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3Chapter 1

Introduction

Symmetries are one of the guiding principles in contemporary theoretical physics. Already the formu-

lation of quantum mechanics is invariant under a local electromagnetic gauge transformation [1] and

its unification with special relativity, quantum electrodynamics [2], still incorporates this symmetry.

The extension of this abelian gauge symmetry to non-abelian gauge groups has led to a description

of isospin [3] and built the theoretical framework for modern particle physics. By a unification of

electroweak interaction [4–6] with strong interaction [7] the standard model of particle physics is con-

structed. Based on the underlying symmetries bottom and top quark as well as the τ neutrino have been

predicted and the experimental discoveries, the last one more than two decades after the prediction [8],

substantiated the success of the standard model to describe the physics on energy scales below 1 TeV.

Thereafter it has been aimed at constructing more general theories to gain a unified description

of nature. These attempts were based on extending the standard model’s symmetries by further ones.

However, additional symmetries put further constraints on the scattering matrix. Which symmetries

still allow for experimentally reasonable scattering amplitudes has been analysed in the Coleman-

Mandula theorem [9] and an extension of the spacetime symmetries is only possible with internal

symmetries that do not change the spin or the mass of particles. The only way to circumvent this

restriction is given by extending the Poincaré algebra with anti-commuting supersymmetry generators

[10] that relate particles with integer spin to ones with half-integer spin.

The first field theoretical realisation of a renormalisable model with supersymmetry algebra is the

Wess-Zumino model [11] in four spacetime dimensions with a field content of two (real) scalars and a

Majorana fermion. Since then a variety of supersymmetric models have been constructed, e.g. super-

symmetric gauge theories, supersymmetric sigma models, and models with extended supersymmetries.

By using supersymmetric extensions of the well established standard model conceptual shortcomings

that cannot be explained within the setting of the standard model, such as the hierarchy problem, the

occurrence of dark matter, and the strong CP problem, can be solved or weakened [12–14]. Within

the minimal supersymmetric standard model even the gauge couplings will be unified at high energy

scales.

Supersymmetric models have further the advantage that divergences in the perturbation series are

in most cases less severe than in models without supersymmetry and that the supersymmetry algebra

induces a vanishing ground state energy, as long as supersymmetry is unbroken. If the ground state is

invariant under the supersymmetry mass degenerate multiplets of bosonic and fermionic particles are

predicted, and it has been analysed that in certain classes of supersymmetric theories a spontaneous

breaking of supersymmetry is not possible [15]. But in the experimental findings so far no such de-

generacy has emerged, and the masses of bosonic and fermionic particles appear unrelated. At first

sight these results hinder supersymmetry from describing the particle spectrum. However, as was anal-

ysed by O’Raifeartaigh [16] this non-degeneracy of masses is naturally expected if supersymmetry is

dynamically broken.

In a theory with dynamical supersymmetry breaking the ground state is not invariant under the

supersymmetry, and the ground state energy is lifted above zero [17]. But the supersymmetry alge-

bra is still present, which has implications on the physics in the dynamically broken sector. To date

the Large Hadron Collider has just started operating and it is expected to measure, apart from many
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other interesting predictions (e.g. the Higgs boson), remnants of supersymmetry in the collision events

within a few years. If the description of nature includes supersymmetry, what large parts of the physics

community expect, it is necessary to have not only a perturbative description of supersymmetric theo-

ries at hand but to explore them by using non-perturbative methods that go beyond the perturbatively

accessible regime.

Among those methods the lattice regularisation in combination with importance sampling based

statistical ‘Monte-Carlo’ methods has become successful over the last decades. Lattice methods often

provide the only viable way to gain information about the non-perturbative sector of quantum field

theories. E.g. early simulations that aimed at an understanding of the pure SU(2) Yang-Mills theory

[18] built the basis for recent computations from first principles of the Hadron spectrum in full quantum

chromodynamics [19], which is only possible due to increasing computing power and algorithmic

improvements. As non-perturbative effects are automatically taken into account, it is desirable to

apply the lattice approach also to supersymmetric theories. This has been the subject of a number of

publications, see, e.g., [20–24] and for recent progress in supersymmetric Yang-Mills theories [25–28]

and references therein.

In all the lattice regularised versions of field theories symmetries are again of particular interest.

If a symmetry of the continuum theory is not implemented in the lattice version it is possible that the

symmetry is not restored in the continuum limit. E.g. for simulations of gauge theories it is important

to implement the lattice version of the continuum gauge symmetry [29]. But not every symmetry

can be directly implemented in the lattice regularised theory. The Nielsen-Ninomiya theorem [30–32]

forbids the exact implementation of chirally symmetric fermions with a local fermion interaction and

without introducing additional fermion flavours on the lattice. Nevertheless, it is possible to construct a

(deformed) lattice version of the chiral symmetry, which is given by the Ginsparg-Wilson relation [33],

so that a restoration of the continuum chiral symmetry is ensured in the continuum limit of the lattice

action.

For supersymmetry as extension of the Poincaré algebra a fully realised supersymmetry algebra on

the lattice must inevitably contain the generators of translations which would imply arbitrary transla-

tions to be part of the symmetry group of the lattice theory. By contrast, lattice regularised theories

are only symmetric under translations by the lattice spacing. Therefore a complete realisation of the

continuum supersymmetry algebra on the lattice is impossible and the full supersymmetry can only be

realised as an accidental symmetry in the continuum limit of the lattice regularised theory. Technically,

the reason for this can be traced back to the failure of the Leibniz rule on the lattice [34].

It has been shown that even in supersymmetric quantum mechanics the naive discretisation does not

lead to a supersymmetric continuum limit [35]; generically, such a limit can at best be achieved by fine-

tuning the bare coefficients of all supersymmetry-breaking counterterms [36]. This, however, requires

much knowledge of the theory in advance. In some cases the relevant operators can be determined

perturbatively, cf. [37]. To circumvent the fine-tuning process several attempts are possible. Firstly a

partial realisation of supersymmetry on the lattice is possible for theories with extended supersymmetry

(for a recent review see [38]). Secondly recent developments aim at the construction of a Ginsparg-

Wilson inspired relation for supersymmetric theories to obtain a lattice version of supersymmetry such

that the continuum supersymmetry is broken in a controlled way [39]. Alternatively for scalar theories

a deformed supersymmetry algebra on the lattice can be constructed by using a non-local product
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operator such that the theory is invariant under the full (deformed) lattice supersymmetry [40].

Apart from an explicit supersymmetry breaking by the finite lattice spacing there exist further

supersymmetry breaking effects that must be controlled in the analysis of supersymmetric theories.

Firstly a finite temperature breaks the Lorentz invariance and therefore supersymmetry as extension of

the Poincaré algebra must be broken, too. Secondly a finite spatial volume may allow for tunnelling

processes between two formerly separate ground states such that the finite volume ground state energy

is raised above zero. As it is inevitably to use finite lattices for numerical simulations these explicit

supersymmetry breaking effects must also be accounted for seriously.

It is the purpose of this work to analyse different models in one and two spacetime dimensions

each of which covering main ingredients of more realistic theories like the minimal supersymmetric

standard model. By considering the specific aspects separately it is possible to scrutinise the drawbacks

and opportunities provided by the given lattice methods. In addition the low dimensionality of these

models allows for precise numerical results which can uncover conceptual and technical problems that

arise in the lattice treatment of supersymmetric theories.

The analysis of supersymmetric theories on the lattice starts with the more pedagogic example of

a supersymmetric quantum mechanics with dynamically broken supersymmetry in Chapter 2. In this

setting the basic concepts of supersymmetric theories are explained and reference results for certain

observables are computed via the operator formalism, thus allowing to understand the physics behind

supersymmetry breaking on solid grounds. The corresponding lattice regularisation is based on a

formulation that has been used in the unbroken supersymmetric quantum mechanics with great success

[41]. The applicability of a lattice regularisation for theories with broken supersymmetry is verified

and it is described how signatures of the low lying energy spectrum are visible in observables that are

accessible in the lattice theory.

In Chapter 3 the N = 2 Wess-Zumino model in 1 + 1 dimensions, which is a dimensionally

reduced version of the four dimensional N = 1 Wess-Zumino model, is discussed. This model is build

upon a holomorphic superpotential which forbids a supersymmetry breaking in the continuum. Here,

different lattice formulations are compared, some of which allowing for a part of the supersymmetry

to be realised on the lattice. It will turn out that these ‘Nicolai improved’ formulations have inherent

stability problems that hinder the simulations from probing the strong coupling regime. For weak

couplings continuum extrapolated lattice results are compared to perturbative one-loop calculations.

For intermediate couplings the finite volume induced apparent supersymmetry breaking, measurable

in certain observables, is analysed with the help of Ward identities.

Preforming high-precision measurements poses a numerical challenge already in two dimensional

theories. For that reason the algorithmic improvements that have been gained throughout the simula-

tions are exemplified on the N = 2 Wess-Zumino model in Chapter 4. However, most of the technical

advances are not only limited to this specific model but can directly be applied to every other model in

this work.

The minimal setting for a field theory with supersymmetry breaking phase transition is given by

the N = 1 Wess-Zumino model in 1+ 1 dimensions, which is analysed in Chapter 5. In the context of

the quenched model a particular renormalised critical coupling for the Z2 symmetry breaking is shown

to be independent of the chosen lattice regulator. The corresponding critical coupling in the full theory

is determined and the relation between Z2 and supersymmetry breaking is worked out.
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Eventually (supersymmetric) nonlinear sigma models are considered in Chapter 6. They share

important features with non-abelian gauge theories, such as asymptotic freedom, dynamical mass gen-

eration, and the presence of topological objects [42]. In that context the instanton structure of the

bosonic CPN nonlinear sigma models with twisted boundary conditions is determined, zero modes

of the Dirac operator for minimally and supersymmetrically coupled fermions are constructed, and a

corresponding index theorem is given. The work concludes with an analysis of the supersymmetric

O(3) nonlinear sigma model on the lattice. Proposed supersymmetric lattice models [43,44] break the

target space symmetry on the lattice as well as in the continuum limit. Therefore an explicitly O(3)

invariant lattice model is constructed, the analytically determined ground state structure is verified, and

a restoration of supersymmetry in the continuum limit is analysed with the non-local SLAC derivative.

The compilation of this work is solely due to the author. However, parts of this work have been done

in collaboration with colleagues from the research groups on quantum field theory in Jena and Re-

gensburg. The numerical programming that led to Sec. 3.2.1 – 3.2.5 was done together with Tobias

Kästner while the analytical results of Sec. 3.2.5 have been developed in collaboration with Georg

Bergner. The corresponding results have already been reported in [45, 46] and went partially into the

PhD theses of Tobias Kästner [47] and Georg Bergner [48]. Explicit analytical calculations of Sec. 6.1

result from the combined effort together with Lukas Janssen, Wieland Brendel, Falk Bruckmann and

Andreas Wipf, are published in [49], and went into the diploma thesis of Lukas Janssen [50]. The O(3)

invariant lattice formulation in Sec. 6.2.2 has been constructed in collaboration with Raphael Flore.
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Broken supersymmetric quantum mechanics

An extensive analysis of quantum mechanical systems, such as the anharmonic oscillator, with lat-

tice regularised path integrals has been performed almost three decades ago [51]. Although the used

methods can directly be applied to bosonic theories there has been renewed interest in the quantum

mechanical systems on the lattice in the context of supersymmetric quantum mechanics (SQM). In

several works SQM has been used as a toy model to study the supersymmetry breaking induced by

a naive lattice formulation [52] and to explore lattice regularisations with partially [35, 41, 53, 54] or

fully [40] conserved supersymmetries. It has been pointed out that a discretisation without any con-

served supersymmetries may not be free of finite supersymmetry breaking renormalisation terms in the

continuum limit [55] and a careful treatment of supersymmetry restoration is necessary. Most of the

lattice studies of SQM so far have been carried out for the case of an unbroken supersymmetry and

only few of them [56,57] consider the case of the dynamically broken supersymmetry. In this work the

case of a SQM with dynamically broken supersymmetry is considered to explain the concepts and ef-

fects of supersymmetry breaking in a setting that allows for high precision measurements in the lattice

theory and provides the possibility to compare to exactly calculable reference values from the operator

formalism.

2.1 Operator formalism

SQM in one dimension is a generalisation of the supersymmetric harmonic oscillator.1 In analogy to

supersymmetric field theories nilpotent supercharges Q and its adjoint Q† are introduced,

Q† =

(

0 0

A 0

)

= AΨ†, Q =

(

0 A†

0 0

)

= A†Ψ, (2.1)

with fermionic creation and annihilation operator Ψ† and Ψ and

A =
d

dφ
+ P (φ), A† = − d

dφ
+ P (φ). (2.2)

with prepotential P (φ).2 The Hamiltonian is constructed via

1

2
{Q,Q†} =

(

HB 0

0 HF

)

=
1

2

(

− d2

dφ2
+ P 2(φ) + [Ψ†,Ψ]P ′(φ)

)

≡ H, (2.3)

and acts on two-component state vectors |ψ〉 = (|ψ〉B, |ψ〉F)
T

where, for convenience, the first compo-

nent is called ‘bosonic’ and the second one ‘fermionic’. The supersymmetry algebra is completed by

the nilpotency of Q and Q† and the commutation with H ,

{Q,Q} = 0, {Q†,Q†} = 0, [Q, H ] = 0. (2.4)

1The introduction to the operator formalism is based on [58].
2In accordance to the field theory language φ denotes the position operator of the quantum mechanical system
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If P is a linear function of φ then A and A† are the bosonic annihilation and creation operators of the

(supersymmetric) harmonic oscillator. Accordingly the bosonic and fermionic Hamiltonian is given by

HB =
1

2
A†A = −1

2

d2

dφ2
+ VB, HF =

1

2
AA† = −1

2

d2

dφ2
+ VF, VB/F =

1

2
(P 2(φ)∓ P ′(φ)). (2.5)

Both Hamiltonians are by construction non-negative. The bosonic sector of a zero energy state is

annihilated by A and a fermionic one is annihilated by A†,

HB|0〉B = 0 ⇔ A|0〉B = 0, HF|0〉F = 0 ⇔ A†|0〉F = 0. (2.6)

Q†

Q

EB EF

NF = 0 NF = 1

Figure 2.1: Energy spectrum for the

unbroken supersymmetric quantum me-

chanics discussed in [41]. Q and Q†

map between bosonic and fermionic

sector.

The supersymmetry algebra implies a strict pairing of excited

states, i.e. for every bosonic eigenstate |ψB〉 with energy E > 0

there is a fermionic partner state

|ψF〉 =
1√
2E

Q†|ψB〉, |ψB〉 =
1√
2E

Q|ψF〉 (2.7)

with identical norm and energy.

The zero energy state(s) of the super Hamiltonian H can be

given explicitly (in position space) as solutions of first order dif-

ferential equations. If one of these functions is normalisable,

then the supersymmetric ground state exists and supersymme-

try is unbroken. Since the product of possible zero energy states

〈x|0B〉·〈x|0F〉 is constant, there is at most one normalisable state

with zero energy. The explicit form of solutions implies that for

a polynomial P (φ) =
∏N

n=0 cnφ
n with cN 6= 0, N > 0 super-

symmetry is unbroken iffN is odd. In that case one normalisable

zero energy state is present and the spectrum is similar to the case depicted in Fig. 2.1.

2.1.1 Supersymmetry breaking and the Witten index

An existing and unbroken supersymmetry is defined by the existence of a normalisable ground state

|0〉 with Q|0〉 = Q†|0〉 = 0, which implies HB|0〉B = HF|0〉F = 0. Witten defined indices [15] to

determine whether supersymmetry can be broken dynamically in supersymmetric field theories. The

simplest of those is given by a trace over all eigenstates of H ,

∆ = Tr(−1)NF . (2.8)

where (for the supersymmetric quantum mechanics discussed here) NF =

(

0 0

0 1

)

is the fermion

number operator that commutes with H .3 Now, two cases are possible.

• For broken supersymmetry there is no normalisable zero energy state. All eigenstates of H have

positive energies and must be paired, which implies ∆ = 0.

• For unbroken supersymmetry there are nB bosonic and nF fermionic ground states with zero

3As it stands, ∆ is not well defined and requires a normalisation, e.g. ∆ = limβ→0 Tr[e
−βH(−1)NF ].
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energy. They contribute with nB − nF to the Witten index. All contributions from the excited

states cancel, which gives ∆ = nB − nF.

Therefore a non-vanishing Witten index implies an unbroken supersymmetry, but not necessarily vice

versa. It is still possible that supersymmetry is unbroken while there are the same number of bosonic

and fermionic zero energy states. For a one dimensional supersymmetric quantum mechanics only one

zero energy state is possible and ∆ 6= 0 is equivalent to unbroken SUSY.

2.1.2 Specifying the model

The minimal modification of the supersymmetric harmonic oscillator with broken supersymmetry is

given by the prepotential P (φ) = mφ+ hφ2 with vanishing Witten index. In consequence there exists

no normalisable ground state with zero energy. The spectrum is completely degenerate and acting

with the supercharges on one finite energy ground state will give the corresponding superpartner of

this ground state.4

This model depends on the dimensionful parameters m and h and corresponding to the super-

symmetric harmonic oscillator m is used to set the scale. Therefore f = h/m1.5 provides a scale

independent dimensionless coupling. In presence of a finite temperature a dimensionless temperature

is given by T = (mβ)−1 with β as dimensionful inverse temperature. Eventually coordinates are made

dimensionless by setting Φ = φ
√
m.

0

1

2

3

4

5

0.0 0.2 0.4 0.6 0.8 1.0

En/m

f

Figure 2.2: Energy levels for the broken su-

persymmetric quantum mechanics. Each level

is doubly degenerate with one bosonic and

one fermionic eigenstate.

The energy spectrum and corresponding states can be

computed directly by a discretisation in position space and

replacing of d
dφ

by a discretised derivative. After the analy-

sis of different possible discretisations in [59] the most sta-

ble choice was found to be the SLAC derivative [60], which

is given for periodic boundary conditions on a lattice with

an odd number of points N and lattice spacing a by

a(∂SLAC)xy =







0 : x = y

π
N
(−)x−y 1

sin(π(x−y)/(Na))
: x 6= y

,

−a2(∂SLAC)2xy =







π2

N2
N2−1

3
: x = y

2π2

N2 (−)x−y cos(π(x−y)/(Na))

sin2(π(x−y)/(Na))
: x 6= y

.

(2.9)

The spectrum of the diagonalised Hamiltonian is shown in Fig. 2.2. For couplings f . 0.1 there

is an additional (approximate) degeneracy of the excited spectrum corresponding to the perturbed en-

ergy levels of two harmonic oscillators with energies Nm residing at the minima of the bosonic and

fermionic potential VB/F (see Fig. 2.3).

Interpretation as a physical system

The naming ‘bosonic’ and ‘fermionic’ sector may sound misleading because of the complete degener-

acy of the spectrum. The system can be interpreted as a particle with spin 1/2 moving in an external

potential that depends on the spin orientation. So ‘bosonic’ may refer to ‘spin down’ and ‘fermionic’

to ‘spin up’, respectively. Supersymmetry in this case is represented as degeneracy between an up and

4If not otherwise stated, “ground states” may also have a positive energy.
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a down state. For the case of unbroken supersymmetry the ground state is unique and is invariant under

application of supersymmetry although it is in a definite spin state given by the interaction potential.

For the broken supersymmetry there are (in the present case) two different ground states none of which

is energetically preferred (see Fig. 2.3). There is no interaction given by the Hamiltonian between

bosonic and fermionic sector and one ground state will be preserved if no external interaction is ap-

plied (e.g. by interacting with a heat bath at finite temperature). Applying the supercharge will give the

partner ground state and amounts to the symmetry between spin up and spin down state. Furthermore

no linear combination of the ground states is invariant under the supersymmetry.

Physics at T = 0

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

−8 −6 −4 −2 0 2

V
(Φ

)/
m

,
ρ
0
(Φ

)

Φ

bosonic
fermionic

Figure 2.3: Probability density ρ0(Φ)
(shaded areas) for bosonic and fermionic

ground state and potentials VB/F (lines) of

the corresponding Hamiltonian at coupling

f = 0.2.

At vanishing temperature physics is given by ground state

(vacuum) expectation values. Since supersymmetry is bro-

ken the system will stay in one of the degenerate ground

states and expectation values are defined by this particu-

lar ground state.5 Without loss of generality results are

given for the bosonic (finite energy) ground state |0B〉 and

the expectation value of an observable O is thus given by

〈O〉0 = 〈0B|O|0B〉.
As reference values for lattice computations in the

next section observables can be computed from the diag-

onalised Hamiltonian. On the lattice the primary focus lies

on one- and two-point functions and the probability den-

sity of the coordinate Φ given by ρ0(Φ) = |〈Φ|0〉|2. The

one-point function is then given by 〈Φ〉0 =
∫
dΦ ρ0(Φ)Φ.

