Problems: Quantum Fields on the Lattice

Prof. Dr. Andreas Wipf
WiSe 2019/20
MSc. Julian Lenz

Sheet 7

19 Grassmannian Integration

Consider Grassmann variables $\psi_{x}, \bar{\psi}_{x}, \psi_{y}, \bar{\psi}_{y}$ on a lattice with two points x, y. The fermionic Euclidean action is given by

$$
\begin{equation*}
S[\psi, \bar{\psi}]=\bar{\psi}_{x} \psi_{y}+\bar{\psi}_{y} \psi_{x}+m\left(\bar{\psi}_{x} \psi_{x}+\bar{\psi}_{y} \psi_{y}\right) \tag{1}
\end{equation*}
$$

Evaluate the partition function

$$
\begin{equation*}
Z=\int \mathscr{D} \psi \mathscr{D} \bar{\psi} e^{-S[\psi, \bar{\psi}]} \tag{2}
\end{equation*}
$$

by the use of Grassmann integration rules. Determine the values of the 2-point functions $\left\langle\bar{\psi}_{x} \psi_{x}\right\rangle,\left\langle\bar{\psi}_{x} \psi_{y}\right\rangle$.

20 The Pfaffian

Let $\eta_{1}, \ldots, \eta_{2 N}$ be an even number of anticommuting real Grassmann variables, $\left\{\eta_{a}, \eta_{b}\right\}=0$.

1. Prove that the Gaussian integral over such variables yields the Pfaffian,

$$
\begin{equation*}
\int \mathrm{d} \eta_{1} \ldots \eta_{2 N} e^{\frac{1}{2} \eta^{\top} M \eta}=\frac{1}{2^{N} N!} \varepsilon_{a_{1} b_{1} \cdots a_{N} b_{N}} M_{a_{1} b_{1}} \ldots M_{a_{N} b_{N}}=\operatorname{Pf}(M) \tag{3}
\end{equation*}
$$

2. By doubling the degrees of freedom prove the important identity

$$
\begin{equation*}
\operatorname{det} M=\operatorname{Pf}(M) \tag{4}
\end{equation*}
$$

3. Transform the Grassmann variables according to $\eta \rightarrow R \eta$ and show

$$
\begin{equation*}
\operatorname{Pf}\left(R^{\top} M R\right)=\operatorname{det}(R) \operatorname{Pf}(M) \tag{5}
\end{equation*}
$$

4. Prove that for an antisymmetric matrix M of dimension $2 N$ we have

$$
\begin{equation*}
\operatorname{Pf}\left(M^{\top}\right)=(-1)^{N} \operatorname{Pf}(M) \tag{6}
\end{equation*}
$$

5. Show, by using the relation between the Pfaffian and determinant, that

$$
\begin{equation*}
\delta \ln \operatorname{det}(M)=\operatorname{tr}\left(M^{-1} \delta M\right) \quad \Rightarrow \quad \delta \ln \operatorname{Pf}(M)=\frac{1}{2} \operatorname{tr}\left(M^{-1} \delta M\right) \tag{7}
\end{equation*}
$$

6. Let us assume that the antisymmetric M is a tensor product of a symmetric matrix S and an antisymmetric matrix A. By transforming both matrices into their normal forms prove that

$$
\begin{equation*}
\operatorname{Pf}(M)=(\operatorname{det} S)^{\operatorname{dim} A}(\operatorname{Pf} A)^{\operatorname{dim} S} \tag{8}
\end{equation*}
$$

21 Fermion Discretizations

When introducing fermions we need to discretize a first order derivative operator such as

$$
\begin{equation*}
D=\mathrm{i} \gamma^{\mu} \partial_{\mu}+\gamma^{\mu} A_{\mu}+m \tag{9}
\end{equation*}
$$

