Problem sheet „Advanced Quantum Mechanics"

winter term 2019/20

Sheet 5

Problem 10: Wave function of a spinning particle and rotations

Let $U \in$ be an element of the quantum mechanical rotation group $\mathrm{SU}(2)$, i.e. $U^{\dagger}=U^{-1}$ and $\operatorname{det} U=1$.

1. For $\boldsymbol{n} \in \mathbb{R}^{3}$ and the Pauli matrices $\boldsymbol{\sigma}=\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)$, show that $R(U)$ in

$$
U \boldsymbol{n} \cdot \boldsymbol{\sigma} U^{-1}=(R(U) \boldsymbol{n}) \cdot \boldsymbol{\sigma}
$$

describes a proper rotation in \mathbb{R}^{3}, i.e. $R^{T} R=\mathbb{1}$ and $\operatorname{det} R=1$. The Pauli matrices are given by

$$
\sigma_{1}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) \quad \sigma_{2}=\left(\begin{array}{cc}
0 & -\mathrm{i} \\
\mathrm{i} & 0
\end{array}\right) \quad \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

2. Prove that the map $U \rightarrow R(U)$ from $\mathrm{SU}(2)$ to $\mathrm{SO}(3)$ is a „representation", which means, that $R\left(\mathbb{1}_{2}\right)=\mathbb{1}_{3}$ and that $R\left(U_{1} U_{2}\right)=R\left(U_{1}\right) R\left(U_{2}\right)$.
3. Show, that for the quantum mechanical rotation

$$
U(\boldsymbol{e}, \theta)=\mathrm{e}^{-\mathrm{i} \theta \boldsymbol{e} \cdot \boldsymbol{\sigma} / 2}
$$

the rotation in space has the form

$$
R(e, \theta)=\mathrm{e}^{e \cdot \boldsymbol{\Omega} \theta}, \quad \Omega_{e}=\boldsymbol{e} \cdot \boldsymbol{\Omega}=\left(\begin{array}{ccc}
0 & -e_{3} & e_{2} \\
e_{3} & 0 & -e_{1} \\
-e_{2} & e_{1} & 0
\end{array}\right)
$$

and hence is a rotation with angle θ and axis defined by the unit vector \boldsymbol{e}.
Hint: This proof can be performed for infinitesimal rotations, i.e. show

$$
\left(\left.\frac{\mathrm{d}^{n}}{\mathrm{~d} \theta^{n}}\right|_{\theta=0} R(\boldsymbol{e}, \theta) \boldsymbol{n}\right) \cdot \boldsymbol{\sigma}=\left.\frac{\mathrm{d}^{n}}{\mathrm{~d} \theta^{n}}\right|_{\theta=0} U(\boldsymbol{e}, \theta)(\boldsymbol{n} \cdot \boldsymbol{\sigma}) U(\boldsymbol{e}, \theta)^{-1} .
$$

4. The wave function of a particle with spin $\frac{1}{2}$ transforms under rotations as

$$
\psi(\boldsymbol{x}) \longmapsto U \psi\left(R(U)^{-1} \boldsymbol{x}\right) \equiv(\Gamma(U) \psi)(\boldsymbol{x})
$$

Determine the rotation around the 3 -axis, given by $U\left(e_{3}, \theta\right)$, where θ varies smoothly from 0 to 2π. What happens with $\theta=2 \pi$?
5. Show that for all U the linear map $\Gamma(U)$ is unitary on $\mathcal{H}=L_{2}\left(\mathbb{R}^{3}\right) \times \mathbb{C}^{2}$ with scalar product

$$
(\psi, \phi)=\sum_{i=1}^{2} \int \mathrm{~d}^{3} x \bar{\psi}_{i}(\boldsymbol{x}) \phi_{i}(\boldsymbol{x})=\int \mathrm{d}^{3} x \psi^{\dagger}(\boldsymbol{x}) \phi(\boldsymbol{x})
$$