The bosonic two-point function (in the bosonic ground

state) is defined through the Euclidean time evolution,

〈Φ(t)Φ(0)〉0 = 〈0B|Φ(t)Φ(0)|0B〉 = 〈0B|etHΦe−tHΦ|0B〉 = 〈0B|Φe−t(H−E0)Φ|0B〉. (2.10)

Equivalently the fermionic correlation function is computed by

〈
Ψ(t)Ψ†(0)

〉

0
= 〈0B|Ψe−t(H−E0)Ψ†|0B〉. (2.11)

In each case tm defines the dimensionless ‘time’.

The last quantity of interest is the effective potential which may be either defined by a Legendre

transform of the Schwinger function6 or more directly at vanishing temperature by

Veff(Φ0) = min
〈ψ|Φ|ψ〉=Φ0

〈ψ|H|ψ〉. (2.12)

5This is similar to the Z2 symmetry in the Ising chain. There, at any finite temperature the symmetry is restored. Only

for T = 0 the system will take (and preserve) one of the possible “ground states”.
6The Schwinger function is naturally defined in a path integral formulation.
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Finite temperature physics

For any finite temperature there is a Boltzmann distribution with the same contribution of bosonic and

fermionic partner states, including the lowest energy ground states. Again, with high precision calcu-

lations of the low lying spectrum provided by the diagonalised Hamiltonian it is possible to compute

the thermal field distribution and expectation values

ρT (Φ) = Z−1
∑

E

e−E/T |〈Φ|ψE〉|2 , 〈O〉T = Z−1
∑

E

〈ψE|e−βHO|ψE〉, Z =
∑

E

e−E/T , (2.13)

where the sums run over both bosonic and fermionic states.

2.2 Lattice regularised path integral

With the methods given in the previous section it is possible to give exact results against which the path

integral based calculations can be compared. Therefore the applicability of the lattice regularisation

even for the case of a broken supersymmetry can be investigated. The corresponding Euclidean path

integral is given by

Z =

∫

DφDψDψ̄ e−S[φ,ψ,ψ̄], (2.14)

with Euclidean action

S =

∫

dτ

(
1

2
(∂φ)2 +

1

2
P 2(φ) + ψ̄(∂ + P ′(φ))ψ

)

. (2.15)

Expectation values are computed via

〈A〉 = Z−1

∫

DφDψDψ̄ A[φ, ψ, ψ̄]e−S[φ,ψ,ψ̄]. (2.16)

Supersymmetry appears as a symmetry of the action, where one transformation is given by

δ(1)φ = ε̄ψ, δ(1)ψ̄ = −ε̄(φ̇+ P (φ)), δ(1)ψ = 0 (2.17)

and a variation of the action gives δ(1)S =
∫
dτ [∂(ε̄Pψ)] = 0. In the same way the action allows for

a second supersymmetry transformation

δ(2)φ = ψ̄ε, δ(2)ψ̄ = 0, δ(2)ψ = (φ̇− P )ε. (2.18)

For the above supersymmetries to hold it is necessary that the fields vanish at infinity or that they are

periodic in the Euclidean time. In the case of a thermal path integral at inverse temperature β with the

above action the fields naturally obey boundary conditions given by

φ(0) = φ(β), ψ(0) = −ψ(β), ψ̄(0) = −ψ̄(β), (2.19)

i.e. the fermionic field is antiperiodic in time. Since the fields need not vanish anymore the variation

of the action then reads

δ(1)S = [ε̄Pψ]βτ=0 = −2 [ε̄Pψ]τ=0 (2.20)
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which can be non-vanishing so that supersymmetry is broken by the finite temperature. In [41, 52] for

an unbroken supersymmetric quantum mechanics periodic boundary conditions have been used. For

temperature going to zero a change in boundary conditions is equivalent to an insertion of (−1)NF into

the path integral,

Zp =

∫

DφDψp Dψ̄p e
−S[φ,ψ,ψ̄] =

∫

DφDψap Dψ̄ap (−1)NFe−S[φ,ψ,ψ̄] = Zap∆. (2.21)

Here, the periodic path integral is vanishing due to ∆ = 0 for a broken supersymmetry. Thus, for a

theory allowing supersymmetry breaking, periodic (supersymmetry preserving) boundary conditions

cause a severe sign problem. This does not completely rule out the choice of these boundary conditions,

as will be discussed on the case of the two dimensional N = 1 Wess-Zumino model in Chapter 5, but

puts constraints on the range of applicability.7 To have a well defined (non-vanishing) path integral

antiperiodic (thermal) boundary conditions for the fermionic fields are chosen and the path integral

coincides with the thermal partition function.

For a construction of the model’s lattice representation the choice of the lattice regularised deriva-

tive is crucial.8 The canonical choice for scalar theories would be the forward (or equivalently back-

ward) derivative. For derivatives appearing in the fermionic action a popular choice is given by Wil-

son’s prescription [29]. Nevertheless, these simple discretisation rules are not applicable to super-

symmetric theories as analysed in [41, 52, 55] for the case of an unbroken supersymmetric quantum

mechanics. These results show the need for a more careful treatment of the discretisation of super-

symmetric theories. In the comparative study of six different discretisations [41] the one based on the

SLAC derivative is found to be best suited for the needs of this work by giving results close to the con-

tinuum limit even at finite lattice spacing. For an odd number of lattice points with periodic boundary

conditions the matrix representation is already given in Eq. (2.9). Antiperiodic boundary conditions

(necessary for fermionic fields) are best realised on an even lattice with N points

a(∂SLAC)xy =







0 : x = y

π
N
(−)(x−y)/a 1

sin(π(x−y)/(Na))
: x 6= y

, (2.22)

while the squared SLAC derivative for an even number of lattice points and periodic boundary condi-

tions (as needed for the bosonic fields) reads

−a2(∂SLAC)2xy =







π2

N2
N2+2

3
: x = y

2π2

N2 (−)(x−y)/a 1
sin2(π(x−y)/(Na))

: x 6= y
. (2.23)

Although it was analysed [61] that this prescription will lead to a non-covariant and non-local contin-

uum limit in lattice QED it can be proven [41, 48] that for scalar theories in one or two dimensions

with Yukawa interactions a local renormalisable continuum limit is reached. For that reason the SLAC

derivative is used in this work to regularise the supersymmetric quantum mechanics on the lattice with

7For a phase with unbroken supersymmetry in models with ∆ = 0 only one specific ground state belongs to the physical

spectrum and periodic boundary conditions may be imposed.
8In contrast to the operator formalism where the field space is discretised, the lattice path integral is based on a discreti-

sation in the Euclidean time.
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corresponding action

S = −
∑

x,y

1
2
φ̂x(∂̂

SLAC)2xyφ̂y +
1
2

∑

x

P (φ̂x)
2 +

∑

x,y

ψ̄x
(
∂̂SLAC
xy + P ′(φ̂x)δxy

)
ψy (2.24)

on lattices with an even number of sites, where field φ̂ and derivative ∂̂SLAC are dimensionless and arise

from rescaling of the dimensionful quantities with the lattice spacing.9

Access to the non-perturbative sector of the lattice model is gained from Monte-Carlo simulations

which have become a powerful tool due to increasing computer power and algorithmic improvements

that allow for the inclusion of dynamical fermions in simulations. These statistical methods are based

on importance sampling and the interpretation of the lattice regularised path integral

Z =

∫

Dφ̂DψDψ̄ e−S[φ̂,ψ,ψ̄] (2.25)

as probability distribution. To construct the probability density the action is then split into a bosonic

and fermionic part according to

S[φ̂, ψ, ψ̄] = SB[φ̂] +
∑

x,y

ψ̄xMxy[φ̂]ψy. (2.26)

Due to the rules of Grassmann integration the fermionic part of the path integral can (for every fixed

φ̂) be integrated out to yield

Z =

∫

Dφ̂ detM [φ̂] e−SB[φ̂]. (2.27)

In this way (bosonic) expectation values are computed by

〈

O[φ̂]
〉

= Z−1

∫

Dφ̂O[φ̂] detM [φ̂] e−SB[φ̂]. (2.28)

In a Monte-Carlo simulation the lattice regularised fields φ̂ are generated according to the distribution

ρ[φ̂] = e−SB[φ̂]+ln|detM [φ̂]|. (2.29)

After a number ofNMC samples one obtains a time series φ̂(k), k = 1, . . . , NMC, and expectation values

are evaluated using

〈O〉 NMC→∞
= N−1

MC

NMC∑

k=1

O[φ̂(k)]. (2.30)

This expression is only exact iff detM ≥ 0. If detM is negative the sign has to be taken into account

by reweighting. However, the emphasis lies on the physical questions and further simulation details

will be given in Chapter 4.

2.2.1 Sign of the fermion determinant

For periodic fermionic boundary conditions Zp ∝ ∆ will vanish in the continuum and a severe sign

problem is expected to arise in reweighted expectation values. For thermal boundary conditions it

is a priori unknown if there are configurations with detM < 0 and if there is any dependence on

9The fermionic fields ψ, ψ̄ are already dimensionless and need not to be rescaled.
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Figure 2.4: Sign of the fermion determinant measured at fixed f = 1 (left panel) and at fixed mβ = 36
and N = 50 lattice points (right panel) with 105 configurations per data point.
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Figure 2.5: The distribution of the averaged field Φ̃ for mβ = 4 at coupling f = 0.2 with respect to

the sign of the determinant for periodic (left panel, N = 101) and antiperiodic (right panel, N = 100)

fermionic boundary conditions obtained from 106 configurations.

lattice spacing, temperature, or coupling. For that reason 〈sign detM〉 has been measured in the sign

quenched ensemble with the distribution given by Eq. (2.29) for different parameter sets (see Fig. 2.4).

These results imply a complete absence of the sign problem in the continuum limit for every coupling

and temperature. The sign problem will be present for large couplings f at fixed lattice spacing and

temperature.

2.2.2 Ground state structure

With thermal and supersymmetry preserving boundary conditions for small temperature T = 0.25 the

ground state structure is analysed. Simulations at f = 0.2 are preformed and the distribution of the

lattice averaged field Φ̃ = N−1
∑

xΦx is analysed with respect to the sign of detM (see Fig. 2.5).

Configurations with Φ̃ > − 1
2f

are unaffected by a change of boundary conditions whereas the sign

of detM changes for Φ̃ < − 1
2f

. This behaviour can be seen explicitly on the level of the discretised

action. For the chosen prepotential bosonic and fermionic ground state are related by a Z2 symmetry

Φx → −Φx − 1
f

. SB is invariant under the symmetry operation whereas the effect on the fermionic

contribution depends on the used derivative. The SLAC derivative has an antisymmetric matrix repre-

sentation, ∂SLAC
xy = −∂SLAC

yx . P ′(φ) enters on the diagonal of the fermion matrix M . Applying the Z2

symmetry gives P ′(φ) → −P ′(φ) and changes the sign of the diagonal elements of the fermion matrix.

Altogether, the symmetry operation changes M(φ̂) → −MT(φ̂). For antiperiodic (periodic) fermions

the fermion matrix size will be even (odd, respectively) and the determinant will keep the modulus
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Figure 2.6: Probability distribution ρ(Φ) for for different temperatures at coupling f = 0.2 on a N =
100 lattice. Lines depict the exact results, points arise from the lattice calculations. For comparison the

distribution at T → 0 is also drawn. Left panel: Thermal distribution. Right panel: Exact distribution

for the bosonic ground state and distribution measured on configurations with Φ̃ > − 1
2f .

but changes its sign for periodic boundary conditions. For antiperiodic fermions the sign is preserved.

Therefore periodic SLAC fermions imply Zp = 0 exactly. The boundary condition dependence of the

distribution coincides with introducing (−1)NF into the path integral for periodic boundary conditions

and configurations with Φ̃ > − 1
2f

correspond to the bosonic ground state whereas the other ones corre-

spond to the fermionic ground state, respectively. This is in accordance with results from the operator

formalism shown in Fig. 2.3.

2.2.3 Thermal field distribution

At finite temperature the single site distribution ρT (Φ) of Eq. (2.13) is computed on a lattice with N =

100 points at fixed coupling f = 0.2 in the temperature range mβ ∈ [0.2, 4] with 106 configurations.

Even for this finite lattice spacing the results match almost perfectly with the reference values from the

diagonalised Hamiltonian (see Fig. 2.6, left panel). Further it is possible to extract at small temperatures

mβ = 16 the probability distribution in the bosonic ground state by considering only configurations

with Φ̃ > − 1
2f

. Even at this finite (but small) temperature the probability distribution matches up with

the exact result, see Fig. 2.6 (right panel). In consequence, for T → 0 a thermal mixture of bosonic and

fermionic ground state is found whereas at exactly vanishing temperature the system can be triggered

to stay in one chosen ground state.

2.2.4 Effective potential

The effective potential as introduced in the Sec. 2.1.2 in not directly accessible in lattice simulations.

A better suited quantity is given by the constraint effective potential [62]

U(Φ̃0) = − 1

β
ln

(∫

Dφ̂ detM [φ̂] e−SB[φ̂] δ(Φ̃− Φ̃0)

)

, (2.31)

which can be easily computed on the lattice.10 In the limit of infinite volume (or equivalently vanishing

temperature) it coincides with the effective potential, limmβ→∞ U(Φ̃) = limmβ→∞ Veff(Φ̃). In Fig. 2.7

the constraint effective potential has been determined for various volumes mβ at fixed coupling f =

0.2. The minimum of the potential is normalised to 0. For large volumes the peak at Φ̃ = 1
2
f−1

10Only an additive normalisation constant of the constraint effective potential is left undetermined.
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cannot be resolved because corresponding configurations are exponentially suppressed with the volume

mβ. However, a slow flattening with increasing volume is visible and the positions of the minima

correspond to the bosonic and fermionic ground state.
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Figure 2.7: Effective potential for T = 0
(exact) and constraint effective potential from

lattice simulations at various mβ for cou-

pling f = 0.2 and N = 150 lattice points

measured with up to 108 configurations.

Although it is often stated that the effective poten-

tial for a quantum mechanical system is strictly convex,

this only applies to L2(Rd) Hilbert spaces. Here the

bosonic and fermionic sector form an L2(R)⊗ C2 Hilbert

space, such that every linear combination of bosonic and

fermionic ground state has the same energy, which implies

a flat region in the effective potential as defined in (2.12).

2.2.5 Two-point functions and spectrum

Lattice based path integral methods provide a non-

perturbative way to gain information about the spectrum

of the theory. Via the long distance behaviour of correla-

tors C(t)
t→∞−−−→ exp(−mphyst) it is possible to extract the

physical ‘pole mass’ mphys which is given by the imagi-

nary part of the pole of the propagator G(p) = (FC)(p),
the Fourier transform of the correlator, and describes the energy difference between ground state and

first excited state of the theory. For that reason connected correlation functions in the thermal ensemble

have been computed for bosonic and fermionic fields (see Fig. 2.8) with CB(t) = 〈Φ(t)Φ(0)〉 − 〈Φ〉2

and CF(t) =
〈
ψ(t)ψ̄(0)

〉
. The correlators take non-vanishing constant values for large distances in a

region where the exponential falloff drops below the visibility scale.11 Correlators computed from the

lattice regularised theory fit nicely to the ones computed by the diagonalised Hamiltonian. Fluctuation

are still visible around the continuum values with the size of fluctuations vanishing for smaller lattice

spacings. Further it is possible from the fermionic correlator at small (but non-vanishing) tempera-

ture to compute the overlap of bosonic and fermionic ground state
∣
∣〈0F|Ψ†|0B〉

∣
∣
2
= 0.41174 by the

approximation CF(mβ/2) = 0.427(12) for mβ = 16 and N = 400.

11This is not directly related to any unconnected part. Here only connected correlators are considered.
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Figure 2.8: The two-point function (left panel: bosonic, right panel: fermionic) for the thermal ensem-

ble given by mβ = 9 and coupling f = 1 computed by the diagonalised Hamiltonian and on a lattices

with N ∈ {100, 200, 400} points. For the bosonic case the data points completely cover the reference

line. A statistics of up to 107 configurations has been used.



2.2. LATTICE REGULARISED PATH INTEGRAL 17

10−6

10−5

10−4

10−3

10−2

10−1

100

101

0 1 2 3 4 5 6 7 8

CB(t)

tm

exact
mβ = 4
mβ = 9
mβ = 16
mβ = 25

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 1 2 3 4 5 6 7 8

CF(t)

tm

exact
mβ = 4
mβ = 9
mβ = 16
mβ = 25

Figure 2.9: Bosonic (left panel) and fermionic (right panel) correlator in the ensemble projected to one

ground state as obtained from the diagonalised Hamiltonian and from lattice simulations with N = 400
sites at coupling f = 1.

With nearly vanishing temperature the system will mainly reside in the ground states and with the

results of Sec. 2.2.2 it is possible to compute the correlation function present at T = 0 by projecting to

one of the ground states (see Fig. 2.9). In that case the bosonic correlator shows no constant part and

the exponential behaviour completely coincides with the one resulting from the first excited (bosonic)

state. From the lattice values at N = 400 a mass of mphys = 1.5064(26)m is extracted through an

exponential fit in the range tm ∈ [1, 3] from a simulation at mβ = 25 coinciding within error bars with

the exact result E1 − E0 = 1.5046m. Of course this method is only applicable for t < β/2 and there

will be large deviations for t close to β/2.

Q†

Q

EB EF

NF = 0 NF = 1

CF
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Figure 2.10: Excitations visible as

t → ∞ behaviour of the correlators

evaluated on configurations projected

to the bosonic ground state.

All these results clearly show that it is possible to extract

correlators at finite and vanishing temperature with a lattice dis-

cretisation in complete coincidence with exact results in the con-

tinuum limit. In addition the degenerate ground states are visible

as a constant part in the fermionic correlator and a projection to

one ground state allows to extract the energy difference between

ground state and first excited state in the bosonic energy spec-

trum (see Fig. 2.10).

2.2.6 Ward identity

For field transformations Φ′ = Φ + δΦ that do not change the

path integral measure12 (DΦ = DΦ′) Ward identities arise natu-

rally on the level of observables as

〈O〉 = Z−1

∫

DΦ′ O[Φ′] e−S[Φ
′] = Z−1

∫

DΦ (O[Φ]+δO[Φ])(1−δS[Φ]) e−S[Φ] = 〈O + δO −O δS〉
(2.32)

implying 〈δO〉 = 〈O δS〉. If further the action and the ground state is invariant under the transforma-

tion given by δ then 〈δO〉 vanishes for every observable O.

For unbroken supersymmetric theories Ward identities are used to test the supersymmetry restora-

tion in the continuum limit by analysing the continuum limit of 〈δO〉 for given observables O. If

12Here only the anomaly free case is considered. If the path integral measure is changed under the transformation

additional contributions must be taken into account.
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which serves as simplest Ward identity for the supersymmetric quantum mechanics. Right panel: Tem-

perature dependence of of 〈P 〉 /√m computed from the diagonalised Hamiltonian (data from the left

panel is marked by points).

supersymmetry is broken then Ward identities will not be fulfilled in the continuum limit, 〈δO〉 6= 0.

On the lattice supersymmetry will be further broken explicitly by a finite lattice spacing and by finite

temperature.

A simple Ward identity is provided by

(mβ)−1

∫

dt
〈
δ(1)ψ̄

〉
= −ε̄(mβ)−1

∫

dt
〈

φ̇+ P (φ)
〉

= −ε̄
〈

(mβ)−1

∫

dt P (φ)

〉

= −ε̄ 〈P (φ)〉 ,
(2.33)

and a dimensionless identity is given by 〈P 〉 /√m = 0 iff the ground state is invariant under the su-

persymmetry. The impact of the explicit supersymmetry breaking on the continuum result at vanishing

temperature is analysed in Fig. 2.11 for coupling f = 1. At the given lattice spacings finite a effects are

rather small and provide results in accordance with the continuum limit. Finite temperature effects are

nearly absent for T < 0.2 and a non-zero value of 〈P 〉 /√m = 0.37251 is reached which corresponds

to the non-supersymmetric ground states. In addition this quantity is invariant under the Z2 symmetry

Φ → − 1
f
− Φ and is not sensitive to the specific ground state chosen at T = 0.

2.3 Conclusions

For the case of a supersymmetric quantum mechanics with dynamically broken supersymmetry ob-

servables that are computed using a lattice regularisation with the SLAC derivative completely coinci-

dence with results obtained from the diagonalised Hamiltonian. The (bosonic/fermionic) nature of both

ground states can be explained with the the impact of a change in boundary conditions on the fermionic

determinant. Correlators computed in the thermal ensemble show a constant part for large t which is a

remnant of the degenerate ground states. With a projection to one ground state the constant part is still

visible in the fermionic correlator, which goes at hand with the massless fermionic excitation implied

by the degeneracy. In the bosonic correlator the constant part vanishes and the remaining exponential

falloff corresponds to the first excited state in the bosonic spectrum. On the level of Ward identities it

is checked that the ground state is not invariant under the supersymmetry and a simple Ward identity is

not fulfilled in the limit of vanishing lattice spacing and temperature, as predicted from diagonalising

the Hamiltonian. Altogether it is possible to analyse the broken supersymmetric quantum mechanics

with lattice methods based on the SLAC derivative and physical properties can be determined reliably.
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N = 2 Wess-Zumino model

The numerical analysis of the N = 2 Wess-Zumino model started with the works [53, 63] which cov-

ered the perturbative region of this model. With algorithmic and analytical improvements based on the

analysis of the unbroken SQM in [41] it is possible to analyse the lattice theory in a much enlarged

parameter space beyond the perturbative region and to analyse artificial supersymmetry breaking in-

troduced by the lattice regularisation and the measurement process.

