
Chapter 10

Berezin Integral

In any field theory describing the elementary particles in nature there are bosonic and fermionic

fields. The latter describe the propagation of electrons, muons, neutrinos, quarks and so on. In

this chapter we introduce anticommuting Grassmann-variables and the Berezin integral [33].

These enter the path integral quantization of fermionic degrees of freedom.

10.1 Grassmann variables

So far we used the coordinate and momentum representations to formulate path integrals. For

what follows it is more convenient to use the Fock-space representation, based on the creation

and annihilation operators. In the particular case of the extensively discussed harmonic oscilla-

tor these operators are related to the position and momentum operators as follows,

a† =
1√
2h̄

(√
ωmq − i√

ωm
p

)

a =
1√
2h̄

(√
ωmq +

i√
ωm

p

)

, (10.1)

and they satisfy the commutation relation

[a, a†] = 1. (10.2)

The creation and annihilation operators are represented on the anti-holomorphic functions f(z̄)

endowed with the scalar product

(f1, f2) ≡
1

2πi

∫

f̄1(z)f2(z̄)e
−z̄z dzdz̄, z = x+ iy, dzdz̄ = 2idxdy. (10.3)

The normalization is such that the constant function f = 1 has unit norm. The creation- and

annihilation operators are represented as

(af)(z̄) =
∂

∂z̄
f(z̄) and (a†f)(z̄) = z̄f(z̄). (10.4)
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Using H = h̄ω(a†a + 1/2) and that the anti-holomorphic functions fn(z̄) = (n!)−1/2z̄n form

an orthonormal base in this space,

(fm, fn) =
2

n!
δmn

∫

e−r2r2n+1dr = δmn, z = reiϕ,

we can calculate the matrix element 〈z′|e−itH/h̄|z〉 of the evolution operator. One subtle point

in the bosonic case is the normal ordering. One starts with the normal ordered Hamiltonian,

that is the Hamiltonian with zero-point energy subtracted

:H: = H − 〈Ω|H|Ω〉 .

In order to replace the operators by classical variables, H(a†, a) → h(z̄, z), one needs to normal

order the evolution operator :e−itH/h̄: and not only the Hamiltonian. However, in the continuum

limit only the first order term 1− iǫ:H(a†, a):/h̄ in the series expansion for the normal ordered

evolution operator contributes. But this term is assumed to be already normally ordered.

Now we turn to the fermions, that is we replace (10.2) by

{a, a†} = 1 and (a†)2 = (a)2 = 0. (10.5)

These anti-commutation relations cannot be represented on functions of commuting variables

as z̄. But they can be represented on functions of anticommuting Grassmann-variables ᾱ, α,

{ᾱ, α} = 0 and ᾱ2 = α2 = 0. (10.6)

As representation space we can choose the analytic functions depending on ᾱ only. Since

ᾱ2 = 0 such functions have a terminating series expansion

f(ᾱ) = f0 + f1ᾱ.

The Grassmann variables (ᾱ, α) generate the Grassmann algebra

G2 ≡ C ⊕ Λ1(V )⊕ Λ2(V )

and elements in G2 have the form f = f00+f10α+f01ᾱ+f11ᾱα. More generally, for n degrees

of freedom (10.6) generalizes to

{αi, αj} = {ᾱi, αj} = {ᾱi, ᾱj} = 0, i, j = 1, 2, . . . , n. (10.7)

Grassmann variables are nilpotent, α2
i = ᾱ2

i = 0, and they generate the Grassmann algebra

Gn ≡ ⊕Λk(V ), k = 1, 2, . . . , 2n,

where Λ1(V ) = V has base {αi, ᾱi} and the elements

αi1 · · ·αipᾱj1 · · · ᾱjq with p+ q = k and i1 < ... < ip, j1 < ... < jq
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form a basis of Λk(V ). Actually Λk is isomorph to the exterior algebra of k-forms on an 2n-

dimensional manifold.

Due to the anticommutation property there exist two types of derivatives. The left derivative

and the right derivative. We shall always use the former. To compute the left-derivative ∂i of a

monomial in the Grassmann variables one first brings αi to the left (using the anti-commutation

rules) and then drops this variable. For example,

∂i(αkαℓ) = δikαℓ − δiℓαk. (10.8)

Then the derivative is extended to polynomials and hence to all functions of the Grassmann

variables {αi, ᾱi}.

