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Problem 21: Path integral for a free particle on a circle 4+1 = 5 points

We consider a free particle with mass m and Lagrangian L = m ˙̀2/2, which is constrained to
stay on the circle S1 = R/(2πRZ) with Radius R. The curvilinear coordinate ` is the distance
along the circle from an arbitrary reference point. Two different distances ` and `′ correspond
to the same point if ` ' `′ (mod 2πR). In fact we can always write ` = x + k (2πR), with
x ∈ [−πR,+πR], and k ∈ Z. We are interested in the amplitude

〈`f , tf |`i, ti〉S1 = 〈`f , T |`i, 0〉S1 , T = tf − ti ,

for the transition from an initial point to a final point on the circle. To set up a path integral
representation of this transition amplitude, we fix `i and we consider paths that end up at
all possible values `′f provided `′f ' `f (mod 2πR). Thus, every path contributing to this
amplitude is associated to a certain winding number k = (`′f − `i)/(2πR).

1. Compute the ratio between the transition amplitude on the circle S1 and the correspon-
ding transition amplitude on the straight line R

〈`f , tf |`i, ti〉S1

〈xf , tf |xi, ti〉R
, `f − `i ≡ xf − xi (mod 2πR) .

with extrema xi, xf ∈ [−πR,+πR].
Hint : Any path from xi to xf on R can be split into a constant-speed trajectory between
these extrema plus an arbitrary periodic function xp(t), with xp(T ) = xp(0) = 0:

x(t) = xi +
xf − xi
T

t+ xp(t) .

The transition amplitude on R is given by the sum over all periodic functions xp(t). On
the circle, the same reasoning can be applied to `(t), such that the integral is a sum over
periodic functions and over winding numbers. The latter two sums factorize.

2. Express your answer in terms of the ϑ function

ϑ(z, τ) =
∑
n∈Z

eiπτn
2+2πinz .

Remark: though it is not needed in the solution of this problem, it is possible to explicitly work
out the path integral by expanding xp in the functions√
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T
cos

2πnt
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√
2

T
sin

2πnt

T
, n ∈ N ,



which are orthogonal to the constant functions. These trigonometric functions together with the
constant function 1/

√
T form an orthonormal basis of periodic functions. Thus one concludes

that the linear mapping from xp → {αn, βn}, where αn and βn are the expansion coefficients,
is orthogonal and thus has Jacobian determinant 1.

Problem 22: Phase space path integral 3+1+2 = 6 points

As in the lecture we consider the transition amplitude (the propagator)

〈xf , tf |xi, ti〉 = 〈xf |U(tf , tN−1)U(tN−1, tN−2) · · ·U(t1, ti)|xi〉 .

1. Insert the resolution of the identity 1 =
∫
dxn|xn〉〈xn| with n = 1, . . . , N between each

pair of U ’s,

〈xf , tf |xi, ti〉 =
∫ N−1∏

n=1

dxn

N∏
n=1

〈xn, tn|xn−1, tn−1〉

with the identifications

(xN , tN) ≡ (xf , tf ) and (x0, t0) ≡ (xi, ti) .

Let us assume that the Hamiltonian has the form H(t, p, x) = T (t, p) + V (t, x) and use
the Baker-Campbell-Hausdorff formula

eiε(T+V )/~ = e−iεV/~e−iεT/~e−iε
2X/~2 .

By neglecting the term proportional to ε2 in the exponent prove that

〈xf , tf |xi, ti〉 ≈
∫ N−1∏

n=0

dxn

N∏
n=1

dpn
2π~

exp

(
i

~
AN
)

where AN is the sum

AN =
N+1∑
n=1

(
pn(xn − xn−1)− εH(tn, pn, xn)

)
.

Hint: you may need the inner product of the position and momentum eigenstates:

〈x|p〉 = 1√
2π~

eipx/~ .

2. For ε→ 0 the Riemann sum in the exponent turns into an integral. Identify the Riemann
sum and write down the (formal) phase-space path integral in the continuum limit ε→ 0.

3. Assume T (t, p) = p2/2m and perform the integration of the momentum variables. What
do you get?
Hint: perform the integration over the momenta in the discrete version of the phase-space
path integral with variables p1, . . . , pn, and not in the formal continuum version.

Submission date: Thursday, 21. December 2017, before the lecture begins.