This model is of particular interest because of the non-vanishing Witten index which implies an

unbroken supersymmetry in the continuum theory. Further all divergences in the perturbation series in

superspace cancel and the model obtains only finite renormalisation terms. Finally the model allows

for a partial realisation of the supersymmetry algebra on the lattice as discussed e.g. in [64, 65]. An

elegant suggestion uses a Nicolai map [66] to create lattice improvement terms that guarantee a partial

realisation of supersymmetry, cf. e.g. [63]. With this partially realised supersymmetry the number of

relevant operators in the continuum is reduced and the standard lore is that it is sufficient to realise just

a part of the supersymmetry on the lattice in order to ensure the correct continuum limit.

In a systematic study the effects of the above-mentioned improvement terms introduced by the

Nicolai map [63] will be analysed and comparisons are done with models without such terms. In pre-

vious works [41,59] and the previous chapter it has been demonstrated that lattice models based on the

SLAC derivative [60] and on the twisted Wilson formulation (as introduced in [41]) are particularly

well-behaved as far as the continuum limit is concerned. Even at large lattice spacing the continuum re-

sult is approximated very well. Therefore the numerical analysis covers different lattice discretisations

that can be directly compared in the continuum limit.

3.1 Lattice models

3.1.1 Supersymmetrically improved lattice actions

The lattice models under consideration have been discussed at length in [41]. Therefore, only briefly

the definitions of the corresponding continuum and lattice actions are recalled. In terms of complex

coordinates z and z̄ for the two dimensional Euclidean spacetime together with the corresponding

holomorphic and anti-holomorphic differentials ∂ and ∂̄ the continuum action of the N = 2 Wess-

Zumino model reads

Scont =

∫

d2x
(
2∂̄ϕ̄ ∂ϕ + 1

2
|W ′(ϕ)|2 + ψ̄Mψ

)
. (3.1)

The bosonic potential is given by the absolute square of the derivative of the holomorphic superpoten-

tial W (ϕ) with respect to its argument ϕ = ϕ1 + iϕ2. Apart from the standard kinetic term for the

(two-component) Dirac spinors, the Dirac operator M contains a Yukawa coupling,

M = γz∂ + γ z̄∂̄ +W ′′P+ +W
′′
P−. (3.2)

The chiral projectors P± = 1
2
(1 ± γ∗) in the Weyl basis with γ1 = σ1, γ2 = −σ2, γ∗ = iγ1γ2 project

onto the upper and lower components of ψ. In the form (3.1) the action is invariant under four real

supercharges. Taken together they satisfy the N = (2, 2) superalgebra, and it has been argued that at

most one supersymmetry can be preserved on the lattice [63]. With the help of the explicitly known

form of the Nicolai map it is possible to construct such a lattice model straightforwardly. In terms of
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the Nicolai variable ξx = 2(∂̄ϕ̄)x +Wx on the lattice, the discretised Wess-Zumino action reads

S = 1
2

∑

x

ξ̄xξx +
∑

x,y

ψ̄xMxyψy (3.3)

with Wx as the lattice counterpart of the continuum operator W ′(ϕ), i.e. Wx = W ′(ϕx).
1 The matrix

M is given by

Mxy =

(

Wxy 2∂̄xy

2∂xy W xy

)

=

(
∂ξx
∂ϕy

∂ξx
∂ϕ̄y

∂ξ̄x
∂ϕy

∂ξ̄x
∂ϕ̄y

)

. (3.4)

All lattice difference operators are here required to be antisymmetric, ∂xy = −∂yx. From the second

equality in (3.4) one reads off that Wxy =
∂Wx

∂ϕy
.

One easily checks that (3.3) is invariant under the following (supersymmetry) variation,

δϕx = ε̄ψ1,x, δψ̄1,x = −1
2
ξ̄xε̄, δψ1,x = 0, (3.5a)

δϕ̄x = ε̄ψ2,x, δψ̄2,x = −1
2
ξxε̄, δψ2,x = 0. (3.5b)

In terms of the original fields, (3.3) takes the form

S =
∑

x

(

2
(
∂̄ϕ̄
)

x
(∂ϕ)x+

1
2

∣
∣Wx

∣
∣
2
+Wx(∂ϕ)x+Wx(∂̄ϕ̄)x

)

+
∑

x,y

(ψ̄1,x, ψ̄2,x)

(

Wxy 2∂̄xy

2∂xy W xy

)(

ψ1,y

ψ2,y

)

.

(3.6)

This supersymmetrically improved lattice action differs from a straightforward discretisation of (3.1)

by the improvement term

∆S =
∑

x

(

Wx(∂ϕ)x +W x(∂̄ϕ̄)x

)

, (3.7)

a discretisation of a surface term in the continuum theory (which is therefore expected to vanish in the

continuum limit for suitably chosen boundary conditions). For the free theory (Wx = mϕx) ∆S = 0

readily follows from the antisymmetry of the difference operator ∂xy while for interacting theories (3.7)

guarantees the invariance of the action under (3.5) without the need of the Leibniz rule. To study the

impact of this supersymmetry improvement the improved action will be compared with the unimproved

straightforward discretisation of (3.1) (without ∆S).

3.1.2 Lattice fermions

For the symmetric difference operator

a
(
∂Sµ
)

xy
= 1

2
(δx+µ̂,y − δx−µ̂,y), (3.8)

doublers are inevitably introduced into both the bosonic and fermionic sector. In order to get rid of

them a Wilson term may be added to the superpotential so as to maintain the invariance of the action

under (3.5). Within this context two different choices have been discussed previously [41],

Wx = W ′(ϕx)−
r

2
(∆ϕ)x (3.9)

1The lattice fermion fields are made dimensionless by rescaling the continuum ones with the lattice spacing.
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Figure 3.1: Classical bosonic potential V (ϕ) = 1
2 |W ′(ϕ)|2 from (3.11) in the complex ϕ plane (left

panel) and for vanishing imaginary part (ϕ2 = 0, right panel). In the free theory limit (g → 0) the left

minimum is pushed towards minus infinity.

and

Wx = W ′(ϕx) +
ir

2
(∆ϕ)x. (3.10)

For Wilson fermions, the derivative of the superpotential is now shifted as compared to the situation

after (3.3). From the first expression the standard Wilson term for the fermions is recovered, i.e.

Wxy = W ′′(ϕx)δxy − r
2
∆xy. The operator ∆xy is the usual two dimensional (lattice) Laplacian 2∂∂̄.

The second possibility (3.10) leads in (3.4) to Mxy = γµ(∂µ)xy + W ′′(ϕx)δxy + γ∗
r
2
∆xy. Here, the

appearance of γ∗ motivates the name twisted Wilson fermions (not be confused with the twisted mass

formulation of lattice QCD [67]). It was already shown for the free theory [41] that twisted Wilson

fermions suffer far less from lattice artefacts than their standard Wilson cousins. In the following it

will be shown that they remain superior even for (strongly) interacting theories.

Besides these two (ultra-)local difference operators also the SLAC lattice derivative is used for the

present model. In higher dimensions the SLAC derivative is a straightforward generalisation of the

one introduced in Chapter 2 and amounts to forming suitable tensor products of Eq. (2.9).2 For SLAC

fermions no further modifications to the superpotential are necessary. It is due to this fact that they

constitute an interesting alternative to Wilson fermions.

3.1.3 Discrete symmetries

For the upcoming numerical analysis the superpotential

W (ϕ) = 1
2
m0ϕ

2 + 1
3
gϕ3 (3.11)

is chosen which coincides with that in earlier simulations of the Wess-Zumino model [53, 63]. The

coupling constants m0 and g are assumed to be real and positive. The superpotential (3.11) allows

for discrete symmetries ZR
2 × Z

C
2 which act as reflections interchanging the two vacua and as complex

conjugations on the complex scalar field,

Z
R
2 : ϕ 7→ −m0

g
− ϕ and Z

C
2 : ϕ→ ϕ̄, (3.12)

so that also the potential 1
2
|W ′(ϕ)|2 is invariant under both transformations, cf. Fig. 3.1.

2Here only periodic boundary conditions are applied and an odd number of lattice points is used.
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(1) (2) (3) (4) (5)

Wilson impr. Wilson unimpr. twisted Wilsona SLAC impr. SLAC unimpr.

lattice derivative local local local non-local non-local

lattice artefacts O(a) O(a) O(a)b ‘perfect’ ‘perfect’c

modifications to superpot. yes yes yes no no

discrete symmetries ZPC
2 ZT

2 × ZP
2 × ZC

2 ZTR
2 ZTPR

2 × ZPC
2 ZT

2 × ZP
2 × ZR

2 × ZC
2

supersymmetries one none one one none

aOnly improved considered.
bIn the interacting case the good scaling properties are lost. However the overall size of lattice artefacts is still much

smaller when compared to Wilson fermions.
cThe dispersion relation is up to the cut-off the same as in the continuum.

Table 3.1: Comparison of various lattice models with respect to their symmetries. All statements refer

to to the interacting theory, i.e. g 6= 0. The notion Z
PC
2 denotes the combined action of a field and parity

transformation as discussed in the text.

From the explicit form of the fermion matrix M and its adjoint M †,

M = γµ∂µ +m0 + 2g(ϕ1 + iγ∗ϕ2),

M † = −γµ∂µ +m0 + 2g(ϕ1 − iγ∗ϕ2),
(3.13)

one finds that

Z
R
2 : M 7→ − γ∗Mγ∗, Z

C
2 : M 7→ γ∗M

†γ∗, (3.14)

which shows the invariance of the determinant.3

Apart from Lorentz transformation, the continuum model is (irrespectively of the concrete form of

the superpotential) also invariant under time reversal and parity transformations

Z
T
2 : (z, z̄) 7→ (−z̄,−z), Z

P
2 : (z, z̄) 7→ (z̄, z). (3.15)

Barring possible Wilson terms, the unimproved lattice models obviously inherit all discrete symmetries

from the continuum. By contrast, the supersymmetrically improved lattice models are invariant only

under a combination of all symmetries. With

Z
R
2 : W

′
x(∂ϕ)x 7→ −W ′

x(∂ϕ)x, Z
C
2 : W

′
x(∂ϕ)x 7→W

′

x(∂ϕ̄)x. (3.16)

for the improved models (with SLAC fermions) the continuum symmetry is reduced,

Z
T
2 × Z

P
2 × Z

R
2 × Z

C
2 −→ Z

TPR
2 × Z

PC
2 = diag(ZT

2 × Z
P
2 × Z

R
2 )× diag(ZP

2 × Z
C
2 ). (3.17)

Here, the diagonal subgroup diag(ZP
2×ZC

2 ) is a group ZPC
2 generated by the product of the generators of

Z
P
2 and Z

C
2 (analogous notations are used for the other groups). It readily follows that the improvement

term must have a vanishing expectation value in the original ensemble without improvement and this

has been checked with large numerical precision. For Wilson and twisted Wilson fermions with im-

provement the right hand side of (3.17) is even further broken down due to the presence of the (twisted)

Wilson term in the superpotential. For Wilson fermions, the bosonic action can be read off from (3.6)

3This is true at least up to an irrelevant sign. On the lattice the fermion matrix M always has an even number of rows

and columns, hence this phase does not appear.
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Figure 3.2: Normalised bosonic action as a function of the bare mass lattice parameters using Wilson

fermions (left panel, N = 16 × 16) and SLAC fermions (right panel, N = 15 × 15) with the improved

(filled symbols) and unimproved (empty symbols) actions from either quenched (red squares) or dynam-

ical fermion (blue triangles) simulations at dimensionless coupling λ = 1.

and (3.9),

SB = 1
2

∑

x

∣
∣
∣(2∂̄ϕ̄)x +W ′

x − r
2
(∆ϕ)x

∣
∣
∣

2

. (3.18)

Since ∆xy is invariant under both time reversal and parity, (3.16) cannot be preserved; the Wilson term

inevitably changes sign. Conversely, from the bosonic action with twisted Wilson fermions

SB = 1
2

∑

x

∣
∣
∣(2∂̄ϕ̄)x +W ′

x +
ir
2
(∆ϕ)x

∣
∣
∣

2

. (3.19)

only (ϕ → −m0

g
− ϕ̄, ∂ → −∂̄) can be shown to yield a symmetry. In either case the breaking of

the other symmetries is induced by a higher-dimensional operator and may be expected to be at most

O(a) [63,68]. Nevertheless, at finite lattice spacing, the physics might be affected since the overall size

of the breaking terms is a dynamical question. By contrast, SLAC fermions with the larger symmetry

(3.16) are again favoured. Tab. 3.1 summarises all discrete symmetries of the lattice models used for

simulations.

3.2 Numerical results

For the numerical simulations the hybrid Monte-Carlo algorithm with a stochastic estimation of the

fermion determinant using real pseudo-fermion fields is used. The algorithmic details and improve-

ments are discussed in Chapter 4.

3.2.1 Dynamical properties of improved lattice actions

Before physical observables are discussed in the next section the first focus lies on the improvement

term (3.7) to understand the difference between improved and unimproved lattice models with respect

to predictions of supersymmetry. The simplest test is a measurement of the bosonic action itself. With

the help of the Nicolai map appearing in (3.3) one can show that

〈SB〉 = N. (3.20)

Here, N = Nt×Ns denotes the total number of lattice points, and (3.20) is only expected to hold when

fermions are included dynamically. Then, however, this prediction holds irrespectively of the concrete
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value of the coupling constants. With a slightly different argument the same was also found in [63].

Eq. (3.20) provides a test observable distinguishing improved from unimproved lattice models as well

as quenched from dynamical fermion simulations. To accomplish this, simulations with both (standard)

Wilson and SLAC fermions have been performed. The results are shown as a function of the bare lattice

mass parameter mlatt = m0a = m0L/Ns. Since the continuum limit for this theory is obtained from

mlatt → 0, smaller values ofmlatt likewise mean a finer lattice spacing (and for fixed N a smaller space-

time volume). The dimensionless coupling strength λ = g/m0 was set to λ = 1. The lattice sizes used

for the numerical simulations were N = 16×16 for Wilson and N = 15×15 for SLAC fermions. For

the quenched simulations 500 000 (independent) configurations were evaluated, and 30 000 configura-

tions with dynamical fermions were analysed. The results are shown in Fig. 3.2. One clearly observes

that the quenched data significantly deviate from the predicted value which illustrates the necessity of

dynamical fermion contributions in order to retain supersymmetry. Using an unimproved action with

−2.0
−1.5
−1.0
−0.5
0.0
0.5

10000 20000 30000

ϕ̃1

config #

−6.0

−3.0

0.0

3.0

∆S

Figure 3.3: Monte-Carlo history of the lat-

tice mean ϕ̃1 = N−1
∑

x ϕ1,x and size of the

improvement term for Wilson fermions (N =
16× 16, λ = 0.6,mlatt = 0.3).

dynamical fermions much smaller deviations are found

which in case of the Wilson fermions are already hard to

distinguish from the improved results. For SLAC fermions

the deviations are somewhat more systematic and remain

also clearly distinguishable from other dynamical fermion

simulations. A second difference between Wilson and

SLAC fermions may be inferred from Fig. 3.3. Namely,

there is a distinct correlation between the ground state

around which the field ϕ1 fluctuates on the one hand and

size and variance of the improvement term on the other

hand. This may be taken as direct manifestation of the ad-

ditionally broken ZTPR
2 -symmetry due to the Wilson term

which will also play a role when discussing the failure of

improvement in the next paragraphs.

Limitations of improved lattice actions

By studying the improvement term ∆S for models with either Wilson or SLAC fermions it is observed

that the system is ultimately pushed into an unphysical region of configuration space, at least for strong

couplings. The simulations have revealed that this instability is controlled by the actual size of the bare

mass parameter and the coupling strength λ. Simulations tend to fail more often as either of them

grows. The study of this phenomenon with Wilson fermions turns out to be clumsy since there is

no clear correlation between the value of the coupling and the number of configurations where the

instability occurs. For that reason the analysis based on SLAC fermions is presented. However, it

should be emphasised again that for either Wilson or twisted Wilson fermions the qualitative picture is

the same as described below.

It is to be expected that the improvement term grows with the coupling strength λ and vanishes con-

tinuously in the continuum limit (at mlatt = 0). This has been checked numerically and a good scaling

behaviour with respect to the lattice size is observed (see Fig. 3.4). For all couplings λ andmlatt the im-

provement term is found to be smaller than 14% of the total bosonic action. Depending on the coupling

strength λ, this ratio is reached sooner or later. Actually, this represents a threshold above which the
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Figure 3.4: Reduced improvement term

∆S/N for different lattice sizes: 9 × 9
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simulation fails. The situation is depicted in Fig. 3.5. At

some instant, the improvement term blows up and settles

again at a value about 40 times the size of the bosonic ac-

tion. At the same time also the fermion determinant grows

drastically and so hinders the system from returning into

the original (and desired) region of configuration space. A

reason for this instability may be found by reconsidering

the improved action

SB =
1

2

∑

x

∣
∣
∣2(∂ϕ)x +W x

∣
∣
∣

2

. (3.21)

In this form the action allows for two distinct behaviours of

the fluctuating fields. The physically expected behaviour

consists of small fluctuations around the classical minima of the potential. Alternatively, (3.21) allows

for large fluctuations of ϕ to be compensated by large values of W x. The latter would be dominated by

UV contributions, and this is actually observed, cf. Fig. 3.6. In this situation, it is definitely no longer

possible to extract meaningful physics. Another view on this “broken phase” is again taken in Fig. 3.5.

While the ensemble with λ = 1.4 exhibits the expected behaviour at the only slightly larger value of

λ = 1.7 the simulation breaks down after about 5 000 configurations and for λ = 1.9 the simulation

instantly slides into the broken phase.

This seems not to be directly related to the violation of reflection positivity by the improvement

term. Namely, as a counterexample without improvement term, which also violates reflection positivity

and does not display such a broken phase, one might consider a free model with SLAC fermions (with

the typical oscillatory behaviour of two-point functions in theories violating reflection positivity [41]).

To sum up, it has been observed that the improved lattice models may become unstable at any finite

mlatt and hence any finite lattice spacing. If and when this happens depends on several factors. Wilson

fermions are affected in a stronger way while SLAC fermions remain stable for a much wider range

of coupling constants. Apart from that, one should ensure by monitoring the improvement term or any

other observable discussed above explicitly that a simulation is not subject to this phenomenon. Pro-
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Figure 3.5: Monte-Carlo history of improvement term and fermion determinant (left panel) and nor-

malised lattice mean ϕ̃1 ·λ (right panel) for the improved model with SLAC fermions (N = 15 × 15,

mlatt = 0.6).
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vided that one is confined to lattices smaller than 64×64 but demands the absence of finite size effects,

π
2 π

ρ
(
ϕ
1
(|p

|))

|p|

λ = 1.4
λ = 1.7

Figure 3.6: Mode analysis of ensembles in

the physical (λ = 1.4) and unphysical (λ =
1.7) phase. Here ρ is the distribution function

for the modulus of the lattice momentum av-

eraged over 25 000 configurations (SLAC im-

proved, N = 15× 15, mlatt = 0.6).

improved lattice models with Wilson fermions can be used

for the continuum extrapolation of masses only up to λ <

0.4. SLAC fermions can be used in the greater range of

λ < 1.5; the corresponding results will be presented fur-

ther below.

3.2.2 Setting the stage

In Monte-Carlo simulations, importance sampling is only

meaningful with respect to a positive measure. Includ-

ing dynamical fermions the measure is detM exp(−SB).

While the exponential factor is strictly positive (SB is real),

the positivity of the determinant cannot be guaranteed for

an interacting theory and a possibly emerging sign problem

has to be addressed similar to the situation in Sec. 2.2.1. In

order to make sensible comparisons with continuum cal-

culations (which are most conveniently performed in an infinite spacetime) it must be ensured that

physical observables are free of finite size effects. In order to check this, all simulations in this section

are repeated for different physical volumes m0L on square lattices with N = Nt ×Ns lattice points.

Negative fermion determinants

The Nicolai map in a supersymmetric theory is a change of bosonic variables which renders the bosonic

part of the action Gaussian; at the same time, the Jacobian of this change of variables has to cancel the

fermion determinant. For the present model this means

detM = det

(
δ

δϕ

(
2(∂̄ϕ̄) +W ′

)
)

. (3.22)

In this light, an indefinite fermion determinant obviously corresponds to a non-invertible change of

variables in the continuum,

ϕ 7→ ξ = 2∂̄ϕ̄+W ′. (3.23)

This map is globally invertible iff the superpotential is of degree 1 (the Nicolai map in this case has

winding number 1), i.e., for the free theory [69]. For the choice W ′(ϕ) = m0ϕ + gϕ2 the map is not

globally invertible, and there exists at least one point where detM vanishes iff g 6= 0. By this line of

argument (for the continuum formulation of the model) negative determinants cannot be ruled out.

