future-direted normal to �. In addition, � is smooth and varies ontinuously

with the initial data.

The lassial ation of a minimally oupled salar �eld without self-interation is is

S

�

=

1

2

Z

�

�

g

��

�

�

��

�

��m

2

�

2

�

; � =

p

�gd

4

x

and the urved spaetime version of the Klein-Gordon equation reads

r

�

r

�

�+m

2

� = 0:
(3.17)

For the phase-spae formulation of the Klein-Gordon �eld we introdue a 'sliing' ofM by spaelike

Cauhy surfaes �

t

. Let n

�

be the unit normal vetor �eld to the hypersurfaes �

t

. The spaetime

metri g

��

indues a spatial (three-dimensional Riemannian) metri (�h

��

) on eah �

t

by the

formula

h

��

= n

�

n

�

� g

��

:

Let t

�

be a 'time evolution' vetor �eld onM satisfying t

�

r

�

t = 1. We deompose it into its parts

normal and tangential to �

t

,

t

�

= g

��

t

�

= n

�

(n; t)� h

��

t

�

� Nn

�

�N

�

;

3

No pair of points p; q 2 � an be joined by a timelike urve.
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Σ t 2
n

n
µ

µ
0 0

.

Σ t 1

tµ

N µ

µ
Nn

(Φ  , Φ  )

µν(M , g )
Φ (x)

Abbildung 3.5: A globally hyperboli spaetime with Cauhy hypersurfae has a

well-posed initial value problem. 3+1 split.

where we have de�ned the lapse funtion N = (n; t) and the shift vetor N

�

= h

��

t

�

tangential

to the �

t

. Now we introdue loal oordinates x

�

= (t; x

i

); i = 1; 2; 3 with t

�

r

�

x

i

= 0, so that

t

�

r

�

= �

t

and N

�

�

�

= N

i

�

i

. The metri oeÆients in this oordinate system are

g

00

= g(�

t

; �

t

) = t

�

t

�

g(�

�

; �

�

) = N

2

+N

i

N

i

g

0i

= g(�

t

; �

i

) = N(n

�

�

�

; �

i

)�N

�

(�

�

; �

i

) = N

j

h

ji

� N

i

;

so that

(g

��

) =

�

N

2

+N

i

N

i

N

i

N

i

�h

ij

�

and (g

��

) =

1

N

2

�

1 �N

i

�N

i

N

i

N

j

�N

2

h

ij

�

:

The determinant of the metri is det(g

��

) = N

2

det(�h

ij

). Inserting these deompositions into the

Klein-Gordon ation one obtains

S =

Z

Ldt

with

L =

1

2

Z

�

t

n

1

N

2

�

_

��N

i

�

i

�

�

2

+ h

ij

�

i

��

j

��m

2

�

2

�o

N

p

hd

3

x:

We �nd that the momentum density, �, onjugate to the on�guration variable � on �

t

is given

by

� =

ÆS

Æ

_

�

=

p

h

N

�

_

��N

i

�

i

�

�

=

p

h

�

n

�

�

�

�

�

:

69



A point in lassial phase spae P of the Klein-Gordon theory onsists of the spei�ation of

funtions (�(x); �(x)) on a Cauhy surfae �

0

. If we speify P preisely by requiring that (�; �) 2

C

1

0

(smooth and of ompat support) then, by the result of Hawking and Ellis above, they give

rise to a unique solution to (3.17). The spae of solutions S is independent on the hoie of the

Cauhy surfae.

3.4.1 Stationary Spaetimes

At least tehnially one may generalize the well-known at spaetime onstrution of a Fok spae

if spaetime is stationary, i.e. possesses a global timelike Killing vetor �eld K whih generates a

ow of isometries. Then we may hoose basi funtions u

k

that satisfy

iL

K

u

k

= !(k)u

k

and iL

K

u

y

k

= �!(k)uy

k

;

where the !(k) > 0 are onstant. If K

�

is globally timelike, then one may introdue a oordinate

t upon whih the metri does not depend and with respet to whih K

�

takes the form K = �

t

.

The ovariant omponents of K are K

�

= g

�0

. Sine ds

2

= g

00

dt

2

+ : : : = (K;K)dt

2

+ : : :, the

oordinate t is in general not the proper time of observers moving with the ow of K. However,

sine

r

K

(K;K) = 2K

�

K

�

r

�

K

�

= K

�

K

�

L

K

g

��

= 0;

the norm ofK is onstant along the orbits ofK. Therefore we may saleK suh that t gives diretly

the proper time measured by at least one o-moving lok. The !(k) are the frequenies relative

to that lok. and the u

k

and u

y

k

are the positive and negative frequeny solutions, or positive and

negative energy solutions, respetively. Now the onstrution of the vauum, one-partile spae

and Fok spae is done in the usual way:

Gibbons

4

has given the following ovariant onstrutions: The quantity

T

K

=

Z

�

T

��

K

�

d�

�

is onserved on aount of the Killing equation and ovariant onservation of the energy-momentum

tensor. Although it is an ill-de�ned operator, it possesses well de�ned ommutation relations with

the omponents of the �eld

[T

K

; �℄ = iL

K

�:

