
Kapitel 2

Instantons

This hapter is devoted to the study of (anti)selfdual solutions of the Eulidan Yang-Mills equations.

These minimize the Eulidean ation in a �xed topologial setor of the on�guration spae. We

begin with the useful Hobart-Derrih-Theorem. Based on saling arguments one may show that

enrtain eulidean �eld equations possess no solutions with �nite ation. The we turn to the

Lax-Pairs of Yang-Mills systems. Then we disuss the assoiated linear system with the help of

the powerful Fatorization theorem of Birkho�. Finally we study instantons on the 4-dimensional

torus.

2.1 Hobart-Derrik-Theorem

This is rather simple but nevertheless useful theorem whih is proven by saling arguments only.

We start with the eulidean ation for a Yang-Mills-Higgs system with �xed bakground metri,
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It varies as follows under variations of the gauge potential and matter �elds,
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The �eld equations are the Yang-Mills equation
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and the Higgs equation
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Sale instabilities in eulidean spaetimes

The sale instability arguments were formulated by Hobart (1963) and Derrik (1964) and give

neessary onditions for the existene of solutions with �nite eulidean ation or �nite energy in

at spaetime. We assume, that
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Let � = (A; �) be a solution of the Yang-Mills-Higgs (YMH) �eld equations with �nite ation.
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This perturbation is a partiular di�eomorphism on the matter �elds. However, the metri is not

transformed, suh that the ation is not invariant. Indeed, the ation sales as
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From this interesting relation we draw the following onsequenes: if (A; �) solves the Yang-Mills-

Higgs equation, then

� A pure YM -theory in d < 4 dimensions has only the trivial solution F = 0. Hene, there are

no instantons in less then 4 dimensions.

� An eulidean solution in 4 dimensions is gauge-equivalent to a pure YM -solution. Indeed, in

4 dimensions
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Suh a Higgs �eld an be gauged to a onstant �eld.

� In more as 4 dimensions there are no nontrivial eulidean solutions of the YMH equations

with �nite ation.
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� In 2 dimensions and for � = 0 the only solution is F = 0 and j�j = 1. This result is relevant

for superondutivity. There are no vortex solutions with �nite energy and � = 0. Indeed,

for � = 0 it follows that F = 0. Hene A an be gauged to zero and 4� must vanish. But

the only harmoni � with d� 2 L

2
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From (2.3) we onlude that F = 0 and that there are no interesting stati solutions with

onstant �.

2.2 Instantons - Introdution

Instantons are solution with �nite ation of the pure YM -equations
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This ondition on the �eld strength is di�eomorphism and Weyl invariant. Beause of the Bianhi-

identity

dF � iA ^ F + iF ^ A = 0

a (anti)selfdual on�guration automatially solves the Yang-Mills equation.
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from whih we onlude, that
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where we have used our earlier result, namely that
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Thus, the �eld strength is selfdual, if

~

E =

~

B and it is antiselfdual if

~

E = �

~

B.

Now we shall see, that for on�gurations with �nite ation the surfae integral in (2.6) is a multiple

of an integer, the so-alled instanton number. The following arguments apply to at spaetime

2
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For large r we have
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sine the gauge potential must unwind at the origin.
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One an show, that the integrand on the right hand side satis�es the identity
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where � 2 [0; 2�℄ and �; ' 2 [0; �℄. Setting (�
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Degree of a mapping. The instanton number is the degree of the mapping S

3

! SU(2). The

onept of a degree of a mapping is of ourse more general and it is helpful to know this generali-

zation when one deals with other dimensions (vorties, monopoles, textures). In instanton ontext

the following theorem due to Bott is helpful:
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The degree is independent of the hoie of the volume form. Let ~! be another volume form of

~

M
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whih we normalize, suh that it leads to the same volume as ~�. Then ~! = ~� + d

~

�. Realling, that

the pullbak ommutes with the exterior di�erential, we have

f
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The signature in this formula is 1 if the map p ! q is orientation preserving and it is �1 if the

orientation is reversed.

Let us now return to the instantons. Together with (2.5) we onlude, that the eulidean ation is

bounded below by the instanton number as follows:
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The instanton number q is the integer-valued winding number.

We have got the following piture: The gauge �elds with �nite eulidean ation must be pure gauge

at in�nity. Hene we an assign an integer instanton number to any suh on�guration and the

on�guration spae deomposes into homotopy lasses haraterized by winding numbers q, the

number of times the S

3

overs the group manifold SU(2). The absolute minimum in eah setor is

ahieved by an (anti)selfdual on�guration.

