Problem sheet „Advanced Quantum Mechanics"

winter term 2019/20

Sheet 8

Problem 18: Spherical potential well and potential step

$2+1+2=5$ points
Investigate the Born approximation for a spherical potential

$$
V(r)= \begin{cases}V_{0} & r<a \\ 0 & r>a\end{cases}
$$

Determine

1. the scattering amplitude,
2. differential scattering cross section and
3. total cross section.

For the potential well V_{0} is negative and for the potential step V_{0} is positive. Discuss the results for $a \Delta k \ll 1$.
Hint: When calculating the total cross section you may convert the integral over ϑ into an integral over $q(q=2 k \sin \vartheta / 2)$.

Problem 19: Scattering phase

5 points
Determine the phase shifts δ_{ℓ} for the scattering at the potential $V=A / r^{2}$ and calculate the differential cross section for $0 \leq \mu A / \hbar^{2} \ll 1$.
Hint: Set the function $u_{E \ell}=r f_{E \ell}$ in the corresponding radial Schrödinger equation equal to $u_{E \ell}=\sqrt{r} g_{E \ell}$. The differential equation for $g_{E \ell}$ should be known to you (spherical Bessel functions). The resulting sum over Legendre polynomials simplifies with the identity

$$
\sum_{\ell=0}^{\infty} P_{\ell}(\cos \theta)=\frac{1}{2 \sin (\theta / 2)}
$$

Submission date: Thursday, 12.12.2019, before the lecture

