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Kapitel 1

Classial Field Theories

1.1 Introdution and Notation

It is now aepted that Quantum Chromodynamis (QCD) is the orret theory of strong intera-

tion. The strong nulear fores are the 'van der Waals'- fores of the interation between quarks

and gluons. The struture of the interation (e.g. the Feynman rules) omes from the Lagrangian

density, whih at the lassial level is

L

QCD

= �

1

4g

2

F

a

��

F

a��

+

N

f

X

f=1

�

 

i

f

�



�

D

ij

�

�im

f

Æ

ij

�

 

j

f

+

�

16�

2

�

����

F

a

��

F

a

��

:

(1.1)

The impliit sum over the olour-indies a; i; j and Lorentz-indies �; �; �; � is assumed. We have

used the totally antisymmetri tensor

�

����

= e �

����

=) �

0123

= e; �

0123

=

sign(g)

e

; e =

p

jgj;

where g and sign(g) are the determinant and signature of the metri g

��

, e is the determinant of

the vierbein and �

����

the totally antisymmetri symbol with �

0123

= 1. We write the expressions

suh that they also hold in urved spae times of an arbitrary signature. This way the transition

to Eulidean spaetime is almost evident. The fermioni part is the triky one.

To �nd the orret expression for the Eulidean ation one may use the fat, that for �nite tem-

perature the path integral is automatially the Eulidean one!! Thus the Eulidean Lagrangian is

automatially gotten if one (formally) represents the partition funtion

Z = tr e

��H

QCD

by a funtional integral

1

1

for the following disussion the gauge �xings and ghost-ontributions are irrelevant
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Z =

Z

DAD D 

y

e

�S

E

[A; ; 

y

℄

:

(1.2)

The result of the analysis in at spaes is the following: the Eulidean oordinates, derivative,

gamma-matries and �elds are related to the Minkowskian one as follows:

�

x

0

; �

0

; x

i

; �

i

; 

0

; 

i

�

M

=

�

� ix

0

; i�

0

; x

i

; �

i

; 

0

; i

i

�

E

�

 ;

�

 ;A

0

; A

i

; F

0i

; F

0i

; F

ij

; F

ij

�

M

=

�

 ;  

y

; iA

0

; A

i

; iF

0i

;�iF

0i

; F

ij

; F

ij

�

E

:

As a result of these replaements, the ation in Minkowski spaetime, S

M

=

R

�L is to be replaed

by iS

E

with Eulidean ation

S

E

=

1

4g

2

F

a

��

F

a��

�

N

f

X

f=1

 

yi

f

�

i

�

D

ij

�

� im

f

Æ

ij

�

 

j

f

� i

�

16�

2

�

����

F

a

��

F

a

��

:

(1.3)

The indies are raises and lowered with the metri tensor, e.g.

F

��

a

= g

��

g

��

F

a��

:

The gauge- and general ovariant derivative of the quark-�elds is

D

�

= �

�

+ i!

�

� iA

�

or D

ij

�

= (�

�

+ i!

�

)Æ

ij

� iA

a

�

(T

a

)

ij

;

(1.4)

where !

�

is the spin-onnetion, whih will be disussed below. The ommutators of two ovariant

derivatives yield the omponents of the Yang-Mills �eld strength and the 'urvature' of spaetime,

[D

�

; D

�

℄ = �iF

��

+ IE

��

;

where

F

��

= �

�

A

�

� �

�

A

�

� i[A

�

; A

�

℄ = F

a

��

T

a

R

��

= �

�

!

�

� �

�

!

�

+ i[!

�

; !

�

℄:

(1.5)

The generators T

a

of the olour-symmetry are hermitian, normalized aording to trT

a

T

b

= 2Æ

ab

and have real and antisymmetri struture onstants,

[T

a

; T

b

℄ = if

ab

T



;

suh that

F

a

��

= �

�

A

a

�

� �

�

A

a

�

+ f

ab

A

b

�

A



�

:

We shall disuss the urvature term more arefully later in this hapter.

QCD itself is a theory for six avored quarks (up, down, strange, harm, bottom and top) in

the fundamental representation of the olour group SU(3) that interat strongly with the otet
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of gluons. The strength of this interation is desribed by the dimensionless oupling onstant

2

g.

Most of the nontrivial properties of QCD result from the three- and four-gluon interation in F

2

and the, ompared to QED, big oupling onstant.

In these letures we shall not on�ne ourselves to the olour group SU(3) but allow for other

gauge groups as well. This way we may also inlude the eletroweak theory or GUT-theories in

our disussion. For SU(2) we may hoose T

a

= �

a

and for SU(3) the 3 � 3 Gell-Mann matries

�

a

. Also, the fermions may not neessarily be in the fundamental representation but transform

aording to a arbitrary representation U(g); g 2 G of the gauge group G. The Lagrangian for a

general theory reads then

L

gauge

= �

1

4g

2

F

a

��

F

a��

+

�

 

�

D= � im

�

 +

�

16�

2

�

����

F

a

��

F

a

��

+ Higgs and Yukawa terms;

(1.6)

where

D= = 

�

D

�

; f

�

; 

�

g = 2g

��

and D

�

 =

�

�

�

+ i!

�

� iU

�

(A

�

)

�

 :

The �-Term in (1.1,1.6) is odd under time reversal and thus breaks CP by the CPT -theorem.

The strong CP-problem in QCD is still a theoretially debated issue. Beause of the very small

eletri dipole moment of the neutron one onludes that the �-term is negligible, � < 10

�10

. The

�-term is a total derivative and does not enter the �eld equations and in partiular the Yang-Mills

equations. But it has onsequenes in the quantized theories. Its understanding will lead us to

study instantons. Sine instantons are one of the main topis of these letures we shall now disuss

this term in detail.

To prove, that the �-term is a total di�erential, we use the exterior alulus. We shall use these

alulus in these letures again and again and thus reall some important formulas. More will ome

later. Let

� =

1

p!

�

�

1

:::�

p

dx

�

1

^ : : : ^ dx

�

p

be a p-form. The omponents �

�

1

:::�

p

of a p-form is an antisymmetri tensor-�eld. The exterior

di�erential of � is the p+ 1-form

d� =

1

p!

�

�

�

�

1

:::�

p

dx

�

^ dx

�

1

^ : : : ^ dx

�

p

and the wedge-produt of a p-form and a q-form is a p+ q-form:

� ^ � =

1

p!q!

�

�

1

:::�

p

�

�

1

:::�

q

dx

�

1

^ : : : ^ dx

�

p

^ dx

�

1

^ : : : ^ dx

�

q

:

One easily proves, that d is nilpotent, d

2

= 0, and that

� ^ � = (�1)

pq

� ^ �; d(� ^ �) = d� ^ � + (�1)

p

� ^ d�:

2

unfortunately the symbol g is used for the oupling onstant, the determinant of the metri and for elements of

the gauge group. The loal meaning should follow from the ontext
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d� is the generalization of the rotation of a vetor �eld in 3 dimensions. A form � is alled losed if

d� = 0, it is alled exat if � = d�. Loally every losed form is exat. Also, there is a generalization

of the well-known Stoke-theorem, namely:

Theorem: Let M be a d-dimensional, orientable and di�erentiable manifold and let D �M be a

subset of M with smooth boundary �D and ompat losure

�

D. For every d� 1-form � we have

Z

D

d� =

Z

�D

�: (1.7)

An integral over an exat form an be onverted into a surfae integral. We shall need this important

result when we disuss the quantization of the instanton-number.

