Problems: Quantum Fields on the Lattice

Prof. Dr. Andreas Wipf
WiSe 2019/20
MSc. Julian Lenz

Sheet 3

Problem 5: Free energy densities of scalars in 1 and 2 spatial dimensions

Calculate the free energy densities of non-interacting massive scalars in one and two spatial dimensions and discuss the limit $m \rightarrow 0$.
Hint: In the lecture we already derived a series expansion in terms of modified Bessel functions.

Problem 6: Minima of energy function

Find the configurations with minimal energy of the following spin models (assume periodic boundary conditions and, if necessary, a number of spins which is multiple of 2 or 4):

1. The Ising chain with first and second neighbor interactions

$$
H=-J_{1} \sum_{x} s_{x} s_{x+1}-J_{2} \sum_{x} s_{x} s_{x+2}, \quad s_{x} \in\{-1,1\}
$$

Consider both positive and negative values of the couplings J_{1}, J_{2}.
2. The one-dimensional clock model

$$
H=-J_{c} \sum_{x} \cos \left(\frac{2 \pi}{q}\left(n_{x}-n_{y}+\Delta\right)\right), \quad n_{x} \in\{1,2, \ldots, q\}
$$

for positive J and all values of Δ.
3. The antiferromagnetic Ising model on a triangular lattice,

$$
H=J \sum_{\langle x, y\rangle\rangle} s_{x} s_{y}, \quad s_{x} \in\{-1,1\}
$$

with $J>0$.

Problem 7: Free scalar field on the lattice I

We consider a one-component real scalar field on a three dimensional (periodic) hyper-cubic lattice with Euclidean action

$$
S=\sum_{x}\left(\frac{1}{2} \sum_{\mu}\left(\varphi_{x+\hat{\mu}}-\varphi_{x}\right)^{2}+\frac{1}{2} m^{2} \varphi_{x}^{2}+g \varphi_{x}^{4}\right)
$$

or equivalently

$$
S=\sum_{x}\left(-\sum_{\mu} \varphi_{x} \varphi_{x+\hat{\mu}}+\left(d+\frac{1}{2} m^{2}\right) \varphi_{x}^{2}+g \varphi_{x}^{4}\right)
$$

In the following we set $g=0$ and denote the corresponding action of the non-interacing scalars by S_{0}.

1. Other representations found in the literature are

$$
S_{0}=\frac{1}{2} \sum_{x}\left(\sum_{y} D_{x y} \varphi_{y}\right)^{2}=\frac{1}{2} \sum_{x, y} \varphi_{x} M_{x y} \varphi_{y}
$$

Find the matrix elements $D_{x y}$ and $M_{x y}$ and determine the eigenvalues and eigenfunctions in

$$
M \varphi_{p}=E_{p}^{2} \varphi_{p}
$$

Calculate the actions $S_{0}\left[\varphi_{p}\right]$ of the eigenfunctions.
2. Determine the two-point function

$$
\left\langle\varphi_{x} \varphi_{y}\right\rangle=\frac{1}{Z} \int \mathcal{D} \varphi \mathrm{e}^{-S_{0}} \varphi_{x} \varphi_{y}
$$

and apply the result to compute the expectation value of the lattice action

$$
\left\langle S_{0}\right\rangle=\frac{1}{Z} \int \mathcal{D} \varphi \mathrm{e}^{-S_{0}} S_{0}
$$

Problem 8: Free scalar field on the lattice II

Use the results of the previous problem to extract the masses of the one-dimensional free theory

$$
S_{0}=\sum_{x}\left(\frac{1}{2}\left(\varphi_{t+1}-\varphi_{t}\right)^{2}+\frac{1}{2} m_{0}^{2} \varphi_{x}^{2}\right)
$$

The exact analytic result in the limit $N_{t} \rightarrow \infty$ can be obtained from the correlator in momentum space

$$
G(p) \propto(\mathcal{F} C)(p)
$$

with correlator $C(t)=\left\langle\varphi_{t} \varphi_{0}\right\rangle$. The pole p_{*} of the propagator yields the physical mass $m_{\text {pole }}=$ $i p_{*}$.
In order to prepare the ground for MC-simulations considered later in the lecture: Determine the correlator $C(t)$ (e.g. with octave or matlab) and perform the following steps:

1. determine the mass from the (local) slope of $C(t) \propto \exp (-m t)$: the values $C(t)$ and $C(t+1)$ allow the extraction of a local mass m_{t}.
2. determine the mass via a cosh-fit: With N_{t} lattice points in time-direction the correlation function has the approximate form $C(t) \propto \cosh \left(m\left(t-N_{f} / 2\right)\right)$. Fit your data with a cosh-fit on the interval $\left[t, N_{t}-t\right]$ and extract a mass m_{t}^{\prime}.

Represent the obtained masses graphically and compare the results of the two methods. Study different 'volumes' N_{t} and different bare masses m_{0} in the action. Also compare with the bare masses and the pole masses. Investigate the limit $m_{0} \rightarrow 0$. Which method would you suggest, to extract the physical mass from dynamically generated MC-data sets for the 2-point correlator.