One way to cope with this in practical simulations is to use |detM | exp(−SB) for the generation

of configurations instead and to reweight with the sign afterwards. Unfortunately, calculating the sign

of detM is as costly as the computation of the whole determinant. Hence, this method becomes un-

feasible for large lattices. A way out is to avoid reweighting within certain bounds for the parameters

in which the ensuing systematic errors are negligible. Thus an estimate of the frequency of occurrence

of negative determinants as a function of the parameters is necessary. To obtain more reliable results

this subject is studied with a naive inversion algorithm which computes the determinant from a LU de-

composition and takes its contributions exactly into account. This is numerically much more involved



3.2. NUMERICAL RESULTS 27

0.75

0.80

0.85

0.90

0.95

1.00

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

〈s
ig
n
d
et
M

〉

λ

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.0 0.1 0.2 0.3 0.4

〈s
ig
n
d
et
M

〉

m2
latt

m0L = 3
m0L = 4
m0L = 5
m0L = 6

Figure 3.7: Average sign of the determinant for the unimproved model with Wilson fermions for fixed

lattice spacing and volume (left panel, N = 14 × 14, m0L = 6) and for fixed coupling (right panel,

λ = 2.0).

than the standard pseudo-fermion algorithm, thus, this method is only applicable to small lattice sizes

with up to 16× 16 lattice sites. For fixed scale m0a or m0L it can be gleaned from Fig. 3.7 (left panel)

that configurations with a negative sign of the determinant show up only for λ ≥ 1.0. Furthermore, in

order to understand the dependence on the lattice size and the lattice spacing the coupling is fixed to

λ = 2.0 and simulations on different physical volumes m0L and lattice spacings mlatt are performed.

The results displayed in Fig. 3.7 (right panel) clearly show that the problem dissolves in the continuum

limit but becomes worse at every finite lattice spacing when the physical volume is increased. For

both figures, for each data point about 50 000 configurations were evaluated. Eventually, to estimate

the impact on actual measurements the bosonic action has been measured with m0L = 5, λ = 2 on a

12× 12 lattice with about 7% of configurations with a negative sign for the fermion determinant. The

expectation values considered here are 〈SB〉non-reweighted = 149.94(12) and 〈SB〉reweighted = 149.49(10).

Hence even at large coupling (far larger than what is targeted at in the next section) effects may be

assumed to be at most of marginal relevance for actual measurements.

Finite size effects

For the present model the bare lattice mass mlatt also sets the scale of the overall spacetime volume. As

with all lattice simulations a balance between finite size and discretisation errors must be achieved. If

the lattice spacing is chosen too large, lattice artefacts may grow; on the other hand if, say, the Compton

wavelength of a particle is larger than the spacetime volume the extraction of masses will eventually

suffer from finite size effects. One way to test for the presence of such finite size violations is to study

the model at different spacetime volumes. Comparing the fermion species introduced earlier Wilson

fermions may be expected to be most affected. Here, lattice artefacts further increase the correlation

lengths so that measurements are much more sensitive to the finite box size. The setup for this analysis

is as follows. At first the improved lattice model is simulated using Wilson fermions at fixed coupling

parameters m0L = 15 and λ = 0.3 for five different lattices with Nt = Ns ∈ {20, 24, 32, 48, 64}
lattice points in each direction (N = Nt × Ns). Then it is assumed that with this choice of coupling

constants the spacetime volume is large enough to allow for a sufficiently good identification with the

thermodynamic limit. The masses obtained from these simulations were extrapolated to the continuum

as described in Sec. 3.2.4. This is also shown in Fig. 3.8 where the resulting fit (and its uncertainty) is

depicted with a gray shaded area. The next step is to decrease the volume using m0L ∈ {9, 7, 5, 3}.
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As long as no finite size effects are visible the masses extracted at these smaller and smaller volumes

are expected to lie on top of the fit from the original lattice. Down to a volume of m0L = 7 this

scaling may be easily inferred from Fig. 3.8 which justifies a posteriori the correctness of the earlier

assumption.
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Figure 3.8: Lattice masses for λ = 0.3 on

box sizes m0L ∈ {3, 5, 7, 9}. Systematic de-

viations from the m0L = 15 reference result

are visible below m0L ≈ 7.

However, since by perturbation theory the physical

masses decrease for growing coupling (see next section),

growing Compton wavelengths are expected and simula-

tions are performed on a reference volume m0L = 15 for

most of the further measurements to exclude finite size ef-

fects.

3.2.3 Determination of masses from correlators

One important observable of a quantum field theory is the

energy gap between the ground state and the first excited

state. This energy gap corresponds to the mass of the light-

est particle in the spectrum. As this chapter aims a high

precision measurements, the determination of masses is ex-

plained in detail.

To obtain the masses in the Wess-Zumino model one has to consider the propagators of fermions

and bosons. At vanishing spatial momentum p1 = 0, the free bosonic continuum propagator in mo-

mentum space reads

GB(p) =
1

m2
0 + p20

. (3.24)

The real and imaginary parts ϕ1 and ϕ2 of ϕ decouple (the propagator is diagonal and even equal for

ϕ1, ϕ2). The Fourier transform of GB(p) shows the well known exponential decay

CB(t) ∝ exp(−m0 |t|) , (3.25)

where m0 is the above mentioned mass of the lightest particle.4 In the interacting case this quantity

can be obtained on the lattice by measuring the two-point function. The projection onto p1 = 0 can be

achieved by averaging over the spatial lattice sites,

CB,αβ(t) =
1

Ns

∑

x

〈ϕα(0, 0)ϕβ(t, x)〉 , (3.26)

with α, β labelling components of the bosonic field.

The free fermionic continuum correlator for p1 = 0 is

〈
ψαψ̄β

〉
= GF,αβ(p0) =

m0 − iγ0αβp0

m2
0 + p20

. (3.27)

Using the representation of the γ matrices as described after (3.4) one can read off a direct connection

4The space coordinates corresponding to p1 and p0 are called x and t, respectively. t̂ = t/a gives the temporal coordinate

in lattice units.
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with the bosonic correlator using

GF(p0) = GF,11(p0) +GF,22(p0) =
2m0

m2
0 + p20

. (3.28)

As in the bosonic case on the lattice a summation over the spatial lattice sites yields the projection onto

p1 = 0. CF(t) defines the Fourier transform of this object.

Fermionic masses

The fermionic correlator CF,αβ is given by
〈
ψαψ̄β

〉
=
〈
M−1

αβ [ϕ1, ϕ2]
〉
, where M is the fermion matrix.

The calculation of this quantity requires a high numerical effort for the inversion of large matrices.

Fortunately in the weak-coupling limit the fermion matrix is approximately the same as that of the free

theory and the statistical fluctuations are rather small. Therefore the necessary statistics to read off a

reasonable fermionic correlator is much smaller than for bosons.
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Figure 3.9: Bosonic and fermionic masses

obtained via a cosh fit (3.30) and the effective

mass definition (3.29) for the improved Wilson

model (λ = 0.4,N = 64×64). The fermionic

masses with a statistics of about 5 000 in-

dependent configurations are much sharper

and more reliable than the bosonic ones from

about 106 independent configurations.

After the fermionic correlator in position space is com-

puted the masses can be determined from its long range

behaviour. Inspired by the continuum connection be-

tween fermionic and bosonic correlators, (3.28), and the

behaviour at large distances, (3.25), one can consider

meffa = ln

(
CF(t̂)

CF(t̂ + 1)

)

(3.29)

with t̂ in a region between zero and Nt/2. The mass can

then be determined from the average of meff.

A more elaborate way is a least square fit of the

fermionic correlator C fermion(t) with the function

fA,mF
(t) = A · cosh(mFa(t̂−Nt/2)) (3.30)

One better not take the full range of t into account for this

fit because it is valid only for large distances (from both

boundaries of the lattice). One should therefore constrain t̂ to be in {1 + tskip, . . . , Nt − 1− tskip}. The

choice of tskip is determined by the fringe of the plateau in a plot of the fitting result vs. tskip.

The differences of the different methods to determine the masses are illustrated in Fig. 3.9. One

clearly observes that the effective masses determined according to (3.29) do not show a plateau from

which the mass can be read off. By contrast, the masses obtained from a cosh fit clearly show this

behaviour at large tskip. As mentioned above, the effective mass of the bosonic correlator is subject to

much larger statistical errors.

Bosonic masses

In order to calculate the bosonic correlators for the determination of the masses the connected two-point

function is considered. At large distances, where the masses can be extracted, the relative statistical er-

ror of the correlator grows exponentially. Therefore, one must achieve a balance between this statistical

error and the systematic errors due to the evaluation at small distances.
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ln(CB(t)) was fitted against the functionA+ln(cosh(mBa(t̂−Nt/2))) to determineA and the mass

mB. In order to exclude the points with the largest statistical and systematic errors from this fit, only

the points in the interval ([tskip, tst] ∪ [Nt − tst, Nt − tskip]) have been taken into account. As a tradeoff

between statistical noise and the effects of higher excited states tskip = ⌈0.2Nt⌉ and tst = ⌊0.4Nt⌋ was

used.

If the SLAC derivative is used an oscillatory behaviour of mB as a function of tskip can be observed.

In the bosonic case it is slightly smaller than the statistical error. Therefore, it is sufficient to measure

a “smeared” mass, mSLAC = 0.5mB(tskip, tst) + 0.25mB(tskip +1, tst) + 0.25mB(tskip − 1, tst), where the

error of the oscillations is negligible as compared to the statistical one.

3.2.4 Continuum extrapolation

For the continuum extrapolation the focus lies on the fermionic masses because of their much smaller

statistical error in the perturbative regime. The explicit extrapolation procedure is guided by analytic

results and observations for the free theory. The three different discretisations investigated in this

chapter require different strategies for this procedure.

Wilson derivative

Compared with the continuum formula, (3.28), the free momentum space correlation function for the

Wilson derivative gets a momentum dependent mass,

GF(p0) =
mlatt + 1− cos(p0a)

sin2(p0a) + (mlatt + 1− cos(p0a))2
. (3.31)

The pole of this correlator coincides with the above mentioned cosh fit within the error bars.

To extrapolate the continuum limit an expansion in powers of the lattice spacing is used. Exact

results for the free theory were derived to check this extrapolation. In this case an expansion up to a

linear order in a is not enough to obtain the known result within the high precision of the numerical

measurements at weak coupling. Therefore the first correction to this expansion is naively of quadratic

order and yields a better result; but still the error is too large for high precision measurements.

The functional behaviour of the masses mF, obtained by the fit as a function of the lattice spacing

is well approximated by

mF(a) ≈ mcont + A · a+B · a 3
2 (3.32)

for all a/L ∈ [0, 0.05] at lattice volume m0L = 15. The deviation from this behaviour is negligible

with respect to the statistical errors in the weak coupling case. In addition the expected continuum

result is achieved with the necessary precision. Motivated by these results this formula is also used in

the interacting case.

Twisted Wilson derivative

A Wilson parameter of r =
√

4
3

for the twisted Wilson fermions in the free theory leads to discretisation

errors of O(a4) as discussed in [41]. For the weakly coupled regime (λ ≤ 0.3) these errors are expected

to dominate the lattice artefacts. Nevertheless for an intermediate coupling corrections of O(a) arise.

Taking this into account the masses are extrapolated to the continuum assuming a functional behaviour

of

mF(a) = mcont + A · a+B · a4. (3.33)
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For λ > 0.3 the O(a) terms dominate. Therefore a linear extrapolation is sufficient.

SLAC derivative
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Figure 3.10: Masses obtained via a cosh-fit

for the free theory using the SLAC derivative

with m0L = 15. At larger lattices the oscil-

lation amplitude around the continuum value

gets smaller.

It has become apparent in previous investigations [41] and

in Chapter 2 that the SLAC derivative shows an almost per-

fect behaviour. That means the extrapolated masses coin-

cide with their continuum counterparts already at finite lat-

tice spacings. On the other hand an oscillatory behaviour

of the correlation function is observed. This was shown

to be connected with the exact reproduction of the contin-

uum dispersion relation by the SLAC derivative. To han-

dle this problem the free theory is studied first. As in the

bosonic case the plot of mFL versus tskip does not show a

clear plateau but rather oscillates around the expected con-

tinuum value, cf. Fig. 3.10.

Guided by these observation of the free theory a suit-

able averaging can lead to the extraction of the correct con-

tinuum results at finite lattice spacing. Starting with the

ansatz

mF(Ns, c) = c0mF(tskip) + c1mF(tskip − 1) + c2mF(tskip − 2). (3.34)

the difference to the known continuum result of the free theory

∆(Ns, c) = |mF(Ns, c)−mcont| (3.35)

is minimised for lattice sizes of Ns = Nt ∈ {35, 37, . . . , 75} and tskip = ⌊0.4Ns⌋. A least square fit

yields

c0 = 0.11791, c1 = 0.47877, c2 = 0.40332 , (3.36)

leading to max∆(Ns, c) = 5.282 × 10−4. A smaller tskip does not change this result considerably.

Using this approximation scheme the systematic error based on the oscillatory behaviour of the SLAC

derivative can be neglected compared to the statistical errors at least for the weak coupling case.

3.2.5 Weak coupling

The main observable for comparing lattice results with continuum physics is the mass of the lightest

excited state, i.e. the energy gap. Since unbroken supersymmetry in the continuum predicts that bosonic

and fermionic masses coincide it also provides a possibility to check the supersymmetric properties of

the lattice prescription. The corresponding values can be extrapolated from the lattice masses in the

continuum limit. In the weak coupling regime it will be possible to match these results to predictions

of perturbation theory. This provides an important test for the numerical results and ensures that also

the results at intermediate coupling are reliable.

The reference value is given by a one-loop calculation of the renormalised (physical) mass

m2
ren = m2

0

(

1− 4λ2

3
√
3

)

+O(λ4) (3.37)
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Figure 3.11: Left panel: The continuum extrapolation of masses for λ = 0.3, m0L = 15 for the

improved Wilson and twisted Wilson model. The SLAC result is given for one single lattice spacing

mlatt = 1/3. For comparison the exact results for the free theory are also shown. Right panel: Contin-

uum masses for the weakly coupled regime in comparison to the perturbative result. The shaded area

corresponds to the extrapolation provided by the continuum results according to (3.38) with m0L = 15
and b = 1.35(13).

in the continuum valid for λ ≪ 1 with the bare mass m0 as used in Eq. (3.11). To obtain this result

one first must calculate contributions of the loop diagrams to the propagator. An expansion in λ then

yields the above result.

As has been shown above the fermionic masses have lower statistical errors than the bosonic ones.

Therefore only the extrapolations for fermionic masses are compared to the perturbative results. This

procedure gets justified by the fact that bosonic and fermionic masses coincide even on a finite lattice

for the weak coupling regime as described below. If not otherwise stated m0L = 15 is used in the

following.

Continuum limit

The methods to extrapolate to the continuum given in the previous section are based on the free theory

with λ = 0. Since the interest lies in the interacting case it must be made sure that the continuum

extrapolation of masses remains stable even for λ = 0.3.

For that purpose the masses in the improved model with standard Wilson and twisted Wilson

fermions at λ = 0.3 at different lattice spacings a/L are considered. In the perturbative coupling

regime square lattices of sizes Nt = Ns ∈ {20, 24, 32, 48, 64} are used. These correspond to lattice

spacings of about a/L ∈ [0.015625, 0.05]. A statistics of 10 000 independent configurations is used to

extrapolate to the continuum limit.

Using these masses mF(a) at finite lattice spacing the extrapolation is shown in Fig. 3.11 (left

panel). For comparison also the mass for SLAC fermions at a finite lattice size Nt = Ns = 45

(corresponding to mlatt = 1/3) is marked. All these results indicate that even at λ = 0.3 the continuum

extrapolated masses coincide within error bounds. Even better, the masses of SLAC fermions at finite

lattice spacing cannot be distinguished from the continuum result.

Comparison with perturbation theory

As described above the masses for Wilson (improved and unimproved) and twisted Wilson (improved)

fermions for λ ∈ [0, 0.3] are extrapolated to the continuum values, cf. Fig. 3.11 (right panel) and

Tab. 3.2. The masses coincide within error bars although the twisted Wilson masses are systematically
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smaller. This difference has to be interpreted as a systematic error in the continuum extrapolation

for the masses but its effect is almost overshadowed by the statistical errors. However this result

indicates that for a reliable extrapolation at larger statistics finer lattices can be necessary to yield a

better continuum limit.

λ Wilson unimpr. Wilson impr. tw. Wilson

0.02 14.999(2) 14.997(2) 14.999(1)

0.04 14.992(4) 14.993(4) 14.993(3)

0.06 14.982(6) 14.999(7) 14.977(4)

0.08 14.974(8) 14.963(8) 14.963(5)

0.10 14.95(1) 14.96(1) 14.935(6)

0.12 14.94(1) 14.91(1) 14.905(9)

0.14 14.91(1) 14.87(2) 14.871(9)

0.16 14.86(2) 14.87(2) 14.83(1)

0.18 14.82(2) 14.85(2) 14.82(1)

0.20 14.80(2) 14.79(2) 14.75(2)

0.22 14.76(3) 14.72(3) 14.71(2)

0.24 14.70(3) 14.73(3) 14.63(2)

0.26 14.64(3) 14.60(3) 14.60(2)

0.28 14.57(4) 14.60(4) 14.53(2)

0.30 14.50(4) 14.45(4) 14.45(3)

Table 3.2: Continuum extrapolations of fermionic

masses mFL for Wilson and twisted Wilson

fermions in the weak coupling regime (m0L = 15).

As a further test these results are used to reproduce

the perturbative formula

mF(λ)L ≈ m0L

√

1− λ2

b
. (3.38)

Taken this functional form for granted, the parameters

m0L and b can be extracted from a least-square fit to

the given data. For this fit the knowledge about the

free theory (m0L = 15) as a fixed input may be used

or, alternatively, one allows for both m0L and b as

free parameters. The corresponding results are given

in Tab. 3.3.

The extrapolated results for m0L confirm that the

extrapolation to the free theory works reliably and

that meaningful results for b are expected. Further-

more the results obtained for improved and unim-

proved Wilson fermions coincide very well and there-

fore both provide the correct continuum limit.

Additionally the results for standard Wilson and twisted Wilson fermions lead to compatible results

when taking systematic uncertainties of the continuum extrapolation into account.

derivative b m0L

Wilson improved 1.34(6) 15.007(6)

Wilson unimproved 1.39(7) 15.008(6)

twisted Wilson improved 1.26(4) 14.996(4)

Wilson improved 1.37(5) fixed to 15

Wilson unimproved 1.42(6) fixed to 15

twisted Wilson improved 1.25(3) fixed to 15

Table 3.3: Fit for the perturbative mass formula

with O(λ2) corrections to be compared with the

one-loop results. For comparison the one-loop

result is b ≈ 1.2990.

As an important result of these observations, all three

models considered in the weak coupling case tend to-

wards the same continuum limit for λ > 0. The

perturbative results can be recovered where the largest

error bars (including possible systematic errors) yield

b = 1.35(13) in agreement with the one-loop result of

bone-loop ≈ 1.2990.

Signs of supersymmetry at finite lattice spacing

Apart from all results solely based on fermions the pri-

mary focus lies on the restoration of supersymmetry on

the lattice. For this reason it is necessary to check the demand from supersymmetry that the masses

of bosonic and fermionic superpartners match. This is checked by computing bosonic and fermionic

masses at couplings λ = 0.2 and λ = 0.4 with m0L = 15 for all the models on different lattice sizes.

As visible in the whole weak coupling regime the fermionic masses do not suffer from statistical

noise. This behaviour derives from the fact that the fermionic correlator for the free theory (λ = 0)

is independent of the bosonic field ϕ and is obtained by a pure matrix inversion. At small (and finite)

λ, corrections to the free propagator are of O(λ2), and the fluctuations of ϕ during the simulation are
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suppressed with λ2; a statistics of only 104 is needed to obtain reliable results.

model Ns λ mFL mB,1L mB,2L

Wilson 24 0.2 11.592(2) 11.53(4) 11.59(4)

impr. 24 0.4 11.375(4) 11.39(3) 11.34(3)

32 0.2 12.224(2) 12.20(3) 12.15(4)

32 0.4 11.945(5) 11.95(3) 11.88(4)

48 0.2 12.941(5) 12.87(5) 13.02(5)

48 0.4 12.548(13) 12.47(4) 12.53(4)

64 0.2 13.349(10) 13.45(9) 13.32(9)

64 0.4 12.89(3) 12.73(9) 12.83(9)

Wilson 24 0.2 11.591(2) 11.58(2) 11.63(3)

unimpr. 24 0.4 11.400(4) 11.44(2) 11.39(3)

32 0.2 12.221(2) 12.20(3) 12.15(4)

32 0.4 11.965(5) 11.97(3) 11.87(4)

48 0.2 12.942(5) 12.92(6) 13.00(7)

48 0.4 12.572(14) 12.54(4) 12.49(4)

64 0.2 13.347(7) 13.45(9) 13.32(9)

64 0.4 12.91(2) 12.82(9) 12.79(9)

tw. Wilson 24 0.2 14.811(7) 14.94(11) 14.91(12)

(impr.) 24 0.4 14.13(1) 14.21(9) 14.06(8)

32 0.2 14.788(6) 14.61(14) 14.94(12)

32 0.4 14.08(1) 14.39(14) 13.68(13)

48 0.2 14.789(6) 14.74(11) 14.61(11)

48 0.4 14.04(1) 14.16(16) 13.98(15)

SLAC 45 0.2 14.768(4) 14.87(10) 14.83(9)

impr. 45 0.4 13.997(13) 14.08(11) 13.92(10)

SLAC 45 0.2 14.769(4) 14.75(6) 14.57(6)

unimpr. 45 0.4 14.047(16) 13.74(8) 13.75(7)

Table 3.4: For different models and lattice sizes bosonic and

fermionic masses are computed with bare mass m0L = 15.