Atually there is a generalization of this theorem to p forms and this generalization is needed when

one studies the de Rham ohomology. Is �

p�1

a (p� 1)-form and C

p

a p-dimensional submanifold

(a p-simplex), then the generalization reads

Z

�C

p

�

p�1

=

Z

C

p

d�

p�1

:

(1.8)

In partiular the gauge-potential and �eld-strength are Lie algebra-valued 1- and 2-forms, respe-

tively:

A = A

a

�

T

a

dx

�

= A

�

dx

�

and F =

1

2

F

a

��

T

a

dx

�

^ dx

�

=

1

2

F

��

dx

�

^ dx

�

Let us see, how the 2-form F is related to the 1-form A. To see that, we alulate

dA = �

�

A

�

dx

�

^ dx

�

=

1

2

�

�

�

A

�

� �

�

A

�

�

dx

�

^ dx

�

A ^A = A

�

A

�

dx

�

^ dx

�

=

1

2

A

a

�

A

b

�

[T

a

; T

b

℄dx

�

^ dx

�

=

1

2

[A

�

; A

�

℄dx

�

^ dx

�

from whih immediately follows, that

dA� iA ^ A =

1

2

�

�

�

A

�

� �

�

A

�

� i[A

�

; A

�

℄

�

dx

�

dx

�

= F;

(1.9)

where F is the �eld strength two-form.

The �-term is easily expressed in terms of F :

trF ^ F =

1

4

F

a

��

F

b

��

tr (T

a

T

b

) dx

�

^ dx

�

^ dx

�

^ dx

�

=

1

2

sign(g)�

����

F

a

��

F

a

��

�;

where � = e dx

0

^ : : : dx

3

is the volume form and we used

dx

�

^ dx

�

^ dx

�

^ dx

�

= sign(g)�

����

dx

0

^ dx

1

^ dx

2

^ dx

3

= sign(g)�

����

�:
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The �-term in the ation

S =

Z

� L;

belonging to the last term in (1.1), reads

S

�

=

�

16�

2

Z

� �

����

F

a

��

F

a

��

= sign(g)

�

8�

2

Z

trF ^ F:

Now we laim, that

trF ^ F = d!

3

; !

3

= tr

�

A ^ dA�

2i

3

A ^ A ^ A

�

; (1.10)

or that S

�

is a surfae term. To prove that, we �rst note that tr (A

4

) vanishes

3

. This follows from

tr (AAAA) = �tr (AAAA);

where we used the yliity of the trae, and that A

a

^A

b

= �A

b

^ A

a

. Now we alulate

d!

3

= tr

�

dAdA�

2i

3

(dAA

2

�AdAA+A

2

dA)

	

= tr

�

dAdA�

2i

3

(dAA

2

+

1

2

A

2

dA+

1

2

dAA

2

+A

2

dA)

	

:

We subtrat trA

4

= 0 and end up with

d!

3

= tr

�

dAdA� idAA

2

� iA

2

dA�A

4

�

= tr (dA� iA

2

�

2

= trF

2

;

as was laimed.

To rewrite the ation in terms of forms we introdue the dual

�

� of a p-form �, whih is a (d� p)-

form, by

�

� =

1

(d� p)!

�

�

�

p+1

:::�

d

dx

�

p+1

^ : : : ^ dx

�

d

; where

�

�

�

p+1

:::�

d

=

1

p!

�

�

1

:::�

d

�

�

1

:::�

p

:

The star-operation is, up to a sign, idempotent. For a p-form one shows, that

�

(

�

�) = (�1)

p(d�p)

sign(g)�;

where in Eulidean spaetimes sign(g) = 1 and in Lorentzian spaetimes �1. We shall need the

dual of the �eld strength, whih is

�

F =

1

2

�

F

��

dx

�

^ dx

�

; where

�

F

��

=

1

2

�

����

F

��

=

1

2

�

����

F

��

:

3

we abbreviate A ^ A ^A ^ A by AAAA = A

4

.
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Note that

�

(

�

F ) = F in Eulidean spaetimes with signatures (+;+;+;+) and ultra-hyperboli

spaetimes with signature (+;+;�;�; ), whereas

�

(

�

F ) = �F in Lorentzian spaetimes. The (an-

ti)selfduality onditions

�

F = �F =) �F =

�

(

�

F ) = �

�

F = �

2

F

requires, that � = �1 for sign(g) = 1 and � = �i for sign(g) = �1. There are no real (anti)selfdual

�eld strength on Lorentzian manifolds. But irular polarized light (whih maybe desribed by

omplex �elds) is selfdual.

The produt of

�

F and F is part of the Yang-Mills ation:

tr

�

F ^ F =

1

8

�

����

tr (F

��

F

��

)dx

�

dx

�

dx

�

dx

�

= sign(g)

1

8

�

����

�

����

� tr

�

F

��

F

��

�

:

Using that �

����

= e �

����

and that �

����

�

����

= 2 sign(g)(Æ

�

�

Æ

�

�

� Æ

�

�

Æ

�

�

), this yields

tr

�

F ^ F =

e

2

tr

�

F

��

F

��

�

:

(1.11)

Using this result, the ation S =

R

�L in a Riemannian spaetime aquires the following form, up

to Yukawa terms and terms ontaining a possible Higgs �eld:

S

E

=

1

2g

2

Z

�

F ^ F �

Z

�  

y

�

iD= � im

�

 �

i�

8�

2

Z

trF ^ F; (1.12)

In Lorentzian manifolds it reads

S

M

= �

1

2g

2

Z

�

F ^ F +

Z

�

�

 

�

D= � im

�

 +

�

8�

2

Z

trF ^ F: (1.13)

We have seen, that the �-term is a surfae term,

Z

trF ^ F =

I

!

3

;

and does not a�et the lassial dynamis. We reall, that

F = dA�iA ^ A; D= = 

�

D

�

; f

�

; 

�

g = 2g

��

; D

�

= �

�

+i!

�

�iU

�

(A

�

):

In Eulidean spaetime the 

�

are hermitian

4

. Next we disuss the various symmetries of this

ation or piees of this ation.

4

In Minkowskian spaetime not all 

�

an be hermitian. This would ontradit the anti-ommutation relations.
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1.2 Symmetries

The ation has several symmetries, namely loal gauge symmetry, global hiral invariane if the

fermions are massless, loal Lorentz-invariane, di�eomorphism-invariane and sometimes Weyl-

invariane. We shall now disuss these symmetries and some onsequenes, like the onformal

symmetry, in turn.

1.2.1 Gauge symmetry

Under the loal gauge transformations

A �! A

g

= gAg

�1

+ igdg

�1

and  �!  

g

= U(g) ;  

y

�!  

y

U

y

(g)

is the ation invariant. Indeed, the �eld strength and ovariant derivative transform aording to

F (A

g

) = gF (A)g

�1

and d+ i! � iU

�

(A

g

) = U

�

d+ i! � iU

�

(A)

�

U

�1

;

where U = U(g) is the representation of the gauge group aording to whih the fermions transform.