The fermionic creation and annihilation operators in (10.2) are represented by differential

operators acting on analytic functions f(ᾱ) = f(ᾱ1, . . . , ᾱn) as follows,

(aif)(ᾱ) =
∂

∂ᾱi

f(ᾱ) and (a†if)(ᾱ) = ᾱif(ᾱ) =⇒ [ai, a
†
j] = δij1. (10.9)

We also would like to introduce a scalar product on the space of analytic functions f(ᾱ). For

that aim we introduce an integration over Grassmann variables. Such integrals have been intro-

duced by Berezin and they are defined by the following linear functional [33, 34]:
∫

dαi αj =
∫

dᾱiᾱj = δij and

∫

dαi =
∫

dᾱi = 0. (10.10)

To integrate a monomial with respect to αi one first brings αi in the monomial to the left (using

the anti-commutation rules) and then drops this variable. For example,
∫

dαi αjαk = δijαk − δikαj, (10.11)

and similarly for higher monomials. We see that the Berezin integral
∫

dαi is equivalent to left

derivative with respect to ∂αi
. For the integral over all Grassmann variables we choose the sign

convention such that
∫

DαDᾱ
n
∏

1

(ᾱiαi) = 1, where DαDᾱ ∝
n
∏

1

dαi

n
∏

1

dᾱi, (10.12)

and it is supposed that the dαi and dᾱj anticommute with each other and with αi and ᾱj . The

integral over Grassmann variables which are permutations of the α’s and ᾱ’s in (10.12) is then

given by the anti-commutation rules. The integral of less then 2n variables is always zero,

∫

DαDᾱ
p
∏

1

αi

q
∏

1

ᾱj = 0 for p+ q < 2n. (10.13)

From this property it follows that under a shift of the integration variables by Grassmann vari-

ables the Berezin integral is not changed,
∫

DαDᾱ f(α + η, ᾱ+ η̄) =
∫

DαDᾱ f(α, ᾱ). (10.14)
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Actually, to prove this translational invariance one also uses (α + η)2 = αη + ηα = 0. Let us

now see how the Berezin integral changes under linear transformations

βi =
∑

j

Uijαj and β̄i =
∑

j

Vijᾱj (10.15)

of the integration variables in (10.12). One finds

∫

DαDᾱ
n
∏

1

(βiβ̄i) =
∑

{ji,kℓ}

∏

i,ℓ

UijiVℓkℓ

∫

DαDᾱ (αjiᾱkℓ).

Note that only those terms contribute for which {j1, . . . , jn} and {k1, . . . , kn} are permutations

of {1, . . . , n}. These permutations are denoted by σ and σ̃. Thus we find
∫

. . . =
∑

σ,σ̃

∏

i,ℓ

Uiσ(i)Vℓσ̃(ℓ) sgn(σ)sgn(σ̃) = detU · det V. (10.16)

For theories containing fermions the Gaussian Berezin integrals are as important as the ordinary

Gaussian integrals are for theories containing bosons. With the help of (10.16) it is not difficult

to compute the Gaussian integral

Z =
∫

DαDᾱ e−ᾱAα, where ᾱAα = ᾱiAijαj. (10.17)

One just changes variables according to βi = Aijαj (and leaves the ᾱ’s) so that

Z =
∫

DαDᾱ e−ᾱiβi =
1

n!

∫

DαDᾱ (βiᾱi)
n =

∫

DαDᾱ
∏

(βiᾱi) = det(A).

We end up with the important formula
∫

DαDᾱ e−ᾱAα = det(A), ᾱAα = ᾱiAijαj. (10.18)

This should be compared with the corresponding bosonic Gaussian integral for which one ob-

tains the inverse square root of the determinant of A.

The generating function for Grassmann integrals can be computed by shifting the integration

variables in (10.18) according to

α −→ α−A−1η and ᾱ −→ ᾱ− η̄A−1.

