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@ Introduction

e Path Integral Approach to Systems in Equilibrium: Finite Number of DOF
@ Canonical approach
@ Path integral formulation

e Quantized Scalar Field at Finite Temperature
@ Lattice regularization of quantized scalar field theories
@ Aquivalenz to classical spin systems

e Fermionic Systems at Finite Temperature and Density
@ Path Integral for Fermionic systems
@ Thermodynamic potentials of relativistic particles

e Interacting Fermions
@ Interacting fermions in condensed matter systems
@ Massless GN-model at Finite Density in Two Dimensions
@ Interacting fermions at finite density ind =1 + 1
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why do we discretize quantum (field) theories?

@ weakly coupled subsystems: perturbation theory
@ if not: strongly coupled system

properties can only be explained by
strong correlations of subsystems

@ example of strongly coupled systems:

ultra-cold atoms in optical lattices
high-temperature superconductors
statistical systems near phase transitions
strong interaction at low energies
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theoretical approaches 3/79

@ exactly soluble models (large symmetry, QFT, TFT)
@ approximations
mean field, strong coupling expansion, ...
@ restiction to effective degrees of freedom
Born-Oppenheimer approximation, Landau-theory, ...
@ functional methods
Schwinger-Dyson equations
functional renormalization group equation
@ numerical simulations
lattice field theories = particular classical spin systems
= powerful methods of statistical physics and stochastics
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Quantum mechanical system in thermal equilibrium

@ Hamiltonian A : H — H
@ system in thermal equilibrium with heat bath

canonical 0 = 215 K(B), K(B)= e B p= %

@ normalizing partition function
Zs = wK(p)

@ expectation value of observable O in ensemble
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thermodynamic potentials 5/79

@ inner and free energy

0

U:<’:’>ﬂ:*%

logZs , Fpg= —kTlogZs
= all thermodynamic potentials, entropy S = —07F, ...

@ specific heat
ou

- >
op

@ system of particles: specify Hilbert space and A
identical bosons: symmetric states
identical fermions: antisymmetric states

@ traces on different Hilbert spaces

Cv = (A% — (H)2 = 0
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quantum statistics: canonical approach

Path integral for partition function in quantum mechanics J

@ euclidean evolution operator K satisfies diffusion type equation

~ £ d ~ ~n A
Kp)=e "= @K(ﬁ) = —HK(p)

@ compare with time-evolution operator and Schrédinger equation
N A d ~ R
O) = e h — ih-; 0(1) = AU(1)

e formally: U(t = —ing) = K(3), imaginary time
@ 7 quantum fluctuations, kT thermal fluctuations
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heat kernel 7179

@ evaluate trace in position space
(@le d) = K(8,0.9) = Zs = [ dqK(5.9.9)

@ ‘“initial condition” for kernel: limg_,0 K(5,9,9’) = (9, q’)

free particle in d dimensions (Brownian motion)

~ h? m \9/2 __m (q_gp
= - K / f— —_— L2
HO 2mA = 0(ﬂ7 qu) (27{'7126) € 2n%8

@ Hamiltonian A = Hy + V bounded from below =

e BAtY) — 5 jim (e—BF’O/”e‘ﬁV/”)n, V=v(

n—oo
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derivation of path integral 8/79

@ insert for every identity 1 in
(67%":[0 67%\7)]]_(67%";\/0@7%\7)]]_...1(67%"_/0 67%\/)
the resolution 1 = [dq|q)(q| =
~N\ N
K(8,4,) = lim (q| (e=7e=57)"|q)

Jj=n—1

= i [ aar--dani TT (Gurle#oe gy,

j=0
@ initial and final positions o = g and g, = ¢’

@ define small e = 73 /n and finally use

e*%‘/@\qﬁ = |qj) e~ V(@
m \d/2
(Gier] 7" q) = <%> ¢

— o (g1 —q)°
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derivation of path integral 9/79

@ discretized “path integral”
m n/2
27rh5)

exp{ SN [m { <q,+1 q,> L V(CI')]}
h 2 € J
j=0

@ divide interval [0, ] into n sub-intervals of length ¢ = 15/n
@ consider path q(r) with sampling points g(r = ke) = g«

K(B>q/7Q) - nll—>moo/dQ1 . "dQn71 (
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interpretation as path integral 10/79

@ Riemann sum in exponent approximates Riemann integral

B

Selal = [ ar(a%(+ V(o))

0

@ Sk is Euclidean action (x action for imaginary time)
n—oo

@ integration over all sampling points — formal path integral Dg
@ path integral with real and positive density

q(nB)=q'
K(ﬁ,q’,q):c/ Dq e Selal/n

q(0)=q
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partition function as path integral