For example, in QCD the quarks transform aording to the fundamental representation and

U(g) = g. However, the right-handed quarks have vanishing weak isospin and thus do not transform

under the weak SU(2). Hene U(g) = e in this ase.

The bits entering the ation transform as

F ^ F ! g(F ^ F )g

�1

,

�

F ^ F ! g(

�

F ^ F )g

�1

 

y

�

iD= � im

�

 �!  

y

�

iD= � im

�

 :

Beause of the trae-operation the Lagrangian and the ation are indeed invariant under loal

gauge transformation.

1.2.2 Chiral symmetry

Sine the hermitian 

5

= 

0



1



2



35

anti-ommutes with the 

�

and ommutes with the spin-

onnetion, and sine



2

5

= 1 =) e

�

5

= osh(�) + 

5

sinh(�) =) 

�

e

�

5

= e

��

5



�

the Dira term in the Eulidean ation transforms under a global hiral transformation

 ! e

�

5

and  

y

!  

y

e

�

5

; � reel,

(1.14)

as

 

y

�

iD= � im

�

 �!  

y

�

iD= � ime

2�

5

�

 :

5

 = 1 in Eulidean and  = i in Minkowskian spaetime, the 's here are the one in at spaetime.
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It follows, that (1.14) is a global lassial symmetry if the fermions are massless. For this reason

the limit m! 0 is alled the hiral limit. We expet that this lassial symmetry is spontaneously

broken in QCD. We shall ome bak to this breaking later on.

We remark, that in Minkowskian spaetime the hiral transformations are

 ! e

i�

5

and

�

 !

�

 e

i�

5

; � reel and 

5

= 

y

5

:

This is required by the anti-ommutation relations for the Fermi �elds or that  

y

in

�

 =  

y



0

is

the adjoint of  .

1.2.3 Loal Lorentz-invariane

In the seond part of the letures we shall investigate quantum �elds in external gravitational

�elds. As a preparation we disuss the important onformal invariane of gauge theories, we now

investigate the oupling of matter �elds to gravity. For bosons this is rather easy, at least if we

implement the equivalene priniple by minimally oupling the bosons to gravity. Let us �rst reall

some important formulas from (pseudo)Riemannian geometry.

The metri tensor in the line-element

ds

2

= g

��

dx

�

dx

�

determines the geometry of a (pseudo)Riemannian manifold. The Levi-Civita onnetion is given

by

�

�

��

=

1

2

g

��

�

g

��

;

�

+g

��

;

�

�g

��

;

�

�

and enters the ovariant derivative of tensor �elds

T

�

1

:::�

p

�

1

:::�

q

;�

= T

�

1

:::�

p

�

1

:::�

q

;�

+ �

�

1

��

T

�:::�

p

�

1

:::�

q

+ : : :� �

�

��

1

T

�

1

:::�

p

�:::�

q

� : : : :

The oordinate expression of the Riemann tensor is

R

�

���

= �

�

��

;

�

��

�

��

;

�

+�

�

��

�

�

��

� �

�

��

�

�

��

:

The 'di�eomorphism'-onnetion 1-form and the urvature 2-form by

�

�

�

= �

�

��

dx

�

and 


�

�

=

1

2

R

�

���

dx

�

^ dx

�

;

where




�

�

= d�

�

�

+ �

�

�

^ �

�

�

:

(1.15)

The Rii tensor and Rii salar are

R

��

= g

��

R

����

and R = g

��

R

��

:

10



For the various symmetry properties of the Riemann tensor I refer you to the extensive literature

on general relativity.

For the gauge bosons we have already aomplished the minimal oupling. Let us repeat: the

di�erene to at spae is, that in F

��

F

��

the indies are lowered and raised with the metri tensor

g

��

and its inverse g

��

. The ation is the integral over the Lagrangian density, where one integrates

with the invariant measure � whih ontains the determinant g of the metri.

For spin-zero �elds the generally ovariant derivative is just the ordinary derivative, so that

S

�

=

1

2

Z

�

�

g

��

D

�

�D

�

�� V (�) + �R�

2

�

;

(1.16)

where D = d � iU

�

(A) and V (�) is the Higgs-potential ontaining a possible mass term and

self-interation for the salar �eld. The last term ontaining the Rii-salar R violates the equiva-

lene priniple. It is an additional renormalizable term whih is sometimes added to improve the

onformal properties of the theory. Note, that after a partial integration this ation reads

S

�

=

1

2

Z

�

�

� �D

2

�� V (�) + �R�

2

�

;

where D

2

is the gauge-ovariant d'Alambert operator

D

2

� = g

��

D

�

D

�

� = g

��

�

�

�

�

� iU

�

(A

�

)

�

D

�

�� �

�

��

D

�

�

�

=

1

p

jgj

�

�

�

� iU

�

(A

�

)

�

p

jgjg

��

�

�

�

� iU

�

(A

�

)

�

�:

When proving the last identity, one needs that

g

��

�

�

��

= �

1

p

jgj

�

�

�

p

jgjg

��

�

:

For unharged partiles

D

2

=

1

p

jgj

�

�

�

p

jgjg

��

�

�

�

= 2

g

is the d'Alambert operator in urved spaetime.

Coupling fermions to gravity is a bit more triky, sine in at spae those transform under the 'spin

representation' of the Lorentz group. When the tangent spae group to a urved spaetime manifold

is (pseudo-)orthogonal one an still introdue spinors by referring them to the loal orthonormal

tangent frame. We assume that this is the ase and introdue orthonormal tetrads or 4-beins. A

4-bein is a 'square-root' of the metri:

g

��

= �

ab

e

a

�

e

b

�

; g

��

= �

ab

e

�

a

e

�

b

=) e

a�

e

a�

= Æ

�

�

;

where �

ab

is the at metri, i.e. �

ab

= diag(1;�1;�1;�1) on manifolds with Lorentzian signature

and �

ab

= diag(1; 1; 1; 1) on manifolds with Riemannian signature. Multiplying the last equation

with e

a�

and summing over � yields

e

a�

e

b�

e

b�

= e

a�

=) e

a�

e

b�

= Æ

a

b

; e

a�

e

b

�

= �

ab

:
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The indies �; � are spaetime-indies whih are lowered and raised with g

��

and g

��

and a; b are

Lorentz-indies whih are lowered and raised with �

ab

and �

ab

. The �

a

= e

a

�

dx

�

form a orthonormal

basis of tetrads. The prie one pays when one introdues 4-beins is an additional symmetry, the

loal Lorentz invariane. Let �(x) be a spaetime dependent Lorentz transformation. Then

e

a

�

and ~e

a

�

= �

a

b

e

b

�

lead to the same metri

~e

a

�

�

ab

~e

b

�

= �

a



e



�

�

ab

�

b

d

e

d

�

= e

a

�

�

ab

e

b

�

= g

��

;

sine �

t

�� = � for Lorentz-transformations. To this loal SO(1; 3) resp. SO(4) symmetry belongs

a ovariant derivative. To determine the orresponding onnetion we observe that with the help of

the 4-bein we an onvert vetors (tensors) into salars and vie versa. Let A

�

be the omponents

of a vetor �eld. Its ovariant derivative is

r

�

A

�

= �

�

A

�

+ �

�

��

A

�

:

We an onvert A

�

into into a Lorentz vetor and vie versa:

A

a

= e

a

�

A

�

and A

�

= A

a

e

�

a

whih are the entries of a vetor under the loal Lorentz transformations

A

a

! �

a

b

A

b

; � = �(x):

Sine � is spaetime-dependent, the ordinary derivative of a Lorentz-tensor is not a Lorentz-tensor.

