
Chapter 8

Path Integrals in Statistical Mechanics

The Feynman path integral formulation reveals a deep and fruitful interrelation between quan-

tum mechanics and statistical mechanics. The discretized Euclidean path integrals can be

viewed as partition functions for particular lattice spinmodels. Vice versa, the partition function

in statistical mechanics is given by a particular path integral with imaginary time. This unified

view of quantum and statistical mechanics allows us to apply many powerful methods known

in statistical mechanics to calculate correlation functions in Euclidean quantum mechanics.

8.1 Thermodynamic Partition Function

In this section we derive a path integral representation for the canonical partition function be-

longing to a time-independent Hamiltonian Ĥ. With our previous result in (6.23) we arrived at

the following Euclidean path integral representation for the kernel of the ’evolution operator’

K(τ, q, q′) = 〈q| e−τĤ/h̄|q′〉 =
w(τ)=q
∫

w(0)=q′

Dw e−SE [w]/h̄. (8.1)

Here one integrates over all paths starting at q′ and ending at q. For imaginary times the inte-

grand is real and positive and contains the Euclidean action SE. Clearly, the object

∫

dqK(τ, q, q) = tr e−τĤ/h̄ (8.2)

is just the quantum partition function for temperature kBT = h̄/τ . We conclude that the parti-

tion function Z(β) and free energy F (β) at inverse temperature1 β = 1/T are given by

Z(β) = e−βF (β) = tr e−βĤ =
∫

dq K(h̄β, q, q). (8.3)

1We set kB = 1.
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Note that setting q = q′ in the last term means that we integrate over periodic paths starting and

ending at q in (8.1). Integrating over q is then equivalent to integrating over all periodic paths

with period h̄β. Thus we end up with

Z(β) =
∮

w(0)=w(h̄β)

Dw e−SE [w]/h̄ . (8.4)

For example, for the Euclidean harmonic oscillator with evolution kernel (6.10)) we have

K(h̄β, q, q) =

√

mω

2πh̄ sinh(h̄ωβ)
exp

{

−2mωq2

h̄

sinh2(h̄ωβ/2)

sin(h̄ωβ)

}

, (8.5)

so that the partition function takes the form

Z(β) =
1

2 sinh(h̄ωβ/2)
=

e−h̄ωβ/2

1− e−h̄ωβ
= e−h̄ωβ/2

∞
∑

n=0

e−nh̄ωβ . (8.6)

For a Hamiltonian with discrete energies En the partition function has the spectral resolution

Z(β) = tr e−βĤ =
∑

n

〈n| e−βĤ |n〉 =
∑

n

e−βEn , (8.7)

where as orthonormal states |n〉 we used the eigenfunction of Ĥ. A comparison with equation

(8.6) immediately yields the energies of the harmonic oscillator with circular frequency ω,

En = h̄ω
(

n+
1

2

)

, n ∈ N. (8.8)

For low temperature β → ∞ the spectral sum (8.7) is dominated by the contribution of lowest

energy such that the free energy will tend to the ground state energy,

F (β) = − 1

β
logZ(β)

β→∞−→ E0. (8.9)

To perform the high-temperature limit is more tricky. We shall investigate this limit later in this

lecture. In applications one is also interested in the energies and wave functions of the excited

states. Now we shall discuss a method to extract these quantities from the path integral.

8.2 Thermal Correlation Functions

The low lying energies of the Hamiltonian operator Ĥ can be extracted from the thermal corre-

lation functions. These are the expectation values of products of position operators

q̂E(τ) = eτĤ/h̄q̂ e−τĤ/h̄, q̂E(0) = q̂(0), (8.10)

————————————
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at different imaginary times in the equilibrium state at inverse temperature β,

〈q̂E(τ1) · · · q̂E(τn)〉β ≡ 1

Z(β)
tr e−βĤ q̂E(τ1) · · · q̂E(τn). (8.11)

The normalizing factor in the denominator is the partition function (8.4). At temperature zero

these correlation functions are just the Schwinger functions we introduced in section 6.1.