To ontinue, we need some results about double-null oordinates, sine in these oordinates the

(anti)-selfduality ondition takes a partiularly simple form. Sine we want to deal with the Euli-

dean, Minkowskian and ultrahyperboli ases at the same time, we introdue the omplexi�ed

Minkowski spaetime with metri
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where � is the metri tensor, and suh that all the other inner produts vanish. We reover the

various real slies by imposing reality onditions on the omplex oordinates as follows:
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. The reality onditions are that z; ~z are real and �w = ~w. We have
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One should keep in mind that the volume form � (with our onvention) is real on E and U but

imaginary on M :
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The exterior produt, derivative and Lie derivative are de�ned as in the real ase we disussed
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and

�

is idempotent. Given a double-null oordinate system, for whih
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deomposition depends on the hoie of oordinates, but is invariant under transformations whih

preserve the foliation by onstant z; w and the foliation by surfaes of onstant ~z; ~w. With the

above formula for the dual one �nds
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from whih follows, that

� = dz ^ dw; ~� = d~z ^ d ~w and ! = dz ^ d~z � dw ^ d ~w

span the spae of selfdual 2-forms and

dz ^ d ~w; dw ^ d~z and dz ^ d~z + dw ^ d ~w

span the spae of anti-selfdual forms.

The exterior derivative deomposes into a a 'holomorphi' and 'antiholomorphi' piee

3

, d = �+

�

�

of two operators,
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z
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w

;

~
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+ d ~w�
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(2.12)

All instantons in eulidean spaetime or equivalently on S

4

are known. The general solutions have

been found by Atiyah, Drinfeld, Hithin and Manin (ADHM) and depend on 8q � 3 parameters.

The �rst solution has been found by Belavin, Polyakov, Tyupkin and Shwartz. The BPS instanton

has the form

A = if(r) gdg

�1

; where g =

p

2

r

B

so that

F = if

0

dr ^ gdg

�1

+ i(f � f

2

)d(gdg

�1

)

3

Only on E and U are z;w holomorphi oordinates
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with

gdg

�1

=

1

r

2

�

~zdz � zd~z + ~wdw � wd ~w �2~zdw + 2wd~z

2 ~wdz � 2zd ~w �~zdz + zd~z � ~wdw + wd ~w

�

and

d(gdg

�1

) = �

2dr

r

gdg

�1

+

2

r

2

�

d~zdz + d ~wdw �2d~zdw

2d ~wdz �d~zdz � d ~wdw

�

we obtain

F = i

�

f

0

+

2f(f � 1)

r

�

dr ^ gdg

�1

�

2if(f � 1)

r

2

�

d~zdz + d ~wdw �2d~zdw

2d ~wdz �d~zdz � d ~wdw

�

The last term is anti-selfdual. Hene, if

rf

0

+ 2f(f � 1) = 0()

�

r

2

f

�

0

= 2r () f =

r

2

r

2

+ �

2

;

then F is anti-selfdual.

The ansatz

A = if(r) gdg

�1

; g =

p

2

r

B

�1

leads to a selfdual instanton. Indeed,

F = i

�

f

0

+

2f(f � 1)

r

�

dr ^ gdg

�1

�

2if(f � 1)

r

2

�

�d~zdz + d ~wdw 2dzdw

2d~zd ~w d~zdz + d ~wdw

�

is selfdual, if f ful�lls the same equation as above. To alulate the topologial harge, we alulate

F ^ F = �24

�

4

(r

2

+ �

2

)

4

�

2

3

dzd~zdwd ~w;

where the plus (minus) sign holds for the selfdual (anti-selfdual) instanton. Thus we end up with

the following topologial harge density in eulidean spaetime

trF ^ F = �48�

4

r

3

(�

2

+ r

2

)

4

drd
;

with the plus (minus) sign for the selfdual (anti-selfdual) on�guration. Using that

Z

r

3

dr

(r

2

+ �

2

)

4

=

1

12�

4

and

Z

d
 = 2�

2
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this yields

Z

trF ^ F = �8�

2

as required. The above PBS-instantons have instanton number �1. The parameter �

2

'measures'

the sale of the instanton. Indeed, a sale-transformation ating on the instanton solution

A

�

(x; �

2

) �! e

��

A

�

(e

��

x; �

2

) = A

�

(x; e

2�

�

2

)

just sales the parameter �. The translations move the enter of the instantons away from the

origin and leads to a 5-parameter family of solutions, parametrized by the enter of the instanton

and the sale parameter. To disuss the other onformal transformations we �rst disuss how the

onformal transformations look like on the omplexi�ed Minkowski spaetime.