As usual we need to introdue a onnetion to de�ne a ovariant derivative whih maps Lorentz-

tensors into Lorentz-tensors. In partiular there must be a !, suh that

r

�

A

a

= �

�

A

a

+ !

a

�b

A

b

is a Lorentz-vetor. This requirement is ful�lled if it doesn't matter whether we �rst take the

ovariant derivative of a vetor �eld and then onvert the result into a Lorentz vetor, or �rst

onvert the spaetime vetor into a Lorentz vetor and then take the ovariant derivative. Thus

we demand that

e

a

�

r

�

A

�

= r

�

(e

a

�

A

�

) = r

�

A

a

:

The �rst equation is equivalent to

�

�

e

a

�

� �

�

��

e

a

�

+ !

a

�b

e

b

�

� r

�

e

a

�

= 0:

(1.17)

Similarly one �nds, that

�

�

e

�

a

+ �

�

��

e

�

a

+ !

�ab

e

b�

� r

�

e

�

a

= 0:

(1.18)

These equations allow us to alulate the onnetion !

�

from the vierbein as follows: Let

�

a

= e

a

�

dx

�

and !

a

b

= !

a

�b

dx

�
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be the tetrad and onnetion-one-form, respetively. Then

d�

a

+ !

a

b

^ �

b

=

1

2

�

�

�

e

a

�

� �

�

e

a

�

+ !

a

�b

e

b

�

� !

a

�b

e

b

�

�

dx

�

^ dx

�

= 0;

sine the term in the brakets is just the anti-symmetrized left hand side of (1.17). The important

formula

d�

a

+ !

a

b

^ �

b

= 0 (1.19)

is the �rst struture equation of Cartan. To obtain the seond struture equation we multiply (1.17)

with dx

�

whih yields

de

a

�

� e

a

�

�

�

�

+ !

a

b

e

b

�

= 0; where �

�

�

= �

�

��

dx

�

:

(1.20)

The urvature tensor an be written as follows:

d�

�

�

+ �

�

�

^ �

�

�

=

1

2

�

�

�

��

;

�

��

�

��

;

�

+�

�

��

�

�

��

� �

�

��

�

�

��

�

dx

�

^ dx

�

� 


�

�

;

where we introdued the urvature 2-form. Now we di�erentiate (1.20) whih results in

�de

a

�

^ �

�

�

� e

a

�

d�

�

�

+ d!

a

b

e

b

�

� !

a

b

^ de

b

�

= 0: (1.21)

Here we insert for de

a

�

the result (1.20) and �nd the formula

d�

�

�

+ �

�

�

^ �

�

�

=

�

d!

a

b

+ !

a



!



b

�

e

b

�

e

�

a

:

Comparison with (1.21) yields the seond struture equation of Cartan:

d!

a

b

+ !

a



^ !



b

= 


a

b

where 


a

b

= e

a

�

e

�

b




�

�

(1.22)

is the urvature 2-form with respet th the orthonormal frame. We now use the struture equation

to derive the Shwarzshild solution for a spherially symmetri body. We hoose the manifold

M = R�R

+

� S

2

. In polar oordinates the metri has the form

g = e

2a(r)

dt

2

�

h

e

2b(r)

dr

2

+ r

2

(d�

2

+ sin

2

�d'

2

)

i

:

(1.23)

We now must insert this ansatz into Einstein's �eld equation

G

��

= 8�GT

��

; G

��

= R

��

�

1

2

g

��

R:

(1.24)

This is done most quikly with the help of the Cartan alulus. We hoose the following orthonormal

tetrad

�

0

= e

a

dt; �

1

= e

b

dr; �

2

= rd�; �

3

= r sin �d':
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Aording to the �rst struture equation we need to alulate the derivative of the tetrad:

d�

0

= a

0

e

a

dr ^ dt; d�

1

= 0

d�

2

= dr ^ d�; d�

3

= sin �dr ^ d'+ r os � d� ^ d':

We express the right hand sides in terms of the basis �

�

^ �

�

, obtaining

d�

0

= a

0

e

�b

�

1

^ �

0

; d�

1

= 0

d�

2

=

1

r

e

�b

�

1

^ �

2

; d�

3

=

1

r

�

e

�b

�

1

^ �

3

+ ot � �

2

^ �

3

�

:

When this is ompared with the �rst struture equation one expets the following onnetion forms:

!

0

1

= a

0

e

�b

�

0

; !

0

2

= !

0

3

= 0; !

2

1

= r

�1

e

�b

�

2

!

3

1

= r

�1

e

�b

�

3

; !

3

2

= r

�1

ot � �

3

:

The other onnetion forms are determined by !

ab

= �!

ba

. This ansatz indeed satis�es the �rst

struture equation. The urvature forms 


a

b

an now be gotten from the seond struture equation.

The result is




0

1

= e

�2b

(a

0

b

0

� a

00

� a

02

) �

0

^ �

1

; 


0

2

= �

a

0

e

�2b

r

�

0

^ �

2




0

3

= �

a

0

e

�2b

r

�

0

^ �

3

; 


1

2

=

b

0

e

�2b

r

�

1

^ �

2




1

3

=

b

0

e

�2b

r

�

1

^ �

3

; 


2

3

=

1� e

�2b

r

2

�

2

^ �

3

:

The other omponents are gotten from 


ab

= �


ba

. For the nonzero omponents of the Einstein

tensor G

a

b

(with Lorentz-indies) one obtains

G

0

0

=

1

r

2

� e

�2b

�

1

r

2

�

2b

0

r

�

; G

1

1

=

1

r

2

� e

�2b

�

1

r

2

+

2a

0

r

�

G

2

2

= G

3

3

= �e

�2b

�

a

02

� a

0

b

0

+ a

00

+

a

0

� b

0

r

�

:

If we demand asymptoti atness, then the Einstein equation im vauum imply a+ b = 0 and

e

�2b

= 1� 2m=r

so that we obtain the Shwarzshild solution

g =

�

1�

2m

r

�

dt

2

�

dr

2

1� 2m=r

� r

2

(d�

2

+ sin

2

�d'

2

):

(1.25)

We shall need this result later, when we disuss quantum �elds near blak holes.

Let us now determine, how the onnetion transforms under frame-rotations � !

~

� = ��: if (�; !)

obey the struture equations, then (

~

�; ~!) must obey them. Sine

0 = �

�1

�

d

~

� + ~! ^

~

�

�

= �

�1

d� ^ � + d� +�

�1

~!� ^ �
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this requirement implies the following transformation law for the onnetion under loal frame

rotation:

!

a

b

�! ~!

a

b

= �

a



!



d

(�

�1

)

d

b

� (d��

�1

)

a

b

: (1.26)

!

a

b

transforms inhomogeneously under loal frame rotations, as expeted for a onnetion.