On the other hand the bosonic correlator

even for the free theory is given by the corre-

lations of the fluctuating field ϕ. Therefore a

much higher statistics is necessary to sample

the bosonic two-point function. Here, prob-

lems arise by the exponentially growing rel-

ative error of the two-point function CB(t)

with respect to t.

Only with the use of an algorithm com-

bining Fourier acceleration with higher order

integrators as described in Chapter 4 it was

possible to simulate 106 to 107 configura-

tions for each parameter set (mlatt, λ) with an

autocorrelation time of the two-point func-

tion of τ ≤ 2.

The results of these numerical efforts are

summarised in Tab. 3.4. They show that

independently of the model even for λ ∈
{0.2, 0.4} bosonic and fermionic masses cor-

respond to each other and lattice-induced su-

persymmetry breaking cannot be observed.

Finally in Fig. 3.12 the derived bosonic

and fermionic masses are shown for the im-

proved (and unimproved) model with Wilson

fermions. Even these high statistics do not

allow for a clear cut distinction between the

extrapolated continuum masses of bosons

and fermions for the improved and the unimproved models. This proves that even at λ = 0.4 the

improvement is not necessary even on a finite lattice. Each model tends towards the supersymmetric

continuum limit.

3.2.6 Intermediate coupling results

Earlier attempts to go beyond the perturbative regime could not reliably determine the mass spectrum.

Namely, this was hindered by instabilities introduced by improvement terms. For Wilson fermions,

this renders simulations at intermediate couplings invalid. Therefore the analysis of coupling con-

stants in the intermediate regime (0.3 < λ ≤ 1.1) is based on actions with twisted Wilson and SLAC

fermions (which anyhow yield better results at finite lattice spacing). For twisted Wilson fermions

simulations with the improved action have run on lattices with Ns ∈ {32, 40, 48, 56, 64} lattice points

in the spatial direction. For the temporal direction 1.25 · Ns lattice points were used in order to

be able to assess whether contributions from higher excited states are really absent. At the chosen
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Figure 3.12: Bosonic and fermionic masses for the weakly coupled regime for the improved (left panel)

and unimproved (right panel) Wilson model.

λ tw. Wilson SLAC unimpr. SLAC impr.

0.20 0.987(2) 0.985(3) 0.985(3)

0.35 0.949(2)

0.40 0.933(2) 0.937(2) 0.933(1)

0.45 0.908(3)

0.50 0.887(4)

0.55 0.853(8)

0.60 0.813(8) 0.854(3) 0.829(4)

0.65 0.79(1)

0.70 0.69(3)

0.80 0.766(6) 0.68(2)

1.00 0.643(5) 0.512(5)

1.10 0.46(2)

Table 3.5: Fermionic masses mF/m0 for the in-

termediate coupling case. Twisted Wilson results

are continuum extrapolations whereas the SLAC

data is from a 45 × 45 lattice. m0L = 15 for

λ ≤ 0.8 and m0L = 20 for λ ≥ 1.0.

value of m0L = 15 almost every simulation, the re-

spective bare lattice mass parameter mlatt confines the

attainable coupling strengths to λ ≤ 0.7 for twisted

Wilson fermions.5 For even larger coupling strengths

λ only SLAC fermions have been found to yield sen-

sible results. In the simulations this species is used

for both the improved and unimproved lattice models

on a fixed lattice size of N = 45 × 45. Apart from

that, one further run was done on a 63× 63 lattice with

λ = 0.8. Square lattices turned out to be more conve-

nient with SLAC fermions and to be sufficient to clearly

read off (within statistical errors) the masses. As for

the simulations with twisted Wilson fermions only the

masses from the fermionic correlators are determined

since with the statistics (50 000 trajectories) achieved

so far the bosonic correlators are far too noisy to yield

reliable results.

Ns improved unimproved

45 10.22(26) 11.49(9)

63 10.54(15) 10.70(19)

Table 3.6: Fermionic masses

mFL for the SLAC derivative

on two different lattice sizes for

λ = 0.8 and m0L = 15.

The results may be found in Tab. 3.5 and are depicted graphically

in Fig. 3.13. From the comparison with perturbation theory first devi-

ations are seen as soon as λ ≥ 0.4 where the (extrapolated) lattice re-

sults are slightly stronger curved. Also clear deviations between the im-

proved and unimproved model using SLAC fermions become apparent

for λ ≥ 0.6. It is worthwhile to note that the result from the improved

lattice model is closer to the continuum limit which may be inferred

from Tab. 3.6. While the lattice data from the improved model almost

coincide for both lattice spacings the data from the unimproved model

is likely to approach the same value if increasingly finer grained lattices

are used.

5For λ = 0.7 the simulation failed already on the coarsest lattice and had to be excluded from extrapolations to the

continuum limit.
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3.2.7 Measurement induced supersymmetry breaking

For a discussion of the measurement procedure a closer look at the properties under ZTPR
2 is necessary.

When using SLAC fermions the action and the fermionic determinant are invariant under application

of the symmetry. The impact on the traced fermionic correlator can be calculated using Eq. (3.14),
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Figure 3.13: Masses of the improved and

unimproved model with SLAC fermions on a

45 × 45 lattice and continuum extrapolated

results for twisted Wilson fermions are com-

pared with the perturbative one-loop result in

the continuum.

CF(t)
ZTPR
2−−−−−−→ −CF(t). (3.39)

In order to extract masses and to gain a non-vanishing cor-

relator expectation values are only measured on configu-

rations in the vicinity of the perturbative ground state, i.e.

only configurations with ϕ̃1 = N−1
∑

x ϕ1,x > − 1
2λ

are

used. This procedure effectively mimics the thermody-

namic limit of the theory where the ZR
2 symmetry is spon-

taneously broken and only one (bosonic) ground state is

present. Tunnelling events to the other ground state (which

would lift the ground state energy above zero) are forbid-

den by supersymmetry.6 Equivalently the measurement of

the (connected) bosonic correlator is affected once tun-

nelling between the ground states in one simulation run

sets in. In that manner the bosonic correlation function is also computed by using the configurations

with ϕ̃1 > − 1
2λ

.

Strictly speaking the tunnelling probability within simulations is algorithm dependent. E.g. it may

be possible to globally flip the field ϕ at random according to ZTPR
2 preserving the effective action.

However, the simulations in this work are performed using a hybrid Monte-Carlo algorithm which (by

construction) makes use of a Hamiltonian evolution which mimics (with final step size) a continuous

trajectory in the space of fields ϕ. As consequence for small couplings λ the used algorithm will

show nearly no tunnelling (for a reasonable number of generated configurations) and an effect of the

tunnelling on the measurement prescription will be better visible for large couplings.

For small couplings λ it has been checked in Sec. 3.2.5 that bosonic and fermionic masses coincide.

6The projection is equivalent to removing external currents after the thermodynamic limit is taken as has been analysed

for the case of O(N) models in [70–72].
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Figure 3.14: Local mass obtained from simulations on a 45× 45 lattice with m0L = 20, λ = 1.0 using

the unimproved (left panel) and improved (right panel) formulation with SLAC fermions.
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Now, for λ = 1.0 and m0L = 20 on a 45 × 45 lattice the local mass obtained from a local cosh-fit

on configurations around the perturbative classical ground state is analysed using the SLAC derivative

with improved and unimproved formulation (see Fig. 3.14). Differences between improved and unim-

proved formulation become apparent and, more important, there is, even in the improved formulation,

a splitting of bosonic and fermionic masses in contradiction to supersymmetry. To exclude that this

mass splitting is only due to the finite lattice spacing effective masses at two lattice spacings are com-

pared in Fig. 3.15. Even at λ = 1.1 a perfect scaling with respect to the lattice spacing is present in the

improved model and discretisation effects can be excluded. It may be concluded from the plateau of

the effective mass for large t that bosonic and fermionic masses do not coincide and supersymmetry is

broken.
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Figure 3.15: Local mass at m0L = 20 and

λ = 1.1 obtained on a 45 × 45 and 63 × 63
lattice using the improved formulation with

SLAC fermions.

However, the lattice formulation of the Wess-Zumino

model based on the Nicolai map leaves one (real) super-

symmetry unbroken in spite of the fact that a finite lattice

spacing is present. Therefore a measurement of a Ward

identity derived from this symmetry may shed some light

on the preservation of this specific supersymmetry.

To construct a Ward identity 〈δA〉 = 0 related to the

fermionic correlator an operator A = ϕxψ̄1,y + ϕ̄xψ̄2,y is

used which turns (via a spinor trace) into 〈F (t)〉 = 〈B(t)〉
with

F (t) = N−2
s N−1

t

∑

α,x,x′,t′

ψα,(t′,x)ψ̄α,(t+t′,x′),

B(t) = N−2
s N−1

t Re
∑

x,x′,t′

ϕ̄(t′,x)ξ(t+t′,x′).
(3.40)

Again, the bosonic part B(t) of the Ward identity is antisymmetric under ZTPR
2 and a measurement of

the Ward identity corresponding to the fermionic correlator turns out to give “0 = 0”. Also here the

projection to ϕ̃1 > − 1
2λ

is applied to gain a non-trivial result.

For the case of m0L = 20 and λ = 1.1 the fulfilment of the Ward identity given by Eq. (3.40) is

tested and corresponding results for lattice sizes 45 × 45 and 63 × 63 are shown in Fig. 3.16. Here
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Figure 3.16: Contributions to the Ward identity obtained for m0L = 20 and λ = 1.1 at two lattice

spacings in the improved model with SLAC fermions measured on 2 · 106 configurations.
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m0L = 3 and λ = 0.5. Both are computed in the improved model with SLAC fermions.

the breaking of the (by definition unbroken) supersymmetry is apparent and discretisation effects are

excluded by the (within error bars) coinciding results for different lattice spacings.

Naively one expects that this inconsistency between a (per definition) supersymmetric action and

the broken Ward identity should be pronounced for larger couplings. Nevertheless, this issue can be

clarified by considering even smaller couplings. E.g. simulations for λ = 0.5 but at a smaller volume

m0L = 1.4 with the improved model with SLAC fermions share the same breaking of the Ward

identity (see Fig. 3.17, left panel). Again the independence of the lattice spacing is clearly visible and

the breaking of the Ward identity is a real continuum effect. In the field distribution (see Fig. 3.17,

right panel) an overlapping of both ground states is visible (even for a larger volume m0L = 3) which

is entirely caused by the finite volume.
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Figure 3.18: Volume dependence of the aver-

aged difference 〈B̃ − F̃ 〉L for coupling λ =
0.5 obtained from 15×15 lattices with an im-

proved SLAC model. The shaded line denotes

an exponential fit.

The difference 〈B(t)− F (t)〉 seems to be independent

of t and the averaged difference 〈B̃ − F̃ 〉 can be taken

as an observable that measures supersymmetry breaking.

To clearly identify the volume dependence simulations at

fixed λ = 0.5 have been performed at 15× 15 lattices with

varying box size m0L (see Fig. 3.18). It is found that this

supersymmetry breaking is exponentially suppressed with

the volume according to 〈B̃− F̃ 〉L = 0.73(2)e−1.08(2)m0L.

In fact, this supersymmetry breaking can also be seen

on the level of the action. The chosen measurement pro-

cedure amounts to a suppression of all configurations with

ϕ̃1 < − 1
2λ

. This prescription is equivalent to simulating

the theory with changed bosonic action

SB → lim
α→∞

(

SB + α · θ
(
N−1

∑

x

ϕ1,x −
1

2λ

)

)

. (3.41)

Introducing the additional θ function which lifts the action of configurations with ϕ̃1 < − 1
2λ

to arbitrary

high values cannot be obtained by the construction using Nicolai variables and thus will not preserve

the supersymmetry. In this sense the simulation performed with the Nicolai improved action will not
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SLAC derivative for λ = 0.5. Right panel: Ward identity contributions for the improved model at
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break one specific supersymmetry but the explicit measurement procedure based on the projection to

one classical ground state will break the supersymmetry explicitly.

To finally prove that the supersymmetry is only broken by the projection to one ground state a Ward

identity is constructed that contains a non-vanishing part invariant under the ZTPR
2 symmetry and can

therefore be measured without any projection. A simple form of such a Ward identity is given by the

operator A′ = (ϕ1,x +
1
2λ
)2(ψ̄1,y + ψ̄2,y) which gives rise to equality of bosonic and fermionic part

F ′(t) = N−2
s N−1

t

∑

α,β,x,x′,t′

ψα,(t′,x)

(

ϕ1,(t′,x) +
1

2λ

)

ψ̄β,(t+t′,x′),

B′(t) = N−2
s N−1

t Re
∑

x,x′,t′

(

ϕ1,(t′,x) +
1

2λ

)2

ξ(t+t′,x′).

(3.42)

For comparison the supersymmetry breaking can be calculated by using the unimproved as well as

the improved model and the corresponding results are shown in Fig. 3.19. These clearly show that

the simulation using the improved model preserves the supersymmetry (within error bars) while the

unimproved model sets the reference scale to ‘measure the zero’.

The analysis of this finite size induced supersymmetry breaking in the measurement process shows

that broken Ward identities may be visible on volumes with mphysL & 10 depending on the strength of

the coupling λ. Therefore these effects must be accounted for seriously if one aims at simulations at

even larger couplings than discussed here. Additionally, the analysis of the local masses in the contin-

uum limit (see Fig. 3.15) shows that the fermionic masses given in Tab. 3.5 for the largest couplings

can only be taken as an upper bound of the mass of the supersymmetry multiplet and the difference to

the bosonic masses gives the possible systematic error.

3.3 Conclusions

In this chapter a detailed numerical analysis of the two dimensional N = (2, 2) Wess-Zumino model

has been presented. The lattice models have been studied at much larger lattice sizes, i.e. smaller lattice

spacings and more importantly at stronger couplings than in previous works. For a comparison with

analytical results from perturbation theory finite size effects and other systematic errors such as sign

changes of the fermion determinant have been checked explicitly. Both were seen to be under control
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for the scrutinised parameter range. Earlier weak coupling results are confirmed and (small) deviations

from perturbation theory are resolved for the first time. All three kinds of fermions, Wilson, twisted

Wilson, and SLAC fermions, approach the same continuum results. It turned out that lattice artefacts

were largest for Wilson and smallest for SLAC fermions. At intermediate coupling supersymmetrically

improved lattice actions using Wilson fermions lead to unstable simulations that eventually fail to

produce reliable results unless very large lattices are chosen. Simulations with SLAC fermions proved

to be much more stable; they allow for improvement terms for a wider parameter range. At finite lattice

spacing and weak coupling no significant differences in the measured spectrum between simulations

using the improved or unimproved actions could be seen. It is only at larger coupling that deviations

become visible, and the improved lattice action in fact suppresses lattice artefacts.

It has been explicitly analysed that the measurement process which mimics the infinite spacetime

volume by a projection to one ground state explicitly breaks supersymmetry irrespective of the su-

persymmetric lattice action used for the simulations. For that reason it is still an open problem to go

to even stronger couplings. Practical simulations become considerably more involved due to stronger

fluctuations in the sign of the fermion determinant and enlarged finite size effects.
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Algorithmic aspects

With increasing computer power over the last years, to date still following Moore’s law [73], simu-

lations of realistic physical systems have become feasible. Beginning with small scale simulations of

a SU(2) Yang-Mills theory more than three decades ago [18] and simulations of gauged Ising mod-

els [74] there has been an ongoing technical evolution. Amongst the biggest achievements in the

simulation of lattice regularised theories has been the recent computation of the hadron spectrum [75].

This progress not only benefits from the faster computer resources. The algorithmic developments

caused revolutions in the steady progress of technical evolution. Unlike local algorithms [76] contem-

porary hybrid Monte-Carlo (HMC) algorithms are based on a global evolution and allow now for the

inclusion of dynamical fermions [77].

Although the numerical improvements described in this chapter are explained in the setting of the

N = 2 Wess-Zumino model the Fourier acceleration and the Γ distributed integration lengths are also

applied to every other model discussed in this work.

4.1 Recapitulating the hybrid Monte-Carlo algorithm

Although new developments allow for the efficient simulation of models with dynamical fermions by

writing the partition function as a loop gas [78, 79] this method only applies to Wilson fermions1 and

not for discretisations based on the SLAC derivative. Therefore it is natural to use the generic HMC

algorithm throughout the present work.

When simulating a system with lattice action S[φ], where φ denotes the set of bosonic fields2, a

‘Hamiltonian’ H [φ, π] = S[φ] + P [π] with a ‘momentum’ field πx with as many degrees of freedom

as φx is introduced. The corresponding lattice path integral

Z =

∫

DφDπ e−H[φ,π] =

∫

Dφ e−S[φ]
∫

Dπ e−P [π] (4.1)

factorises and expectation values depending only on φ fields are not affected by the additional mo-

mentum distribution. Equations of motion φ̇x = Gx[φ, π] for a Hamiltonian evolution are imposed

and π̇x = Fx[φ, π] is derived by the requirement of H [φ(t), π(t)] to be constant on a trajectory. The

canonical choice [77] is given by

P [π] =
1

2

∑

x

π2
x, Gx = πx, Fx = − ∂S

∂φx
. (4.2)

However, in simulations this evolution must be performed in a discretised form and the generalised

concept allows for better stability as will be explained in Sec. 4.2. Ergodicity is obtained by a careful

choice of Gx, e.g. Gx = π2
x would lead to a monotonically rising φx and would thus violate ergodicity.

To sum up, the HMC algorithm to generate a distribution of φ according to the measure e−S[φ] is

performed by repeating the following steps:

1. Choose πx distributed according to the measure e−P [π].

2. Perform a Hamiltonian evolution with integration length τint.

1This rewriting may be possible for every nearest neighbour fermionic interaction.
2The action may also be an effective action including contributions from the fermionic determinant.
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3. Perform a Metropolis acceptance step with acceptance p = min
(
1, exp(−H [φ(τint), π(τint)] +

H [φ(0), π(0)])
)
.

For an exact integration the energy H is constant. In practice the integration must be performed nu-

merically with time steps δτ using a symplectic and time reversible integrator. Here a fourth order

integration scheme is used [80].

Naive fermionic action

If the action contains Dirac fermions ψ via

S[φ, ψ] = SB[φ] + ψ̄M [φ]ψ (4.3)

the fermions can be integrated out according to

Z =

∫

DφDψDψ̄ e−SB[φ]−ψ̄M [φ]ψ =

∫

Dφ detM [φ] e−SB[φ]. (4.4)

In general this expression has an inherent sign problem because the determinant of M can be nega-

tive. To allow for a statistical interpretation and make a Monte-Carlo sampling feasible the sign of

the fermion determinant is factored out and is taken into account by reweighting in the measurement

process according to

〈A〉 = 〈A · sign detM〉+
〈sign detM〉+

, (4.5)

where the expectation values 〈.〉+ are taken with respect to the path integral3

Z =

∫

Dφ det1/2(MMT

︸ ︷︷ ︸

=Q

)e−SB[φ] =

∫

Dφ exp(−SB[φ] +
1
2
ln detQ). (4.6)

In that way the HMC algorithm can be used directly with the action S[φ] = SB[φ]− 1
2
ln detQ[φ] and

the equations of motion are given for the canonical case (4.2) by

Fx = −∂SB

∂φx
+ tr

(

M−1∂M

∂φx

)

. (4.7)

The only pitfall of this method arises from the fact that the matrix dimension scales with the lattice vol-

ume V . If the determinant (and the inverse, which is involved in the calculation of the force Fx) cannot

be computed in a direct way4 the algorithm will have a complexity O(V 3), not taking into account the

additional critical slowing down that arises from a growing physical volume. An established method

to circumvent these problems is given by introducing (multiple) pseudo-fermions [77] as discussed in

Sec. 4.4.