The omplex onformal group: Let x = (x

��

); �; � = 0; 1; 2; 3 be a skew-symmetri omplex

matrix with zero determinant. Suh a matrix has 6 � 1 = 5 omplex entries. If x

23

6= 0, x is a

nonzero omplex multiple of

x =

�

s� B

�B

t

�

�

with � =

�

0 1

�1 0

�

:

Sine det(x) =

�

s� (z~z�w ~w)

�

2

holds true we must demand that s = z~z�w ~w for the determinant

of x to vanish. We may identify the points of CM with the omplex skew symmetri matries with

vanishing determinant if we identify two matries who are omplex multiples of eah other. When

x

23

= 0, then some or all to the spae time oordinates are in�nite. These points still belong to

the ompati�ation of CM . One easily proves, that

�

����

dx

��


 dx

��

= 8(dx

01

dx

23

� dx

02

dx

13

+ dx

03

dx

12

) = �8 ds

2

;

where ds

2

= dzd~z � dwd ~w is the line element on the omplexi�ed Minkowski spaetime CM . It

follows, that any transformation

x �! ~x = �x�

t

; where � 2 GL(4; C)

indues a onformal transformation of spaetime.

Real forms: The real forms of the onformal group are obtained by requiring that the transfor-

mations should preserve the orresponding real slies:

� Eulidean slie: Beause

�

� 0

0 �

�

x

�

� 0

0 �

�

� ��x

the eulidean slie is invariant if

�

� 0

0 �

�

�

�

� 0

0 �

�

= ���;

that is, if � 2 GL(2; H). The minus sign on the right follows from �

2

= �1.
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� Minkowski slie: Beause B = B

y

this slie is invariant, if

�

�

0 1

�1 0

�

�

y

=

�

0 1

�1 0

�

;

that is, if � 2 U(2; 2).

� Ultrahyperboli slie: Beause

�

�

1

0

0 �

1

�

x

�

�

1

0

0 �

1

�

� �x

the slie is invariant if

�

�

1

0

0 �

1

�

�

�

�

1

0

0 �

1

�

= ��:

In this ase the onformal group is isomorphi to GL(4; R).

The in�nitesimal onformal transformation A 2 gl(4; C) in � = e

A

ful�ll the onditions

8

<

:

(�

0


 �)A(�

0


 �) = �

�

A on E

(�
 �

0

)A(�
 �

0

) = A

y

on M

(�

0


 �

1

)A(�

0


 �

1

) =

�

A on U .

Tho eah A belongs a onformal Killing �eld K, whih an be found by equating Æx to a salar

multiple of (Ax+ xA

t

). If we deompose A into a 2� 2 blok-form,

A =

�

� ���

�

t

�

~

�

�

;

then

ÆB = � + s� + �

0

� B +B �

~

�

t

Æs = tr (s�) + str (B

�1

�); Æ(1) = tr (

~

�) + str (B

�1

�)

where we have used, that

�A+A

t

� = tr (A)� and s � trB

�1

� = �tr (�

t

�B�):

Hene, the entries of � generate translations, the entries of � speial onformal transformations,

and � and

~

� in�nitesimal rotations and a dilatation. Let us be a bit more preise. We deompose

� and

~

� into their trae-free parts plus multiples of the identity:

� = �

T

+

1

2

tr (�)�

0

;

~

� =

~

�

T

+

1

2

tr (

~

�)�

0

:

Demanding that Æ(1) = 0 and setting tr (�) = � and writing again � for the trae-free �

T

we �nd

ÆB = � + s� �

s

2

tr (B

�1

�)B +

�

2

B + � � B +B �

~

�

t

Æs = s � �+ s � tr (B

�1

�); tr� = tr

~

� = 0
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where, of ourse, the last equation follows from the �rst.

We see, that the rotations an be represented by a pair (�;

~

�) 2 SL(2; C )� SL(2; C ),

B ! �B and B ! B

~

�

t

; � = e

�

;

~

� = e

~

�

:

The transformations (�;

~

�) and (��;�

~

�) are identi�ed, and the omplex rotation group is

�

SL(2; C )� SL(2; C )

�

=Z

2

= SO(4; C):

The generators X(A) of the onformal transformations are alulated via

L

X(A)

� =

d

du

�(X + uAx+ uxA

t

) =) L

X(A)

� � (AX)

ij

�;

ij

;

where �;

ij

is the derivative of � with respet to the entry (i; j) of its matrix-valued argument x.

In eulidean spae we have

� = i�

i

�

i

with real �

i

and similarly for

~

�, so that � and

~

� are in SU(2). Thus, under a rotation

B �! U

1

BU

t

2

;

so that the gauge potential of the BPS-instanton transforms under rotations as

A �! U

1

AU

�1

1

:

This is just a global gauge transformation. We onlude, that the BPS-instanton is invariant under

rotations, up to a global gauge transformation.