One an make T

K

well de�ned, by normal ordering it with respet to the above hosen a and a

y

,

E =

Z

�

: T

��

: K

�

d�

�

:

The vauum will then be the zero referene point for energy

E
 = 0:

4

G.W. Gibbons, 1974
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The a and a

y

will be energy-raising and lowering operators

[E; a

k

℄ = �!(k)a

k

:

If there is another Killing vetor L that ommutes with K,

[K;L℄ = 0() [L

K

; L

L

℄ = 0;

then the basis funtions may be hosen so as to satisfy also

iL

L

u

k

= �(k)u

k

;

where the �(k) are onstants. The a

k

and a

y

k

then beome raising and lowering operators for the

assoiated quantity

T

L

=

Z

�

: T

��

: L

�

d�

�

;

i.e.

[T

L

; a

k

℄ = �(k)a

k

:

More generally, if there is a set of independent Killing vetors generating a Lie algebra, the u

k

may

be seleted to yield a irreduible representation of that algebra.

Problems with this proedure:

1. There may be no Killing vetor at all. One probably has to give up the partile piture in

this generi situation.

2. There may be a global Killing vetor, but it may not be everywhere timelike. Then one

may exlude the non-timelike region from spae time. This orresponds to the imposition

of boundary onditions. One may also try to retain the non-timelike region but attempt to

de�ne a meaningful vauum by invoking physial argument.

3. Spaetime may be stationary only in limited regions. If eah region possesses a omplete

Cauhy hypersurfae, then a loal timelike Killing �eld may be set up in eah and a vauum

de�ned for eah. With respet to the basis funtion of whih region should the stress tensor

be normal ordered? It is not possible to de�ne the stress tensor so that (a) it is normal

ordered in both regions (b) its matrix elements are smooth funtions, and () it satis�es the

divergene equation

T

��

;�

= 0

everywhere.
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3.4.2 The energy inner produt

The following onstrution is do to Ashtekar and Magnon and to Kay

5

. Let

S =

Z

d�

�

1

2

g

��

�

�

��

�

�� V (�)

�

=

Z

d�L; d� =

p

jgjd

d

x

be the ation of a salar �eld. Using

Æ

p

jgj =

1

2

p

jgjg

��

Æg

��

= �

1

2

p

jgj Æg

��

g

��

;

one easily �nds for the variation of the ation

ÆS =

Z

d�

�

1

2

�

�

��

�

��

1

2

g

��

L

�

Æg

��

;

and the metri stress-energy tensor

T

��

=

2

p

jgj

ÆS

Æg

��

has the simple form

T

��

= �

�

��

�

�� g

��

L:

Being the variation of the ation with respet to the symmetri metri it is symmetri. Under a

in�nitesimal one-parameter group of di�eomorphism, the orbits of whih are tangential to the vetor

�eld X(x), the metri and �eld transform as Æg

��

= L

X

g

��

and Æ� = L

X

�. A di�eomorphism-

invariant ation does not hange under suh variations, so that

0 = Æ

X

S =

Z

d

d

x

ÆS

Æg

��

(x)

L

X

g

��

(x) +

Z

d

d

x

ÆS

Æ�(x)

L

X

�(x)

=

1

2

Z

d�T

��

�

r

�

X

�

+r

�

X

�

�

�

Z

d�

�

2�+ V

0

(�)

�

L

X

�

= �

Z

d�T

;�

��

X

�

�

Z

d�

�

2�+ V

0

(�)

�

L

X

�:

If the salar �eld ful�lls the �eld equation (is on shell) then the metri energy momentum ten-

sor is automatially onserved on aount of the di�eomorphism invariane of the ation. The

onservation of T

��

an also diretly be proved by using the Klein-Gordon equation.

Let S be the spae of solutions of the free Klein-Gordon equation. We omplexify S to S

C

and

de�ne an 'energy inner produt' as above

(�

1

; �

2

) =

Z

�

T

��

(�

1

; �

2

)K

�

n

�

p

hd

3

x

5

Ashtekar, A. (1975), Pro. Roy. So. London A346, 375; Kay, B. (1978), Commun. Math. Phys. 62, 55.
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where the bilinear-form de�ned by the 'stress tensor' is extended to S

C

as

T

��

(�

1

; �

2

) =

1

2

�

�

y

1

;

�

�

2

;

�

+�

y

1

;

�

�

2

;

�

�g

��

�

r�

y

1

r�

2

�m

2

�

y

1

�

2

�

�

:

We assume that m

2

> 0 so that (:; :) is positive for ompat �. Sine the �

i

are solutions of the free

Klein-Gordon equation, the stress tensor is onserved and sineK is a Killing �eldr

�

(T

��

K

�

) = 0.

Hene, using Gauss's law, we see that (:; :) is independent of the hoie of Cauhy surfae �. In

partiular, let

�

t

:M�!M

be the one-parameter group of isometries generated by the timelike Killing �eld K. Then (:; :) is

invariant under the time translation map �

�

t

: S

C

! S

C

de�ned by

�

�

t

(�) = � Æ �

t

or

�

�

�

t

(�)

�

(x) = �

�

�

t

(x)

�

;

sine applying �

�

t

to solutions is equivalent to applying �

t

to �. Next we omplete S

C

in the

'energy-norm' to get a omplex Hilbert spae

~

H (this is not yet the Hilbert spae we seek). The

time translation map �

�

t

extends to

~

H and de�nes a strongly ontinuous, one-parameter, unitary

group, also denoted by �

�

t

. By Stone's theorem

�

�

t

= e

i

~

ht

;

~

h selfadjoint.