@ on diagonal = integration over all path ¢ — q

q(hB)=q
K(3,q,9) = <q|e_5H|q> =@ / Dqg e~ Selal/n
q(0)=q
@ trace
re = /dQ<q|e*"”lq> =C ]{ Dq = Selal/n
q(0)=q(hB)
partition function Z(5) integral over all periodic paths with period 7. J

@ can construct well-defined Wiener-measure
measure(differentable paths)= 0
measure(continuous paths)= 1
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not only classical paths contribute
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Mehler’s formula 13/79

exercise (Mehler formula)
show that the harmonic oscillator with Hamiltonian

~N h2 d? mwzz

“= "omdgg T 2

has heat kernel

o e Mw , 299’
K.(8.9,q) = \/Wex‘){_%[(q2+q2)C°th(hw6)_sir1h(W”

@ equation of euclidean motion g = w?q has for given g, g’ the solution

sinh(wT)

q() = gcosh(wr) + (q' — qcosh(wﬂ))m

@ action

B
_ 2 2.0y Mw 2, 2 Ry,
S= 2/0 (@ +w q)—2sinhw5((q +q~)coshwf 2qq)
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@ second derivative
) mw

dgoq’ ~  sinh(wp)
@ semiclassical formula exact for harmonic oscillator

, [ 1 o2s _
K(3,9.q) = _ZWCS

@ yields above results for heat kernel

@ diagonal elements

s
K.(5.9.q) = mw . {_meq2 sinh (hwﬁ/Z)}

2rhsinh(iwp) © R sin(iwp)

Andreas Wipf (TPI Jena)




spectrum of harmonic oscillator

@ partition function

5 1 e—wB/2
P~ 2sinh(hwB/2) ~ 1— e b

)
_ efhwﬂ/Z Z efnhwﬁ
n=0

@ evaluate trace with energy eigenbasis of H =

Z(B)=tre —BA (n] _BH|n Ze_ﬂE”

@ comparison of two sums =

f (TPI Jena)



thermal correlation functions 16/79

@ position operator
§(t) = e"/nge= I 4(0) = §
@ imaginary time t = —it = euclidean operator

Tl:l/ﬁ" 77’1://77, ~ ~
?

Ge(1) = €™ "qe G:(0) =9

@ correlations at different0 < 7y < 7 < --- < 7, < 3 in ensemble

~

(Gp(mn) - - CAIE(T1)>5 = Z(15) tr (e*ﬁﬁaE(T,,) 30 qE(n))

@ consider thermal two-point function (now we set i = 1)




thermal correlation functions 17 /79

@ spectral decomposition: |n) orthonormal eigenstates of H =

1 A —(To—T- A — T
<._.>5:m26_(ﬁ—T2)En<n|qe (r2—71) q|n>e 1En
n
@ insert1 =>"|m{m| =

Y e BrretmEn e lrmmEn i g|m) (m|G|n)

@ low temperature 8 — oo: contribution of excited statesto >_ (.. .)
exponentially suppressed, Z(5) — exp(—SEy) =

((r2)lp(m))p =33 e (e En=E0)| (0] g|m) 2

m>0

@ likewise
(Ge(7))s — (0[410)
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connected correlation functions 18/79

@ connected two-point function
<éE(T2)aE(T1)>c,ﬁ = <dE(72)aE(T1)>g - <dE(T2)>ﬁ <@E(T1)>g

@ termwithm=0in ) (...) cancels = exponential decay with 74 — 7»:

lim (Ge(72)Gs(m1))e,5 = Y e~ ™ E=E) |(0]g|m)[?

—00
s m>1

@ energy gap E; — Ey and matrix element [(0|q|1)|? from

(0(72)0e(71))g g0 — &~ ETTI OGN, 7o =71 = 00




path integral for thermal correlation function 19/79

@ for path-integral representation consider matrix elements
<q/| e—ﬂH Tque—TzH T1qu—T1H|q>

@ resolution of the identity and §|u) = uju):
<, . > = /dVdU <q/|e_(ﬁ_7—2)ﬁ‘ > <V‘ (r2— 7—1)H‘ > <U| C_T‘Fl|q>

@ path integral representations each propagator (6 > 7 > 74):
sum over paths with g(0) = gand g(r) = u
sum over paths with g(71) = uand q(m2) = v
sum over paths with g(2) = v.and q(8) = ¢’
multiply with intermediate positions g(71) and q(m2)
@ [ dudv: path integral over all paths with g(0) = g and q(8) = ¢’
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thermal correlation functions

@ insertion of g(m2)qg(r in path integral

(@)l = 535 § Dae 9 glrz)a(r)