Null 2-planes

A 2-plane � in spaetime is null if �(X;Y ) = 0 for every pair of tangent vetors X;Y . With

eah � we assoiate a tangent bivetor X ^ Y with omponents �

ab

= X

[a

Y

b℄

, where X and Y

are independent tangent vetors, and the orresponding 2-form � =

1

2

�

ab

dx

a

^ dx

b

. The tangent-

bivetor determines the tangent spae to the 2-plane, and is determined by it up to a nonzero

multiple. Now we have the following

Lemma: If � is a null-plane, then �

ab

�

ab

= 0 and � is either selfdual or anti-selfdual.

Proof: Sine

�

�

ab

C

b

=

1

2

��

abd

�

d

C

b

=

1

2

��

abd

A



B

d

C

b

= 0

for every C tangent to � (and hene in the span of A and B) and on the other hand

�

ab

C

b

=

1

2

(A

a

B

b

C

b

�B

a

A

b

C

b

) = 0

we must have � �

�

�. But

�

is idempotent whih proves, that

�

� = ��. The seond statement in

the lemma follows diretly from the de�nition of �.
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We all � an �-plane whenever � is selfdual and a �-plane whenever � is anti-selfdual. In double-

null oordinates, the surfaes of onstant z; w and the surfaes of onstant ~z; ~w are �-planes. More

generally, sine �(�

a

; �

b

) = �

ab

, and a ASD-form has

�

zw

= �

~w~z

= �

z~z

� �

w ~w

= 0

it follows, that a 2-form is anti-selfdual if is orthogonal to the selfdual bivetors,

�(�

z

; �

w

) = �(�

~z

; �

~w

) = �(�

z

; �

~z

)� �(�

w

; �

~w

) = 0;

and similarly, a 2-form is selfdual if it is orthogonal to the antiselfdual bivetors. The anti-selfduality

ondition an be expressed more ompatly as the onditions

�(L;M) = 0; L = �

w

� ��

~z

; M = �

z

� ��

~w

;

identially in �. Later on � will be interpreted as spetral parameter. Let us see, how a right

rotation

~

� =

�

a b

 d

�

ats on L;M : Beause of

�

~z

0

w

0

~w

0

z

0

�

=

�

~z w

~w z

�

�

t

;

�

�

~z

0

�

w

0

�

~w

0

�

z

0

�

=

�

�

~z

�

w

�

~w

�

z

�

�

�1

we have

L

0

= �

w

0

� ��

~z

0

= (a+ �)�

w

� (b+ d�)�

~z

M

0

= �

z

0

� ��

~w

0

= (a+ �)�

z

� (b+ d�)�

tw

:

(2.13)

Hene a right rotation maps �

�

to �

�

0

, where

�

0

=

b+ d�

a+ �

:

They at on the Riemann sphere of �-planes through the origin by M

�

obius transformations.

2.2.1 Lax Pairs and Yang's equation

In double null oordinates, the �eld strength

F =

1

2

�

F

z~z

dz ^ d~z + : : :

�

is antiselfdual, if

F

zw

= F

~z ~w

= F

z~z

� F

w ~w

= 0

(2.14)

holds. If we write

D

z

= �

z

� iA

z

; D

~z

= �

~z

� iA

~z

; D

w

= �

w

� iA

w

; D

~w

= �

~w

� iA

~w

;
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then these onditions read

[D

z

; D

w

℄ = [D

~z

; D

~w

℄ = [D

z

; D

~z

℄� [D

w

; D

~w

℄ = 0: (2.15)

An equivalent onditions is that the Lax pair of operators

L = D

w

� �D

~z

and M = D

z

� �D

~w

should ommute for every value of the 'spetral parameter' �. This last formulation in terms of a

linear system is entral to the the theory of integrability.

Yangs equation:

The �rst two equations in (2.14) are the loal integrability onditions for the existene of two

matrix-valued funtions g and ~g suh that

A

z

= ig

�1

�

z

g; A

w

= ig

�1

�

w

g; A

~z

= i~g�

~z

~g

�1

; A

~w

= i~g�

~w

~g

�1

:

This �elds are determined uniquely by A up to

g �! h(~z; ~w)g and ~g �! ~g

~

h(z; w):

If A is replaed by a gauge equivalent potential U

�1

AU + iUdU

�1

, then g and ~g an be replaed

by gU and U

�1

~g. The matrix

J = g~g

(2.16)

is Yang's matrix. It is determined by A up to the freedom

J �! h(~z; ~w)J

~

h(z; w):

Now we an write the remaining ASD-equations in terms of J . Indeed, the �eld strength omponent

F

z~z

= i

�

�

z

(~g�

~z

~g

�1

)� �

~z

(g

�1

�

z

g) + [g

�1

�

z

g; ~g�

~z

~g

�1

℄

�

;

is proportional to

~g

�

�

~z

(J

�1

�

z

J)