Note, that from the de�nition of the Lie derivative,

d

dt

�

�

�

t

�

�

j

t=0

= �L

X

�

we have for all � 2 S

C

~

h� = iL

K

�:

Now we reall, that




�

[�

1

; �

1

℄; [�

2

; �

2

℄

�

=

Z

�

0

�

�

1

�

2

� �

2

�

1

�

d

3

x; � =

p

hn

�

r

�

�;

is onserved on solutions and hene may be viewed as bilinear map on S

C

, if we extend 
 by

(omplex) linearity in eah variable. Now one an prove, that

j
(�

y

1

; �

2

)j � Ck�

1

kk�

2

k

from whih follows, that 
(�

y

1

; �

2

) extends ontinuously to a quadrati form on

~

H. It an also be

shown, that


(�

y

1

;

~

h�

2

) = 2i(�

1

; �

2

);

and that

~

h is bounded away from zero. Now, let

~

H

+

be the positive spetral subspae of

~

H and let

K be the projetion map K :

~

H !

~

H

+

. For all real solutions we may now de�ne the salar produt

�(�

1

; �

2

) = =
(K�

1

;K�

2

) = 2<(K�

1

;

~

h

�1

K�

2

):
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 is onserved for solutions of the Klein-Gordon equation, so we may view it as a bilinear map on

S, i.e. 
 : S � S ! R.

The one-partile Hilbert spae H is just the ompletion of the spae

~

H

+

, of 'positive frequeny

solutions' in the Klein-Gordon inner produt. This onstrution avoids any diret attempt to take

the 'time Fourier transform' of solutions along the orbits of the Killing �eld. Suh Fourier transform

may exist only in a distributional sense.

3.5 The Stress-Energy Tensor

Beside the (smeared) �elds there are many additional operators in whih one is interested in

quantum theory. Primary among these is the stress-energy tensor. It is of interest sine it desribes

the loal energy, momentum and stress properties of the �eld. It is relevant for desribing the

bak-reation of the quantum �eld on the spaetime geometry. Semilassially one would expet

that bak-reation is desribed by the 'semilassial Einstein equation'

G

��

= 8�GhT

��

i

!

:

Thus, it is of onsiderable interest to determine the expetation value of the stress-energy tensor in

physially relevant states !. Some restritions should be expeted on the lass of states on whih

hT

��

i an be de�ned. We shall see that the Hadamard ondition provides a restrition of exatly

this sort of states.

3.5.1 Hadamard states

In the following we shall assume, that (M; g

��

) is globally hyperboli. Then the Cauhy problem

for the Klein-Gordon equation for any Cauhy surfae � has a unique solution. It follows, that

there are unique retarded and advaned Green funtions

�

ret

(x; y) , �

adv

(x; y) with supp(�

ret

) = f(x; y);x 2 J

+

(y)g:

Hadamard states are states, for whih the two-point funtion has the following singularity struture

!

�

�(x)�(y)

�

� !

2

(x; y) =

u

�

+ v log� + w; where

(3.18)

�(x; y) is the square of the geodesi distane of x and y and u; v; w are smooth funtions onM. It

has been shown that if !

2

has the Hadamard singularity struture in a neighborhood of a Cauhy-

surfae, then it has his form everywhere [6℄. To show that, one observes, that !

2

satis�es the wave

equation. This result an then be used to show, that on a globally hyperboli spaetime there is

a lass of states, forming a dense subspae of a Hilbert spae, whose two-point funtions have the

Hadamard singularity struture.

The two-point funtion must be positive,

!

�

�(f)

y

�(f)

�

=

Z

d�(x)d�(y)!

�

�(x)!(y)

�

�

f(x)f(y) � 0;
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and must obey the Klein-Gordon equation. These requirements determine u and v uniquely and

puts stringent onditions on the form of w

2

. The Feynman Greenfuntion is related to !

2

and the

retarded Greenfuntion as

i�

F

(x; y) = !

2

(x; y) + �

ret

(y; x):

Sine �

ret

is unique, the ambiguities of �

F

are the same as those of !

2

. The propagator funtion

i�(x; y) = [�(x); �(y)℄ = i�

ret

(x; y)� i�

adv

(x; y)

determines the antisymmetri part of !

2

,

!

2

(x; y)� !

2

(y; x) = i�(x; y);

so that this part is without ambiguities. For a salar �eld without self-interation we expet, that

!

�

�(x

1

) : : : �(x

n

)

�

= 0 for odd n

!

�

�(x

1

) : : : �(x

2n

)

�

=

X

i

1

<i

2

:::<i

n

j

1

<j

2

:::j

n

n

Y

k=1

!

�

�(x

i

k

)�(x

j

k

)

�

:

A state ful�lling these onditions is alled quasifree. Now one an show, that any hoie of !