4.2 Fourier acceleration

The effectiveness of the Hamiltonian evolution is affected by the distance covered in phase space

per trajectory. To gain a small autocorrelation in terms of computer time it is preferable to obtain

the longest possible evolution with the same number of steps and preserved integration error. The

3For the models discussed in this work the matrix M has only real entries.
4The direct computation of the determinant is possible for the SQM with Wilson fermions.
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Figure 4.1: Distribution of π̇ for the N = 2 Wess-Zumino model at λ = 1 and for the free case on a

15× 15 lattice in the unimproved SLAC model and m0L = 10, unscaled (left panel) and rescaled (right

panel) using g(p) with macc = mlatt = 10/15.

formulation of the evolution equations is in general translation invariant. Instead, in momentum space

the distribution of φ̇ and π̇ is non-uniform (see Fig. 4.1, left panel). Based on this observation the

velocity of the Hamiltonian evolution depends on the momentum mode as introduced and calculated

for the case of a leap frog integrator in [81] and first exemplified on the unbroken supersymmetric

quantum mechanics in [82].
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Figure 4.2: Average field ϕ̃1 in the N = 2
Wess-Zumino model for an acceptance rate

of 97% and 5 integration steps without (red)

and with (green) Fourier acceleration with

macc = 5/15 and on a 15 × 15 lattice for the

unimproved SLAC model at m0L = 10 and

λ = 1

A Fourier acceleration is implemented by choosing

Gx (or more directly the momentum component) to obey

Gp = g(p) ·πp with g(p) to be specified later. Equivalently

this may be specified in position space as Gx =
∑

y Axyπy

with a matrix Axy = V −1
∑

p e
ipxg(p)e−ipy. The force is

then given by Fx = −Ayx ∂S
∂φy

. Here g(p) = g(−p) is used

such thatA is symmetric. For the scalar models considered

here the largest forces are given for large momenta which

cause severe energy violations in the discretised Hamilto-

nian evolution because the error scales with (δτ)4 for the

chosen integrator. Further the physical content should be

encoded mainly in the infrared properties of the lattice the-

ory so that a decorrelation of low momentum modes should

be preferred. Although various functional forms are possi-

ble [83] g(p) will be chosen analogous to [82] by

g(p) =
macc

√

(macc)2 + (pa)2
(4.8)

so that the zero momentum sector is not affected while larger momenta are damped (see Fig. 4.1, right

panel). This choice provides optimal decorrelation for the free theory when choosing the free parameter

macc to be the mass in lattice units. A speedup for the low momentum modes is then achieved by

larger possible integration steps. With this prescription it is possible to reach an improved tunnelling

behaviour in the interacting N = 2 Wess-Zumino model with preserved numerical effort (see Fig. 4.2).

Accordingly the integrated autocorrelation time for the averaged field ϕ̃ and other observables can

decrease by orders of magnitude and can be tuned below 5 in almost every case [47].
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4.3 Γ distributed integration lengths

0.0

0.5

1.0

1.5

2.0

2.5

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Γk(X)

X

k = 1.5
k = 5
k = 30

Figure 4.3: Gamma function for different

shape parameters. For k → ∞ the delta dis-

tribution δ(x− 1) is reached.

For systems close to the free theory (e.g. in the perturbative

sector of the N = 2 Wess-Zumino model) it is possible to

gain further decorrelation by choosing τint randomly. In the

free theory ϕ1 and ϕ2 decouple and their lattice averages Φ

obey a differential equation in the Hamiltonian evolution

d

dτ

(

Φ

Π

)

=

(

0 1

−m2
latt 0

)(

Φ

Π

)

(4.9)

with Hamiltonian H = 1
2
(Π2 +m2

lattΦ
2). For this reduced

system the equations of motion describe an ellipsis and an

exact integration is possible. Instead of fixing the integra-

tion length, τint is now chosen randomly for every trajec-

tory. Because of τint > 0 the distribution function may

only have a positive support. For normalisation it is useful to have a fixed mean integration length

τint. A natural choice for the distribution function is then given by the Γ(k, θ) distribution with two

parameters k, θ > 0 describing the shape and the scale of the probability distribution. For a Γ(k, θ)

distributed observable the mean is given by kθ and the variance by kθ2 which implies to set θ = k−1

and consider the normalised distribution Γk = Γ(k, k−1) with mean 1 and variance k−1 (see Fig. 4.3).

To compare autocorrelation times Φ is considered for the free theory and the volume averaged ϕ̃2

for the interacting theory because of its insensitivity to tunnelling events between both ground states.

To get rid of systematic errors the step size of the numerical integrator is chosen to be small enough to

ensure full acceptance in the Metropolis step. However, considering only the integrated autocorrelation

time may be misleading for the case of anti-correlations (e.g. an alternating behaviour Φ ↔ −Φ). For

that reason the correlation after one trajectory,

C(1) = (
〈
Φ2
〉
− 〈Φ〉2)−1(NMC − 1)−1

NMC−1∑

k=1

(Φ(k) − 〈Φ〉)(Φ(k+1) − 〈Φ〉), (4.10)

is analysed, which is close to 1 for strong correlations and close to −1 for anti-correlations.
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Figure 4.4: Correlation function of ϕ̃2 after one trajectory for the free theory (left panel) and the full

theory (right panel) with m0L = 15 and λ = 0.5 on a 15 × 15 lattice in the unimproved SLAC model

using Γk distributed integration lengths.
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For the free theory the system shows an oscillatory behaviour (see Fig. 4.4, left panel) over the inte-

gration lengths which follows from a trajectory on an ellipsis that leads back to the starting point after

τintmlatt = 2π. ForC(1) < 0 anti-correlations are present, which imply integrated autocorrelation times

smaller than 1 without any real decorrelation in terms of physically distinct configurations. For smaller

values of the shape parameter k these oscillations are damped and a real decorrelation is reached for

τint large enough. To go beyond the free theory computations have been performed for the full model

at coupling λ = 0.5 with the unimproved SLAC formulation and shape parameter k ∈ {1, 3, 10,∞}.

The configurations are generated using Fourier acceleration with macc = mlatt = 1 in order to get a

sufficiently high acceptance rate on a 15×15 lattice. Even for the interacting case (Fig. 4.4, right panel)

particular choices of the shape parameter suppress the (anti-)correlation for large integration lengths

and improve the decorrelation for small τint. Based on these observations a shape parameter of k = 3

was used for all simulations in this work.

4.4 Deflated rational hybrid Monte-Carlo

For systems with dynamical fermions the path integral is calculated as

Z =

∫

Dφ |detM |κ e−SB (4.11)

with field dependent fermion matrix M [φ] and κ = 1 for Dirac fermions or κ = 1
2

for Majorana

fermions. In this work the fermion matrix has only real entries and the path integral is rewritten as

Z =

∫

Dφ |detQ|κ/2e−SB , Q =MMT (4.12)

with a symmetric matrix Q[φ] with positive semidefinite spectrum. In the well established rational hy-

brid Monte-Carlo (RHMC) algorithm [84–86] the path integral is reformulated using complex pseudo-

fermion fields which are necessary for a complex matrix M . For M ∈ Rn×n one can express the path

integral (up to a multiplicative normalisation constant) using Npf pseudo-fermions as

Z =

∫

Dφ

Npf∏

n=1

Dχn exp
(
−SB −

Npf∑

m=1

χT

mr
2(Q)χm)

)
det(Qαr(Q))Npf. (4.13)

with α = κ
2Npf

. Now r(Q) is chosen to be a rational approximation

r(Q) = α0 +

NE∑

k=1

αk
Q + βk

(4.14)

with order NE to the function Q−α that can be constructed with the Remez algorithm (for a review

see [87], the implementation of [88] is used).5 Additionally r(Q)χ can be computed efficiently using a

multishift solver based on the conjugate gradient (CG) method [92]. This approximation will only be

accurate within given error bounds if the spectrum of Q lies within a predefined interval σ(Q) ∈ [a, b]

and it is necessary for the exactness of the algorithm to ensure this condition. For that reason the bounds

a, b must be defined at the beginning of the simulation and are chosen pessimistically to always cover

the spectrum ofQ. Naturally the exactness of the algorithm is limited by the order of the approximation

NE and the exactness of the inverter used. To reduce the condition number of Q a preconditioner P

5Alternatively a polynomial approximation is possible that leads to comparable performance [89–91].
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Figure 4.5: Average number of CG steps (left panel) and condition number of Q (right panel) with

and without preconditioner for a 25 × 25 lattice and volume m0L = 10 in the unimproved N = 2
Wess-Zumino model with SLAC discretisation for a residual error of the CG solver of 10−14.

can be implemented by changing M → MP with a constant matrix P . This amounts only to a

multiplicative normalisation of the path integral by |detP |κ. For the Wess-Zumino models the free

fermion matrix P = M [ϕ = 0]−1 is chosen as preconditioner. The advantage is the fast applicability

of this matrix through its diagonal form in Fourier space. This preconditioner reduces the condition

number and the necessary CG steps considerably not only in the perturbative region (see Fig. 4.5).

In practice the approximation will have smaller errors for fixed NE if a narrower range [a, b] is

chosen. Therefore the spectral bounds are computed in test runs with a very pessimistic parameter

setting on about 1 000 configurations to determine reasonable bounds for the production runs. In this

work the ARPACK library [93] based on the implicitly restarted Arnoldi method [94] is used for the

computation of the spectrum of the (preconditioned) Q.

With the above definitions the action used in the energy calculation is given by

S = SB +

Npf∑

m=1

χT

mr
2(Q)χm. (4.15)

with a (numerically) exact approximation r(Q) = Q−α. For the computation of the force during the

molecular dynamics the full numerical precision is not necessary and the action

S = SB +

Npf∑

m=1

χT

mrMD(Q)χm (4.16)

is used with rMD(Q) as rational approximation to Q−2α over the same region [a, b]. The approximation

rMD is used to provide a cost efficient calculation by using a lower degree of approximationNMD which

leads to larger shifts βi and a better conditioned inverter. The exactness of the algorithm still depends

only on the exactness of the approximation in the energy calculation which gives room to use a faster

but inexact calculation of the force that is given in the canonical scheme (4.2) by

Fx = −∂SB

∂φx
+ 2

Npf∑

m=1

NMD∑

i=1

αiη
T

m,i

∂M

∂φx
η′m,i (4.17)

with ηm,i = (Q + βi)
−1χm, η′m,i =MTηm,i and coefficients αi, βi of rMD(Q).

Using these definition the RHMC algorithm proceeds as follows.
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1. Choose πx according to e−P [π] and initial fields γi according to e−γ
T

i γi . From these construct the

pseudo-fermion fields χn = rE0(Q)φn with rE0(Q) as order NE approximation to Qα.

2. Perform a Hamiltonian evolution with integration length τint using the effective action (4.16).

3. Perform a Metropolis acceptance step with acceptance p = min(1, e−H[φ(τint),π(τint)]+H[φ(0),π(0)])

using the action (4.15), where the approximation to Q−α is needed.

4.4.1 Eigenvalue deflation

The RHMC algorithm as described above depends on the known spectral bounds which ensure the ex-

actness of the algorithm. For the present work zero modes of the Dirac operator cannot be excluded in

general.6 It was analysed [95] that it may be sufficient to choose the spectral range [a, b] pessimistically

enough to extract the correct physics. Nevertheless, every chosen spectral range used to construct the

approximation within the RHMC will render the algorithm in principle inexact.
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100

102

0 10000 20000 30000 40000 50000
config #

Figure 4.6: Smallest (red) and largest (green)

eigenvalue of Q for mL = 15, λ = 1.2 on a

45× 45 lattice for the improved N = 2 Wess-

Zumino model with SLAC discretisation.

For the N = 2 Wess-Zumino model the eigenvalues

lie in the range [10−7, 9] (see Fig. 4.6) where the largest

eigenvalue shows almost no fluctuations and the choice of

b = 10 is reasonable safe. However the smallest eigen-

value fluctuates in a range [10−7, 10−1] over 50 000 config-

urations and smaller ones cannot be excluded in general.

Therefore the smallest eigenvalues should be treated ex-

actly to get an exact algorithm even if the estimated spec-

tral bounds are too tight.

To compute the force an exact computation is not nec-

essary since deviations will be cured in the exact Metropo-

lis step. Additionally the spectral interval for the force cal-

culations can be chosen to cover a wider range than for the

energy calculations to provide further stability. Only the

heat bath calculation at the beginning of each trajectory and the computation of the energy at the end

of each trajectory must be handled exactly. When (e.g. in the heat bath step) approximating χ = Qαγ

the approximation χ′ = r(Q)γ is used, which in spectral form reads

χ′ =
∑

λ

r(λ)ξλ(ξ
T

λ γ) (4.18)

with ξλ as eigenvector of Q to the eigenvalue λ. Using the “exactness” of the approximation for λ > a

an exact computation over the whole spectrum is gained by

χ = χ′ +
∑

λ<a

(λα − r(λ))ξλ(ξ
T

λ γ). (4.19)

The computation of the smallest eigenvalues and eigenvectors is performed by the ARPACK package

and can be computed parallel to the multishift CG solver. The deflation (4.19) is performed afterwards

in the heat bath and Metropolis step and uses only fast vector-vector operations. During different

6As long as a change in the sign of the fermion determinant is possible zero modes must occur.
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Figure 4.7: Difference in the ϕ̃2 timeline for m0L = 15, λ = 1.2 for a run with 3 pseudo-fermions

and spectral bounds [10−5, 10] on a 45 × 45 lattice using the same random numbers for standard and

deflated RHMC algorithm. The vertical lines mark configurations with smallest eigenvalues below the

bound.

simulations the number of matrix applications in the eigenvalue solver is similar to the ones needed in

the CG solver. Therefore the computational cost is increased roughly by the amount that is necessary

for one additional pseudo-fermion in the energy calculations.

4.4.2 Effects on the Markov chain
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t̂

Figure 4.8: Fermimonic correlation func-

tion for m0L = 15, λ = 1.2 for a run

with 3 pseudo-fermions and spectral bounds

[10−5, 10] on a 45 × 45 lattice with exact

deflated RHMC algorithm (red) and inexact

standard RHMC algorithm (green).

The influence of the deflation on the Markov chain is

analysed by starting two simulations with the same ran-

dom number generator and corresponding seed. If a small

eigenvalue occurs the deflation can change the trajectory

by accepting/rejecting configurations that otherwise would

not have been accepted/rejected. The naive expectation is

that the Markov chains from that point on differ consider-

ably. For the improved N = 2 Wess-Zumino model with

m0L = 15, λ = 1.2 on a 45 × 45 lattice with lower spec-

tral bound of 10−5 less than 0.3% of all configurations lie

below this bound (see Fig. 4.6). The timelines of observ-

ables can indicate differences in the Markov chain. E.g.

for the averaged bosonic field about 5.8% of all configu-

rations differ by δϕ̃2 =
∣
∣ϕ̃deflated

2 − ϕ̃undeflated
2

∣
∣ > 10−6 (see

Fig. 4.7). As naively expected the onset of strong differ-

ences in the Markov chain is correlated with the occurrence of small eigenvalues. However, after some

(for the present case up to a few hundred) configurations, the Markov chains again converge towards

each other and the Markov chain will depend up to numerical accuracy of 10−8 only on the random

numbers and not the configuration that was changed by the eigenvalue deflation. Of course the de-

flation is necessary to obtain an exact algorithm. Without deflation it becomes visible on two-point

functions (see Fig. 4.8) that the inexactness of the standard RHMC algorithm leads to much enlarged

errors and will eventually give wrong results although the Markov chain seems to be stable with respect

to perturbations caused by the deflation.
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N = 1 Wess-Zumino model

Supersymmetry as incorporated in the minimal supersymmetric standard model (MSSM) or extensions

thereof can only be a fundamental symmetry if it is spontaneously broken on the experimentally acces-

sible energy scale with a phase transition at a much higher energies. Guided by this observation there

is need to study supersymmetry breaking phase transitions using non-perturbative tools. To explore

the possibilities provided by lattice regularisations a minimal model is chosen, namely the N = (1, 1)

Wess-Zumino model in two dimensions. Technically, the Wess-Zumino model with N = (1, 1) super-

symmetry is obtained by constraining the fields of the N = (2, 2) model to be real. This amounts to

turning complex scalars into real ones and replacing Dirac fermions with Majorana fermions leading to

a minimal field content with only one bosonic and fermionic degree of freedom.1 Further, at least two

dimensions are necessary to obtain a phase transition. The supersymmetric quantum mechanics will

only reside in one specific phase depending on the highest power of the superpotential (cf. Sec. 2.1)

and is therefore not sufficient to model a phase transition. The physical significance is given via the

N = 2 Wess-Zumino model which provides a dimensionally reduced version of the matter sector

of the MSSM. Finally, since the seminal work by Witten [15] it is known that the index Tr(−1)NF

can vanish for a specific choice of the prepotential and supersymmetry may be broken spontaneously

depending on the couplings of the prepotential for the N = 1 Wess-Zumino model.

The off-shell continuum formulation is given by the action

S =

∫

d2x
1

2

(
(∂µφ)

2 + ψ̄(/∂ + P ′(φ))ψ + 2FP (φ)− F 2
)
, (5.1)

where F and φ denote real scalar fields and ψ is a (real) Majorana spinor with two spinorial compo-

nents. This formulation is invariant under the supersymmetry transformations

δφ = ǭψ, δψ = (/∂φ− F )ǫ, δF = −ǭ /∂ψ. (5.2)

By eliminating the auxiliary field F = P (φ) one arrives at the on-shell action

S =

∫

d2x
1

2

(
(∂µφ)

2 + ψ̄(/∂ + P ′(φ))ψ + P (φ)2
)
. (5.3)

In this work the prepotential P is chosen to be

P (φ) =
µ2
0√
2λ

+

√

λ

2
φ2, (5.4)

so that the classical potential (Fig. 5.1) for the scalar part corresponds to a φ4 theory with Z2 symmetry

(φ→ −φ),
P (φ)2

2
=
µ2
0

2
φ2 +

λ

4
φ4 + const., (5.5)

while the fermions acquire a Yukawa interaction. An analysis of the Witten index [15] reveals one

bosonic and one fermionic ground state that imply Tr(−1)NF = 0. This ground state structure then

1From a practical point of view the absence of gauge fields has the advantage that derivatives can be applied in momen-

tum space to speed up Monte-Carlo simulations considerably.
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allows for a spontaneous supersymmetry breaking. It is expected that for fixed λ > 0 and µ2
0 ≪ 0

the system cannot tunnel between both possible ground states so that supersymmetry is unbroken.

Accordingly, for µ2
0 > 0 both ground state energies are lifted above zero and supersymmetry is broken.

In consequence there will be a supersymmetry breaking phase transition for some µ2
0 < 0 and this

chapter is devoted to the calculation of a corresponding critical coupling.

µ4

0

4λ

−
√

−µ2

0

λ
0

√

−µ2

0

λ

P (φ)2

2

φ

Figure 5.1: The classical bosonic potential

of the Wess-Zumino model given in Eq. (5.5).

There have already been several studies aiming at

analysing and understanding supersymmetry breaking in

this model. By strong coupling computations [96] the oc-

currence of a supersymmetry breaking phase transition was

predicted. Calculations of the ground state energy with

Monte-Carlo methods [97] confirm this expectation. Af-

terwards lower bounds on the ground state energy have

been analysed [98, 99] to obtain a phase diagram of super-

symmetry breaking by working in the Hamiltonian formal-

ism and making a numerical analysis with Green’s func-

tion Monte-Carlo methods. However, the obtained critical

lattice couplings so far are only unrenormalised couplings

corresponding to one specific lattice spacing. Recently an

analysis based on exact renormalisation group methods [100] has been performed [101] where no

supersymmetry breaking is introduced during the renormalisation group flow. Again, the phase dia-

gram has been obtained and supersymmetry breaking is found to coincide with a restoration of the Z2

symmetry in a second order phase transition. A supersymmetric (massive) phase is found for weakly

coupled systems as well as a phase of broken supersymmetry with goldstinos, the massless Goldstone

fermions of the broken supersymmetry2, and bosons whose mass vanishes with growing renormali-

sation group scale.3 But still the critical coupling depends on the chosen regulator which prevents a

direct comparison of numerical values.

In general a naive discretisation of a lattice action has to face the problem of broken supersymmetry

for finite lattice spacing with the need to fine-tune lattice couplings to reach a supersymmetric contin-

uum limit. However, this model has the advantage that the necessary counterterms have been analysed

in lattice perturbation theory [37] and a lattice prescription is given that ensures the supersymmetric

continuum limit (perturbatively). Simulations of the given discretisation (that is based on the Wilson

derivative) have already been performed [103] and a tunnelling between the possible ground states is

found to coincide with the onset of supersymmetry breaking and the appearance of a goldstino. After

all there are some open issues. The breaking of a Z2 symmetry (which is correlated with the restoration

of supersymmetry) has been analysed with a Z2 breaking action.4 Further the given critical coupling is

still regulator dependent and not directly comparable to other methods. For that reason the aim of this

chapter is the non-perturbative determination from first principles of a renormalised critical coupling

in the continuum limit of this model.

2This breaking is not forbidden by the Mermin-Wagner theorem [102] that only applies to bosonic symmetry generators.
3Also the corresponding critical exponents have been determined in [101].
4The Wilson term for the fermionic part of the action will break the Z2 symmetry as analysed in Sec. 3.1.3.
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5.1 Quenched model

Despite the fact that the primary focus lies on the full supersymmetric model it useful to exemplify

the definition of a renormalised critical coupling in the setting of the quenched model where fermionic

contributions are neglected. This becomes especially important because a non-standard discretisation

based on the SLAC derivative is used.

With the prepotential of Eq. (5.4) the quenched model is nothing but the two dimensional φ4 model

with bosonic action

SB =

∫

d2x
1

2

(

(∂µφ)
2 + µ2

0φ
2 +

λ

2
φ4

)

. (5.6)

This model is (classically) invariant under a discrete Z2 symmetry (φ → −φ) which can be broken

dynamically in the full quantum theory [104]. The unbroken phase is defined by 〈φ〉 = 0, whereas in

the broken phase (in the thermodynamic limit) 〈φ〉 6= 0.