�

~g

�1

= �

~z

(g

�1

�

z

g)� [g

�1

�

z

g; ~g�

~z

~g

�1

℄ + ~g�

~z

(~g

�1

�

z

~g)~g

�1

if we use the identity

~g�

~z

(~g

�1

�

z

~g)~g

�1

= �

z

(�

~z

~g~g

�1

)

and similarly for F

w ~w

: Thus we �nd

F

z~z

� F

w ~w

= �i~g

n

�

~z

(J

�1

�

z

J)

�

� �

~w

(J

�1

�

w

J)

o

~g

�1

:

Thus, the remaining third ASD equation holds if and only if J satis�es the Yang equation

�

~z

(J

�1

�

z

J)� �

~w

(J

�1

�

w

J) = 0: (2.17)
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Single Instanton: For the BPS-instanton we have

A

z

=

i

2f

�

�~z 2 ~w

0 ~z

�

A

~z

=

i

2f

�

z 0

2w �z

�

A

w

=

i

2f

�

� ~w 0

�2~z ~w

�

A

~w

=

i

2f

�

w �2z

0 �w

�

;

where f = z~z � w ~w + �

2

and one �nds

g =

�

p

f

0

�

�

q

~z

~w

w ~w

�

2

q

~w

~z

(1 +

z~z

�

2

)

�

q

~z

~w

q

~w

~z

1

A

; ~g =

�

p

f

�

p

z

w

�

p

z

w

(1�

w ~w

�

2

)

p

w

z

p

w

z

z~z

�

2

�

:

The Yang matrix is

J =

�

2

f

0

�

q

w ~w

z~z

�(

f

�

2

+ 1)

�

1

�

(

f

�

2

� 1)

q

z~z

w ~w

1

A

; where � =

p

z~zw ~w

�

2

:

Note, that det J = 1.

2.2.2 Birkho�'s Fatorization Theorem

Let F (') be a smooth omplex-valued funtion on the unit irle S

1

= f� = e

i'

g in the omplex

�-plane. The Fourier series of F an be split into positive- and negative 'frequeny-parts'

F = f �

~

f; f =

1

X

0

a

j

�

j

;

~

f =

1

X

0

~a

j

�

�j

:

The positive frequeny part f is the limit of a holomorphi funtion on the disk j�j < 1 and the

negative frequeny part

~

f is the limit of a holomorphi funtion on the exterior j�j > 1, inluding

the point � =1, where it is regular as a funtion of

~

� = 1=�. This splitting of F into the di�erene

of f and

~

f is unique, apart from the freedom to apportion the onstant term in the Fourier series

between f and

~

f ; that is up to f ! f + ;

~

f !

~

f +  for any omplex number .

Now we want to �nd the analogous splitting when F takes values in some omplex Lie group. In

the ase of the multipliative group fzjz 6= 0;1g, the problem is as follows: Given a smooth non-

vanishing F on the unit irle, we must �nd smooth non-vanishing funtions f and

~

f on j�j � 1 and

j�j � 1, respetively, suh that f is holomorphi for j�j < 1,

~

f holomorphi for j�j > 1 (inluding

1) and

F =

~

f

�1

f on S

1

:

If there is a solution, then

q(F ) =

I

S

1

dF

F

=

I

df

f

�

I

d

~

f

~

f

= 0;
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by Chauhy's theorem. We used that f and

~

f possess no zeroes in j�j � 1 and j�j � 1, respetively.

Thus a fatorization an only exist if the winding number q vanishes. In this ase logF is single

valued and we an split its Fourier series and then exponentiate.

For any q(F ) 2 Z the funtion �

�q

F has zero winding number and an therefore be fatorized.

Thus a non-vanishing smooth funtion on the irle an always be written as

F =

~

f

�1

�

q

f; where q = q(F )

and f;

~

f are non-vanishing holomorphi funtions inside and outside of the unit irle.

This Birkho� theorem has been extended to other Lie groups by Pressley and Segal (1986). Let us

disuss the generalization to GL(n;C). We use the following de�nitions:

The loop group LGL(n;C) of GL(n;C) is the group of smooth maps or loops

F : S

1

�! GL(n;C)

under pointwise multipliation. The subsets of loops that are boundary values of holomorphi maps

on

fj�j � 1g and fj�j � 1g [ f1g;

respetively, will be denoted by LGL

+

(n;C) and LGL

�

(n;C). LGL(n;C) is an in�nite-dimensional

Lie group.

Birkho�'s Theorem: Any loop F 2 LGL(n;C) an be fatorized

F =

~

f

�1

�f

where f 2 LGL

+

(n;C);

~

f 2 LGL

�

(n;C) and � =diag(�

q

1

; : : : :�

q

n

) for some integers q

i

. These

integers are unique up to permutations. For loops with � = 1 the fatorization is unique up to

f ! f and

~

f ! 