How do we now ouple fermions to gravity? For that we reall that the Lie-algebra of the Lorentz-

group onsists of 6 matries �

a

b

whih are antisymmetri in the lower indies, �

ab

+ �

ba

= 0. As

generators of a representation of the Lorentz-algebra we may hoose operators J

ab

= �J

ba

whih

obey the ommutation relations

[J

ab

; J

d

℄ = i

�

�

a

J

bd

+ �

bd

J

a

� �

b

J

ad

� �

bd

J

a

�

:

Examples are the generalizations of the orbital angular momentum, spin and total angular mo-

mentum (supplemented by the in�nitesimal boosts)

M

ab

= i

�

x

a

�

b

� x

b

�

a

�

; �

ab

=

1

4i

[

a

; 

b

℄ and J

ab

=M

ab

+�

ab

:

Let

�

a

b

= (e

�

)

a

b

; �

ab

= ��

ba

be a Lorentz-transformation. Spinors transform under Lorentz-transformations with the spin re-

presentation

 (x) �!

~

 (x) = S (x) = e

i

2

�

ab

�

ab

 =) S

�1



a

S = �(S)

a

b



b

: (1.27)

The map S �! �(S) is a representation of the spin group by Lorentz transformations

�(S

1

S

2

) = �(S

1

)�(S

2

); �(1) = 1: (1.28)

The ovariant derivative D

�

= �

�

+ i!

�

ating on spinors must be ompatible with the loal

spin-rotation

~

D

�

~

 =

�

�

�

+ i~!

�

�

~

 = S

�

�

�

+ i!

�

�

 :

(1.29)

This implies, that

~!

�

= S!

�

S

�1

+ i�

�

SS

�1

(1.30)

must hold. The spin onnetion must be in the Lie-algebra of the spin group, i.e. a linear ombi-

nation of its generators,

!

�

=

1

2

!

�ab

�

ab

:

(1.31)

As indiated by the notation, we laim that the !

�ab

is the onnetion of the frame rotations. We
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must show, that this spin-onnetion indeed transforms as in (1.30) under spin rotations. Using

the transformation (1.26) for the onnetion we �nd

~!

�

=

1

2

~!

�d

�

d

=

1

2

�

�

a



!

�ab

(�

�1

)

b

d

� (�

�

��

�1

)

d

�

�

d

:

(1.32)

On the other hand, using the last identity in (1.27) and (�

�1

)

a

b

= �

a

b

we �nd

S!

�

S

�1

=

1

2

!

�ab

S�

ab

S

�1

=

1

2

�

a



!

�ab

(�

�1

)

b

d

�

d

;

(1.33)

that is, the homogeneous term in (1.32). To see that the inhomogeneous term in (1.30) oinides

with that in (1.32) we note, that the last identity in (1.27) implies

[

a

; dSS

�1

℄ = (d��

�1

)

a

b



b

Now we multiply this equation with 

a

from the left and sum over a. Using that

6



a



a

= 4 and 

a

dSS

�1



a

= 0

we end up with

4dSS

�1

= (d��

�1

)

ab



a



b

;

we �nd, that

idSS

�1

= �

1

2

(d��

�1

)

ab

�

ab

whih proves that also the inhomogeneous term in (1.30) oinides with that in (1.32).

So summarize: The ovariant derivative of spinors is

D

�

 = �

�

 + i!

�

 ; where !

�

=

1

2

!

�ab

�

ab

:

D

�

 transforms under frame-rotations the same way as  does.

Spinor �elds are salars with respet to general oordinate transformations or di�eomorphism. Is

the spinor �eld harged, then

D

�

 = �

�

 + i!

�

 � iU

�

(A

�

) :
(1.34)

One should keep in mind that the loal spin rotation are implemented di�erently in Riemannian

and pseudo-Riemannian manifolds. In Riemannian manifolds

 ! S ;  

y

!  

y

S

y

=  

y

S

�1

and ! ! S!S

�1

+ idSS

�1

(1.35)

and in pseudo-Riemannian manifolds

6

to get the seond of the following identities, one uses that [�

ab

; 



℄ = i(�

a



b

� �

b



a

).
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 ! S ;  

y

!  

y

S

y

;

�

 !

�

 S

�1

and ! ! S!S

�1

+ idSS

�1

(1.36)

In the Riemannian ase S

y

= S

�1

. The orresponding relation in the pseudo-Riemannian ase is



0

S

y



0

= S

�1

. The reason for this di�erene is that the spin groups are the overings of SO(4)

and SO(1; 3), respetively. Now we an show, that the fermioni part of the ation is loal Lorentz-

invariant. From our previous results it follows immediately, that

Z

~

 

y

�

i~

�

~

D

�

�im

�

~

 =

Z

 

y

S

y

�

i~

�

~

D

�

�im

�

S =

Z

 

y

�

iS

y

~

�

SD

�

�im

�

 ;

where we have used (1.29). It remains to be shown, that

S

y

~

�

S = 

�

:

(1.37)

The 

�

are spaetime-dependent gamma-matries whih must transform the spaetime-vetor D

�

into a Lorentz vetor. Their anti-ommutators are

f

�

; 

�

g = 2g

��

:

One onvines one-selves, that they are related to the numerial gamma-matries 

a

on at spae-

time aording to



�

= 

a

e

�

a

: (1.38)

Now we alulate

S

y

~

�

S = S

y



a

S~e

�

a

= �



a

�

a

b



b

e

�

a

= 

�

and see, that (1.37) indeed holds. Thus the ation is loal Lorentz-invariant.

1.2.4 Di�eomorphism and Lie derivative

The general oordinate invariane is built into our ation sine only spaetime salars enter the

Lagrangian density. Now we interpret a oordinate transformation atively as a point transforma-

tion, rather than passively as one usually does. Consider a ongruene of urves x

�

(u) and de�ne

the tangent vetor �eld dx

�

=du along the urve. We do that for every urve in the ongruene and

end up with a vetor �eld X

�

. Conversely, given a non-vanishing vetor �eld X

�

(x) de�ned over

the manifold, then this an be used to de�ne a ongruene of urves in the manifold alled the

orbits or trajetories of X

�

. This urves are the integral urves on the vetor �eld and are obtained

by solving

dx

�

du

= X

�

�

x(u)

�

):

We suppose that X

�

has been given and the orresponding ongruene of urves has been onstru-

ted. We want to di�erentiate a tensor �eld T

�

1

:::

�

1

:::

. For that we drag the tensor �eld at some point

17



p along the urve passing through p to some neighboring point q and ompare the dragged-along

tensor with the tensor already there. We subtrat the two tensors at q and de�ne the derivative

by some limiting proess as q ! p.

Consider the transformation

y

�

= x

�

+ �X

�

(x);

where � is small. This point transformation sends a point p with oordinates x to a point q whih

lies on the urve of the ongruene through p and has oordinates x+ �X (in the same oordinate

system). Under a point transformation a tensor T

��

is mapped aording to

T

��

(x) �!

