
Problems: Quantum Fields on the Lattice
Prof. Dr. Andreas Wipf WiSe 2019/20
MSc. Julian Lenz

Sheet 7

19 Grassmannian Integration

Consider Grassmann variables ψx, ψ̄x, ψy, ψ̄y on a lattice with two points x, y. The fermionic Euclidean
action is given by

S[ψ, ψ̄] = ψ̄xψy + ψ̄yψx +m
(
ψ̄xψx + ψ̄yψy

)
. (1)

Evaluate the partition function

Z =

∫
DψDψ̄ e−S[ψ,ψ̄] (2)

by the use of Grassmann integration rules. Determine the values of the 2-point functions
〈
ψ̄xψx

〉
,
〈
ψ̄xψy

〉
.

20 The Pfaffian

Let η1, . . . , η2N be an even number of anticommuting real Grassmann variables, {ηa, ηb} = 0.

1. Prove that the Gaussian integral over such variables yields the Pfaffian,∫
dη1 . . . η2N e

1
2
η>Mη =

1

2NN !
εa1b1···aN bNMa1b1 . . .MaN bN = Pf (M) . (3)

2. By doubling the degrees of freedom prove the important identity

detM = Pf (M) . (4)

3. Transform the Grassmann variables according to η → Rη and show

Pf
(
R>MR

)
= det (R) Pf (M) . (5)

4. Prove that for an antisymmetric matrix M of dimension 2N we have

Pf
(
M>

)
= (−1)N Pf (M) . (6)

5. Show, by using the relation between the Pfaffian and determinant, that

δ ln det (M) = tr
(
M−1δM

)
⇒ δ ln Pf (M) =

1

2
tr
(
M−1δM

)
. (7)

6. Let us assume that the antisymmetric M is a tensor product of a symmetric matrix S and an
antisymmetric matrix A. By transforming both matrices into their normal forms prove that

Pf (M) = (detS)dimA (PfA)dimS . (8)



21 Fermion Discretizations

When introducing fermions we need to discretize a first order derivative operator such as

D = iγµ∂µ + γµAµ +m. (9)

For simplicity we discard the gauge fields (that would actually be coupled via link variables) and mass
(m = 0) and work only in a single dimension in this exercise such that we will consider operators of the
form

D = ∂. (10)

Consider the three discretizations(
∂naiveφ

)
x

=
1

2
(φx+ê − φx−ê) (11)(

∂Wilsonφ
)
x

=
(
∂naiveφ

)
x
− r

2
(φx+ê − 2φx + φx−ê) (12)

(
∂SLACφ

)
x

= F−1

∑
p∈Λ∗

pF [φ]p


x

(13)

where r ∈ [0, 1] is a free parameter and F denotes the discrete Fourier transform. Find the dispersion
relations of these operators (similar to Problem 7). Taylor expand1 your result around 0 and verify that
all these operators approximate the continuum dispersion relation in a small region around 0. Sketch
your findings and discuss peculiarities of the various curves.
Bonus: Compute the real space representation of ∂SLAC. Is this a

• ultra-local operator, i.e. there exists a r > 0 such that for all |x− y| > r holds Dxy = 0?

• local operator, i.e. |Dxy| decays at least as e−γ|x−y| for some γ > 0?

• non-local operator (none of the above)?

Could you have seen this in the dispersion relation?

22 Chemical Potential On The Lattice

The U(1) symmetry of the free fermionic theory is usually referred to as fermion number conservation.
In the continuum its conserved current obeys

jν = ψ̄γµψ, ∂νj
ν = 0 (14)

and fermions at nonzero chemical potential are described by the Lagrangian

L = ψ̄
(
i/∂ +m

)
ψ + iµj0. (15)

In this exercise, we will derive and discuss the corresponding expressions on the lattice.
1At this point, you can safely neglect the discrete nature of the lattice momentum, since for sufficiently large lattices it is

almost continuous.



1. Consider the naive fermion discretization (11) and derive its conserved current and the conserva-
tion law. You will see that it comes in a point-split form inherited from the fermion discretization.

2. Since the structure of j0 and ∂naive is identical, we can couple a chemical potential according to(
γ0∂0 + µγ0

)naive
ψx =

1

2a
γ0
(
f(aµ)ψx+a0̂ − g(aµ)ψx−a0̂

)
(16)

with explicit lattice constant a and some functional dependency f, g on µ. It is now up to you to
restrict them further: Consider the limits µ→ 0 and a→ 0 and employ time reflection invariance
to find conditions that f, g have to obey.

3. In addition to the above conditions, it can be shown that g = f−1 is needed to get non-divergent
expressions in the continuum limit. Convince yourself that all restrictions are met by f = exp.
Find another function f to meet the restrictions. Find an additional argument why the former could
be the preferred choice.

4. Assume that we are working in even dimensions. Use γ5 to check if there is are any flavor numbers
without sign problem for µ 6= 0. Is there any (non-trivial) function f that would cure this for real
chemical potential?

5. Finally, we broaden our concept of chemical potential a bit. Is there a sign problem for imaginary
µ? Is there a sign problem for isospin chemical potential (i.e. an even number of flavors with
µ = µI for half of them and µ = −µI for the other half)?