The gap between the energies of the ground state and first excited state can be extracted

from the thermal 2-point function

〈q̂E(τ1)q̂E(τ2)〉β =
1

Z(β)
tr e−βĤ q̂E(τ1)q̂E(τ2)

=
1

Z(β)
tr e−(h̄β−τ1)Ĥ/h̄q̂ e−(τ1−τ2)Ĥ/h̄q̂ e−τ2Ĥ/h̄ (8.12)

as follows: we calculate the trace with the orthonormal energy eigenstates |n〉 and insert the

identity
∑|m〉 〈m| after the first position operator. Denoting the energy of |n〉 by En we obtain

the following double sum for the thermal 2-point function:

〈. . .〉β =
1

Z(β)

∑

n,m

e−(h̄β−τ1+τ2)En/h̄e−(τ1−τ2)Em/h̄ 〈n| q̂|m〉 〈m| q̂|n〉 . (8.13)

Now we consider the low-temperature limit of this expression. For β → ∞ the terms containing

the energies En>0 of the excited states are exponentially damped and we conclude

lim
β→∞

〈q̂E(τ1)q̂E(τ2)〉β =
∑

m≥0

e−(τ1−τ2)(Em−E0)/h̄ | 〈Ω| q̂|m〉 |2. (8.14)

Note that the term exp(−βE0) chancels against the low temperatur limit of the partition function

in the denominator. At low temperature the thermal expectation values tend to the ground state

expectation values,

lim
β→∞

〈q̂E(τ1)q̂E(τ2)〉β = 〈Ω| q̂E(τ1)q̂E(τ2)|Ω〉 (8.15)

This just expresses the fact that thermal fluctuations freeze out at low temperature. Thermal

expectation values become vacuum expectation values at absolute zero. In particular the 1-

point function has this property,

lim
β→∞

〈q̂E(τ)〉β = 〈Ω| q̂|Ω〉 . (8.16)

At this point it is convenient to introduce the connected thermal 2-point function,

〈q̂E(τ1)q̂E(τ2)〉c,β = 〈q̂E(τ1)q̂E(τ2)〉β − 〈q̂E(τ1)〉〈q̂E(τ2)〉β . (8.17)

————————————

A. Wipf, Path Integrals



CHAPTER 8. STATISTICAL MECHANICS 8.2. Thermal Correlation Functions 75

It characterizes the correlations of the differences ∆q̂E = q̂E − 〈q̂E〉 at different times,

〈q̂E(τ1)q̂E(τ2)〉c,β = 〈∆q̂E(τ1)∆q̂E(τ2)〉β . (8.18)

The connected correlator is exponentially damped for large |τ1 − τ2| since the term with m = 0

in (8.14) is missing in the spectral resolution for the connected 2-point function,

lim
β→∞

〈q̂E(τ1)q̂E(τ2)〉c,β =
∑

m>0

e−(τ1−τ2)(Em−E0)/h̄| 〈Ω| q̂|m〉 |2. (8.19)

For large (imaginary) time-differences τ1 − τ2 it reduces to

lim
τ1−τ2→∞

lim
β→∞

〈q̂E(τ1)q̂E(τ2)〉c,β = e−(E1−E0)(τ1−τ2)/h̄| 〈Ω| q̂|1〉 |2, (8.20)

and thus one can extract the energy-gap E1 − E0 and modulus of the matrix element 〈Ω| q̂|1〉
from the large-time behavior of the connected 2-point function.

To find the path-integral representation for the thermal correlators we proceed similarly as

in section 2.4. To calculate the two-point function (8.12) we insert the identity 1 =
∫

du|u〉|u〉
after the two position operators q̂ in

Z(β) · 〈q̂E(τ1)q̂E(τ2)〉β =
∫

dq 〈q| e−βH q̂E(τ1)q̂E(τ2)|q〉 , (8.21)

and in terms of the kernel K(τ, u, v) for the imaginary time evolution we obtain for the integrand

in (8.21) the expression

〈q| . . .|q〉 =
∫

dvdu 〈q|K(h̄β − τ1)|v〉v 〈v|K(τ1 − τ2)|u〉u 〈u|K(τ2)|q〉 .