~

T

��

(y) =

�y

�

�x

�

�y

�

�x

�

T

��

(x):

(1.39)

Sine

�y

�

�x

�

= Æ

�

�

+ ��

�

X

�

we have

~

T

��

(y) =

�

Æ

�

�

+ ��

�

X

�

��

Æ

�

�

+ ��

�

X

�

�

T

��

(x)

= T

��

(x) + �

�

�

�

X

�

T

��

(x) + �

�

X

�

T

��

(x)

�

+O(�

2

):

Applying Taylor's theorem to �rst order, we also get

T

��

(y) = T

��

(x + �X(x)) = T

��

(x) + �X

�

�

�

T

��

(x):

Now we are ready to de�ne the Lie derivative of a tensor by

L

X

T

��

= lim

�!0

T

��

(y)�

~

T

��

(y)

�

:
(1.40)

The Lie derivative ompares the tensor T

��

(y) at the point q with

~

T

��

(y), the dragged-along tensor

at q. We �nd

L

X

T

��

= X

�

�

�

T

��

� T

��

�

�

X

�

� T

��

�

�

X

�

:

The Lie derivative maps (p; q)-tensors into (p; q) tensors, is linear, ful�lls the Leibniz rule and

ommutes with ontrations. For general tensor �eld is it

L

X

T

�

1

�

2

:::

�

1

�

2

:::

= X

�

�

�

T

�

1

�

2

:::

�

1

�

2

:::

� T

��

2

:::

�

1

�

2

:::

�

�

X

�

1

� : : :+ T

�

1

�

2

:::

��

2

:::

�

�

1

X

�

+ : : : :

(1.41)

In partiular, the Lie-derivative of the metri is

L

X

g

��

= X

�

�

�

g

��

+ g

��

X

�

;

�

+g

��

X

�

;

�

:

Using the metriity of the onnetion,

r

�

g

��

� �

�

��

g

��

� �

�

��

g

��

= 0;
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this Lie-derivative an be rewritten as

L

X

g

��

= X

�

�

�

�

��

g

��

+ �

�

��

g

��

�

+ g

��

X

�

;

�

+g

��

X

�

;

�

= r

�

X

�

+r

�

X

�

:

If there is a vetor �eld suh that L

X

g

��

= 0, suh a �eld is alled Killing vetor �eld, then the

metri is dragged into itself by the ux generated by X . In other word, the ux is an isometry. A

Killing vetor �eld generates an in�nitesimal isometry and obeys the Killing equation

L

X

g

��

= r

�

X

�

+r

�

X

�

= 0:

(1.42)

Let us see more expliitly that the ux generated by a Killing �eld is an isometry. The di�eomor-

phism generated by X(x) maps the urve x(v) onneting the points A and B to the urve y(x(v))

onneting A

0

and B

0

.

y(x(v))

x(v)

X
X

A’ B’

BA

Abbildung 1.1: The isometry generated by a Killing �eld

Let us see, that the two urves have the same length:

d(A

0

; B

0

) =

Z

q

g

��

�

y(v)

�

_y

�

_y

�

dv =

Z

r

g

��

�

y[x(v)℄

�

�y

�

�x

�

�y

�

�x

�

_x

�

_x

�

dv

=

Z

s

�x

�

�y

�

�x

�

�y

�

g

��

�

x(v)

�

�y

�

�x

�

�y

�

�x

�

_x

�

_x

�

dv = d(A;B);

where in the seond to last equation we used, that the metri at y oinides with the dragged along

metri if X(x) is a Killing �eld.
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The isometries of Minkowski spaetime are the d translations with onstant Killing �elds X

�

(x) =



�

, and the

1

2

d(d� 1) Lorentz transformations with Killing �elds X

�

(x) = !

�

�

x

�

; !

��

+ !

��

= 0.

There is another spaetime whih admits the same maximal number of

1

2

d(d + 1) Killing �elds,

namely the (anti) de Sitter spaetimes.

A spaetime is stationary if there exists a speial oordinate system in whih the metri is time-

independent, i.e.

�g

��

�x

0

= 0;

(1.43)

where x

0

is a time-like oordinate. In an arbitrary oordinate system the metri will probably

depend expliitly on all the oordinates; so we need to make the statement (1.43) oordinate-

independent. If we de�ne a vetor �eld

X

�

= Æ

�

0

(1.44)

in the speial oordinate system, then

L

X

g

��

= X

�

�

�

g

��

+ g

��

�

�

X

�

+ g

��

�

�

X

�

= Æ

�

0

�

�

g

��

=

�g

��

�x

0

= 0:

Sine L

X

g

��

is a tensor it vanishes in all oordinate systems and hene X

�

is a Killing vetor

�eld. Conversely, given a time-like Killing �eld X

�

, then there always exist oordinates adapted

to the Killing �eld, that is, in whih (1.44) holds. In this oordinate system the metri is time

independent. Thus, a spaetime is stationary if and only if it admits a time-like Killing vetor �eld.

A stati spaetime admits a hypersurfae-orthogonal time-like Killing �eld. To see what this means

let

f(x) = � (1.45)

de�ne a family of hypersurfaes. Di�erent members of the family orrespond to di�erent values of

�. If two neighboring point with oordinates x and x+ dx lie on the same surfae, then

�f

�x

�

dx

�

� n

�

dx

�

= 0:

Sine dx

�

lies in a surfae S de�ned by (1.45) it follows by onstrution that n

�

is orthogonal to

S. A vetor �eld X

�

is alled hypersurfae-orthogonal if it is everywhere orthogonal to the family

of hypersurfaes, in whih ase it must be proportional to n

�

,

X

�

= �(x)n

�

= ��

�

f:

This onditions imply

X

�

�

�

X

�

= �f;

�

�;

�

f;

�

+�

2

f

�

f;

��

:

Taking the total antisymmetri part of this equation we �nd

X

[�

�

�

X

�℄

= 0, X ^ dX = 0; X = X

�

dx

�

:

20



This equation is unhanged, if we replae the ordinary derivative by a ovariant derivative, namely

X

[�

r

�

X

�℄

= 0:

(1.46)

Any hypersurfae-orthogonal vetor �eld satis�es this Frobenius ondition. The onverse is also

true: any non-null Killing vetor �eld (X

�

X

�

6= 0) satisfying the Frobenius ondition is neessarily

hypersurfae-orthogonal. Indeed, one an show that then

X;

�

= X

2

f;

�

for some funtion f:

Given a hypersurfae-orthogonal time-like Killing �eld one an introdue adapted oordinates along

the ongruene and in one hypersurfae (see �gure (1.2)) suh that the metri is time-independent

x

x

x

0

1

2

S

K

Abbildung 1.2: Adapted oordinates in a stati spaetime

and no ross terms appear in the line element involving the time, i.e. the shift vetor g

0i

vanishes.