2

(x; y)

ful�lling the properties listed above give rise to a well-de�ned Hilbert spae, i.e. a Fok spae over

a quasifree vauum state. The Hilbert spae is

H =

1

M

n=0

H

n

;

(3.19)

where the salar-produts on the 'n-partile subspae' H

n

in

H

n

= f 2 D(M

n

)

symm

=Ng

ompleteon

(3.20)

is just

( 

1

;  

2

) =

Z

d�(x

1

; ::; x

n

; y

1

; ::; y

n

)

n

Y

i=1

!

2

(x

i

; y

i

)

�

 

1

(x

1

; ::; x

n

) 

2

(y

1

; ::; y

n

);

where we introdued the abbreviation d�(x

1

; x

2

; ::) = d�(x

1

)d�(x

2

) : : :. Sine

(2+m

2

)!

2

(x; y) = 0;

the funtions in the image of 2 + m

2

have zero norm. The set N of zero-norm states has been

divided out in (3.20) in order to end up with a positive de�nite Hilbert spae.

The smeared �eld operator is now de�ned in the usual way:

�(f) = a(f)

y

+ a(

�

f);
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where

�

a(

�

f) 

�

n

(x

1

; ::; x

n

) =

p

n+ 1

Z

d�(x; y)!

2

(x; y)f(x) 

n+1

(y; x

1

; ::; x

n

)

�

a(f)

y

 

�

n

(x

1

; ::; x

n

) =

1

p

n

n

X

k=1

f(x

k

) 

n�1

(x

1

; ::; �x

k

; ::; x

n

); n > 0

and (a(f)

y

 )

0

= 0. It is now easy to see, that !

2

is just the Wightman funtion of � in the vauum

state  

0

:

!

2

(x; y) =

�

 

0

; �(x)�(y) 

0

�

:

3.5.2 The Wald axioms for the stress-energy tensor

The diÆulties with de�ning

hT

��

i

are present already in Minkowski spaetime. The divergenes are due to the zero-point energies of

the in�nite olletion of harmoni osillators whih omprise the quantum �eld. A simple ure for

this diÆulty is the normal ordering presription:

!

�

: T

��

:

�

= !

�

T

��

�

� (


M

; T

��




M

):

The so de�ned vauum expetation value of the stress-energy tensor vanishes. On urved spaetime

there is no satisfatory generalization of this presription sine there is

1. No preferred vauum state

2. Due to vauum polarization e�ets we do not expet that the stress-energy of the vauum

(assuming there is a natural one) vanishes.

To make progress let us look at an alternative formulation of the normal ordering presription

without doing the Fourier transformation. We �rst onsider the ill-de�ned objet �

2

(x), whih is

part of the stress-energy tensor. We may split the points and onsider �rst the objet !(�(x)�(y))

whih solves the Klein-Gordon equation. This bi-distribution makes perfetly good sense. For

physially reasonable states  in the Fok spae (e.g. states with a �nite number of partiles)

the singular behavior of this bi-distribution is the same as that belonging to the vauum state,

!

0

�

�(x)�(y)

�

: For suh states the di�erene

F (x; y) = !

�

�(x)�(y)

�

� !

0

�

�(x)�(y)

�

is a smooth funtion of its arguments. Hene, after performing this 'vauum subtration' the

oinidene limit may be taken. We then de�ne

!

�

�

2

(x)

�

= lim

x!y

F (x; y):
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The same presription an be used for the stress-energy tensor instead of �

2

. We de�ne

!

�

T

��

(x)

�

= lim

x!x

0

�

�

�

�

�

0

�

1

2

g

��

�

�

�

�

�

0

�m

2

�

�

F (x; x

0

):

After what has been said above, we do not believe that this is a physial de�nition of expetation

values of the stress-energy tensor. However, note that the point-splitting presription sensibly

de�nes the di�erenes of the expeted stress energy between two states,

!

1

�

T

��

�

� !

2

�

T

��

�

:

In the absene of an obvious presription to de�ne the expetation values, it is useful to take an

axiomati approah. Wald showed that a renormalized stress tensor satisfying ertain reasonable

physial requirements is essentially unique [7℄. Its ambiguity an be absorbed into rede�nitions

of the oupling onstants in the gravitational �eld equation. Wald argues that one expets this

operator to have the following properties:

1. Consisteny:Whenever !

1

(�(x)�(y))�!

2

(�(x)�(y)) is a smooth funtion, then !

1

(T

��

)�

!

2

(T

��

) is well-de�ned and should be given by the above 'point-splitting' presription.

2. Conservation: In the lassial theory the stress-energy tensor is onserved. If the regulari-

zation needed to de�ne a stress-energy tensor respets the di�eomorphism invariane, then

r

�

T

��

= 0

must also hold in the quantized theory. This property is needed for onsisteny of Einstein's

gravitational �eld equation.

3. In Minkowski spaetime, we have (


M

; T

��




M

) = 0:

4. Causality:We assume, that spaetime is asymptotially stati. For a �xed in-state, !

in

�

T

��

(x)

�

is independent of variations of g

��

outside the past light one of x. For a �xed out-state,

!

out

�

T

��

�

is independent of metri variations outside the future light one of x.