Using the translational invariance of the Berezin integral, see (10.14), one arrives at
∫

DαDᾱ e−ᾱAα+η̄α+ᾱη = det(A) eη̄A
−1η, η̄α = η̄iαi. (10.19)

Now we define the scalar product of two analytic (in ᾱ) functions, similarly as in the bosonic

case, according to

(g, f) =
∫

DαDᾱ g†(α)f(ᾱ)e−ᾱα, (10.20)
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where the adjoint of a function g = g0 + giᾱi + gijᾱiᾱj + . . . is given by g† = ḡ0 + ḡiαi +

ḡijαjαi + . . .. Inserting the expansions for g† and f yields

(g, f) =
n
∑

p=0

ḡi1...ipfi1...ip (10.21)

for the scalar product of two functions g(ᾱ) and f(ᾱ). The last formula makes clear that the

scalar product is indeed sesqui-linear and positive as required. The space of analytic functions

f(ᾱ), endowed with this scalar product, forms the Hilbert space on which the linear operators

are represented. One can show that the operators a and a† are (formally) adjoint of each other

on this Hilbert space. A basis of the Hilbert space is defined by the orthonormal set of Fock

states
∏

a†i |0〉, where|0〉 is represented by the constant function 1.

Returning to n = 2 we consider a general normal ordered linear operator Â = :Â:,

Â = K00 +K01a+K10a
† +K11a

†a

= K00 +K01
∂

∂ᾱ
+K10 ᾱ +K11 ᾱ

∂

∂ᾱ
. (10.22)

Applying this operator to an element of the Hilbertspace f(ᾱ) = f0 + f1ᾱ we obtain

(Âf)(ᾱ) = K00(f0 + f1ᾱ) +K01f1 +K10f0ᾱ+K11f1ᾱ

=
∫

A(ᾱ, β)e−β̄βf(β̄)dβ̄dβ. (10.23)

where the kernel on the right hand side is given by

A(ᾱ, β) = eᾱβAN(ᾱ, β) with AN (ᾱ, β) = K00 +K01β +K10ᾱ +K11ᾱβ.

This generalizes in an obvious way to more than one degree of freedom: a normally ordered

linear operator Â has a kernel A which is obtained from Â by replacing a, a† by β, ᾱ and

multiplying the resulting expression with exp(ᾱβ). Similarly one can show that

(AB)(ᾱ, α) =
∫

A(ᾱ, β)B(β̄, α)e−β̄βdβ̄dβ.

With these formulas we can now derive the path integral representation for the kernel of the

normal ordered evolution operator K(t, â, â†). As in the bosonic case we divide the time interval

[0, t] into n time steps of equal length ǫ = t/n and obtain for the kernel

K(t, ᾱn, α0) =
∫ n−1
∏

i=1

dᾱidαi

n
∏

i=1

KN
ǫ (ᾱi, αi−1) exp

(

−
n−1
∑

1

ᾱiαi +
n
∑

i=1

ᾱiαi−1

)

, (10.24)

where the variables α0 and ᾱn at initial and final time are held fixed. In the continuum limit

n → ∞ or ǫ → 0 we may approximate

KN
ǫ (ᾱ, α) ∼ exp

(

−iǫ

h̄
HN(ᾱ, α)

)
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and thus we can rewrite (10.24) as follows

K(t, ᾱn, α0) = lim
n→∞

∫

DαDᾱ exp

(

ᾱnαn +
n
∑

i=1

[

ᾱi(αi−1 − αi)− iǫHN (ᾱi, αi−1)
]

)

= lim
n→∞

∫

DαDᾱ exp

(

ᾱ0α0 +
n−1
∑

i=0

[

(ᾱi+1 − ᾱi)αi − iǫHN (ᾱi+1, αi)
]

)

,

where one integrates over the Grassmann variables {ᾱi, ᾱi} with i = 1, 2, .., n− 1. The second

form follows from the first by a ’partial integration’ and shows, that the factors ᾱnαn and ᾱ0α0

are surface terms which can be neglected in the continuum limit. Thus in the continuum limit

we end up with the following path integral

K(t, ᾱn, α0) =

ᾱ(t2)=ᾱn
∫

α(0)=α0

DᾱDα exp



−
t2
∫

t1

dt
[

ᾱα̇ + iHN(ᾱ, α)
]



 . (10.25)

Note that the function in the exponent is just the action corresponding to the (normal ordered)

Hamiltonian H . This means that the path integral for fermionic degrees of freedom is formally

the same as for bosonic systems. The crucial difference (which forbids a probabilistic interpre-

tation) is the replacement of c-numbers by ’Grassmann numbers’. Before turning to the field-

theoretical generalization we discuss an interesting application of (10.25) to supersymmetric

quantum mechanics.
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