Problems Quantum Field Theory

Sheet 2

Problem 4: Anti-commutation relations

The interpretation of the operators a_{i}, a_{i}^{\dagger} (i denotes the particle species or the quantum number of the particle) as annihilation and creation operators relies on their commutation relations with the number operators $N_{i}=a_{i}^{\dagger} a_{i}$:

$$
\left[N_{i}, a_{j}\right]=-\delta_{i j} a_{j} \quad, \quad\left[N_{i}, a_{j}^{\dagger}\right]=\delta_{i j} a_{j}^{\dagger}
$$

and the existence of a vacuum state $|0\rangle$ with $a_{i}|0\rangle=0$ for all i.

1. Prove the operator identity $[A B, C]=A\{B, C\}-\{A, C\} B$.
2. Consider the operators a_{i}, a_{i}^{\dagger}, which obey the anti-commutation relations

$$
\left\{a_{i}, a_{j}^{\dagger}\right\}=\delta_{i j}
$$

while all other anti-commutators vanish, and show that these operators obey the above commutation relations with the number operators.

Problem 6: D-function

In the lecture the following D-function plays an important role. Prove the identity

$$
D(t, \mathbf{x})=-\frac{1}{(2 \pi)^{3}} \int \frac{d^{3} k}{2 \omega_{k}} e^{i \mathbf{k} \cdot \mathbf{x}} \sin \left(\omega_{k} t\right)=\frac{1}{8 \pi r}(\delta(t+r)-\delta(t-r))
$$

where $\omega_{k}=|\mathbf{k}|$.

Problem 7: Infinitesimal Lorentz transformation

An infinitesimal Lorentz transformation can be written in the form

$$
\Lambda=\nVdash+\frac{i}{2} \omega_{\mu \nu} M^{\mu \nu}
$$

Consider the case $\omega_{12}=\frac{\theta}{N}=-\omega_{21}$ with all the other entries of ω vanishing. Show that in the limit $N \rightarrow \infty$ the N-fold application of Λ leads to a rotation about the z-axis with rotation angle θ.

Problem 8: Noether currents of Lorentz transformations

The 6 Noether currents associated with Lorentz transformations are given by

$$
M^{\rho \mu \nu}=\frac{1}{2}\left(x^{\mu} T^{\rho \nu}-x^{\nu} T^{\rho \mu}\right)
$$

and lead to 6 conserved Noether charges $J_{\mu \nu}=\int d^{3} x M_{0 \mu \nu}=-J_{\nu \mu}$. Now consider a real scalar field $\phi(x)$ and

1. show that the 3 charges $J_{i j}$ in the Hamiltonian formalism read

$$
J_{i j}=\frac{1}{2} \int d^{3} x \pi(x)\left(x_{i} \partial_{j}-x_{j} \partial_{i}\right) \phi(x)
$$

2. determine the operators $L_{i j}$ in the Poisson brackets

$$
\left\{J_{i j}, \phi(x)\right\}=L_{i j} \phi(x)
$$

3. compute the Poisson brackets of the $J_{i j}$.

Problem 9: Complex scalar field

Let $\phi(x)$ be a complex scalar field obeying the Klein-Gordon equation. The action of the theory is given by

$$
S=\int d^{4} x\left(\partial_{\mu} \phi^{*} \partial^{\mu} \phi-m^{2} \phi^{*} \phi\right) .
$$

1. Find the conjugate momenta to $\phi(x)$ and $\phi^{*}(x)$.
2. Compute the Heisenberg equations of motion and show that they are indeed equivalent to the Klein-Gordon equation.