@ similarly: thermal n—point correlation functions

(Gu(n) -+ Gelr))s = 2(15) § Dqe=5e9 g(ry) - q()

there exist a path integral representation for all equilibrium quantities, e.qg.
@ thermodynamic potentials, equation of state, correlation functions
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real and imaginary time 21/79

real time: quantum mechanics imaginary time: quantum statistics
@ action from mechanics @ euclidean action
_ {tlam _ m.»
Sf/dt(zq V(q)) Se ,/dT(zq + V()
@ real time path integral @ imaginary time path integral
('l |q) (e”"""|q)
_ C/q(t)zq quis[q]/h] . /q(h6)=q Dg o—Seldl/1]
q(0)=q q(0)=q
@ correlation functions @ correlation functions
(0IT4(t)4(t)[0) (Ge(1)G(72))8
—¢ [ Dge ¥ q(t)a(t) —¢ [ Dge S Mlq(r)q(r)
@ oscillatory integrals @ exponentially damped integrals
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stochastic methods are required 22/79

@ numerical simulations: discrete (euclidean) time
@ system on time lattice = classical spin system

- M \"2  _s(quan)/h
Zp = nlem/dq1 ++dan (27rh5) ©

@ expectation values of observables

/d671 ...dgn F(q1, ..., qn)

high-dimensional integral (sometimes n = 10° required)
@ curse of dimension: analytical and numerical approaches do not work
@ stochastic methods, e.g. Monte-Carlo important sampling

what can be determined?
@ energies, transitions amplitudes and wave functions in QM
@ potentials, phase transitions, condensates and critical exponents
@ bound states, masses and structure functions in particle physics ...
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harmonic and anharmonic oscillators

[¥o(g)
m=1u=-3,1=1 m=1,u=1,1=0

A=t u8%+ 24"
om THA +AG

@ Monte-Carlo simulation (Metropolis algorithm)
@ square of the ground state wave function
o parameters in units of lattice constant ¢ A. Wipf, Lecture Notes Physics 864 (2013)




path integral for linear chain 24 /79
exercise: harmonic chain

find free energy for periodic chain of coupled harmonic oscillators

N
1 mw?
- 2m Zp’z + 2w : : (q"+1 - qf)za qi = qQi+N
=1 i

@ periodic g(7) = may integrate by parts in
Le = g/dT(C'T2 + w? (Gt — q/')z)
@ matrix notation
le= /drq —— A) A= w? (265 — 8111 — 61 j_1)

@ hint: non-negative eigenvalues and orthonormal eigenvectors of A:

wk = 2wsin7r—,\ll( and e
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free energy of linear chain

@ expand q(7) = > ck(7)ex
Le=Y 5 [ ar(é+ukch)
- 2 k k%k
@ N decoupled oscillators with frequencies wyx =

(gle?H|q) = 11 Ko (8 ak k)
K

@ results for one-dimensional oscillator =

Bwk/2 —Buwi /2 k
€ € . T
ZB:I;[eﬁwk_‘] — s 1—e_5wk’ wk:ZwSIHW

@ free energy contains zero-point energy

Fs = %Z hwk + KT Y log (1 — e~ +/kT)
k k
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26/79

@ spin 0: scalar field (Higgs particle, inflaton,. . .)
@ spin 15: spinor field (electron, neutrinos, quarks, ...)
@ spin 1: vector field (photon, W-bosons, Z-boson, gluons, ...)

a quick way from quantum mechanics to quantized scalar field theory: J

@ scalar field ¢(t, z) satisfies Klein-Gordon type equation (h = ¢ = 1)
O¢+ V/(¢) =0

@ Lagrangian = integral of Lagrangian density over space

1
Lol = [ o L(6.0,0), £ = 50,606 - V(o)

space
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@ momentum field, Legendre transform = Hamiltonian (fixed time t)
oL oL .
m(z) = — = — = ¢(x)
dp(z)  O¢(x)
- 1 1
H= /dx(ms L) = /dw?—l, H=_n°+ §(v¢)2 + V()

2

@ free particle: V x ¢? = Klein-Gordan O¢ + m?¢ = 0
@ infinitely many dof: one at each space point

@ one of many possible regularizations: discretize space
@ field theory on space lattice: z = en with n € 791

A(t, ) — Ppg—cn(l) , /d.’l: — e Z

n




28 /79

@ finite hypercubic lattice in space
z=cn with ne{1,2,....N;}

@ continuum field ¢(x) — lattice field ¢,

N @ integral — Riemann sum
[oa ety
n
M @ derivative — difference quotient
@ e.g. periodic bc 9é(=)
@ lattice constant e il C L
I

o # of lattice sites N =[[N;
@ linear extends L; = eN;
@ physical volume V = ¢~ 'N

@ example: symmetric “lattice derivative”

(&cb)w _ ¢w+ee,'2::¢z—ee,
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from field theory to point mechanics

@ finite lattice — mechanical system with finite number of dof

H=ct S (372 + 30007 + V(s.))

