Übungen zu Symmetrien in der Physik

Blatt 2

Aufgabe 5: Group of automorphisms of a group

Let G be a group. Show, that the set of maps

 $\operatorname{Aut}(G) = \{\varphi : G \to G | \varphi \text{ is isomorphism} \}$

defines a group. It is the group of automorphisms of G introduced in the lecture.

Aufgabe 6: Presentations

Which two groups are defined by the presentations

$$a^{2} = b^{2} = (ab)^{3} = e$$
, and
 $a^{5} = b^{2} = e$, $bab^{-1} = a^{-1}$

Aufgabe 7: Conjugated subgroups

Let $H \leq G$ be a subgroup of G. Proof, that for every $g \in G$ the set gHg^{-1} defines a subgroup of G. Show that the so-defined conjugated subgroups are all isomorphic to H.

Aufgabe 8: Normal subgroups

Let S_n be the permutations group of n elements. The order of this group is n!. Let A_n be the alternate subgroup consisting of the even permutations in S_n (an permutation is even, if it is a product of an even number of transpositions).

- 1. Which permutations of S_3 are even and which are odd?
- 2. Show that A_n is a subgroup of S_n .
- 3. What is the order of A_n ?
- 4. Show that A_n is a normal subgroup of S_n .
- 5. Which group is S_n/A_n ?