φ φ

φ

Figure 5.2: The only divergent Feynman diagram for

the bosonic φ4 model in the Z2 symmetric phase.

In contrast to the full N = 2 Wess-Zumino

model the φ4 model (as well as the full N = 1

Wess-Zumino model) is not finite and there is need

for a renormalisation of couplings. In the Z2 sym-

metric phase the only divergence arises from the

‘leaf’ diagram (see Fig. 5.2) and the model can be

made finite with a mass renormalisation,

SB =

∫

d2x
1

2

(

(∂µφ)
2 + µ2φ2 +

λ

2
φ4 − δµ2 φ2

)

. (5.7)

The (one-loop) relation between the inverse propagators is given in terms of renormalised couplings

by

G−1(p) = p2 + µ2 + Σ(p2), Σ(p2) = 3λAµ2 − δµ2, Aµ2 =

∫
d2p

(2π)2
1

p2 + µ2
(5.8)

and the only (logarithmically) divergent part is expressed in Aµ2 . Therefore all ultraviolet divergences

can be removed by a renormalisation of the mass term5,

δµ2 = 3λAµ2 ⇔ µ2
0 = µ2 − 3λAµ2 . (5.9)

It was explicitly constructed in [104] that this renormalisation prescription will also be sufficient in

the Z2 broken phase. As discussed in [105] a dimensionless renormalised coupling f that is able to

distinguish between broken and unbroken phase is constructed by f = λ
µ2

. By contrast, (naively)

possible definitions of a renormalised coupling that are based on the pole mass or the propagator at

vanishing momentum are not sufficient to distinguish between both phases.

Nevertheless, this renormalisation prescription can only be applied in a given regulator scheme and

continuum results will then follow by removing the ultraviolet regulator.6

5Equivalently this renormalisation can be obtained by a normal ordering of the interaction part in the symmetric phase,

SB =

∫

d2x
1

2

(

(∂µφ)
2 + µ2φ2 +

λ

2
:φ4: µ

)

.

where : . : µ denotes a normal ordering with respect to the mass µ.
6There is no need to introduce an infrared regulator.
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5.1.1 The Z2 phase transition on the lattice

The computation of the critical coupling of the bosonic φ4 model has a long history where several

methods and approximations (e.g. based on the Gaussian effective potential or light-cone quantisation)

have contributed and a recent overview is given together with the most precise Monte-Carlo results

in [106]. The Monte-Carlo results of [106] shall serve as reference values for the discretisation used

here. Therefore a short review of these is in order. The lattice regularisation in [105, 106] is based on

the “canonical” discretisation utilising the forward derivative and a renormalised critical coupling is

computed with high precision. The canonical model is given by

SB =
∑

x

1

2

(
∑

ν

(φx+ν̂ − φx)
2 + µ̂2

0φ
2
x +

λ̂

2
φ4
x

)

(5.10)

with dimensionless lattice parameters λ̂ = λa2 and µ̂2
0 = µ2

0a
2. Since λ acquires no renormalisation

it is used to set the scale. Equivalently λ̂ determines the lattice spacing with λ̂ → 0 in the continuum

limit. The (dimensionless) renormalised coupling is again given by f̂ = λ̂
µ̂2

and the corresponding

µ̂2
0 can be computed via µ̂2

0 = µ̂2 − 3λ̂Aµ̂2 , where Aµ̂2 that enters the normal ordering is given in the

infinite volume limit by the lattice propagator for the forward derivative,

Aµ̂2 = lim
n→∞

n−2
n∑

k1=1

n∑

k1=1

1

µ̂2 + 4 sin2(πk1/n) + 4 sin2(πk2/n)
. (5.11)

Because Aµ̂2 diverges only logarithmically for a→ 0 it follows that µ̂2, µ̂2
0 → 0 in the continuum limit

at fixed f̂ . One may argue that at every fixed λ̂ a second order phase transition appears. However, the

continuum physics at these phase transitions corresponds to an infinite continuum coupling λ and is

therefore only indirectly relevant for the continuum φ4 model under consideration.
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Figure 5.3: Extrapolation of the critical cou-

plings of the bosonic φ4 model to the contin-

uum limit. The shaded region indicates er-

ror bands for the extrapolation using the func-

tional form (5.13). Data points are taken from

[106] with the canonical discretisation. Con-

fidence bands are computed in this work.

At finite lattice spacing (given by fixed λ̂) there will

be a Z2 breaking phase transition and a critical µ̂2
c can be

extracted. The renormalised critical coupling in the con-

tinuum limit is then determined via

fc =

[
λ

µ2

]

crit

= lim
λ̂→0

f̂c with f̂c =
λ̂

µ̂2
c

. (5.12)

The phase transition itself for finite λ̂ can be determined

from the Binder cumulant U = 1− 〈φ̃4〉
3〈φ̃2〉2 , which becomes

independent of the lattice volume at the second order phase

transition point [107].7 The critical coupling has been de-

termined from lattices up to a size of 12002 and was found

to be affected by linear and logarithmic corrections in the

lattice spacing. An extrapolation based on the published

values in [106] for λ̂ ∈ [0.01, 1] to the continuum using a

7Strictly speaking there is still a slight volume dependence such that the large volume extrapolation of the intersection

point for different lattice volumes corresponds to the phase transition.
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Figure 5.4: Binder cumulants at λ̂ = 0.15 for different lattice sizes. The coarse view is given in the left

panel while a close-up view of the critical region is shown in the right panel. From the intersection point

for the largest lattices a critical coupling f̂c =
0.15

0.01325(5) = 11.321(43) is extracted. The shaded region

gives the error band for the infinite volume extrapolation.

functional form

f̂c(λ̂) ≈ fc + aλ̂+ bλ̂ ln λ̂ (5.13)

reveals a renormalised critical coupling in the continuum of fc = 10.81(7) (see Fig. 5.3).

5.1.2 Regulator independence of the renormalised critical coupling

The results of Chapter 2 and 3 imply that a discretisation based on the SLAC derivative gives results

close to the continuum limit and will not break the Z2 symmetry of the full supersymmetric model.

For that reason the SLAC derivative will also be used to simulate the N = 1 Wess-Zumino model. In

contrast to the models considered above it is now necessary to cope with a logarithmic mass renormal-

isation and the renormalised lattice coupling depends on the chosen renormalisation procedure.

λ̂ f̂c

0.02 11.035(76)

0.05 11.112(74)

0.10 11.268(57)

0.15 11.321(43)

0.20 11.386(42)

0.25 11.429(29)

Table 5.1: Renormalised

critical couplings for the

φ4 model as determined

from lattice sizes up

to 2562 with the SLAC

derivative.

To justify the applicability of the SLAC derivative also for the present

case simulations based on the lattice action

S =
∑

x

1

2

(
∑

ν

(∂SLAC
ν φ)2x + µ̂2

0φ
2
x +

λ̂

2
φ4
x

)

(5.14)

have been performed where the mass parameter is still given by µ̂2
0 = µ̂2 −

3λ̂Aµ̂2 . Only now,Aµ̂2 is determined from the propagator based on the SLAC

derivative,

Aµ̂2 = lim
n→∞

(2n)−2

n∑

k1=−n+1

n∑

k2=−n+1

1

µ̂2 + (πk1/n)2 + (πk2/n)2
. (5.15)

Similar to the case of the naive discretisation the crossing of the Binder

cumulant U for different lattice volumes at fixed λ̂ determines the critical µ̂2

and therefore the critical coupling f̂c. This procedure is exemplified for λ̂ = 0.15 in Fig. 5.4 where

lattice sizes up to 2562 were used. As an outcome of these calculations critical couplings have been

determined for six different λ̂ (see Tab. 5.1). Again, an extrapolation to the continuum limit λ̂→ 0 has

been performed according to (5.13) (see Fig. 5.5) and gives the renormalised critical coupling in the

continuum of fc = 10.92(13) which is in complete agreement with the reference value fc = 10.81(7)
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of [106]. This proves that even with the non-local SLAC derivative the lattice φ4 model possesses

the correct continuum limit. Further the definition of a renormalised critical continuum coupling is

independent of the chosen lattice regulator.

5.2 Full dynamical model

By inclusion of dynamical fermions the model is now given in the continuum by the action (5.3).

Irrespective of the chosen prepotential P (φ) the action possesses one (spinorial) supersymmetry. The

dynamical breaking of this supersymmetry for the prepotential defined in Eq. (5.4) will be analysed in

the following.

5.2.1 Renormalised lattice parameters

Using a discretisation based on the SLAC derivative the lattice action is given by a direct discretisation

of the corresponding continuum action,

S =
∑

x

1

2

(∑

ν

(∂SLAC
ν φ)2x + µ̂2

0φ
2
x +

λ̂

2
φ4
x +

∑

y

ψT

x C(/∂
SLAC

xy +
√

2λ̂φxδxy)
︸ ︷︷ ︸

=M [φ]

ψy

)

. (5.16)

Here, the representation of the Clifford algebra is given by

γ0 =

(

1 0

0 −1

)

, γ1 =

(

0 −1

−1 0

)

, C =

(

0 −1

1 0

)

(5.17)

and turns the fermion matrix M into a real and antisymmetric matrix.
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Figure 5.5: Extrapolation of the critical cou-

plings of the bosonic φ4 model based on the

SLAC derivative to the continuum limit ac-

cording to the functional form (5.13).

In [37] a lattice model of the N = 1 Wess-Zumino

model has been analysed that is built upon the symmet-

ric derivative. To avoid the species doubling problem a

Wilson mass term has been added to the prepotential sim-

ilar to the case of the N = 2 Wess-Zumino model in

Chapter 3. With properly renormalised coupling param-

eter (as described below) is was shown that the supersym-

metric continuum limit is reached. Although this restora-

tion was only analysed for a discretisation based on Wilson

fermions the whole line of argument is directly applicable

for the SLAC derivative. This follows from the fact that the

SLAC derivative for two dimensional models with Yukawa

interaction needs no non-local or non-covariant countert-

erms to achieve a local continuum limit and the lattice de-

gree of divergence of Feynman diagrams will simply be the degree of divergence of the corresponding

continuum diagram [40, 41, 108].

The analysis of divergent diagrams in [37] starts from the Z2 broken phase and shows that a loga-

rithmic renormalisation of the bare mass parameter is necessary to cancel divergent contributions,

µ̂2
0 = µ̂2 +

λ̂

4π
(ln(µ̂2) + c), (5.18)
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Figure 5.6: The divergent Feynman diagrams for the full N = 1 Wess-Zumino model in the Z2 symmet-

ric phase.

where c may be any constant to fix the renormalisation scale. In analogy to the quenched model this

constant is now fixed to obtain

µ̂2
0 = µ̂2 − 1λ̂Aµ̂2 (5.19)

with Aµ̂2 defined for the SLAC derivative in Eq. (5.15). In contrast to the quenched model only a

factor “1” in front of the divergent part is needed that arises from a partial cancellation of the Feynman

diagrams shown in Fig. 5.6. Compared to the N = 2 Wess-Zumino model there is no complete can-

cellation but a divergence remains. Again the given renormalisation procedure amounts to a normal

ordering of interaction terms with a mass parameter µ̂ in the Z2 restored phase. Eventually a renor-

malised coupling is defined in the continuum limit in the same manner as in the bosonic case according

to Eq. (5.12), but now with µ̂2
0 given through Eq. (5.19).

5.2.2 The Pfaffian

The field content of the N = 1 Wess-Zumino model includes Majorana fermions so that the fermionic

part of the path integral may be integrated out to yield

Z =

∫

DφDψ e−SB[ψ]−ψTM [φ]ψ =

∫

Dφ PfM [φ] e−SB[φ]. (5.20)

where M [φ] is an antisymmetric matrix.8 The Pfaffian is (up to a sign) the square root of the determi-

nant, (PfM)2 = detM , and follows from Grassmann integration,

PfM =
1

2NN !

∑

σ∈S2N

sign(σ)

N∏

i=1

Mσ2i−1,σ2i . (5.21)

In practice the Pfaffian is computed as described in [110] with complexity O(N3). Similar to the case

of Dirac fermions in Sec. 4.1 this Pfaffian may have a fluctuating sign and Monte-Carlo simulations

are carried out with the effective action

Seff = SB − ln |PfM | = SB − 1

2
ln detM ⇒ Z =

∫

Dφ e−Seff[φ]. (5.22)

Nevertheless, the sign of the Pfaffian must be taken into account by reweighting of measurements.

With the chosen representation of the Clifford algebra the fermion matrix is given by

M =

(

∂SLAC
1 ∂SLAC

0 − P ′

∂SLAC
0 + P ′ −∂SLAC

1

)

, (5.23)

8In general, as it is the case e.g. for supersymmetric Yang-Mills theories [109], the matrix M is not necessarily real.

However, it is still antisymmetric but needs not to be anti-Hermitian.
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and by using general identities for the Pfaffian of an antisymmetric matrix A ∈ R2n×2n and general

matrix B ∈ R2n×2n,

Pf(A) = (−)n Pf(AT), Pf(BABT) = det(B) Pf(A), (5.24)

transformation properties under the Z2 symmetry φ → −φ of the bosonic potential P 2/2 can be

derived.

For the general case of a derivative with antisymmetric matrix representation (e.g. for the SLAC

derivative) on a lattice with N points

Pf

(

∂1 ∂0 − P ′

∂0 + P ′ −∂1

)

transpose
= (−)N Pf

(

−∂1 −∂0 + P ′

−∂0 − P ′ ∂1

)







0 −1

1 0







= (−)N Pf

(

∂1 ∂0 + P ′

∂0 − P ′ −∂1

)

(5.25)

holds true. Because under the Z2 symmetry P ′ → −P ′ the Pfaffian is not changed on even lattice

volumes and it is a symmetry of the full model. However, for an odd number of lattice points the

Pfaffian changes its sign under P ′ → −P ′. This (at first sight) inconsistent behaviour where symmetry

properties depend on the number of lattice points can be resolved by considering the SLAC derivative.

For the SLAC derivative the number of lattice points is directly related to the boundary conditions

for the fields. By imposing the natural condition that the spectrum of the lattice derivative operator

lies symmetric around the real axis in momentum space an even number of lattice points must be

used for antiperiodic boundary conditions and an odd number for periodic ones.9 In consequence the

Pfaffian will change its sign under P ′ → −P ′ for periodic boundary conditions. Then every field

configuration with positive Pfaffian is cancelled in the path integral by a configuration with negative

Pfaffian and same bosonic action. This directly implies a vanishing Witten index, which is nothing

but the path integral with periodic fermionic boundary conditions. For antiperiodic fermions in the

temporal direction the Pfaffian keeps its sign under the Z2 symmetry in accordance with the positive

definite partition function for the thermal ensemble.

If the lattice derivative would be derived from Wilson fermions the situation changes considerably.

In that case the derivative has still an antisymmetric matrix representation but the contribution of the

Wilson term leads to

Pf

(

∂1 ∂0 − P ′ − r
2
∆

∂0 + P ′ + r
2
∆ −∂1

)

transp.
= (−)N Pf

(

−∂1 −∂0 + P ′ + r
2
∆

−∂0 − P ′ − r
2
∆ ∂1

)







0 −1

1 0







= (−)N Pf

(

∂1 ∂0 + P ′ + r
2
∆

∂0 − P ′ − r
2
∆ −∂1

)

.

(5.26)

Therefore changing the sign of P ′ can in general only preserve the modulus of the Pfaffian if the Wilson

9Nevertheless, the squared SLAC derivative can be defined unambiguously for periodic fields with an even number of

lattice points.
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Figure 5.7: Probability density of the volume averaged bosonic field for periodic boundary conditions

on a 9 × 9 lattice (left panel) and thermal boundary conditions on an 8 × 9 lattice (right panel) at

coupling f̂ = 100 and λ̂ = 0.1. The histograms are computed (with a statistics of 6 ·106 configurations)

separately for fixed sign PfM .

parameter r changes its sign, too. Since the lattice theory is only defined with fixed r the Z2 symmetry

will be broken by the Wilson term, similar to the N = 2 Wess-Zumino model. For that reason the

discretisation based on the SLAC derivative extends the works [37, 103, 111] by implementing the Z2

symmetry of the continuum model on the lattice.

5.2.3 Symmetries, boundary conditions, and ground states

The static properties under the Z2 symmetry that depend on the boundary conditions for the dynamical

fermions can be directly related to the ground state structure of the full model. In the case of broken

Z2 symmetry one ground state is naturally located in the range of positive φ̃ = N−1
∑

x φx while

the other one has its support at negative φ̃. The analysis of signPfM reveals that in exactly one of

these states the sign changes under changing the boundary conditions. By the change in fermionic

boundary conditions the partition function will acquire an insertion of (−1)NF which exactly implies

the existence of one bosonic and one fermionic ground state.

As this is only a static analysis these relations have also been checked in the dynamical ensemble

with (small scale) lattice simulations based on periodic and antiperiodic temporal boundary conditions

for the fermions at couplings λ̂ = 0.1 and f̂ = 100 (see Fig. 5.7). The different boundary conditions

at finite temperature imply that the functional forms of both histograms need not necessarily coincide.

However, all configurations with φ̃ > 0 keep signPfM under a change of fermionic boundary condi-

tions, such that the bosonic ground state is located at φ̃ > 0, while the fermionic has a support φ̃ < 0.

These relations have been checked at further couplings f̂ ∈ [10, 100] and sign φ̃ · signPfM > 0 is

found on every configuration. Similar to the broken supersymmetric quantum mechanics in Chapter 2

it is necessary to use thermal boundary conditions to have a well defined measure.10

This choice of thermal boundary conditions has further implications for the analysis of supersym-

metry breaking. Apart from the explicit supersymmetry breaking introduced in the lattice theory by

the finite lattice spacing and finite volume there is a further explicit breaking introduced by the finite

temperature. For that reason an analysis of the spontaneous supersymmetry breaking in the continuum

theory will involve the limit of infinite volume (“thermodynamic limit”), vanishing temperature, and

10The Pfaffian is found to be strictly positive for finite temperature simulations with several couplings on lattices up to

20×21. However, for even larger lattices the measurement of the Pfaffian is extremely time consuming and a representative

statistics has not been generated.
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Figure 5.8: Binder cumulants for thermal (left panel) and supersymmetry preserving (right panel)

boundary conditions determined at fixed λ̂ = 0.3 and varying µ̂2 (with a statistic of 104 configurations).

The shaded area denotes the error bounds of the critical µ̂2.

vanishing lattice spacing of the lattice theory.

5.2.4 Z2 breaking

The numerical survey of the phase diagram starts in analogy to the quenched case with the determina-

tion of the phase transition associated to the Z2 breaking. The binder cumulant U is thus computed for

different volumes at fixed lattice spacing with thermal boundary conditions. However, a direct compar-

ison to results with periodic boundary conditions (without reweighting) turns out to be insightful. For

λ̂ = 0.3 the intersection point of the Binder cumulants is independent of the chosen boundary condi-

tions (see Fig. 5.8). This behaviour is explained by the ground state structure at infinite lattice volume.

In the Z2 broken phase (for small µ̂2) the system resides in only one ground state with fixed signPfM .

In that case periodic boundary conditions are imposable and expectation values should not be affected

from a change in boundary conditions. For that reason it is quite safe to approach the phase transition

from the Z2 broken region and extract a critical coupling from a crossing of Binder cumulants at the

edge of the phase. Nevertheless, reweighted expectation values are undefined for periodic boundary

conditions in the Z2 symmetric phase and the unreweighted values may only be used to guide the eye

over the phase transition point.

The phase transition has also been determined for two further lattice spacings with thermal bound-

ary conditions (see Fig. 5.9) and the results for every λ̂ are in full agreement with a critical coupling

of fc = 21.1(1.1). At this point the achieved numerical precision is not sufficient to resolve any

running of the critical coupling with the finite lattice spacing mainly because of the accessible lattice

sizes. Therefore the determined critical couplings are taken as the continuum critical coupling of the

Z2 breaking with a broken phase for f > fc and Z2 restoration for f < fc.

5.2.5 Supersymmetry breaking

As found in Sec. 5.2.3 the N = 1 Wess-Zumino model with the chosen prepotential possesses one

bosonic and one fermionic ground state which are related through the Z2 symmetry. Therefore the

spontaneously broken Z2 symmetry goes at hand with one definite ground state which will be the

supersymmetric one because its partner state is not present in the physical spectrum at infinite volume.

On the other hand, if Z2 is unbroken there need not be a supersymmetric ground state. So in contrast

to the supersymmetric quantum mechanics a restored Z2 symmetry does not necessarily exclude a

supersymmetric ground state and it is necessary to study supersymmetry breaking on its own.
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Figure 5.9: Binder cumulants for thermal boundary conditions determined at fixed λ̂ = 0.2 (left panel)

and λ̂ = 0.4 (right panel) with a critical µ̂2 indicated by the shaded area.
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Figure 5.10: Prepotential 〈P̂〉 at fixed λ̂ = 0.1 and Ns = 35 for the Z2 broken phase with f̂ = 100 (left

panel) and the Z2 symmetric phase with f = 10 (right panel).