For simplicity we discard the gauge fields (that would actually be coupled via link variables) and mass $(m=0)$ and work only in a single dimension in this exercise such that we will consider operators of the form

$$
\begin{equation*}
D=\partial \tag{10}
\end{equation*}
$$

Consider the three discretizations

$$
\begin{align*}
\left(\partial^{\text {naive }} \phi\right)_{x} & =\frac{1}{2}\left(\phi_{x+\hat{e}}-\phi_{x-\hat{e}}\right) \tag{11}\\
\left(\partial^{\text {Wilson }} \phi\right)_{x} & =\left(\partial^{\text {naive }} \phi\right)_{x}-\frac{r}{2}\left(\phi_{x+\hat{e}}-2 \phi_{x}+\phi_{x-\hat{e}}\right) \tag{12}\\
\left(\partial^{\text {SLAC }} \phi\right)_{x} & =\mathcal{F}^{-1}\left[\sum_{p \in \Lambda^{*}} p \mathcal{F}[\phi]_{p}\right]_{x} \tag{13}
\end{align*}
$$

where $r \in[0,1]$ is a free parameter and \mathcal{F} denotes the discrete Fourier transform. Find the dispersion relations of these operators (similar to Problem 7). Taylor expand ${ }^{1}$ your result around 0 and verify that all these operators approximate the continuum dispersion relation in a small region around 0 . Sketch your findings and discuss peculiarities of the various curves.
Bonus: Compute the real space representation of $\partial^{S L A C}$. Is this a

- ultra-local operator, i.e. there exists a $r>0$ such that for all $|x-y|>r$ holds $D_{x y}=0$?
- local operator, i.e. $\left|D_{x y}\right|$ decays at least as $e^{-\gamma|x-y|}$ for some $\gamma>0$?
- non-local operator (none of the above)?

Could you have seen this in the dispersion relation?

22 Chemical Potential On The Lattice

The $\mathrm{U}(1)$ symmetry of the free fermionic theory is usually referred to as fermion number conservation. In the continuum its conserved current obeys

$$
\begin{equation*}
j^{\nu}=\bar{\psi} \gamma^{\mu} \psi, \quad \partial_{\nu} j^{\nu}=0 \tag{14}
\end{equation*}
$$

and fermions at nonzero chemical potential are described by the Lagrangian

$$
\begin{equation*}
\mathcal{L}=\bar{\psi}(\mathrm{i} \not \partial+m) \psi+\mathrm{i} \mu j^{0} \tag{15}
\end{equation*}
$$

In this exercise, we will derive and discuss the corresponding expressions on the lattice.

[^0]1. Consider the naive fermion discretization (11) and derive its conserved current and the conservation law. You will see that it comes in a point-split form inherited from the fermion discretization.
2. Since the structure of j^{0} and $\partial^{\text {naive }}$ is identical, we can couple a chemical potential according to

$$
\begin{equation*}
\left(\gamma^{0} \partial_{0}+\mu \gamma^{0}\right)^{\text {naive }} \psi_{x}=\frac{1}{2 a} \gamma^{0}\left(f(a \mu) \psi_{x+a \hat{0}}-g(a \mu) \psi_{x-a \hat{0}}\right) \tag{16}
\end{equation*}
$$

with explicit lattice constant a and some functional dependency f, g on μ. It is now up to you to restrict them further: Consider the limits $\mu \rightarrow 0$ and $a \rightarrow 0$ and employ time reflection invariance to find conditions that f, g have to obey.
3. In addition to the above conditions, it can be shown that $g=f^{-1}$ is needed to get non-divergent expressions in the continuum limit. Convince yourself that all restrictions are met by $f=\exp$. Find another function f to meet the restrictions. Find an additional argument why the former could be the preferred choice.
4. Assume that we are working in even dimensions. Use γ_{5} to check if there is are any flavor numbers without sign problem for $\mu \neq 0$. Is there any (non-trivial) function f that would cure this for real chemical potential?
5. Finally, we broaden our concept of chemical potential a bit. Is there a sign problem for imaginary μ ? Is there a sign problem for isospin chemical potential (i.e. an even number of flavors with $\mu=\mu_{I}$ for half of them and $\mu=-\mu_{I}$ for the other half)?

[^0]: ${ }^{1}$ At this point, you can safely neglect the discrete nature of the lattice momentum, since for sufficiently large lattices it is almost continuous.

