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3 Semi-classical expansion of the partition function

In the lecture we discussed the path integral representation of the thermal partition function, given by
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We rescale the imaginary time and the amplitude according to
T— hr and gq(.) — hq(.).

After this rescaling the "time interval’ is of length (3 instead of 45 and
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For a moving particle the kinetic energy dominates the potential energy for small /. Thus we decompose
each path into its constant part and the fluctuations about the constant part: ¢(.) = ¢/h+ &(.). Show that
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Determine the constant C' by considering the limiting case V' = 0 with the well-known result Z (53, ¢, q) =
(m/2m h2)1/ 2 Then expand the integrand in powers of & and prove the intermediate result
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Conditional expectation values as
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are computed by differentiating the generating functional
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Prove this formula for the generating functional and compute the leading and sub-leading contributions
in the semi-classical expansion.



4 High-temperature expansion of the partition function

Analyze the temperature dependence of the partition function (set i = 1). Repeat the calculation in
problem 3 but this time with the rescalings
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and show that
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Expand Z(f) in powers of the inverse temperature and use the generating functional in problem 3 (with
8 = 1) to compute the correlation functions. The remaining integrals over correlation functions are
easily calculated. Determine the contributions of order 7/2, T—1/2 and T—3/2 in the high-temperature
expansion of Z(f3).