6. Show that the linear map $\Gamma(U)$ defines a representation, i.e. $\Gamma\left(\mathbb{1}_{2}\right)=\mathbb{1}_{\mathcal{H}}$ and $\Gamma\left(R_{1} R_{2}\right)=\Gamma\left(R_{1}\right) \Gamma\left(R_{2}\right)$.
7. Consider a quantum-mechanical rotation $U\left(e_{3}, \theta\right)$ about the e_{3}-axis, Which operator A (infinitesimal generator) generates these rotations, i.e. satisfies

$$
(A \psi)(\boldsymbol{x})=\left.\frac{\mathrm{d}}{\mathrm{~d} \theta}\right|_{\theta=0} U\left(\boldsymbol{e}_{3}, \theta\right) \psi\left(R^{-1}\left(\boldsymbol{e}_{3}, \theta\right) \boldsymbol{x}\right)
$$

where (of course) $R\left(e_{3}, \theta\right)$ is the spatial rotation belonging to $U\left(e_{3}, \theta\right)$.
Hint: Don't forget the chain rule.
8. Argue, that the (anti-hermitean) Operator A generates the unitary rotation about the e_{3}-axis,

$$
\left(\mathrm{e}^{\theta A} \psi\right)(\boldsymbol{x})=U\left(e_{3}, \theta\right) \psi\left(R^{-1}\left(e_{3}, \theta\right) \boldsymbol{x}\right)
$$

Hint: Use the infinitesimal rotations

$$
\frac{\mathrm{d}}{\mathrm{~d} \theta}\left(\Gamma\left(U\left(\boldsymbol{e}_{3}, \theta\right) \psi\right)(\boldsymbol{x})=-\frac{\mathrm{i}}{\hbar} J_{z}\left(\Gamma\left(U\left(\boldsymbol{e}_{3}, \theta\right) \psi\right)(\boldsymbol{x})\right.\right.
$$

9. What do you think is the infinitesimal generator for a rotation $U(\boldsymbol{e}, \theta)$ about a arbitrary axis \boldsymbol{e} ? What do you think, is the generator for several particles with spin $\frac{1}{2}$?

Literature:

- http://www.tpi.uni-jena.de/qfphysics/homepage/wipf/lectures/qm1/qm18.pdf

Wipf - Quantum Mechanics 1 Script, Chapter 8

- http://www.tpi.uni-jena.de/qfphysics/homepage/wipf/lectures/qm1/qm110.pdf Wipf - Quantum Mechanics 1 Script, Chapter 10.3
- http://www.tpi.uni-jena.de/qfphysics/homepage/wipf/lectures/gruppen/gruppenhead.pdf Wipf - Symmetries in Physics Script, Chapter $5.2 \& 9.2$
- M. Bartelmann, B. Feuerbacher, T. Krüger, D. Lüst, A. Rebhan, A. Wipf - Theoretische Physik, Chapter 27.5
- K. Gottfried, T.-M. Yan - Quantum mechanics fundamentals, Chapter 2.5(d)
- J. J. Sakurai, J. Napolitano - Modern Quantum Mechanics Chapter 3.1-3.3

Problem 11: Coupling of three angular momenta

Consider the eigenvectors of the total angular momentum

$$
\boldsymbol{J}=\boldsymbol{J}_{1}+\boldsymbol{J}_{2}+\boldsymbol{J}_{3}
$$

where the individual angular momenta are all 1 . An eigenvalue of \boldsymbol{J}^{2} is written as $\hbar^{2} j(j+1)$.

1. What are the possible values of j ? How many linearly independent eigenstates belong to each possible value of j ?
Hint: The tensor product and the direct sum are associative and the tensor product distributes over the direct sum, $\mathfrak{h}_{1} \otimes\left(\mathfrak{h}_{2} \oplus \mathfrak{h}_{3}\right)=\left(\mathfrak{h}_{1} \otimes \mathfrak{h}_{2}\right) \oplus\left(\mathfrak{h}_{1} \otimes \mathfrak{h}_{3}\right)$
2. Construct the state with $j=0$ explicitly. If $\boldsymbol{a}, \boldsymbol{b}$ and \boldsymbol{c} are vectors in \mathbb{R}^{3}, then there is one multilinear scalar, namely $\boldsymbol{a} \cdot(\boldsymbol{b} \times \boldsymbol{c})$. Find a connection between this fact and your result for the state with $j=0$.
Hint: You may use the relation between cartesian and spherical components of a vector given in the lecture.

Submission date: Thursday, 21.11.2019, before the lecture