~

f for some onstant  2 GL(n;C).

The theorem holds true if we replae GL(n;C) by SL(n;C) (in whih ase f;

~

f and � are in

SL(n;C) and in partiular

P

q

i

= 0) and for polynomials in � and �

�1

or rational funtions of �

instead of holomorphi funtions.

Example 1 : Let w 2 C and put

F =

�

� w

0 �

�1

�

2 SL(2; C ):

Then, whenever w 6= 0, we have the Birkho� fatorization

F =

~

f

�1

f where

~

f =

�

�

�1

�w

w

�1

0

�

; f =

�

1 0

w

�1

� 1

�

:

However, for w = 0 the fatorization is F =

~

f

�1

�f with

~

f = f = 1 and � =diag(�; �

�1

).

Example 2 : Suppose that F = CR, where C : C ! GL(n;C) is entire and R is a rational matrix-

valued funtion of �. We shall onsider the ase where all poles of R and all zeros of r = detR lie

inside of the unit irle. Then, in general, one an onstrut the fatorization with � = 1 expliitly.
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Sine � = 1, the winding number of detF must vanish. Thus r must have an equal number of

poles and zeros in the unit disk. So we assume that

r(�) =

q

Y

1

� � �

i

� � �

i

;

where j�

i

j < 1 and j�

i

j < 1, and that R is holomorphi exept at the points �

i

. Furthermore, we

assume that, for eah i

� A

i

= R(�

i

) has rank n� 1

� B

i

= lim

�!�

i

(� � �

i

)R(�

i

) exists and has rank 1.

These holds for almost all hoies of R. For eah i, we hoose a

i

; b

i

2 C

n

suh that

a

t

i

A

i

= 0 and b

i

2 Image of B

i

:

The fatorization is onstruted by taking

~

f to be of the form

~

f = 1 +

q

X

1

x

i

y

t

i

� � �

i

;

where x

i

; y

i

2 C

n

. We must hoose x

i

and y

i

so that f =

~

fCR is holomorphi everywhere inside

the unit irle. For that we must have for eah j that

y

t

j

C(�

j

)A

j

= 0;

�

1�

q

X

i=1

x

i

y

t

i

�

j

� �

i

�

C(�

j

)B

j

= 0:

These we an satisfy by putting y

t

j

= �

t

j

C

�1

(�

j

) and by hoosing the x

i

so that

C(�

j

)b

j

+

q

X

i=1

x

i

M

ij

= 0;

where M is the q � q matrix

M

ij

=

�

t

i

C

�1

(�

i

)C(�

j

)b

j

�

j

� �

i

:

We must make the further assumption that M is nonsingular. We have the freedom of resaling

the a

i

and b

i

; but this leaves

~

f unaltered. Thus f is uniquely determined by C and by the data

onsisting of the points �

i

; �

i

together with the one-dimensional subspaes of C

n

spanned by the

vetors a

i

; b

i

.

2.2.3 The zero-urvature ondition revisited

The zero-urvature ondition [L;M ℄ implies that the linear system

L = 0; M = 0
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an be integrated for eah value of the spetral parameter � in L = D

w

� �D

~z

andM = D

z

� �D

~w

.

We an put together the n independent solutions to form the olumns of a n�nmatrix fundamental

solutions f . The equations satis�ed by the fundamental solution are

(�

w

� iA

w

)f � �(�

~z

� iA

~z

)f = 0

(�

z

� iA

z

)f � �(�

~w

� iA

~w

)f = 0:

(2.18)

The fundamental solution annot, however, be regular (holomorphi with non-vanishing determi-

nant) on the whole �-plane. If f were regular for all �, inluding � = 1, then, by Liouville's

theorem, it would be independent of �. In that ase (2.18) would imply, that

D

w

f = D

z

f = D

~z

f = D

~w

f = 0 =) F

zw

f = : : : = 0;

so that the onnetion would be at. If f is a fundamental solution, then fH is one, if M(fH) =

(Mf)H + f(�

w

� ��

~z

)H = 0, and similarly for L, that is, if H is a regular solution of

�

w

H � ��

~z

H = 0; �

z

H � ��

~w

H = 0:

That is, H an be expressed as a funtion of

� = �w + ~z; � = �z + ~w and �:

When the onnetion is not at, then it is impossible to hoose f so that it is regular at � = 1

as well as for �nite values of �. We an, however, �nd another fundamental solution

~

f whih is

holomorphi in � on the whole Riemann sphere, exept at � = 0, by setting

~

� = 1=� and solving

the linear system in the form

~

�(�

w

� iA

w

)f � (�

~z

� iA

~z

)f = 0

~

�(�

z

� iA

z

)f � (�

~w

� iA

~w

)f = 0:

(2.19)

The solution is unique, up to

~

F �!

