Problems Quantum Field Theory

Sheet 3

Problem 10: Lorentz-invariant measure

Show that the integral measure

$$d\mu(\mathbf{p}) = \frac{d^3p}{2\omega_{\mathbf{p}}}$$

with $\omega_{\mathbf{p}} = \sqrt{\mathbf{p}^2 + m^2}$ is Lorentz invariant on the mass shell $p^2 = m^2$ and for $p_0 > 0$. **Problem 11: Commutation relations for creation and annihilation operators**

Consider the decomposition of a real scalar field $\phi(x)$ and its conjugate momentum $\pi(x)$ into normal modes $u_{\mathbf{p}}(\mathbf{x}) = \frac{1}{(2\pi)^{3/2}} e^{i\mathbf{p}\cdot\mathbf{x}}$ introduced in the lecture:

$$\begin{split} \phi(\mathbf{x}) &= \int d\mu(\mathbf{p}) \left(a_{\mathbf{p}} u_{\mathbf{p}}(\mathbf{x}) + a_{\mathbf{p}}^{\dagger} u_{\mathbf{p}}^{*}(\mathbf{x}) \right) \quad , \\ \pi(\mathbf{x}) &= \frac{1}{i} \int d\mu(\mathbf{p}) \omega_{\mathbf{p}} \left(a_{\mathbf{p}} u_{\mathbf{p}}(\mathbf{x}) - a_{\mathbf{p}}^{\dagger} u_{\mathbf{p}}^{*}(\mathbf{x}) \right) \end{split}$$

Compute the commutation relations for the creation and annihilation operators $a_{\mathbf{p}}^{\dagger}$ and $a_{\mathbf{p}}$ from the known relations for $\phi(\mathbf{x})$ and $\pi(\mathbf{x})$.

Problem 12: Quantization of the complex scalar field

For problem 9 on exercise sheet 2 we considered a classical complex scalar field,

$$\mathcal{L} = (\partial_{\mu}\phi^*)(\partial^{\mu}\phi) - m^2\phi^*\phi \quad ,$$

and showed that its Hamiltonian density is given by

$$\mathcal{H} = \pi^* \pi + \nabla \phi^* \cdot \nabla \phi + m^2 \phi^* \phi \quad .$$

In order to quantize the theory, first replace the canonical variables by operators, i.e., in particular, $\phi^*, \pi^* \to \phi^{\dagger}, \pi^{\dagger}$.

1. Quantize the field operators by introducing the representation of the real field components ϕ_1 and ϕ_2 in $\phi = \frac{1}{\sqrt{2}}(\phi_1 + i\phi_2)$ in terms of ladder operators. Define

$$a(\mathbf{p}) = \frac{1}{\sqrt{2}}(a_1(\mathbf{p}) + ia_2(\mathbf{p})), \quad b(\mathbf{p}) = \frac{1}{\sqrt{2}}(a_1(\mathbf{p}) - ia_2(\mathbf{p})),$$

and show that these complex ladder operators obey two independent ladder operator algebras (Note that we use the notation $a(\mathbf{p})$ instead of $a_{\mathbf{p}}$ here).

2. Express the complex field and momentum operators in terms of a, a^{\dagger}, b and b^{\dagger} .

3. Show that the Hamiltonian of the theory can be written as

$$H = \int d\mu(\mathbf{p}) \,\omega_{\mathbf{p}} \left(a^{\dagger}(\mathbf{p})a(\mathbf{p}) + b^{\dagger}(\mathbf{p})b(\mathbf{p}) \right) + \text{zero point energies.}$$

4. Consider the Noether charge

$$Q = i \int d^3x (\phi^{\dagger} \partial^0 \phi - \phi \partial^0 \phi^{\dagger})$$

and show that the creation operators a^{\dagger} and b^{\dagger} generate field excitations whose charges differ in sign.

Problem 13: Linear chain of coupled oscillators

Consider a system of N particles with equal masses m on a one-dimensional chain with lattice constant (separation of equilibrium positions) a. Let each particle move in a harmonic potential (Ω_0) and couple nearest neighbors harmonically (Ω) as well. For the *n*-th particle of the chain, denote its displacement from equilibrium q_n and its momentum p_n . Then, the Hamiltonian of the system reads

$$H = \sum_{n=0}^{N-1} \frac{p_n^2}{2m} + \frac{m\Omega^2}{2}(q_n - q_{n-1})^2 + \frac{m\Omega_0^2}{2}q_n^2$$

To diagonalize H, we introduce the normal coordinates and momenta Q_k and P_k :

$$q_n = \frac{1}{\sqrt{mN}} \sum_k e^{ikan} Q_k \quad , \quad p_n = \sqrt{\frac{m}{n}} \sum_k e^{-ikan} P_k$$

which inherit the canonical commutation relations form q_n and p_n , i.e., $[Q_k, P_{k'}] = i\delta_{k,k'}$, while the other commutators vanish.

- 1. Choose periodic boundary conditions, i.e., $q_0 = q_N$ and determine the possible values that k can take (1st Brillouin zone (BZ)) for even or odd N respectively.
- 2. Prove the orthogonality relation

$$\frac{1}{N} \sum_{n=0}^{N-1} e^{ian(k-k')} = \delta_{k,k'}$$

which holds as long as k and k' are both within the 1st BZ, use it to show that the Hamiltonian can be written as

$$H = \frac{1}{2} \sum_{k} (P_k P_k^{\dagger} + \omega_k^2 Q_k Q_k^{\dagger}) \quad ,$$

and determine ω_k^2 . Plot $\omega_k > 0$ as a function of k for $\Omega_0 = 0$ and for $\Omega_0 \neq 0$ (choose the other parameters as you please). Interpret the result.

3. Now go back to the initial definition of H above and write down the Hamiltonian equations of motion for each q_n and p_n . Then, after introducing

$$q(x,t) = q_n(t)\sqrt{rac{m}{a}}$$
 , $p(x,t) = p_n(t)\sqrt{ma}$

perform the continuum limit $a \to 0, N \to \infty$, keeping $L = aN, \rho = \frac{m}{a}$ and $v = \Omega a$ constant and show that in this limit the equations of motion assume the form of a one-dimensional Klein-Gordon equation for the field q(x, t).