 Clattice

@ path integral quantization known
(6ul e m(6,}) = [ T[Dos eStioairn

@ (formal) path integral over paths {¢,(t)} in configuration space
$:(0) = ¢ and ¢x(t)=0¢,, YVx=cn

@ high-dimensional quantum mechanical system with action

Stioat = [ a1t 3 (502 - 500 - Viow)

Andreas Wipf (TPI Jena)



quantum field theory at finite temperature

canonical partition function
Zﬂ =C % H Doqy C_SE[{d)m}]/ha oy (T) = O (T + hﬁ)
T
real euclidean action

Selivel] = [ ar="" 3 (595 + 5(00% + V(o)

path-integral well-defined after discretization of “time”
convenient: same lattice constant ¢ in time and spatial directions
replace 7 € [0, 78] — 7 € {¢g,2¢, ..., Noe} with Noe = 13

lattice sites (x*) = (7, z) = (en*) with n, € {1,2,...,N,}

= d-dimensional hypercubic space-time lattice
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space-time lattice

lattice field ¢x defined on sites of space-time lattice A




lattice regularization 32/79

@ d-dimensional Euclid’sche space-time — lattice A, sites x € A
@ continuous field ¢(x) — lattice field ¢y, x € A
o finite lattice: extend in direction p: L, =N,
finite temperature: Ly = --- = Ly_1 > Lo = 8 = 1/(kT)
scalar field periodic in imaginary time direction

Dr(x02eny,2) = Pxo(x0,=) = temperature-dependence

o typically: also periodic in spatial directions
= identification x* ~ x* + L, (torus)
o space-time volume V = 9Ny N; - - - Ny
e some freedom in choice of lattice derivative (use symmetries)




space-time lattice 33/79

dimensionless fields and couplings (A = ¢ = 1) J

@ natural units & = ¢ = 1 = all units in powers of length L
@ dimensionless action (unit L°)

Se = / ddx(%(aqﬁ)z +> A8 e?)

@ [d9 (9¢)? dimensionless = [0¢] = L=9/2 = [¢] = L1~9/2
@ )\ [d9x ¢2 dimensionless = [\}'] = L~9-atad/2

@ in particular 3" oc m? = [m] = L~

@ 4 space-time dimensions = \5" dimensionless

@ dimensionless lattice field and lattice constants (x = en)

— h —d—
¢)X:€1 d/2¢n’ )\1; —¢ d a+ad/2)\a
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dimensions 34 /79

@ lattice action with dimensionful quantities

Slzh— dz( <¢x+ee“ — Ox— eeu) +Z)\ph¢x

= lattice action with dimensionless quantities

5o (Lo b+ 50

@ partition function

\_/

No N1

Zﬂ_c/ H dopy e Silion}]

@ finite-dimensional well-defined integral (lattice regularization)
@ lattice formulation without any dimensionful quantity
@ processor knows numbers, not units!
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renormalization 35/79

merely letting e — 0: no meaningful continuum limit

Ag must be changedase — 0

condition: dimensionful observables approach well-defined finite limits
existence of such continuum limit not guaranteed

example: consider correlation length in

(p(n)p(m))¢ o e~ In—mI/E, % = m = dimnsionless mass

¢ depends on dimensionless couplings & = £(\a)

relates to (given) dimensionful mass mP" = 1/(e¢) = ¢

mPh from experiment, £()\,) measured on lattice
renormalization: keep mP" (and further observables) fixed = )\,
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renormalizable field theories 36/79

@ extend of physical objects > separation of lattice points
extend of physical objects <« box size
@ conditions (scaling window)

e small discretization effects £ > 1
o small finite size effects £ < N,
@ strict continuum limit: £ — oo

@ 2'nd order phase transition required in system with Nyp,ia — 00
@ theory renormalizable: only a small number of A\; must be tuned

@ relevant renormalizable field theories

@ non-Abelian gauge theories in d < 4
@ scalar field theories in d < 4

o four-Fermitheoriesin d < 3
]
o

non-linear sigma-models in d < 3
Einstein-gravity in d < 4 (7?7)
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simulation 37 /79

input in simulations: only a few observables (masses)

simulate with stochastic algorithms in scaling window

repeat simulations with same observables but decreasing ¢

output: many (dimensionful) observables

extrapolatetoe — 0

if theory renormalizable: converge to a continuum limitas e — 0

finite temperature: Ny given, « from matching to observable = 3 = eNj.
= temperature dependence of

free energy

condensates

pressure, densities

free energy of two static charges (confinement)
phase diagram

screening effects

correlations in heat bath, . ..
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lattice field theory as spin model

@ path integral for finite
temperature QFT =
classical spin model

@ no non-commutative operators,
instead: path or functional
integration over fields

@ scalar field:
assign ¢, € R to each lattice site

@ sigma models:
¢n € Sphere

@ discrete spin models:
¢on € discrete group

@ example: Potts-model:

¢n € Zq antiferrom.
figures: 3—state Potts-type model —2 -1 00y 01 02 03
01

symmetric

e
AC ._I,_-: antiferrom.

symmetric
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relativistic fermions 39/79

electron, muon, quarks, ...are described by 4-component spinor field ,(x) J

@ metric tensor in Minkowski space-time
() = diag(1, -1, -1, -1)
@ 4 x 4 gamma-matrices
Pt (=21
@ covariant Dirac equation for free massive fermions
(i —m)y(x)=0, @d=~"9,

@ Euler-Lagrange equation of invariant action

S= / | d*xp(id — myy, ¢ =10 = 7y = iyt

f (TPI Jena)



quantization of Dirac field

@ quantization: ¥ (x) — ¥(x)
@ satisfies anti-commutation relation

{Dalt, 2), Ph(t, y)} = bapd(z — y)
@ Hamilton operator: 5 = 7°, a = 7%y:
A= /da: M) hd)z), h=ia-V+mp
@ derive path integral representation of partition function
Zs = tre=8#

@ leads to imaginary time path integral
@ replace t — —ir and
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path integral for partition function 41/79

@ ACR with euclidean metric
{7} =26"1,  ~f hermitean

@ lattice regularization (drop index E)
space-time R* — finite (hypercubic) lattice A
continuum field /(x) on R* — lattice field v
@ expected path integral

a,XEN
@ integration over anti-periodic fields (ACR for 1, see below)
Ve (T 4+ B) = —1x(7), also on time lattice

@ S; some lattice regularization of

Se = / d9x T (i + im)y
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Grassmann variables

@ quantized scalar field obey equal-time CR

[(Z)(t’ -’12),&)(1', y)] =0, =z 7é )

= commuting fields in path integral

[¢(X)7¢(y)] =0, Vx,y

@ quantized fermion field obey equal-time ACR

(Dot ), Dh(t,y)} =0, z#y,

= anti-commuting fields in path integral

{%e(X)WL(Y)} =0, Vx,y

@ variables {y n, %,n} in fermion path integral: Grassmann variables




Graussian integrals

@ free theories have quadratic action
Gaussian integrals with A = AT positive matrix; exercise =

N n
/}_[1 den exp ( - %Z (bnAnm(bm) = %

@ what do we get for fermions?
@ simplify notation: ¢, = n; and wfw =qgiwithi=1,....m
@ objects {n;, 7} form complex Grassmann algebra:

{mi,n} =T m} = {m, 7} =0=n? =i =0

Grassmann integration defined by (a, b € C)

/ linear , /dn/(a+ bn;) = b, /dﬁi(a+ b#i) = b
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Gaussian integrals with Grassmann variables

@ Grassmann integrals with

m
DDy = [ [ diidni
(=

@ free fermions = Gaussian Grassmann integral
Z= / DDy e ™1, fAn =Y HiAjmn;
i
@ expand exponential function: [ DDy (ﬁAn)k =0 fork#m
@ remaining contribution (use 72 = 0)

1 o _ _ _
P / DiiDn (7An)" = / DADn Y (T Awm) -+ (TmAmin i)

Hiyeens Im

:/DﬁDn 11 Gm) > eininAii -+ Amin
i i

..... im

= (—U’"/H(dﬁfﬁfdnm,-)dem: (—1)" detA
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generating function 45/79

@ simple formula
/ DijDn e~ = det A

@ generalization: generating function
Z(a,a) = /DﬁDn e~ MAntantia (ef‘“‘qa) detA
@ expand in powers of a, a =
(i) = /DnDn e M iy = (A7)
@ application to Dirac fields: above partition function

Zs = ]{ DYDY =%, DYDY = [ [ dvl nd¢ba

f (TPI Jena)



Graussian integrals for fermions and bosons

@ dimensionless field and couplings

SL - Z 7/’;2(ianm als irn(snm)wn - Z 7»Z_)nDnml[}m

nen n

@ lattice partition function
ZB =CdetD

@ expectation value in canonical ensemble
N 1 - - .
(A = 3= § DEDY A, 9) &SP
B

@ formula for complex scalar field

Zy= § D6Dexp (— 3 dmContn) = i

@ boson fields: periodic in imaginary time
fermion fields: anti-periodic in imaginary time
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Thermodynamic potentials for Gas or relativistic particles

@ neutral scalars (+: periodic bc)
1 5 KT 5
SE:§/¢(—A+m )¢ = F3 = ?Iogdeu(—Aer )+ ...
@ Dirac fermions (—: anti-periodic bc)

Se = /¢T(i$+im)w — F3 = —2kTlogdet_(—A + m?) + ...