Now we use the path-integral representation for each evolution kernel separately, similarly as

we did for the Greensfunctions in section 2.4. Then the path-integral representation of the is

evident: First we sum over all path from q to u in time τ2 and then multiply with the position u

of the particle at time τ2. Next we sum over all path from u to v in time τ1 − τ2 and multiply

with the position v of the particle at time τ1. Finally we sum over all path from v to q in time

h̄β − τ1. The integration over the intermediate positions u and v just means that we must sum

over all paths, not only over those which have positions u and v at times τ2 and τ1, and include a

factor q(τ1)q(τ2) in the integrand. Since the total traveling time of the particle is h̄β, we obtain

the representation

〈q| e−βĤ q̂E(τ1)q̂E(τ2)|q〉 =
w(h̄β)=q
∫

w(0)=q

Dw e−SE [w]/h̄w(τ1)w(τ2), τ1 > τ2, (8.22)

for the kernel of the thermal 2-point function. Clearly, to get the trace in (8.12) we must inte-

grate over q and then divide by Z(β) (whose path-integral representation we derived earlier).

————————————
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Integrating over q means that we integrate over all periodic paths with period h̄β. When we

applied the Trotter product formula we have assumed that τ1 is bigger than τ2. The path integral

representations for the higher ’time ordered’ thermal correlation functions is now evident,

〈T q̂E(τ1) · · · q̂E(τn)〉β =
1

Z(β)

∮

w(0)=w(h̄β)

Dw e−SE [w]/h̄w(τ1) · · ·w(τn). (8.23)

These correlators are generated by

K(h̄β, q, q′; j) =

w(h̄β)=q
∫

w(0)=q′

Dw e−SEj [w]/h̄, SEj[w] = SE [w]− (j, w). (8.24)

or the corresponding generating functional, which is just the partition function in the presence

of an external source j(τ),

Z[β, j] =
∫

dqK(h̄β, q, q; j) =
∮

w(0)=w(h̄β)

Dw e−SEj [w]/h̄ (8.25)

by differentiating with respect to the source. The source term (j, w) in (8.24) is the scalar

product on L2[0, h̄β]. Note that Z(β, 0) = Z(β) is the previously introduced partition function

without source. For example, the thermal two-point function is

〈T q̂E(τ1)q̂E(τ2)〉β =
1

Z(β, 0)

h̄2δ2

δj(t1)δj(t2)
Z[β, j]|j=0, (8.26)

where T denotes the time ordering.

The connected correlation functions are generated by the finite-temperature Schwinger func-

tional. It is proportional to the logarithm of the partition function and hence proportional to the

free energy with external source,

logZ(β, j) = W [β, j]/h̄ = −βF [β, j]. (8.27)

In many cases the source is just the applied magnetic field. The connected correlation functions

are gotten by functionally differentiating W [β, j] several times with respect to the source,

〈T q̂E(τ1)q̂E(τ2) · · · q̂E(τn)〉c,β =
h̄n−1δn

δj(τ1) · · · δj(τn)
W [β, j]|j=0. (8.28)

Thermal Schwinger functional for the Oscillator

Let us compute the finite temperature Schwinger functional for the oscillator. We shall calculate

the path integral with Euclidian action and additional source term, that is for

SEj[w] =
m

2

h̄β
∫

0

dτ
{

ẇ2(τ) + ω2(τ)w2(τ)
}

−
h̄β
∫

0

dτj(τ)w(τ). (8.29)

————————————
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For later use we allow for a time-dependent frequency. We proceed similarly as in section 3.2

where we calculated the propagator for the driven oscillator. Not to repeat ourselves we just

recall the key ideas and point out the main differences as compared to the previous calculation.

First one splits w into the classical path wcl from q′ to q and the fluctuation ξ(τ) which vanishes

at the endpoints. The classical path is determined by the inhomogeneous equation of motion

