Prof. Dr. Andreas Wipf

Dr. Luca Zambelli MSc Daniel Schmidt

Übungen zur Quantenmechanik II

Blatt 5

Aufgabe 12: Clebsch-Gordan-Koeffizienten

6 Punkte

Betrachten Sie eine System aus zwei Drehimpulsen $j_1 = 1$ und $j_2 = 1$. Die Eigenwerte der z-Komponente dieser einzelnen Drehimpulse seien m_1 bzw. m_2 . Die Zustände des gesamten Systems seien mit den Quantenzahlen des Gesamtdrehimpulses j und m bezeichnet. Berechnen Sie die Clebsch-Gordan-Koeffizienten für die Quantenzahlen in den folgenden Tabellen (für die Fälle m = 0 und m = 1) und zusätzlich für den Fall m = 2.

m = 0	j=2	j=1	j = 0
$m_1 = 1, m_2 = -1$			
$m_1 = 0, m_2 = 0$			
$m_1 = -1, m_2 = 1$			

m = 1	j=2	j = 1
$m_1 = 1, m_2 = 0$		
$m_1 = 0, m_2 = 1$		

Aufgabe 13: 4 Punkte

Drei unterschiedliche Atom mit Spin 1/2 seien sehr kalt (effektiv unbeweglich) und wechselwirken nur über ihre intrinsischen magnetischen Momente miteinander, sodass die Energie des Systems näherungsweise durch den folgenden Hamiltonoperator beschrieben werden kann:

$$H = \frac{a}{\hbar^2} \mathbf{s}_1 \cdot \mathbf{s}_2 + \frac{b}{\hbar^2} \mathbf{s}_1 \cdot \mathbf{s}_3 + \frac{b}{\hbar^2} \mathbf{s}_2 \cdot \mathbf{s}_3.$$

Welche Energien sind möglich und wie ist deren Entartungsgrad?

Hinweis: Die stationären Zustände sind gleichzeitige Eigenzustände von $\mathbf{s}^2 = (\mathbf{s_1} + \mathbf{s_2} + \mathbf{s_3})^2$, $(\mathbf{s})_z = (\mathbf{s_1} + \mathbf{s_2} + \mathbf{s_3})_z$, $\mathbf{s_{12}}^2 = (\mathbf{s_1} + \mathbf{s_2})^2$, und $\mathbf{s_3}^2$.

Abgabetermin: Donnerstag, 12.05.2016, vor der Vorlesung