Try to prove the results for fermions (including sign and overall factor)

zeta-function for second order operator A > 0

Ca(s) = A, eigenvalues A,
n
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¢— function regularization

@ absolute convergent series in half-plane (s) > d/2
@ meromorphic analytic continuation, analytic in neighborhood of s = 0
@ defines (—function regularized determinant Dowker, Hawking

dCA(S)

ds |S:0

logdetA =trlogA =" log\, = —

@ correct for matrices
@ Mellin transformations

(oo}
/ dtts e =T(s) A~
0

= relation to heat kernel

Ca(s) = zn: r(13) /OOO dtts e = r(13) /Oo dtt e (e7%)
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heat kernel 49 /79

@ coordinate representation

I | _
F(s)/o drt /de(t,x,x), K(t) =

@ heat kernel of A= —A + m? on cylinder [0, 5] x R~

Ca(s) =

+ e mt e~ L —7"+nB)’ +(z—a')?} /4t
T—T n,

K*(t; x,x") 4td/22i1

@ integrate over diagonal elements

V 2 > 2
Cj\t(s) — (47T)§/2r(s) /dt tS—1—d/2 e—mt Z (i)ne—nzﬁ /4t

@ Jacobi theta function

nN=—oc0
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@ integral representation of Kelvin functions

/OOO dtfebt=e/t — 2 (%)(a+1)/2 Kat1 (2\@)

= series representation; in d = 4
BV m4723 , nt s—2
Ga(s) = 1672 T(s) ( (s—2) +4Z(i) ( ) Kg_s(nm5)>

@ identities

1 1
o G-z M e o)
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@ derivative at s =0 =

4 2
+_ mVCy B m* » Ko(nmp)
Fi = g2 (3 2log -5 +64n§; &) omae

@ real scalars C. = 1, complex fermions C_ = —4
@ well-known results for massless particles Kx(x) ~ 2/x?

2
i Ry — T4 R
r!vILnOf (8) = 90T ' nlvlinof () = 457T2T

Why is there a relative factor of 4? What is the free energies of complex
scalars, Majorana fermions and photons. What is free energy of complex
fermions in d dimensions?

Andreas Wipf (TPI Jena)



condensed matter systems in d =2 + 1

@ tight binding approximation for small
excitation energies

@ honeycomb lattice for graphen (GN):
2 atoms in every cell, 2 Dirac points
= 4-component spinor field

@ interaction-driven transition metal « insolator

@ long rang order: AF, CDW, ...

@ interacting fermions (symmetries!)
condensed matter systemsin d =1+ 1

@ conducting polymers (Trans- and
CiS-p0|yacety|en) Su, Schrieffer, Heeger

@ quasi-one-dimensional inhomogeneous
superconductor Mertsching, Fischbeck

Andre

relativistic dispersion-relations for
electronic excitations on
honeycomb lattice

from Castro Neto et al.




interacting fermions in 1 + 1 and 2 + 1 dimensions 53/79

@ irreducible spinor in two and three dimensions has 2 components
@ N; species (flavours) of spinors, W = (¢4, ..., 9¥n,)
@ relativistic fermions

Lon = VigV +imPV + Liy (W, V), e.g. VU =y,

@ parity invariant models

2
Line = g%(\TJ\U)(\TJ\U) scalar-scalar, Gross-Neveu
f

2 —_— -
Lint = —zg%h(wfww)(w%w) vector-vector, Thirring
f

2 -_— -
L = %(\U%\U)(\UW*\U) pseudoscalar-pseudoscalar
f

@ in even dimensions v, o [
@ Hubbard-Stratonovich trick with scalar, vector and pseudscalar field

Andreas Wipf (TPI Jena)



Relativistic four-Fermi Theories 54 /79

@ combinations thereof in d = 4

non-renormalizable Fermi theory of weak interaction
effective models for chiral phase transition in QCD (Jona Lasino)

@ 2 spacetime dimensions: [g] = L°

@ massless ThM: soluble Thirring
@ massless ThM in curved space with p: soluble Sachs+AW, ...
o GNM: asymptotically free, integrable Gross-Neveu, Coleman, ...

@ 3 spacetime dimensions: [g] = Ls
@ not renormalizable in PT
e renormalizable in large-N expansion Gawedzki, Kupiainen; Park, Rosenstein, Warr
) interacting UV fixed point — asymptotically safe de Veiga; da Calen; Gies, Janssen
e can exhibit parity breaking at low T

@ lattice theories:

@ generically: sign problem even for =0
@ partial solution of sign problem Schmid, Wellegehausen, Lenz, AW

eas Wipf (TPI J



Masselss GN-model at finite density in two dimensions

with J. Lenz, L. Panullo, M. Wagner and B. Wellegehausen
@ GN shows breaking of discrete chiral symmetry
@ order parameter iy = (VW)

Ya — iV:a, TZa — iJ’a’Y* = ir = <\TJ\U> — _<\TJ\U>

@ equivalent formulation with auxiliary scalar field Hubbard-Stratonovich
transformation