~

F

~

H where

~

H =

~

H(w +

~

�~z; z +

~

� ~w;

~

�):

The pathing matrix:

We shall denote by V;

~

V a two-set over of the Riemann sphere, suh that V is ontained in the

omplement of � =1 and

~

V is ontained in the omplement of � = 0: In the overlap V \

~

V of the

domains of f and

~

f we have

f =

~

fF;

where F satis�es

�

w

F � ��

~z

F = 0; �

z

F � ��

~w

F = 0:

(2.20)

F is the pathing matrix assoiated with A. It is determined by A up to the equivalene

F �

~

H

�1

FH
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where

~

H is regular on

~

V and H regular on V . The equivalene lasses are the pathing data of A.

When F is in the lass of the identity funtion, that is when F an be fatorized in the form

F =

~

H

�1

H;

with H;

~

H regular in V;

~

V , respetively, we have a fundamental solution fH =

~

f

~

H whih is global

in �. Then the urvature vanishes. When suh a fatorization does not exist, the urvature is

nonzero. Atually, the ASDYM-�eld an be reovered from F . The map that assigns the pathing

data to an ASDYM �eld is the forward Penrose transform.

The reverse Penrose transform.

For eah �xed (z; w; ~z; ~w) we have the Birkho� fatorization

F (�w + ~z; �z + ~w; �) =

~

f

�1

f:

From Lf = L

~

f = 0 we have

A

w

� �A

~z

= �i

�

�

w

f � ��

~z

f

�

f

�1

= �i

�

�

w

~

f � ��

~z

~

f

�

~

f

�1

;

together with a analogous formula following from Mf =M

~

f = 0. By the uniqueness statement of

the Birkho� theorem, any other fatorization must be given by

f

0

= gf and

~

f

0

= g

~

f

with �-independent g. The potentials belonging to f

0

;

~

f

0

are just the gauge transform of A. Thus

F determines the gauge potential up to a gauge transformation.

Now we start with a given F (�; �; �) on the annulus V \

~

V . Applying Birkho�s theorem for eah

spae-time point, we an fatorize F in the form

F (�w + ~z; �z + ~w; �) =

~

f

�1

�f;

where f(z; w; ~z; ~w; �) is regular for j�j � 1,

~

f is regular for j�j � 1 and � =diag(�

q

1

; : : : ; �

q

N

) for

some integers q

i

whih may jump at sub-manifolds of spaetime.

Let us assume, that F is hosen suh that � = 1 at some point of spae time. Then � = 1 in an

open set U ontaining this point. Now we show, that suh a F is a pathing matrix assoiated with

some solution of the ASDYM-equations on U . Sine (�

w

� ��

~z

)F = 0 we have

~

f

�1

(�

w

� ��

~z

)f)�

~

f

�1

�

(�

w

� ��

~z

)

~

f

�

~

f

�1

f = 0

or that

(�

w

f � ��

~z

f)f

�1

= (�

w

~

f � ��

~z

~

f)

~

f

�1

at eah point in U , for all � in some neighborhood of the unit irle. The left hand side is holo-

morphi inside and the right hand side holomorphi outside, exept for a simple pole at in�nity.

It follows from the Liouville theorem, that both sides must be of the form

(�

w

f � ��

~z

f)f

�1

= (�

w

~

f � ��

~z

~

f)

~

f

�1

= i(A

w

� �A

~z

):
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Similarly, one onludes, that

(�

z

f � ��

~w

f)f

�1

= (�

z

~

f � ��

~w

~

f)

~

f

�1

= i(A

z

� �A

~w

):

We then have

D

w

f � �D

~z

f = 0 and D

z

f � �D

~w

f = 0:

It follows, that the linear system assoiated with D is integrable and hene A is ASD. A an be

reovered from the pathing matrix F and is a solution of the ASDYM equation on an open subset

of spae-time.

Lemma: The gauge potential is given in terms of f and

~

f by

iA = �f(0)f

�1

(0) +

~

�

~

f(1)

~

f

�1

(1); (2.21)

where f(0) = f(� = 0) et. The proof is simple. Just set � = 0 in (2.18) and

~

� = 0 in (2.19).