S ′′wcl(τ) = j(τ), S ′′ = −m
d2

dτ 2
+mω2(τ), (8.30)

and the boundary conditions wcl(0) = q′ and wcl(h̄β) = q. Expanding the action SEj about the

dominant classical path yields

K(h̄β, q, q′; j) = e−SEj [wcl]/h̄K(h̄β, 0, 0) = e−SEj [wcl]/h̄

√

m

2πh̄D(h̄β)
, (8.31)

where K(h̄β, 0, 0) is the propagator for the propagation without source from 0 to 0. The D-

function solves S ′′D = 0 with initial conditions D(0) = 0 and Ḋ(0) = 1. This formula is just

the Euclidean version of the result (3.32). Again we decompose the classical trajectory in two

parts,

wcl(τ) = wh(τ) +
∫ h̄β

0
GD(τ, σ)j(σ)dσ, (8.32)

where wh is the classical path from q′ → q without external source and GD(τ, σ) is the symmet-

ric Dirichlet Greenfunction of the fluctuation operator S ′′. The second term on the right hand

side vanishes at initial and final times and solves the equation of motion with source. Using this

information the action of wcl can be rewritten as

SEj[wcl] = SE [wh]− (j, wh)−
1

2
(j, GDj) . (8.33)

Now we insert this decomposition into (8.31). The term SE[wh] converts the source-free propa-

gator for the propagation from 0 → 0 in (8.31) into the source-free propagator for propagation

from q′ to q such that

K(h̄β, q, q′; j) = K(h̄β, q, q′) · exp {(j, GDj)/2h̄+ (j, wh)/h̄} . (8.34)

In order to obtain the partition function we must set q′ = q and integrate over q. To do the

integration we need the explicit q-dependence of the action SEj[wcl] in (8.33). To that aim we

introduce a particular solution φ(τ) of the homogeneous equation of motion,

S ′′φ = 0 and φ(0) = φ(h̄β) = 1. (8.35)

The classical solution wh from q → q in the decomposition (8.32) is just wh(τ) = qφ(τ). Using

the equation of motion and boundary conditions for φ the position dependent contributions to

SEj in (8.33) can be isolated,

SEj[wcl] =
1

2
mβ q

2 − q(j, φ)− 1

2
(j, GDj), (8.36)

————————————
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where we introduced the source and position-independent function

mβ = mφ̇(h̄β)−mφ̇(0). (8.37)

We see that the resulting propagator K(h̄β, q, q; j) is a Gaussian function of q. Integrating over

q we obtain the partition function in the presence of an source

Z[β, j] = Z(β) eW [β,j]/h̄ (8.38)

where Z(β) is the partition function of the oscillator,

Z(β) =

√

2π

mβ
K(h̄β, 0, 0) (8.39)

and W the its finite temperature Schwinger functional,

W [β, j] =
1

2
(j, GP j), where GP (τ, σ) =

φ(τ)φ(σ)

mβ
+GD(τ, σ). (8.40)

Actually GP is just the Greenfunction of S ′′ for periodic boundary conditions. The term pro-

portional to φ(τ)φ(σ) in (8.40) converse the Dirichlet Greenfunction into the periodic Green-

function. This fact is proven in the appendix to the present chapter.

To compute th connected 2-point function at finite temperature we differentiate W [β, j]

twice with respect to the source and then set the source to zero. We obtain

〈Tq̂E(τ1)q̂E(τ2)〉c,β = GP (τ1, τ2). (8.41)

Note that the partition function Z(β) does not enter the result for the connected correlation

function. For the oscillator with constant frequency the periodic Greenfunction reads

GP (τ, σ) =
1

2mω

cosh(ω|τ − σ| − h̄ωβ/2)

sinh(h̄ωβ/2)
(8.42)

and one obtains the following thermal two-point function

〈Tq̂E(τ1)q̂E(τ2)〉β = h̄GP (τ1, τ2)
β→∞−→ h̄

2mω
e−ω|τ1−τ2|. (8.43)

Comparing with (8.20) we can extract both the mass gap and modulus of the matrix element of

q̂ between ground state and first excited state,

E1 − E0 = h̄ω and | 〈Ω| q̂|1〉 |2 = h̄

2mω
, (8.44)

a familiar result from the quantum mechanics course.