Lon =L, =V([iD® Ly,)V + %(\T!\Il)z

EUI\TJ(ID(@ ]le)\IJ+)\Nf02, D:af(jgéD]L

f (TPI Jena)



chemical potential for fermion number charge

@ conserved fermion charge
o= [ = [ davty
space space
@ partition function of grand canonical ensemble
s, = tre*ﬁ('q*“o),
@ functional integral with above £, wherein

D=@+o+p°

@ expectation values

/ DYDYDo e~ 0




chemical potential for fermion charge

@ fermion integral in

Zsy = / DYDYDo e~ S 1ol = / Do e NiSelo]
@ N; fermion species couple identically to auxiliary field =
det (iD® 1) = (detiD)™

@ 1 anti-periodic in imaginary time, o periodic
@ effective action after fermion integral

Sett = A/dzx o2 — log(detiD)

@ Ward identity (lattice regularization)

Andreas Wipf (TPI Jena)



homogeneous phases 58 /79

@ exact relation

5 = —i{B()(x)) = gw(x»

@ for Ny — oo saddle point (steepest descend) approximation
Zgu = / Do e NiSunlo] N2g0 o —Nrmin Senfo]

@ translation invariance = minimizing o constant: S.iy = (N¢5L) Ue

o2 o2 L o 1 L
Ueff:ﬂ('og?o_1>_;/o dp&p(1+eﬂ<6p+u>+1+eﬁ<6p—ﬂ>>

@ one-particle energies e, = \/p? + o2
@ IR-scale 0p = (o) 7——0

f (TPI Jena)



condensate in the (u, T)-plane

Tlog

Wog

@ symmetric phase for large T,

@ homogeneously broken phase for small T, n Wolff, Barducei
@ special points: (Te, 1) = (&7 /m,0), (T pe) = (0,1/4/2)

@ Lifschitz-Punkt bei (T, o) ~ (0.608,0.318)

Andreas Wipf (TPI Jena)



is homogeneity assumption really justified?

possible QCD-phase diagram

-
-

on Plasma

Temperature T

N\, Quarkyonic
Hadronic Phase £\ njageer

\
Gas-Liguid *\ _.---=
Nuc L
Superfluid

Courtesy of T. Halsuda

Baryon Chemical Potential pe

@ crystalline LOFF phase (color superconductive phase)?

@ problem: p # 0 = complex fermion determinant ®

@ large 1 beyond reach in simulations

@ are there inhomogeneous crystallic phases in model systems?




space-dependent condensate in GN model

@ discrete ¢, energies of Dirac Hamiltonian on [0, L]
ho =785 +~%0(x)

@ hidden supersymmetry

AAT 0 d
> _ 200) A1 () — o
h = o2 +o°(x) —~v'o'(x) ( 0 ATA>’ A= dx—l—a

@ renormalization: fix (constant) condensate cpatu =T =0
@ introduce constant companion field

5% = %/dx(ﬁ(x)

@ constanto = o =o¢

Andreas Wipf (TPI Jena)



@ renormalized effective action for o = o(x)

Seilo] = fL‘Z(Iog——1)+ﬂ< > en= > &)

n:ep<0 n:gp<0

- Z (Iog Alenti) +log (1 + e*ﬂ(fnfﬂ)))

n:ien>0

derive gap equation for inhomogeneous field

58@ 1 gl X - —
50—(;) = 57 )'097+ > i n - E}) > iy n
n:ep<0 n:gp<0
1 .0,
’ O( 15 eprtm | 1 +eﬁ(snu)>¢n7 ¥n=0

N:ep>
v

@ solution in terms of elliptic functions = crystal of baryons at large p, low T

Andreas Wipf (TPI Jena)



phase diagram for two-dimensional GN-model  werscring and Fischbeck, Thies et al. 63/

0.7 T T T T T T T

T
Lifshitz point

T/og

0 1 1 1 1 1 1 IN 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Wap
@ inhomogeneous condensate for small T, large i
= breaking of translation invariance (Ny — co)
@ wave-length of condensate <
@ all phase transitions are second order
@ cp. Peierls-Fréhlich model, ferromagnetic superconductors




no-go theorems and Ny — oo 64 /79

inhomogeneous (1)) breaks translation invariance —
massless Goldstone-excitations — should not existind =1 + 1

no-go theorems not valid for Ny — oo

phase diagram = artifact of Ny — oco?

is there a inhomogeneous condensate for Ny < co?

number of massless Goldstone excitations:

nx number of type k Goldstone modes

type 1: w ~ |k|?"*1, e.g. relativistic dispersion relation

type 2: w ~ |k[?", e.g. non-relativistic dispersion relation
inner symmetries ny + 2n, =number of broken directions
spacetime symmetries n; + 2n, < number of broken directions
large p: dispersion relation need not be relativistic