1.2.5 Weyl-transformations

Under a loal Weyl-transformation

ds

2

�! e

2�

ds

2

transform the metri and vielbein aording to

g

��

�! ĝ

��

= e

2�

g

��

; e

a

�

�! ê

a

a

= e

�

e

a

�

=) ê = e

d�

e:
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The transformed tetrad

^

�

a

= e

�

�

a

must obey the �rst struture equation with transformed onne-

tion !̂

a

b

:

d

^

�

a

+ !̂

a

b

^

�

b

= e

�

�

d�

a

+ !̂

a

b

�

b

+ d��

a

�

= 0:

The right hand is zero, i�

!̂

a

b

�

b

= !

a

b

�

b

� d��

a

holds. Together with the antisymmetry of the onnetion forms this �xes the Weyl-transformed

onnetion as

!̂

a

b

= !

a

b

+ �

a

�

b

� � �

b

�

a

�; where �

b

� = e

�

b

�

�

�:

The Christo�el-symbols transform as

^

�

�

��

= �

�

��

+

�

Æ

�

�

�;

�

+Æ

�

�

�;

�

�g

��

�

;�

�

:

Finally we need the transformation of the urvature: From

^




ab

= 


ab

� �

a

�



�

r



�;

b

��

;



�;

b

�

+ �

b

�



�

r



�;

a

��

;

�;

a

�

� �

a

�

b

(r�)

2

:

One derives, that

^

R

abd

= e

�2�

h

R

abd

+ �

b

�

�

;ad

� �;

a

�;

d

�

� �

a

�

�

;bd

� �;

b

�;

d

�

� �

a

�

bd

(r�)

2

��

bd

�

�

;a

� �;

a

�;



�

+ �

ad

�

�

;b

� �;

b

�;



�

+ �

ad

�

b

(r�)

2

i

:

Contrations yield the following transformation laws for the Rii tensor and Rii salar:

^

R

ab

= e

�2�

h

R

ab

+ (2� d)

�

�

;ab

� �;

a

�;

b

+�

ab

(r�)

2

�

� �

ab

4�

i

^

R = e

�2�

h

R� 2(d� 1)4� � (d� 1)(d� 2)(r�)

2

i

:

The Weyl tensor, whih is the traeless part of the urvature tensor,

C

abd

= R

abd

+

1

d� 2

�

�

ad

R

b

+ �

b

R

da

� �

a

R

db

� �

bd

R

a

�

+

1

(d� 1)(d� 2)

�

�

a

�

db

� �

ad

�

b

�

R

is Weyl-invariant:

^

C

�

���

= C

�

���

:

Hene, if a spaetime an be related to at spaetime by a Weyl-transformation (is onformally

at) then the Weyl tensor vanishes. In d � 4 dimensions the onverse is also true: a spaetime is

onformally at

g

��

= e

2�

�

��

; up to oordinate transformations,
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if and only if the Weyl-tensor vanishes. In 3 dimensions the Weyl tensor vanishes identially and

another tensor (see Eisenhart) an be used to determine if a spae is onformally at. Every 1 and

2-dimensional spaetime is onformally at (up to moduli parameter).

Transformation of wave-operators

The Laplaian or d'Alambertian

4 =

1

e

�

�

�

eg

��

�

�

�

; e = det(e

a

�

)

transforms under Weyl transformations as

^

4 = e

�

d+2

2

�

�

4�

d� 2

2

4� + (

d� 2

2

)

2

(r�)

2

�

e

d�2

2

�

:

When rewriting the transformation of the Rii salar as

^

R = e

�

d+2

2

�

�

R� 2(d� 1)4� � (d� 1)(d� 2)(r�)

2

�

e

d�2

2

�

then one sees immediately, that the wave operator

4



=4�

d� 2

4(d� 1)

R

transforms homogeneously under Weyl-transformations,

^

4



= e

�

d+2

2

�

4



e

d�2

2

�

:

(1.47)

Using the transformation property of the onnetion,

!̂

�ab

= !

�ab

+

�

e

a�

e

�

b

� e

b�

e

�

a

�

�

�

� and 

a

�

ab

=

d� 1

2i



b

one easily �nds, that

^

D= = e

��



�

�

�

�

+ i!

�

+

d� 1

2

�

�

�

�

whih is a homogeneous transformation

^

D= = e

�

d+1

2

�

D=e

d�1

2

�

: (1.48)

Now we turn to the Yang-Mills equations. From the very de�nition of the star-operator, one �nds

^

�

� = e

(d�2p)��

�̂ for a p-form �:

We see, that the Yang-Mills ation and theta terms are both invariant under Weyl-transformations

in 4 dimensions if

^

F = F =)

^

A = A:
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Weyl-invariant ations

The term

R

��4



� is Weyl-invariant, if the salar �eld has Weyl-weight �(d�2)=2, i.e. transforms

aording to

^

� = e

��

� with weight � = �

1

2

(d� 2)

under Weyl transformations, sine then

^

�

^

4



^

� = e

�d�

�4



�

as it must be for the ation to be invariant

7

. Also, an interation term

�

Z

��

d



; where d



=

2d

d� 2

is Weyl invariant. The general Weyl-invariant ation for a salar �eld reads

S

�

=

Z

�

�

�

1

2

�

�;4



�

�

+ ��

d



:

�

:

The ation for massless spin-

1

2

partiles,

S

 

=

Z

� 

y

iD= 

is Weyl invariant in any dimensions if we assign the weight � = �(d� 1)=2 to a spinor �eld in d

dimensions. The Yang-Mills ation is Weyl invariant in 4 dimensions and the gauge potential has

weight zero.

A Yukawa term transforms as

^

 

y

^

�

^

 = e

(2�

3d

2

)�

 

y

� 

and hene

R

� 

y

� is Weyl invariant in 4 dimensions.

Now we wish to ombine the di�eomorphism- and Weyl transformations. For Weyl-invariant theo-

ries these are symmetry transformations. Give a vetor �eld X and its orresponding ux, the

dragged along metri is

~g

��

(y) =

�x

�

�y

�

�x

�

�y

�

g

��

(x):

Now we assume, that the ~g

��

(y) oinides with the metri present at y, up to a onformal fator:

~g

��

(y) = e

2�(y)

g

��

(y):

As above, we investigate the in�nitesimal form of this ondition. Setting y = x+ �X we �nd

�

1 + 2��(x)

��

1 + �X

�

�

�

�

g

��

(x) = g

��

(x)� �

�

�

�

X

�

g

��

+ �

�

X

�

g

��

�

+O(�

2

):

7

Reall, that �̂ = e

d�

�.
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We see, that the vetor �eld must obey the equation

2�g

��

+ L

X

g

��

= 0:

When using g

��

�

�

g

��

= 2�

�

��

the ontration of this equation determines the leading ontribution

to � as

� = �

1

d

r

�

X

�

= �

1

d

divX:

Thus the �eld X must obey the onformal Killing equation

L

X

g

��

=

2

d

divX g

��

:

(1.49)

Minkowski spaetime allows for

1

2

(d + 1)(d + 2) onformal Killing �elds. Beside the Killing �elds

belonging to the translations and Lorentz transformations these are the dilatations and d speial

onformal transformations with onformal Killing �elds

X

�

= �x

�

and X

�

= 2( � x)x

�

� x

2



�

:

The dimension of the onformal group is

1

2

(d + 1)(d + 2) and is just the group SO(d; 2) (resp.

SO(d+ 1; 1) in Eulidean spaetime).

1.2.6 Conformal transformations in Minkowski spaetime

If a spaetime possesses Killing �elds, then a di�eomorphism invariant theory possesses symmetries.

However, a di�eomorphism- and Weyl invariant theory has additional symmetries. They an be

ombined suh that the metri is invariant, as it is the ase for isometries. In Minkowski spaetime

suh a theory is not only invariant under translations and Lorentz boost but under all onformal

transformations.

So let us assume, that X is a onformal Killing �eld with orresponding ux x �! y(x). The

metri and matter �elds are dragged along aording to

g

��

(x) �! ~g

��

(y) =

�x

�

�y

�

�x

�

�y

�

g

��

(x) = e

2�(y)

g

��

(y)

T

�

1

:::

�

1

:::

(x) �!