————————————
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8.3 Wigner-Kirkwood Expansion

The Wigner-Kirkwood expansion [27] can be used for studying the equilibrium statistical me-

chanics of a nearly classical system of particles. It is a semiclassical expansion in powers of

Planck’s constant h̄,

Z(β) = Zcl(β) +O(h̄2), Zcl(β) =

√

m

2πβh̄2

∫

dq e−βV (q), (8.45)

or equivalently of the thermal de Broglie wavelength λ = h̄(β/m)1/2. The h̄-expansion for

the partition function Z(β) = tr exp(−βĤ) is different from that for the evolution kernel in

quantum mechanics. The small expansion parameter h̄ enters Z(β) only via h̄2 in the kinetic

energy whereas in the kernel 〈q| exp(itĤ/h̄)|q′〉 it also enters as overall factor in the exponent.

Here we shall derive the Wigner-Kirkwood expansion from the path integral representation for

the partition function

Z(β) =
∮

w(0)=w(h̄β)

Dw e−SE [w]/h̄. (8.46)

The normalization of the (formal) path integral is fixed by the classical limit Zcl(β) in (8.45).

We rescale imaginary time such that the periodicity of the paths is β instead of h̄β,

τ −→ h̄τ. (8.47)

After this rescaling of time the path integral reads

Z(β) =
∫

w(0)=w(β)

Dw exp

{

−
∫ β

0

[m

2
ẇ2/h̄2 + V (w)

]

dτ

}

. (8.48)

Observe that for a moving particle the kinetic energy dominates the potential energy for small h̄

whereas for a particle at rest the potential term is dominant. This suggest to split a path into its

constant part (for which the kinetic energy vanishes) and fluctuations about it. Thus we change

variables from w(τ) → q + h̄ξ(τ) such that ξ(0) = ξ(β) = 0. We obtain

Z(β) =
∫

dq
∫

ξ(0)=ξ(β)=0

Dξ exp

{

−m

2

∫ β

0
ξ̇ 2dτ

}

exp

{

−
∫ β

0
V (q + h̄ξ) dτ

}

. (8.49)

Now we expand the last exponential factor containing the potential in powers of h̄,

exp { . . . } = e−βV

{

1− h̄V ′I(ξ) +
h̄2

2

(

V ′ 2I2(ξ)− V ′′I(ξ2)
)

− h̄3

3!

(

V ′ 3I3(ξ)− 3V ′V ′′I(ξ)I(ξ2) + V ′′′I(ξ3)
)

+ . . .

}

, (8.50)

————————————
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where the argument of V and its derivatives is the constant path q and we abbreviated the time

integrals of powers of the fluctuation field by

∫

ξn(τ)dτ ≡ I(ξn). (8.51)

The remaining path integral in (8.49) leads to correlators of the time integrated fluctuations, for

example

〈I(ξ2)I(ξ)〉 =
∫

ξ(0)=ξ(β)=0

Dξ exp
{

−m

2

∫

ξ̇ 2
}
∫

ξ2(τ)dτ
∫

ξ(σ)dσ. (8.52)

The explicit form of the lowest order terms in the resulting series is

Z(β) =
∫

dq eβV
{

〈1〉 − h̄V ′〈I(ξ)〉+ h̄2

2

(

V ′ 2〈I2(ξ)〉 − V ′′〈I(ξ2)〉
)

+ . . .

}

(8.53)

The expectation values (8.52) before time-integration are generated by the generating functional

of the free particle with Dirichlet boundary conditions and h̄ = 1,

K(β, 0, 0; j) =

√

m

2πβ
exp

{

1

mβ

∫ β

0
dτ
∫ τ

0
dσ (β − τ)σj(τ)j(σ)

}

. (8.54)

To determine the expansion up to order h̄2 we need

〈1〉 =
√

m

2πβ
, 〈ξ(τ)〉 = 0 and 〈ξ(τ)ξ(σ)〉 = 〈1〉

mβ
(β − σ)τ (τ < σ). (8.55)

Finally we must integrate over τ (and σ) which, after a partial integration in q, leads to

Z(β) =

√

m

2πβh̄2

∫

dq e−βV (q)

(

1− h̄2 β3

24m
V ′ 2 +O(h̄4)

)

, (8.56)

where we have already anticipated that the odd powers of h̄ vanish in this expansion, since the

odd moments of the free measure vanish.2

The first term in this power series in h̄ is the classical partition function. The coefficients of

O(h̄n) contain exactly n derivatives of the potential, e.g. the h̄4 coefficient contains terms like

V ′′′′, V ′ 4, V ′′′V ′ and V ′′ 2. (8.57)

We see that the h̄-expansion is actually a gradient expansion. A strongly coupled system be-

haves classically and we may expect that its behavior is described by a Wigner-Kirkwood gradi-

ent expansion. The first few terms in the semiclassical expansion have been derived by WIGNER

AND KIRKWOOD [27].

