## Problems Quantum Field Theory

## Sheet 3

## Problem 10: Lorentz-invariant measure

Show that the integral measure

$$
d \mu(\mathbf{p})=\frac{d^{3} p}{2 \omega_{\mathbf{p}}}
$$

with $\omega_{\mathbf{p}}=\sqrt{\mathbf{p}^{2}+m^{2}}$ is Lorentz invariant on the mass shell $p^{2}=m^{2}$ and for $p_{0}>0$.

## Problem 11: Commutation relations for creation and annihilation operators

Consider the decomposition of a real scalar field $\phi(x)$ and its conjugate momentum $\pi(x)$ into normal modes $u_{\mathbf{p}}(\mathbf{x})=\frac{1}{(2 \pi)^{3 / 2}} e^{i \mathbf{p} \cdot \mathbf{x}}$ introduced in the lecture:

$$
\begin{aligned}
& \phi(\mathbf{x})=\int d \mu(\mathbf{p})\left(a_{\mathbf{p}} u_{\mathbf{p}}(\mathbf{x})+a_{\mathbf{p}}^{\dagger} u_{\mathbf{p}}^{*}(\mathbf{x})\right) \\
& \pi(\mathbf{x})=\frac{1}{i} \int d \mu(\mathbf{p}) \omega_{\mathbf{p}}\left(a_{\mathbf{p}} u_{\mathbf{p}}(\mathbf{x})-a_{\mathbf{p}}^{\dagger} u_{\mathbf{p}}^{*}(\mathbf{x})\right)
\end{aligned}
$$

Compute the commutation relations for the creation and annihilation operators $a_{\mathbf{p}}^{\dagger}$ and $a_{\mathbf{p}}$ from the known relations for $\phi(\mathbf{x})$ and $\pi(\mathbf{x})$.

## Problem 12: Quantization of the complex scalar field

For problem $\mathbf{9}$ on exercise sheet $\mathbf{2}$ we considered a classical complex scalar field,

$$
\mathcal{L}=\left(\partial_{\mu} \phi^{*}\right)\left(\partial^{\mu} \phi\right)-m^{2} \phi^{*} \phi
$$

and showed that its Hamiltonian density is given by

$$
\mathcal{H}=\pi^{*} \pi+\nabla \phi^{*} \cdot \nabla \phi+m^{2} \phi^{*} \phi .
$$

In order to quantize the theory, first replace the canonical variables by operators, i.e., in particular, $\phi^{*}, \pi^{*} \rightarrow \phi^{\dagger}, \pi^{\dagger}$.

1. Quantize the field operators by introducing the representation of the real field components $\phi_{1}$ and $\phi_{2}$ in $\phi=\frac{1}{\sqrt{2}}\left(\phi_{1}+i \phi_{2}\right)$ in terms of ladder operators. Define

$$
a(\mathbf{p})=\frac{1}{\sqrt{2}}\left(a_{1}(\mathbf{p})+i a_{2}(\mathbf{p})\right), \quad b(\mathbf{p})=\frac{1}{\sqrt{2}}\left(a_{1}(\mathbf{p})-i a_{2}(\mathbf{p})\right),
$$

and show that these complex ladder operators obey two independent ladder operator algebras (Note that we use the notation $a(\mathbf{p})$ instead of $a_{\mathbf{p}}$ here).
2. Express the complex field and momentum operators in terms of $a, a^{\dagger}, b$ and $b^{\dagger}$.
3. Show that the Hamiltonian of the theory can be written as

$$
H=\int d \mu(\mathbf{p}) \omega_{\mathbf{p}}\left(a^{\dagger}(\mathbf{p}) a(\mathbf{p})+b^{\dagger}(\mathbf{p}) b(\mathbf{p})\right)+\text { zero point energies. }
$$

4. Consider the Noether charge

$$
Q=i \int d^{3} x\left(\phi^{\dagger} \partial^{0} \phi-\phi \partial^{0} \phi^{\dagger}\right)
$$

and show that the creation operators $a^{\dagger}$ and $b^{\dagger}$ generate field excitations whose charges differ in sign.

## Problem 13: Linear chain of coupled oscillators

Consider a system of $N$ particles with equal masses $m$ on a one-dimensional chain with lattice constant (separation of equilibrium positions) $a$. Let each particle move in a harmonic potential $\left(\Omega_{0}\right)$ and couple nearest neighbors harmonically $(\Omega)$ as well. For the $n$-th particle of the chain, denote its displacement from equilibrium $q_{n}$ and its momentum $p_{n}$. Then, the Hamiltonian of the system reads

$$
H=\sum_{n=0}^{N-1} \frac{p_{n}^{2}}{2 m}+\frac{m \Omega^{2}}{2}\left(q_{n}-q_{n-1}\right)^{2}+\frac{m \Omega_{0}^{2}}{2} q_{n}^{2}
$$

To diagonalize $H$, we introduce the normal coordinates and momenta $Q_{k}$ and $P_{k}$ :

$$
q_{n}=\frac{1}{\sqrt{m N}} \sum_{k} e^{i k a n} Q_{k} \quad, \quad p_{n}=\sqrt{\frac{m}{n}} \sum_{k} e^{-i k a n} P_{k}
$$

which inherit the canonical commutation relations form $q_{n}$ and $p_{n}$, i.e., $\left[Q_{k}, P_{k^{\prime}}\right]=i \delta_{k, k^{\prime}}$, while the other commutators vanish.

1. Choose periodic boundary conditions, i.e., $q_{0}=q_{N}$ and determine the possible values that $k$ can take ( $1^{\text {st }}$ Brillouin zone (BZ)) for even or odd $N$ respectively.
2. Prove the orthogonality relation

$$
\frac{1}{N} \sum_{n=0}^{N-1} e^{i a n\left(k-k^{\prime}\right)}=\delta_{k, k^{\prime}}
$$

which holds as long as $k$ and $k^{\prime}$ are both within the $1^{\text {st }} \mathrm{BZ}$, use it to show that the Hamiltonian can be written as

$$
H=\frac{1}{2} \sum_{k}\left(P_{k} P_{k}^{\dagger}+\omega_{k}^{2} Q_{k} Q_{k}^{\dagger}\right)
$$

and determine $\omega_{k}^{2}$. Plot $\omega_{k}>0$ as a function of $k$ for $\Omega_{0}=0$ and for $\Omega_{0} \neq 0$ (choose the other parameters as you please). Interpret the result.
3. Now go back to the initial definition of $H$ above and write down the Hamiltonian equations of motion for each $q_{n}$ and $p_{n}$. Then, after introducing

$$
q(x, t)=q_{n}(t) \sqrt{\frac{m}{a}} \quad, \quad p(x, t)=p_{n}(t) \sqrt{m a}
$$

perform the continuum limit $a \rightarrow 0, N \rightarrow \infty$, keeping $L=a N, \rho=\frac{m}{a}$ and $v=\Omega a$ constant and show that in this limit the equations of motion assume the form of a one-dimensional Klein-Gordon equation for the field $q(x, t)$.