The �rst and last properties are the key ones, sine they uniquely determine the expeted stress-

energy tensor up to the addition of loal urvature terms. This fat is ontained in the

Uniqueness theorem (Wald): Let T

��

and

~

T

��

be operators on globally hyperboli spaetime

satisfying the axioms of Wald. Then the di�erene

U

��

= T

��

�

~

T

��

has the following properties.

1. U

��

is a multiple of the identity operator.

2. It is onserved, r

�

U

��

= 0.

3. It is a loal tensor of the metri. That is, it depends only on the metri and its derivatives,

via the urvature tensor, at the same point x.
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fixed initial geometry and state

µν (x) = 0

µνgδ

Tδ

Abbildung 3.6: Changes outside the past light one do not a�et hT

��

(x)i.

As a onsequene of the properties,

!(T

��

)� !(

~

T

��

)

is independent on the state ! and depends only loally on urvature invariants. The Causality

axiom an be replaed by a loality property, whih does not assume an asymptotially stati

spaetime. The proofs of these properties are rather simple and an be found in the standard

textbooks.

3.5.3 Calulating the stress-energy tensor

A 'point-splitting' presription where one subtrats from !(�(x)�(y)) the expetation value !

0

(�(x)�(y))

in some �xed state !

0

will ful�lls the onsisteny requirement, but annot ful�ll the �rst and

third axiom at the same time. However, if one subtrats a loally onstruted bi-distribution

H(x; y) whih satis�es the wave equation, has a suitable singularity struture and is equals to

(


M

; �(x)�(y)


M

) in Minkowski spaetime, then all four properties will be satis�ed.

To �nd a suitable bi-distribution one realls the singularity struture (3.18) of !

2

(x; y). In Min-

kowski spaetime and for massless �elds w = 0 and this suggests that we take the bi-distribution

H(x; y) =

U(x; y)

�

+ V (x; y) log�

The resulting stress-energy obeys almost all properties, besides that for massive �elds on Minkowski

spaetime we still �nd a non-vanishing vauum expetation value, and that

r

�

!

�

T

��

�

= r

�

Q;

where Q is a salar density, loally dependent on the metri. Hene we may modify our presription

by simply subtrating (Q + )g

��

from T

��

. The onstant  is hosen, suh that on Minkowski

spaetime the vauum expetation value vanishes.
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3.5.4 E�etive ation

We have seen, that the lassial metri energy momentum tensor is automatially onserved if

it is gotten by variation of a di�eomorphism-invariant lassial ation. If we ould onstrut a

di�eomorphism-invariant quantum ation �(g

��

; �), whose variation with respet to the metri

yields an expetation value of the energy momentum tensor,

hT

��

(x)i =

2

p

jgj

Æ�

Æg

��

;

then hT

��

i would be onserved by onstrution. Let us look at a partiular example.

Conformally at spaetimes

A onformally oupled salar �eld propagating on a spaetime M has lassial ation

S[�℄ =

Z

M

p

g

�

�

1

2

�4



�

�

; where 4



=4�

d� 2

4(d� 1)

R

is the Weyl-ovariant wave operator. Note, that for a vauum solution of the Einstein equation

the Rii salar vanishes and there is no distintion between onformal and minimal oupling.

Formally, the expetation value (whih one?) of the stress-energy tensor is

hT

��

(x)i = �

1

Z[g℄

Z

D�

2

p

g

Æ

Æg

��

e

�S[�℄

=

2

p

g

Æ

Æg

��

�[�℄;

where we have introdued the e�etive ation

�[g℄ = � logZ[g℄ = � log

Z

D� e

�S[�℄

=

1

2

log det(�4



):

For arbitrary spaetimes the spetrum of4



is not known. However, the variation of � with respet

to � in

g

��

= e

2�

ĝ

��

;

whih is proportional to the expetation value of the trae of the stress-energy tensor,

Æ�

Æ�(x)

= �2g

��

Æ�

Æg

��

= �

p

ghT

�

�

i

an be alulated. The non-vanishing of this trae in the quantized theory is the so-alled trae-

anomaly and this anomaly is known. It follows, that the di�erene �[g℄ � �[ĝ℄ an be alulated

by integrating the trae anomaly To do that expliitly, we reall (see our disussion of the Weyl-

transformation) that

4



= e

�

1

2

(d+2)�

^

4



e

1

2

(d�2)�

:

Now we interpolate between the referene metri ĝ and g by the one-parametri family of metris

g

(�)

��

= e

2��

ĝ

��

:
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Using the manifestly ovariant �-funtion tehniques, the � -variation of

�[g

(�)

℄ =

1

2

log det(�4

(�)



); 4

(�)



= e

1

2

(d+2)��

^

4



e

1

2

(d�2)��

an easily be alulated

6

. Integrating from � = 0 to � = 1 yields

�[g℄� �[ĝ℄ =

2

(4�)

d=2

1

Z

0

d�

Z

M

p

g

(�)

a

(�)

d=2

(x)�(x);

(3.21)

where a

(�)

d=2

is the oeÆient of dimension L

�d

in the asymptoti small t-expansion of the heat

kernel,

hxj exp

�

t4

g

(�)

�

jxi �

1

(4�t)

d

2

X

n=0

t

n

a

(�)

n

(x):

The Seeley-deWitt oeÆients a

n

are loal salar funtions of the metri, have length-dimension

�2n and have been alulated up to a

5

.