Comparing (2.21) with

A = ig

�1

�g + i~g

~

�~g

�1

whih leads to the Yang-equation, we see, that we may identify

g = f

�1

(0); ~g =

~

f(1) =) J = f

�1

(0)

~

f(1):

The Atiyah-Ward ansatz: Consider the pathing matrix

F =

�

� 

0 �

�1

�

where  is a holomorphi funtion on the annulus. Again we put � = �w + ~z and � = �z + ~w and

expand  in a Laurent series in �:

 =

1

X

�1



i

�

i

= 

+

+ �+ 

�

where we have split  into a positive frequeny part, a �-independent part and a negative frequeny

part. Now (2.20) implies the reursion relation

�

w



i

= �

~z



i�1

and �

z



i

= �

~w



i�1

:

Taking the ~w-derivative of the �rst equation, exhanging the two derivatives and using the seond

equation, one obtains

�

~w

�

w



i

= �

~w

�

~z



i�1

= �

z

�

~z



i

;

so that eah 

i

obeys the salar wave equation. The Birkho� fatorization is F =

~

f

�1

f where

f =

1

p

�

�

� �+ 

+

�1 ��

�1



+

�

;

~

f =

1

p

�

�

1 ��

�

��

�1

�+ 

�

�

:
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The fatorization is non-degenerate whenever � 6= 0 (when � = 0 then we must take � =diag(�; �

�1

))

From the above lemma and the reursions relations, we have

A =

i

2�

�

~

��� �� 2(�

z

d ~w + �

w

d~z)

2(�

~z

dw + �

~w

dz) ���

~

��

�

:

With

f(0) =

1

p

�

�

0 �

�1 �

1

�

and

~

f(1) =

1

p

�

�

1 �

�1

0 �

�

one �nds the Yang-matrix

J =

1

�

�

�

1



1



�1

� �

2

1 �

�1

�

:

The Yang equation reads

0 = �

~z

�

�

z

�

�

�

�

�

~z



�1

�

z



1

�

2

� �

~w

�

�

w

�

�

�

+

�

~w



�1

�

w



1

�

2

0 = �

~z

�

�

z



1

�

2

�

� �

~w

�

�

w



1

�

2

�

0 = �

~z

�

z



�1

� �

~w

�

w



�1

:

The last equation is just the wave equation for 

�1

Using

�

z



1

= �

~w

� and �

w



1

= �

~z

�

(2.22)

the middle equation beomes

(�

~z

�

~w

� �

~w

�

~z

) log� = 0

whih is also ful�lled. The last equation reads

2�

�

�

1

�

2

�

�

~z

��

z

�+ �

~z



�1

�

z



1

� �

~w

��

w

�� �

~w



�1

�

w



1

�

= 0:

Using (2.22) together with

�

~z



�1

= �

w

� and �

~w



�1

= �

z

� (2.23)

this equation is also ful�lled, sine � must obey the wave equation. Thus we have expliitly heked,

that the Atiyah-Ward ansatz for the pathing matrix and the orresponding f and

~

f given by the

Birkho� theorem yield a selfdual solution of the Yang-Mills-equation with harge �1.

2.2.4 Instantons on the eulidean torus

The Abelian gauge potentials
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A

z

=

�

2iV

01

(z � �z)H

1

; A

w

=

�

2iV

23

(w � �w)H

3

(2.24)

are anti-selfdual on the eulidean torus, if

H

1

V

01

+

H

3

V

23

= 0

holds. In this ase

D

z

= �

z

�

�

2V

01

(z � �z)H

1

, D

w

= �

w

+

�

2V

01

(w � �w)H

1

D

�z

= �

�z

�

�

2V

01

(z � �z)H

1

, D

�w

= �

�w

+

�

2V

01

(w � �w)H

1

:

Two solutions of Lf =Mf = 0 with the orret holomorphi properties are

f = e

A(z

2

�w

2

+ �w

2

��z

2

)

e

�2A(�z+�w)

~

f = e

A(z

2

�w

2

+ �w

2

��z

2

)

e

�2A(� �w���z)=�

;

where A = �H

1

=4V

01

. Reall, that � = �z � �w and � = �w + �z. Clearly, f is holomorphi in a

neighborhood of � = 0 and

~

f in a neighborhood of � =1. The two regions have an overlap whih

ontains the unit irle j�j = 1. The pathing matrix has the simple form

F =

~

f

�1

f = e

�A��=�

(2.25)

and is a funtion of �; � and � and is holomorphi on the annulus ontaining the unit irle, as

required by the general theory. Using

f(0) = e

A(z

2

�2z�z��z)

e

A( �w

2

+2w �w�w

2

)

,

~

f(1) = e

A(z

2

+2z�z��z

2

)

e

A( �w

2

�2w �w�w

2

)

in (2.21) one immediately reonstruts the Abelian gauge potential A in (2.24). Atually, there is

a simpler fatorization of (2.25), namely by

f = e

�2A(�z+�w)

and

~

f = e

�2A(� �w���z)=�

:

The orresponding gauge potential is

A =

�H

1

2iV

01

�

� �zdz + zd�z + �wdw � wd �w

�

and is gauge equivalent to A in (2.24) by the non-periodi gauge transformation

e

A(z

2

�w

2

+ �w

2

��z

2

)

:
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