2One needs to restore an additional factor of 1/h̄ to find the correct classical limit. This is due to the different

rescaling of the constant path and the fluctuations ξ(τ).
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8.4 High Temperature Expansion

Besides the perturbative expansion in the powers of the interaction term or the semi-classical

expansion in powers of h̄ there exits another approximation of considerable interest, namely the

high temperature expansion in powers of the inverse temperature β. Actually we shall need this

expansion later when we discuss certain gauge field theories and in particular their anomalies.

The temperature dependence of finite temperature expectation values comes from the β-

periodicity (more accurately h̄/kBT -periodicity) of the trajectories in the path integral. As in

the previous section we split a path into its constant part q and the fluctuations ξ(τ) about q.

This way the partition function becomes the q-integral over the fluctuation part,

Z(β) =
∫

dq Z(β, q). (8.58)

The heat kernel K(β, q) is the path integral over the fluctuations in (8.49) (to simplify the

notation we set h̄ = 1). Now we rescale time such the fluctuation have periodicity 1 and

at the same time rescale the amplitude of the fluctuations such the kinetic term becomes β-

independent:

τ −→ βτ and ξ −→
√

β ξ. (8.59)

After these rescaling the β-dependence comes only from the temperature-dependent potential:

Z(β, q) =
1√
β

∫

ξ(0)=ξ(1)=0

Dξ exp
{

−m

2

∫ 1

0
ξ̇2
}

exp
{

−β
∫

V (q +
√

β ξ) dτ
}

. (8.60)

Now we expand the last exponential in powers of β. Again we are lead to calculate time integrals

of correlators of the fluctuation field. Using 〈ξ(τ)〉 = 0 we find the following expansion for the

heat kernel

Z(β, q) =
√

β

〈

1− βV (q) +
β2

2
V 2(q)− β2

2
V ′′(q) I(ξ2)

−β3

3!
V 3 +

β3

2
V ′V ′I2(ξ) +

β3

2
V V ′′I(ξ2)− β3

24
V ′′′′I(ξ4) . . .

〉

. (8.61)

Inserting the correlators (8.55) with β = 1 we can compute the remaining correlators and time-

integrals. This way one obtains

Z(β, q) =

√

m

2πβ

{

1− βV +
β2

2
V 2 − β2

12m
V ′′

−β3

6
V 3 +

β3

24m
V ′V ′ +

β3

12m
V V ′′ − β3

240m2
V ′′′ + . . .

}

, (8.62)
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where the potential and its derivatives are evaluated on the constant path q. The partition func-

tion is the space integral of this kernel. If the potential is localized near the origin or alternatively

if space is compact we obtain the series expansion

Z(β)− Z0(β) =

√

m

2πβ

∫

dq

{

−βV +
β2

2
V 2 − β3

6
V 3 − β3

12m
V ′ 2 + . . .

}

(8.63)

For very high temperature the particles move almost freely and as expected Z(β) tends to the

partition function Z0(β) of a gas of free particles with mass m. Note that besides the overall

factor β−1/2 the density and the partition function have an expansion in integer powers of β,

although the argument of V in (8.60) contains
√
β. The corresponding expansion for a particle

propagating in d-dimensions reads

Z(β)− Z0(β) =

(

m

2πβ

)d/2
∫

ddq

{

−βV +
β2

2
V 2 − β3

6
V 3 − β3

12m
(∇V )2 + . . .

}

. (8.64)

In [28] the high temperature expansion was completely computerized using the algebraic lan-

guage FORM. The calculation was performed up to order β11. For the coefficient of βn in the

expansion of Z(β) the number of terms are:

n 7 8 9 10 11

# of terms 37 114 380 1373 5301

The high temperature expansion enters the inverse mass expansion of worldline path integrals

occuring in one-loop effective action.