Andreas Wipf (TPI Jena)



fermion system for finite N; (beyond steepest descend): MC-simulations 65/ 79

@ update with (nonlocal) determinant of huge matrix D
@ potential sign-problem for finite
@ can prove: fermion determinant is indeed real
= no sign problem for even N;
@ hybrid MC algorithm, pseudo fermions
@ rational approximation of inverse fermion matrix
@ simulations with chiral fermions only
naive fermions for Ny = 8, 16 (— doublers)
simulations with SLAC fermions for Ny = 2,8,16
action of pseudo-fermion field with parallized Fourier transformation
@ scale setting: condensate cpat T=p =0
@ simulations on large lattices Ns < 1024

Andreas Wipf (TPI Jena)



typical configurations

@ low temperature T = 0.038 o, medium density 1 = 0.50¢
@ typical configuration for Ny = 8 and L = 64

25
0.4
S 20
= 0.2
s g
=] =
§ 15 :
a 00 ¥
© k=)
c 10 K}
o i
8 02
5
-0.4
0

0 5 10 15 20 25
Spatial Direction x/ago

Wipf (TPI



strong evidences for inhomogeneous condensate

Correlator C(x)/03

Correlator C(x)/03

—}— T/op=0.082, /gy = 0.00
4 —— T/og=0.988 , u/go = 0.00
3
2
1
0
00 25 50 7.5 10.0 125 15.0
Spatial Direction xog
0.4
—+— w/op=0.5
0.3 —— ulog=0.7
0.2 —— Hlog=1.0
0.1
" \,/
_0'1 W w
-0.2

0.0

25 50 7.5 100 125 15.0

Spatial Direction xog

spatial correlation function of
chiral condensate

C(x) = 1 S oy Doly + x.1)
y

@ Nf=8,L=64
naive fermions

@ top: homogeneous phase
p=0
T /oo € {0.082,0.988}

@ bottom: inhomogeneous phase

T =0.08209
/oo € {0.5,0.7,1.0}
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0

Correlator Spectrum C(k)/o;

2
0

Correlator Spectrum C(k)/o;
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Fourier transform of the spatial
correlation function

C(k) o< Y e C(x)

@ N;=8,L =064
naive fermions

@ top: homogeneous phases
uw=0
T /oo € {0.082,0.988}

@ bottom: inhomogeneous phase

T =10.08209
/oo € {0.5,0.7,1.0}




‘inhomogeneous’ phase: p-dependence
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spatial correlation function and
Fourier-transform

@ Nf=8,L=64
SLAC-fermions

@ low temperature T = 0.03809

@ different chemical potentials
wu/oo € {0,0.4,0.5,0.7}

@ violet:
symmetric phase
n=0,T=0.6109




comparison of fermion species 7

L=64, 00=0.41, u=0.7, Nr=64
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@ N = 8
@ crystalline phase

@ spatial correlation function
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fermions

@ Fourier transform




fermion number and condensate 71/7

L=63, 0p=0.4100, N;=64
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@ correlations function for N; > 1

Witten

_ y|1/Nf
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e

gt
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TR

=011

{
2l

Re(¢)

small lattices
@ dependence on system size

@ may look like SSB for large N¢ on
@ smallest available N; = 2

@ check algorithmic aspects (e.g.

thermalization)

as Wipf (TPl Jena)
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N; = 2, smaller lattice Ns = 125, chiral SLAC fermions

it — fit
: -—- fall-off
0.04 —— interference
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N; = 2, large lattice, Ns = 525, chiral SLAC fermions

— fit
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N; = 2, comparison 77179
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summary of results in d = 1 + 1 dimensions

@ first simulation for GN model at finite ., T, N;

@ no sign problem for even N

@ comparable results for Ny = 8 and Ny = 16
naive and chiral SLAC fermions

@ phase diagrams are similar as for Ny — oo Thies
wave length and amplitude of condensate

@ simulations for Ny = 2 on sizable lattices

@ Goldstone-theorem, ...

@ situation in higher dimensions

@ domain walls, vortices, ...?7??

Lenz, Pannullo, Wagner, Wellegehausen, AW

Andreas Wipf (TPI Jena)



Some remarks concerning interacting fermions in d = 2 + 1 dimensions

asymptotically safe (1/N; expansion, FRG)
GN model show 2nd order phase transition for all N¢
N odd: parity breaking

Thirring models:
even N¢: no phase transition .
odd N;: phase transition for Ny < N°™

critical N¢*" determined
spectrum of light (would be Goldstone) particles
average spectral density of Dirac operator
full phase diagram in (\, N¢)-plane
B. Wellegehausen, D. Schmidt, AW, Phys.Rev. D96 (2017) 094504

J. Lenz, AW, B. Wellegehausen, arXiv:1905.00137

Andreas Wipf (TPI Jena)
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