2 dimensions

Every 2-dimensional spaetime is onformally at and we may assume that

g

��

= e

2�

Æ

��

or ĝ

��

= Æ

��

:

It follows, that, up to the metri-independent e�etive ation �[Æ℄ the e�etive ation an be

alulated. The result is the Polyakov e�etive ation

�[g℄� �[Æ℄ =



96�

Z

p

gR

1

4

R;

where  is the entral harge whih is 1 for unharged salars. The expetation value of T

��

is

gotten by di�erentiation with respet to the metri. The result is

hT

��

i =



24�

�

g

��

R�r

�

r

�

1

4

R

�

+



48�

�

r

�

1

4

R � r

�

1

4

R�

1

2

g

��

r

�

1

4

R � r

�

1

4

R

�

:

(3.22)

This is indeed onserved and has trae R=24�. In isothermal oordinates

R = �24� = �2e

�2�

4

0

�; �

�

��

= Æ

�

�

�

;�

+ Æ

�

�

�

;�

� Æ

��

�

;�

and hene

T

��

=



24�

�

Æ

��

�

(r�)

2

� 24

0

�

�

+ 2

�

�

�

�

�

� � �

�

��

�

�

�

�

:

6

We assume, that the Eulidean wave operator possesses no zero-modes
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Or, if we introdue omplex oordinates z =

1

2

(x

0

+ ix

1

) we obtain

hT

zz

i = �



12�

e

�

�

2

z

e

��

and hT

z�z

i = �



12�

4

0

�:

Note, that � is not determined by R. We may always add a harmoni piee to �, without a�eting

R. In a Lorentzian spaetime, the orresponding result is

hT

uu;vv

i = �



12�

e

�

�

2

u;v

e

��

+ t

u;v

; hT

uv

i = �



12�

2

0

�; (3.23)

where we introdued the light one variables u =

1

2

(x

0

�x

1

) and v =

1

2

(x

0

+x

1

). The presription to

invert the wave operator in 2 (3.22) shows up in the free funtion t

u;v

. A hoie of these funtions

is equivalent to the hoie of the quantum state whose stress-energy is alulated. Let us now apply

these results to a toy blak hole in 2 dimensional spaetime with metri

ds

2

=

�

1� 2M=r

�

dt

2

�

1

1� 2M=r

dr

2

:

This is just the (t; r)-part of the Shwarzshild metri in 4 spaetime dimensions. To �nd isothermal

oordinates in whih light rays travel on 45

0

lines, we note, that null geodesis satisfy

ds

2

= 0 =)

�

dt

dr

�

2

=

1

�

2

:

Thus, on null geodesis

t = �r

�

+ onstant;

where the 'Regge-Wheeler tortoise oordinate' r

�

is de�ned by

r

�

= r + 2M log

�

r

M

� 2

�

:

(3.24)

Note, that the event horizon at r = 2M has tortoise oordinate r

�

= �1. In the oordinate system

(t; r

�

) the metri beomes onformally at by onstrution,

ds

2

=

�

1� 2M=r

��

dt

2

� dr

2

�

�

� �

�

dt

2

� dr

2

�

�

:

(3.25)

As above we introdue null-oordinates

u =

1

2

(t� r

�

) and v =

1

2

(t+ r

�

):

Using that �

v

= �

t

+ �

r

�

and that pa

r

�

= ��

r

we obtain

2

0

� =

2M

r

3

�; e

�

�

2

u;v

e

��

=

2M

r

3

�+

M

2

r

4

and the light-one omponents (3.23) of the energy momentum tensor read

hT

uu;vv

i = �



12�

�

2M�

r

3

+

M

2

r

4

�

+ t

u;v

; hT

uv

i = �



12�

2M�

r

3

:
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With

T

uu(vv)

= T

00

+ T

11

� (+)2T

01

and T

uv

= T

00

� T

11

we �nd for hT

��

i in the x

�

= (t; r

�

) oordinate system

7

hT

�

�

i = �

M

24�r

4

�

4r +M=� 0

0 �M=�

�

+

1

4�

�

t

v

+ t

u

t

v

� t

u

�t

v

+ t

u

�t

v

� t

u

�

(3.26)

The Boulware state is the state appropriate to a vauum around a stati star and ontains no

radiation at spatial in�nity J

�

. Hene the terms t

v

(v) and t

u

(u) must vanish and the tensor

simpli�es to

hO

s

jT

�

�

jO

s

i = �

M

24�r

4

�

4r +M=� 0

0 �M=�

�

:

(3.27)

However, this state is singular at the horizon. To see that more expliitly, let us reall, how to

introdue Kruskal oordinates whih over the whole spaetime and are regular at the event horizon

r = 2M . The metri (3.25)

ds

2

=

8M

r

e

�r=2M

e

(v�u)=2M

dudv where we used � =

2M

r

e

(r

�

�r)=2M

suggests, that we introdue

U = �e

�u=2M

and V = e

v=2M

so that the metri is regular on the horizons:

ds

2

=

32M

3

r

e

�r=2M

dUdV:

With respet to these regular oordinates the energy momentum takes the form

hT

UU

i =

�

M

U

�

2

�

4t

u

�



3�

�

2M�

r

3

+

M

2

r

4

�

�

hT

V V

i =

�

M

V

�

2

�

4t

v

�



3�

�

2M�

r

3

+

M

2

r

4

�

�

hT

UV

i =

M

2

UV



3�

2M�

r

3

:

The omponent hT

UU

i is regular at the horizon U = 0 if M

2

t

u

= =192� and hT

V V

i is regular at

the horizon V = 0, if M

2

t

v

= =192� holds. The orresponding state is alled the Israel-Hartle-

Hawking state. In this state the asymptoti form of the energy-momentum tensor is

h0

HH

jT

�

�

j0

HH

i =



384�M

2

�

1 0

0 �1

�

=

�

6

(kT )

2

�

1 0

0 �1

�

(3.28)

with T = 1=8�kM = �=2�k. This is the stress-tensor of a bath of thermal radiation at temperature

7

omparison with Birrell and Davies, p. 283: M

2

t

v

= 1=192 + 4K � 2Q and M

2

t

u

= 1=192 � 2Q
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r = constant

t = constant

t =

r = 2M

IIV

II

III

T

X
r = 2M

8
t = - 8r = 0

r = 0 Killing horihon

VU

Abbildung 3.7: The Kruskal extension of Shwarzshild spaetime

T . Finally, demanding that energy-momentum is regular at the future horizon and that there is no

inoming radiation, i.e.

t

u

=



192�M

2

and t

v

= 0

results in

h0

U

jT

�

�

j0

U

i =



768�M

2

�

1 �1

1 �1

�

=

�

12

(kT )

2

�

1 �1

1 �1

�

(3.29)

The Unruh state is regular on the future horizon and singular at the past horizon. It desribes the

Hawking evaporation proess with only outward ux of thermal radiation.

3.6 Hawking radiation

and hene The most dramati result arising from investigation of partile reation near blak holes

was Hawking's disovery that partile reation also ours near a Shwarzshild blak hole, resulting

in 'emission' of a thermal spetrum of partiles [2℄. We give the main steps of the derivation and

the disussion of this result. Before doing that, we reall some fats about spherially symmetri
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spaetimes and the Shwarzshild metri.

3.6.1 Spherially symmetri spaetimes

A spaetime is spherially symmetri if its isometry group ontains a subgroup isomorphi of

the rotation group SO(3), and if the orbits of this subgroup are two-dimensional spheres. The

indued metri on eah orbit must be a multiple of the metri on a unit 2-sphere, and thus an

be haraterized by the total area A, of the sphere. It is onvenient to introdue the funtion r,

referred to as 'radial oordinate', de�ned by r = (A=4�)

1=2

. Thus in spherial oordinates (�; ')

the metri on eah orbit takes the form

ds

2

= r

2

d


2

= r

2

�

d�

2

+ sin

2

�d'

2

�

:

The three linearly independent spaelike Killing vetor �elds with losed orbits and whih satisfy

the so(3) ommutation relations are

� sin'

�

��

� os' ot �

�

�'

; os'

�

��

� sin' ot �

�

�'

;

�

�'

:

In adapted oordinates the line element of a spherially symmetri spaetime has the anonial

form

ds

2

= e

�

dt

2

� e

�

dr

2

� r

2

d


2

; � = �(t; r); � = �(t; r): (3.30)

The most general vauum solution of Einsteins �eld equation is given by the well-known Shwarz-

shild line element

ds

2

= �dt

2

�

1

�

dr

2

� r

2

d


2

; � = 1� 2M=r:

(3.31)

This solution is stationary with timelike Killing �eld �

t

whih is orthogonal to the Hypersurfaes

t = onst: Hene every spherially symmetri vauum solution is automatially stati. The advane

of the perihelion of merury, the bending of light by the sun, the time delay of light and the gravi-

tational redshift have been used to test this line element. These and some more reent observations

are in good agreement with the theoretial preditions of Einsteins theory of relativity.

In the following spaelike, timelike and null-hypersurfaes will be important. A hyperplane � with

normal vetor �eld n at a point p is spaelike, null or timelike at this point if (n; n) is negative, zero

or positive at p. For example, the vetor �eld normal to the hypersurfaes x

0

= onstant obeys

(n; �

i

) = n

�

g

�i

= n

i

= 0; i = 1; 2; 3:

If we set n

0

= 1, then

(n; n) = g

00

:

A oordinate hypersurfae x

�

=onst. is spaelike, null or timelike if g

��

is negative, zero or positive.

We see that the hypersurfaes with onstant ' or onstant � are spae like at all points. Sine

g

rr

= ��(r);
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the surfae of onstant r is spaelike outside the event horizon at r = 2M , timelike inside and null

on the horizon.