8.5 High-T Expansion for the Dirac-Hamiltonian

The heat kernel expansion of the previous section is of great importance in relativistic quantum

field theories. The Lagrangian for the electron- or quark-field contains the Dirac operator /D and

the fermionic path integral leads to the determinant of this operator. This determinant in turn

can be related to the partition function of − /D
2
. Here we shall compute the high temperature

expansion of the heat kernel

Z(β, q) = 〈q| eβ /D
2

|q〉 , (8.65)

where the Euclidean Dirac-operator

/D = γµDµ. (8.66)

contains the covariant derivative which couples the fermionic field to the gauge potential Aµ,

Dµ = ∂µ − iAµ. (8.67)

————————————

A. Wipf, Path Integrals



CHAPTER 8. STATISTICAL MECHANICS 8.5. High-T Expansion for /D
2

83

In Quantum Electrodynamics (QED) the electric and magnetic fields entering the field strength

tensor Fµν are given by Fµν = ∂µAν − ∂νAµ. In non-Abelian gauge theories the potential Aµ

and field strength Fµν are matrix values functions. They take their values in the Lie-algebra

of the underlying gauge group. Besides the gauge potential the Dirac operator contains the

Euclidean matrices γµ obeying the anti-commutation relations

{γµ, γν} = 2δµν , µ, ν = 1, .., d. (8.68)

In d dimensions they are 2[d/2]-dimensional hermitian matrices. The explicit form of the second

order hermitian matrix differential operator /D
2

is

/D
2
=

1

2
{γµ, γν}DµDν +

1

4
[γµ, γν][Dµ, Dν ] = DµDµ + ΣµνFµν , (8.69)

where we have introduced the components Fµν of the field strength tensor which for non-

Abelian gauge theories contain additional commutators,

Fµν = i[Dµ, Dν ] = ∂µAν − ∂νAµ − i[Aµ, Aν ]. (8.70)

The squared Dirac operator also contains the d(d− 1)/2 matrices

Σµν =
1

4i
[γµ, γν ] (8.71)

generating the spin rotations in Euclidean spacetime.

Similar as in section 5.2 one proves that the Euclidean evolution kernel has the following

path integral representation:

〈q| eβ /D
2

|q′〉 =
∫

Dw P e−SE [w,A], (8.72)

where the Euclidean action is given by the Wick-rotated Legendre transform of /D
2
,

SE =

β
∫

0

dτ
∫

dd−1
x LE(w,A), LE =

1

4
ẇ2 − iẇA− ΣF, (8.73)

and we abbreviated wµwµ = w2, wµAµ = wA and ΣµνFµν = ΣF . The potential and field

strength are evaluated along the trajectory w(τ) ∈ Rd. In (8.72) we needed the time ordering P
since the matrix-values Lagrangian LE at different times do not commute for non-homogeneous

background gauge fields. In the following we shall consider Abelian gauge fields in which case

no path ordering is required.

With the same change of variables as the one leading to (8.60) we obtain the following

density for the partition function,

Z(β, q) = β−d/2
∫

ξ(0)=ξ(1)=0

Dξ exp

{

−
∫

(

ξ̇2

4
− i

√

β ξ̇A(q +
√

βξ)− βΣF (q +
√

βξ)

)}

. (8.74)
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As in the scalar case one expands the exponent in powers of β1/2 and uses that
∫

ξ̇ = 0 and that

integrated moments like
∫ 〈ξ̇f(ξ)〉 vanish due to the invariance of the measure under τ → 1− τ .

Then one obtains for Abelian fields the expansion

βd/2Z(β, q) ∼
〈

1 + βΣ · F +
β2

2
(Σ · F )2 +

β2

2
(Σ · F ),αβ

∫

dτ ξα(τ)ξβ(τ)

−β2

2
Aµ,αAν,β

∫

dτdσ ξ̇µ(τ)ξα(τ)ξ̇ν(σ)ξβ(σ) + . . .