~

T

�

1

:::

�

1

:::

(y) =

�y

�

1

�x

�

1

: : :

�x

�

1

�y

�

1

: : : T

�

1

:::

�

1

:::

(x):

Next we perform a ompensating Weyl transformation with onformal fator

e

2�(y)

=

1

d

g

��

(y)~g

��

(y):

whih results in

~g

��

(y) �! e

�2�(y)

~g

��

(y)

~

T

�

1

:::

�

1

:::

(y) �! e

���(y)

~

T

�

1

:::

�

1

:::

(y)
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The omposition a di�eomorphism generated by a onformal Killing �eld and a ompensating Weyl

transformation leaves the metri tensor invariant

g

��

(x) �! g

��

(y)

(1.50)

and hanges a matter �eld with Weyl-weight � aording to

T

�

1

:::

�

1

:::

(x) �!

�

T

�

1

:::

�

1

:::

(y) = e

���(y)

�y

�

1

�x

�

1

: : :

�x

�

1

�y

�

1

: : : T

�

1

:::

�

1

:::

(x):

(1.51)

The in�nitesimal form of these transformations is

Æ

X

T

�

1

:::

�

1

:::

=

�

L

X

�

2�

d

divX

�

T

�

1

:::

�

1

:::

(1.52)

For a di�eomorphism- and Weyl invariant theory the transformation (1.51) or its in�nitesimal form

(1.52) are symmetries. The important point is, that if x ! y is a di�eomorphism generated by a

onformal Killing �eld, then the metri remains unhanged under this transformation.

Let us apply these general results to Eulidean and Minkowski

8

spaetime. In the following we shall

need these symmetry transformations for the onformal Killing �eld for salar �elds in arbitrary

dimensions and gauge potentials in 4 dimensions:

Æ

X

� = L

X

�+

d� 2

d

�

�

X

�

� and Æ

X

A

�

= L

X

A

�

:

Inserting the expliit expressions for the the onformal Killing �elds we end up with the following

in�nitesimal onformal symmetries:

X

�

Æ

X

� Æ

X

A

�

a

�

X

�

�

�

� X

�

�

�

A

�

!

�

�

x

�

X

�

�

�

� X

�

�

�

A

�

+ !

�

�

A

�

�x

�

�

X

�

�

�

+ �(d � 2)

�

�

�

X

�

�

�

+ �

�

A

�

x

2



�

� 2(; x)x

�

�

X

�

�

�

� 2(d�2)(; x)

�

�

�

X

�

�

�

+ 2[(; A)x

�

�(x;A)

�

� (; x)A

�

℄

�

A

�

For an arbitrary tensor �eld of weight �, the in�nitesimal dilatations read

Æ

X

D

T

��:::

��:::

= �

�

x

�

+ s� 2�

�

T

��:::

��:::

;

where s is the number of ovariant minus the number ontravariant indies of T

��:::

��:::

. The number

� = s� 2� is the onformal weight of T

��:::

��:::

:

For ompleteness we reall the form of the onformal transformations:

8

atually ompati�ed Minkowski spaetime, see below
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Translations y

�

= x

�

+ a

�

Lorentz transformations y

�

= �

�

�

x

�

; � = e

!

Dilatations y

�

= e

�

x

�

Speial onformal transformations y

�

=

�

1 + 2(; x) + 

2

x

2

�

�1

�

x

�

+ 

�

x

2

�

Let us assume, that S[g

��

;�℄ is Weyl-invariant, where � denotes all matter �elds of the theory.

Now we de�ne the energy-momentum tensor aording to

T

��

=

2

e

Æ

Æg

��

S[g

��

;�℄:

The Weyl-invariane implies

ÆS

Æ�

= 0 =

ÆS

Æg

��

Æg

��

Æ�

+

ÆS

Æ�

Æ�

Æ�

= �eT

�

�

+ �

ÆS

Æ�

�:

(1.53)

We see, that the T

��

is traeless o�-shell if the weights of all matter �elds vanish. For example, using

Æe = �

1

2

e g

��

Æg

��

the variation of the Yang-Mills ation under a hange of the metri beomes

Æ

Z

p

jgjg

��

g

��

F

��

F

��

= 2

Z

p

jgjÆg

��

�

F

��

F

�

�

�

1

4

g

��

F

��

F

��

�

and we an read o� the traeless energy-momentum tensor in spaes with Minkowskian resp.

Eulidean signatures

T

M

��

= �

1

g

2

�

F

��

F

�

�

�

1

4

g

��

F

��

F

��

�

T

E

��

=

1

g

2

�

F

��

F

�

�

�

1

4

g

��

F

��

F

��

�

:

(1.54)

To write this in terms of the hromoeletri and hromomagneti �elds, we insert

F

��

M;E

=

0

B

�

0 E

1

E

2

E

3

�E

1

0 B

3

�B

2

�E

2

�B

3

0 B

1

�E

3

B

2

�B

1

0

1

C

A

(1.55)

F

E

��

=

0

B

�

0 E

1

E

2

E

3

�E

1

0 B

3

�B

2

�E

2

�B

3

0 B

1

�E

3

B

2

�B

1

0

1

C

A

; F

M

��

=

0

B

�

0 �E

1

�E

2

�E

3

E

1

0 B

3

�B

2

E

2

�B

3

0 B

1

E

3

B

2

�B

1

0

1

C

A

It follows in partiular, that

T

M

00

=

1

2g

2

�

~

E

2

+

~

B

2

�

; T

E

00

=

1

2g

2

�

~

E

2

�

~

B

2

�

:

For a salar �eld in 4 dimensions the improved energy-momentum tensor, whih is gotten by varying

S

�

=

Z

�

�

1

2

g

��

�

�

��

�

�� V (�) +

d� 2

4(d� 1)

R�

2

�
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is traeless only on shell, sine � 6= 0.

Finally we note, that to eah onformal Killing �eld there belongs a onserved urrent. Let T

��

be the traeless energy-momentum tensor and X

�

a onformal Killing �eld. We de�ne the Bessel-

Hagen urrent belonging to X by

J

�

X

= T

��

X

�

:

Using the onservation of T

��

we �nd

r

�

J

�

X

= T

��

r

�

X

�

= T

��

1

2

�

r

�

X

�

+r

�

X

�

�

=

1

d

divX T

��

g

��

= 0;

where we used the symmetry of T

��

, the onformal Killing equation L

X

g

��

� g

��

divX and that

T

�

�

= 0. These onserved urrents lead to onserved harges. Sine

1

e

�

�

�

eJ

�

X

�

= �

�

J

�

X

+

1

e

(�

�

e)J

�

X

= r

�

J

�

X

= 0;

these harges read

Q

X

=

Z

�

ê J

0

:

They are onserved if the �elds fall o� fast enough at spatial in�nity. In this formula � is a

spaelike hypersurfae and ê denotes the indued volume form on this hypersurfae. In partiular, in

Minkowski spaetime there are

1

2

(d+1)(d+2) onserved Bessel-Hagen urrents. The orresponding

harges are the d momenta, the angular momenta, dilatoni harge and d additional harges.
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