3.6.2 The Kruskal Extension

The singularity of the Shwarzshild metri at the Shwarzshild radius r = 2M is a oordinate

singularity, whereas the singularity at r = 0 is a true singularity. The oordinate singularity is

very similar to the oordinate singularity if one uses Rindler oordinates on the Rindler wedge.

Introduing the tortoise oordinate as above, the line element reads

ds

2

= �(r)

�

dt

2

� dr

2

�

)� r

2

d


2

;

where r = r(r

�

) is given in (3.24). As above, we introdue the null-oordinates u; v so that

ds

2

=

8M

r

e

�r=2M

e

(n�u)=2M

dudv � r

2

d


2

:

If one introdues the Kruskal oordinates U; V the metri beomes

ds

2

=

32M

3

r

e

�r=2M

dUdV � r

2

d


2

and is regular at the horizon. If we �nally set

U = T �X and V = T +X

then the Shwarzshild metri takes the �nal form given by Kruskal (1960)

ds

2

=

32M

3

r

e

�r=2M

�

dT

2

� dX

2

�

� r

2

d


2

:

(3.32)

The transformation from the Kruskal oordinates (T;X) to the Shwarzshild oordinates (t; r) is

expliitly given by

X

2

� T

2

= �UV = e

(v�u)=2M

= e

r

�

=2M

= e

r=2M

�

r

2M

� 1

�

log

T +X

X � T

= log

�

�

V

U

�

= log e

(u+v)=2M

=

t

2M

:

It follows, that

XdT � TdX

X

2

� T

2

=

dt

4M

and XdX � TdT =

r

8M

2

e

r=2M

dr:

The allowed range of the Kruskal oordinates is given by the ondition r > 0, whih yields T

2

�X

2

<

1. The spaetime diagram for the Kruskal extension is shown in �gure (3.7). By onstrution all

radial null geodesis are 45

0

lines. There are spaelike physial singularities in the extended region

at T = �

p

1 +X

2

. The wedge I in with positive X and jT j � X orresponds to the exterior

Shwarzshild solution.
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3.6.3 Wave equation in Shwarzshild spaetime

Aording to the general disussion we need to study the lassial wave propagation of a Klein-

Gordon salar �eld in region I of the extended Shwarzshild spaetime (3.8). One might expet,

IV I

II

III

i 0

J

J

+

-

ev
en

t h
or

izo
n

singularity
i +

Abbildung 3.8: Conformal diagram of the extended Shwarzshild spaetime.

that any solution in this region must have started from in�nity or must have entered region I from

the white hole region III . At late times, one expets that every solution will propagate into the

blak hole region II and/or propagate bak to in�nity. For the investigation we use, that in in

Shwarzshild oordinates the Laplaian reads

2 =

1

�

�

2

�t

2

�

�

�

1

r

�

2

�r

2

r + �

0

�

�r

�

+

~

L

2

r

2

:

(3.33)

Sine spaetime is spherially symmetri we an expand the �eld in spherial harmonis and write

the wave equation (2+m

2

)� for eah mode of the form Setting

� =

f(t; r)

r

Y

lm

e

�i!t

:

We obtain

�

2

f

�t

2

�

�

2

f

�r

2

�

�

�

1�

2M

r

��

2M

r

3

+

l(l+ 1)

r

2

+m

2

�

f = 0;

(3.34)

where the tortoise oordinate r

�

has been de�ned above, M is the mass of the blak hole and m is

the mass of the Klein-Gordon �eld. This equation an be identi�ed with the wave equation for a

massless salar �eld in 2-dimensional at spaetime with salar potential

V (r

�

) =

�

1�

2M

r

��

2M

r

3

+

l(l+ 1)

r

2

+m

2

�

:

As r

�

! �1 (i.e. r ! 2M) the potential falls o� exponentially, V � exp(r

�

=2M), and as r

�

!1

the potential behaves as � m

2

� 2Mm

2

=r

�

in the massive ase and � l(l + 1)=r

2

in the massless
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ase. In the asymptoti region r !1 this equation possesses outgoing solution � e

i!r

�

and ingoing

solutions � e

�i!r

�

. In terms of the null-oordinates the asymptoti solutions look like

outgoing:

1

r

e

�i!u

; ingoing:

1

r

e

�i!v

:

(3.35)

Beause of the potential term in (3.34) the inoming waves will partially satter o� the gravitational

�eld to beome a superposition of inoming and outgoing waves.

We deompose � into a omplete set of positive frequeny modeled denoted by u

!lm

:

� =

X

l;m

Z

d!

�

a

!lm

u

!lm

+ a

y

!lm

u

y

!lm

�

;

whih are normalized aording to

�

u

!

1

l

1

m

1

; u

!

2

l

2

m

2

�

= Æ(!

1

� !

2

)Æ

l

1

l

2

Æ

m

1

m

2

;

where we used the onserved 'norm' introdued earlier,

(u

1

; u

2

) = i

Z

�

�

u

y

1

n

�

r

�

u

2

� (n

�

r

�

u

y

1

)u

2

�

p

hd

3

x;

and are hosen to redue to the inoming spherial modes (3.35) in the remote past. The state

should orrespond to the absene of inoming radiation,

a

!lm

 

0

= 0:

(3.36)
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