〉

, (8.75)

where the external fields are evaluated on the constant path q. From the result (8.55) with

m = 1/2 and β = 1 we read off the two point function,

〈ξα(τ)ξβ(σ)〉 = 2

(4π)d/2
(1− σ) τδαβ, τ < σ. (8.76)

The 4-point function can be calculated with the help of Wicks theorem. One obtains for the last

average in (8.75)

(4π)d/2
〈

ξ̇µ(τ)ξα(τ)ξ̇ν(σ)ξβ(σ)
〉

= (1− 2τ)(1− 2σ)δµαδνβ (8.77)

+4
{

(δ(τ − σ)− 1)δµνδαβ − 4δµβδαν
}

σ(1− τ).

The least trivial term is the δ-function coming from a careful evaluation of 〈ξ̇µξ̇ν〉. Finally, after

integrating over τ (and σ) one ends up with the following heat kernel expansion

Z(β, q) =
1

(4πβ)d/2

{

1 + β ΣF +
β2

12

(

2∆(ΣF ) + 6(ΣF )2 − FµνF
µν
)

+ . . .

}

. (8.78)

Note that all terms in this high-temperature expansion are gauge covariant, as required. Up to an

overall factor β−d/2 only integer powers of β occur, very much like in the scalar case. The reason

is that all odd moments of the free measure vanish. To obtain the high temperature expansion

of the partition function one takes the trace with respect to the Dirac indices and integrates

over the Euclidean spacetime. The coefficients in the expansion are finite for spacetimes with

finite volumes. For non-Abelian gauge fields the calculation is not much different and the result

(8.78) also holds in this case if we only replace the Laplacian by the gauge-covariant Laplacian

and in addition take the trace over internal indices.

8.6 Appendix B: From Dirichlet to periodic Greenfunction

In this appendix we prove that

GP (τ, σ) =
1

mβ
φ(τ)φ(σ) +GD(τ, σ) (B.1)
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is the Greenfunction of the fluctuation operator

S ′′ = −m
d2

dτ 2
+mω2(τ). (B.2)

with respect to periodic boundary conditions. Here GD(τ, σ) is the Greenfunction for Dirichlet

boundary conditions. φ is a solution of S ′′φ = 0 and takes the values 1 at initial and final time

0 and β. The normalizing constant mβ is3

mβ = m
(

φ̇(β)− φ̇(0)
)

. (B.3)

For the proof we introduce two fundamental solutionsD(τ) and E(τ) with boundary conditions

D(0) = 0, Ḋ(0) = 1 and E(0) = 1, E(h̄β) = 0. (B.4)

Their time-independent Wronskian is

W (D,E) = DĖ −EḊ = −1. (B.5)

Two typical fundamental solutions are depicted in figure 8.1. It is easy to prove that the Dirichlet

τ τ

3

0 h̄β 0 h̄β

D(τ) E(τ)

Figure 8.1: Two fundamental solutions obeying S ′′D = S ′′E = 0.

Greenfunction is given by

mGD(τ, σ) =

{

D(τ)E(σ) for τ < σ

D(σ)E(τ) for τ > σ
(B.6)

and the particular function φ is given by

φ(τ) = E(τ) +
D(τ)

D(β)
. (B.7)

3In this appendix we set h̄ = 1.
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We can make the following ansatz for the periodic Greenfunction,

GP (τ, σ) =
α

m
φ(τ)φ(σ) +GD(τ, σ). (B.8)

Clearly this function is symmetric in both arguments and has the value α/m at initial and final

(imaginary) time. The constant α is fixed by the periodicity condition

∂

∂τ
GP (τ, σ)|τ=0 =

∂

∂τ
GP (τ, σ)|τ=β

which implies

α
{

φ̇(0)− φ̇(β)
}

φ(σ) = m
∂

∂τ
GD(τ, σ)|τ=β −m

∂

∂τ
GD(τ, σ)|τ=0. (B.9)

Inserting the Dirichlet Greenfunction (B.6) the right hand side becomes

Ė(β)D(σ)− E(σ)) = −D(σ)

D(β)
−E(σ) = −φ(σ), (B.10)

where we used Ḋ(0) = 1 and that the Wronskian at final time is Ė(β)D(β) = −1. Comparing

with (B.9) we conclude that α = −1 and this proves that GP in (B.1) with mβ given in (B.3) is

the Greenfunction of S ′′ with respect to periodic boundary conditions.
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