The direct way to study supersymmetry breaking is given by Ward identities that are related to the

supersymmetry transformation. If there is one broken Ward identity then supersymmetry is broken.

The simplest Ward identity which is inherently related to the ground state energy is constructed from

the transformation of the fermionic field,

〈

V −1

∫

d2x δψ

〉

= ǫ

〈

V −1

∫

d2xP

〉

= 0 ⇔ 〈P〉 = 0

with 〈P〉 = 〈P̂〉/
√

λ̂, P̂ = N−1
∑

x

(
µ̂2
0

√

2λ̂
+

√

λ̂

2
φ2

)

. (5.27)

In that way the dimensionless prepotential P serves as an indicator for supersymmetry breaking. How-

ever, supersymmetry in the chosen discretisation is explicitly broken by the finite lattice spacing, finite

temperature, and finite volume. Therefore dynamical supersymmetry breaking can only be examined

the limit of infinite lattice volume, N → ∞, in combination with the continuum limit a→ 0.

The first limit to study here is the limit of vanishing temperature at fixed lattice spacing (λ̂ = 0.1)

and fixed spatial volume (Ns = 35). Simulations have been performed at f̂ = 100 (Z2 unbroken) and

f̂ = 10 (Z2 broken) and the results indicate (see Fig. 5.10) that for Nt & Ns the finite temperature

corrections become negligible for both phases. Therefore, in the following, lattice geometries are

chosen to be nearly quadratic with Nt = Ns ± 1. But already at this point the prepotential is one order

of magnitude larger in the Z2 symmetric phase than in the Z2 broken phase.
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Figure 5.11: Extrapolation of 〈P̂〉 to infinite volume at fixed λ̂ and couplings f̂ = 100 (left panel) and

f̂ = 10 (right panel). Depending on the lattice size from 104 up to 5 ·105 configurations have been used.
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Figure 5.12: For the Z2 broken case (f = 100, left panel) the Ward identity is fulfilled with 〈P〉 =
−0.0012(19). For restored Z2 symmetry at f = 10 (right panel) 〈P〉 = 0.0444(10) is obtained.

Now that the finite temperature effects are under control the infinite volume limit can be carried

out. Here, the infinite volume limit is taken before the continuum limit to finally work out the effect of

the finite lattice spacing. To accomplish an extrapolation the data at fixed finite lattice spacing is fitted

to a functional form

〈P̂〉(Ns) = A +BN−1
s + CN−2

s . (5.28)

and extrapolated to Ns → ∞. For most of the couplings f̂ lattices with Ns ∈ {25, 27, 31, 35, 43, 63}
are used. The two fine grained examples for λ̂ = 0.1 and f̂ ∈ {10, 100} in Fig. 5.11 illustrate the

validity of the chosen extrapolation formula.

The last limit to take is the continuum limit. In the simplest case corrections are of O(a) and a

linear extrapolation to the continuum limit is possible. The extrapolation is performed at each coupling

f ∈ {10, 12.5, 16, 20, 25, 40, 100} and is shown in the limiting cases of the present study, at f = 10

and f = 100, in Fig. 5.12 where the validity of a linear extrapolation is visible. In these cases a

complete coincidence between restored Z2 symmetry and spontaneously broken supersymmetry is

present. All continuum extrapolated Ward identities in the considered coupling range are eventually

shown in Fig. 5.13 and listed in Tab. 5.2.

The calculation of the dimensionless prepotential that serves as Ward identity by Eq. (5.27) has

shown that after taking all necessary limiting procedures supersymmetry is broken whenever the Z2

symmetry is restored. Nevertheless, one inconsistency shows up for f slightly above the critical cou-

pling of Z2 breaking (approximately f ∈ [fc, 27]). In that region the Z2 symmetry is broken while
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the Ward identity is not fulfilled. This is in contradiction with the fact that a broken Z2 symmetry

strictly implies a restored supersymmetry after all limits have been taken. Thus an analysis of possible

systematic errors is in order.
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Figure 5.13: Dimensionless prepotential

P over inverse coupling f−1. The region

shaded in red indicates the Z2 restored cou-

pling range where supersymmetry is broken

while the region shaded in gray gives the er-

ror bound for the Z2 phase transition.

Firstly the used extrapolation formulae for the specific

limits may not be sufficient in every case. Secondly, close

to the critical coupling at fixed λ̂ where a second order

phase transition (related to an infinite continuum λ) with

diverging correlation length occurs, the considered lattice

volumes may still be too small to be in the applicability

range for an infinite volume extrapolation with Eq. (5.28).

Thirdly the ordering of limits may be of importance. As it

has been found in the supersymmetric quantum mechanics

and the N = 2 Wess-Zumino model the sign problem that

arises from the fermionic part of the action becomes worse

for larger volumes at fixed lattice spacing and is weakened

in the continuum limit at fixed physical volume. Although

the sign problem is completely absent for small lattices

signPfM has not been computed for the larger lattices

due to the accessible computer power and the numerical

complexity of O(N3). Therefore sign problems cannot be excluded for large lattice volumes and an

extrapolation to infinite volume before the continuum limit has been taken may turn out to be insuffi-

cient if no reweighting with signPfM is used.

f 〈P〉
100 −0.0012(19)

40 −0.0039(36)

25 0.0032(11)

20 0.0093(33)

16 0.0150(28)

12.5 0.0277(27)

10 0.0444(10)

Table 5.2: Dimensionless

prepotential P after extrap-

olation to the limit of van-

ishing temperature, infinite

volume, and vanishing lat-

tice spacing (in given or-

der).

Even with taking these possible systematic errors into account a super-

symmetry breaking phase transition is confirmed where the corresponding

critical coupling coincides with that of the Z2 phase transition. Neverthe-

less, the Binder cumulant technique for the Z2 symmetry breaking provides

a more reliable way to determine the critical coupling because the extrapo-

lation does not directly involve (possibly wrong) extrapolation formulae.

5.2.6 Masses

Ward identities are a fundamental indicator for the restoration of supersym-

metry. Since the phase structure is settled further physical observables are

of interest. Amongst them masses of particles, or the energy difference

between the ground state and the first excited state, to be specific, are the

most fundamental ones as has already been seen in the previous models.

Here, one expects a fundamentally different behaviour of the masses in the

distinct phases [101]. In the supersymmetric phase a degeneracy between the (finite) bosonic and

fermionic mass is expected, similar to the N = 2 Wess-Zumino model. For broken supersymmetry

a goldstino should arise as massless fermionic mode while the physical spacetime volume serves as a

regulator for the bosonic mass, which itself eventually vanishes in the infinite volume limit.

The analysis starts with the Z2 broken phase at a fixed coupling of f = 100. In this phase it is

necessary to project the (finite volume) lattice simulations onto one ground state to mimic the sup-
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Figure 5.14: Connected bosonic (left panel) and fermionic (right panel) correlator in the Z2 broken

phase (f = 100) at fixed physical volume L
√
λ = 39.8 for different lattice spacings.

Ns = 49 Ns = 63 Ns = 81 cont. Ns = 49 Ns = 63 Ns = 81 cont.

0.379(2) 0.379(4) 0.383(4) 0.389(10) L
√
λ = 19.9 0.300(1) 0.294(2) 0.291(2) 0.277(4)

0.295(4) 0.293(5) 0.293(5) 0.289(12) L
√
λ = 28.2 0.276(1) 0.263(2) 0.262(2) 0.237(5)

0.267(6) 0.262(8) 0.261(7) 0.251(20) L
√
λ = 34.5 0.270(1) 0.261(2) 0.252(2) 0.225(5)

0.238(10) 0.228(12) 0.231(10) 0.218(30) L
√
λ = 39.8 0.270(1) 0.254(3) 0.245(2) 0.204(6)

Table 5.3: Bosonic (left half) and fermionic (right half) masses mB/F/
√
λ for fixed physical volumes

L
√
λ and varying lattice spacing together with the continuum extrapolation at coupling f = 100.

pression of tunnelling events in the infinite volume limit.11 This is the same technique as analysed in

Sec. 3.2.7 for the N = 2 Wess-Zumino model and it is absolutely necessary to finally extrapolate the

obtained masses to the infinite volume limit. Since a projection to one ground state is performed it

is not required to stick to thermal boundary conditions as discussed in Sec. 5.2.4. Thus, in order to

remove the supersymmetry breaking introduced by a finite temperature, periodic boundary conditions

are used to obtain correlators and masses in the Z2 broken phase. Furthermore only square lattices are

investigated to simplify the comparison of different lattice spacings and physical volumes.

Masses are extracted from the correlators

CB(t) = N−2
s

∑

x,x′

〈
φ(t,x)φ(0,x′)

〉
and CF(t) = N−2

s

∑

α,x,x′

〈
ψ̄α,(t,x)ψα,(0,x′)

〉
(5.29)

using a cosh fit in a range t ∈ [L/3, 2L/3]. It is obvious that the correlators at fixed physical volume

depend on the lattice spacing (in Fig. 5.14 the fermionic correlator shows larger discretisation errors)

and extracted masses must therefore be extrapolated to the continuum limit. The continuum value is

reached via a linear extrapolation that has already been used successfully for the continuum extrap-

olation of results based on the SLAC derivative in an unbroken supersymmetric quantum mechanics

in [41]. The results based on Ns ∈ {49, 63, 81} for the bosonic and fermionic mass at four different

physical volumes are provided together with the continuum extrapolation in Tab. 5.3 and are shown in

Fig. 5.15 (left panel) for finite lattice spacings. Finally an infinite volume extrapolation of the contin-

uum results is necessary. Although one finds that the bosonic masses approach the fermionic partners

at larger volumes, as predicted by supersymmetry, their statistical accuracy is not sufficient for a reli-

able extrapolation. Therefore only the fermionic masses are extrapolated linearly (see Fig. 5.15, right

panel) to the infinite volume limit, resulting in mF/
√
λ = 0.14(1). Unfortunately, the bosonic mass

11Here the configurations are projected without loss of generality to the bosonic ground state.
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Figure 5.15: Left panel: Masses at finite lattice spacing at coupling f = 100. Right panel: Continuum

extrapolated masses together with the error bounds of an extrapolation of the fermionic mass to the

infinite volume limit (shaded area). 106 configurations have been used for each data point.

can only be assumed to take the same limit. Eventually a note concerning the finiteness of the mass

is in order at this point. The breaking of the discrete Z2 symmetry does not imply the existence of

Goldstone bosons and a finiteness of the mass is not excluded. In contrast, for a restored Z2 symmetry

there will be a breaking of the continuous supersymmetry and it is expected to observe goldstinos.

The analysis of masses is therefore continued in the phase of broken supersymmetry where the

Z2 symmetry is restored. In this phase it is unavoidable to use thermal boundary conditions since

bosonic and fermionic ground state participate equally well in the path integral with unsuppressed

tunnelling even at infinite volume. Goldstinos will, similar to the broken supersymmetric quantum

mechanics, show up as massless modes in C ′
F(t) = N−2

s

∑

α,x,x′

〈
ψ̄1,(t,x)ψ1,(0,x′) − ψ̄2,(t,x)ψ2,(0,x′)

〉
, the

spinor component combination that yields a cosh form for thermal boundary conditions. At f̂ = 10 the

correlator has been computed at varying physical volume with fixed lattice size and for fixed physical

volume with varying lattice spacing (see Fig. 5.16).12 A constant part of the correlator is clearly visible

and independent of the physical volume or lattice spacing. This is an unambiguous sign of a goldstino.

To complete the physical picture bosonic masses are calculated. These are expected to vanish in

the infinite volume limit as predicted from functional methods in [101]. Again, the connected bosonic

12The fluctuations showing up in the correlator can be traced back to the non-locality of the SLAC derivative. They will

decrease in the continuum limit, as visible in Fig. 5.16 (right panel).
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√
λ = 44.5 (right panel).

For symmetry reasons only the t/L < 0.5 range is shown.
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√
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panel: Bosonic mass of the first excited state on 64 × 63 lattices and the infinite volume extrapolation

(shaded area) for f = 10.

correlator at f = 10 is computed and it is found to be composed of a part with nearly vanishing mass,

corresponding to the first excited state, and a part that arises from higher excited states (see Fig. 5.17,

left panel).13 The masses of the first excited state are now extrapolated (linearly) to infinite volume (see

Fig. 5.17, right panel). Here, only constant lattice sizes N = 64× 63 are used and the continuum limit

is not carried out. However, it has been checked for L
√
λ = 44.5 on lattice sizes N = 80 × 81 and

N = 108 × 105 that the discretisation errors are still below the statistical errors. The infinite volume

extrapolation is in agreement with mB ∝ L−1 with an extrapolated value of mB/
√
λ = −0.002(10),

i.e. the bosonic mass vanishes after the infrared regulator is removed coinciding with [101].

5.3 Conclusions

The analysis of the N = (1, 1) Wess-Zumino model in two dimensions aimed at observing and under-

standing dynamical supersymmetry breaking from first principles. A lattice regularisation based on the

SLAC derivative is used and the choice of this regularisation is justified utilising the quenched model

where a complete agreement of the obtained critical coupling with the reference value [106] is found.

With this discretisation the Z2 symmetry breaking is analysed and a renormalised continuum cou-

pling is defined. For the first time a regulator independent critical coupling is determined from lattice

simulations. From the computation of a Ward identity a complete coincidence between the restoration

of Z2 symmetry and the dynamical breaking of supersymmetry is obtained. The computation of masses

in the continuum limit for different physical volumes completes the analysis and agrees with the pic-

ture of a finite and equal bosonic and fermionic mass in the supersymmetric phase and the occurrence

of a massless goldstino for broken supersymmetry.

In future works it may be checked on the Ward identities by taking the infinite volume limit after

the continuum limit has been carried out to suppress possible systematic errors arising from the sign

problem. Masses of higher excited states could be within reach by using improved correlators. Finally

a completely independent calculation with the presented techniques based on another discretisation is

desirable, where a formulation based on Wilson fermions [37] is again a natural choice. However, in

that case one must ensure that a spontaneous breaking of the Z2 symmetry is not influenced by the

explicit Z2 symmetry breaking induced by the Wilson mass term.

13The exponential decay of higher excited states is also visible for t
√
λ < 10 in the fermionic correlator, cf. Fig. 5.16.
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Nonlinear sigma models

Nonlinear sigma models in two dimensions have long been used as testing ground for strongly coupled

gauge theories [42, 112]. They are scale invariant on the classical level and asymptotically free at

the quantum level. The ubiquitous CPN models possess regular instanton solutions, the topological

charges of which yield lower BPS-bounds on the action, they have a chiral anomaly when coupled

to fermions, generate a dynamical mass by non-perturbative effects at zero temperature and a thermal

mass ∝ g2T at finite temperature. They have numerous interesting applications to condensed matter

physics, e.g. (anti)ferromagnetism, Hall effect, Kondo effect (for a review see [113]), and have also

been used to study the sphaleron induced fermion-number violation at high temperature [114].

Supersymmetric nonlinear sigma models with CPN and SN target space have been introduced

as supersymmetric extension of the corresponding bosonic models [115–117] with U(N + 1) and

O(N + 1), respectively, target space symmetry.1 The supersymmetric O(N) sigma models are invari-

ant under one supersymmetry. CPN spaces admit a Kähler structure such that the two dimensional

CPN models admit a supersymmetric extension with two supersymmetries. Additionally the O(3)

and CP1 model are completely equivalent so that even for S2 target space two supersymmetries are

present. For both classes of target spaces it was analysed in [15] that these models are free of dynami-

cal supersymmetry breaking. E.g. for the O(3) model there are two bosonic ground states that imply a

non-vanishing Witten index which ensures a zero energy ground state invariant under supersymmetry.

The scope of this chapter is twofold. In the first half the topological properties of bosonic CPN

sigma models with twisted boundary conditions are investigated. Zero modes of minimally coupled and

supersymmetric fermions in the background of instantons are constructed. The second half is devoted

to the analysis of the supersymmetric O(3) model on the lattice. Basic concepts are introduced in the

context of the quenched model. Eventually a target space invariant lattice formulation of the full model

based on the SLAC derivative is simulated and supersymmetry restoration is discussed.

6.1 Instantons and fermionic zero modes in twisted CPN models

In this section CPN models are considered at finite temperature, i.e. Euclidean models with imaginary

time having period β = 1/kBT . These models possess instanton solutions with finite action and the

dimension of the moduli space in a given instanton sector depends on the topology of the Euclidean

spacetime. For example, on the two-torus the charge-k instantons of CPN depend on as many col-

lective parameters as the instantons of CPN+1 with one charge less [118]. For the present analytical

investigations space is not compactified such that spacetime is a cylinder.

For suitable field variables the selfduality equation for CPN instantons reduces to Cauchy-Riemann

conditions such that all instantons are known explicitly for the plane, cylinder, and torus. On the plane

they are given by rational functions of the complex coordinate z and on the cylinder by suitable periodic

generalisations thereof, see below.

In [119] the twisted O(3) model is introduced (which is equivalent to the CP1 model) and it is

shown that generically the unit charged instantons in this model dissociate into two fractional charged

constituents, sometimes called ‘instanton quarks’. Again there is a close analogy to the correspond-

ing situation in Yang-Mills theories, where instantons with nontrivial holonomy along the compact

1Interestingly, the common naming scheme denotes CPN models by their target space butO(N) models by their global

symmetry.
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direction of a four dimensional cylinder possess magnetic monopoles as constituents [120–123].

Here, [119] will be extended in several directions. First the k(N+1) constituents of CPN instantons

with charge k and twisted boundary conditions are constructed and their positions, sizes, and fractional

charges will be related to the collective parameters of the instantons. Then, the zero modes of the Dirac

operator will be calculated and analysed for minimally coupled fermions with quasi-periodic boundary

conditions in the background of the twisted instantons. Similar to the case of four dimensional Yang-

Mills theories with 1 (or 2) compact dimensions [124–126] these zero modes can be used as tracers for

the instanton constituents; they are localised to the latter, to which constituent depends on the boundary

condition. The Dirac operator for the supersymmetric extension of the CPN models is given by the

linearised field equation for the fermions. Also the zero modes of this operator will be calculated.

The analytic studies will be supplemented by numerical simulations. By standard lattice cooling

techniques instantons and their constituents can be extracted from a given (thermalised) configuration.2

Furthermore the zero modes of the overlap Dirac operator are calculated and analysed on partially

cooled configurations.

6.1.1 The CPN model in the continuum and on the lattice

The two dimensional CPN model [133, 134] can be formulated in terms of a complex (N + 1)-vector

u = (u0, . . . , uN)
T subject to the constraint u†u = 1. The Euclidean action is given by

S =
2

g2

∫

d2x (Dµu)
†Dµu, Dµ = ∂µ − iAµ. (6.1)

It is invariant under local U(1) gauge transformations

uj(x) 7→ eiλ(x)uj(x), Aµ(x) 7→ Aµ(x) + ∂µλ(x), (6.2)

as well as global transformations

uj(x) 7→ Ujlul(x) (6.3)

with a constant matrix U ∈ U(N + 1). The gauge field Aµ can be eliminated from the action by using

its algebraic equation of motion,

Aµ = −iu†∂µu. (6.4)

The integer-valued instanton number,

Q =

∫

d2x q(x) with q(x) =
1

2π
ǫµν∂µAν(x), (6.5)

can be interpreted as the quantised magnetic flux in a fictitious third dimension. At infinity u must

approach a pure gauge, u(x) → eiλ(x)c and Q is just the winding number of the map x → eiλ(x) at

infinity, an element of the first homotopy group of U(1).

Configurations minimising the action in S ≥ 4π|Q|/g2 are called (anti-)instantons. They fulfil first

2How the corresponding instanton constituents in Yang-Mills theories emerge in the process of cooling/smearing has

been studied in [127–132].
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order self-duality equations. In homogeneous coordinates vj with

uj =
vj
|v| , j = 0, . . . , N, (6.6)

the self-duality equations read

∂µvj = ∓iǫµν∂νvj, (6.7)

which simply are Cauchy-Riemann conditions with respect to the complex coordinate z = x1 + ix0.

The most general instanton solution with instanton number Q = k ∈ N can thus be written with

{vj(z)}, a set of polynomials of z with no common root and maximum degree k. The topological

charge density of an instanton configuration then reads

q(x) =
1

4π
∆ ln |v(z)|2 . (6.8)

Lattice formulation

For the bosonic model the lattice regularisation can be obtained as described in [135, 136]. After

introducing the matrix-valued gauge invariant field

P (x) = u(x)u†(x), (6.9)

which projects onto the one dimensional subspace spanned by u, one finds

tr [∂µP ∂µP ] = 2∂µu
†∂µu+ 2

(
u†∂µu

)2
= g2L. (6.10)

This equation, valid for the model defined on a continuous spacetime, is discretised naively with the

forward derivative, ∂µP 7→ Px+µ̂ − Px, such that

tr [∂µP ∂µP ] 7→ 2d− 2
∑

µ

tr [PxPx+µ̂] . (6.11)

Therefore, the action, up to an irrelevant additive constant, takes the form

S = − 2

g2

∑

x,µ

tr [PxPx+µ̂] = − 2

g2

∑

x,µ

∣
∣u†xux+µ̂

∣
∣
2
. (6.12)

The simulations of the lattice models have been performed with the help of an overrelaxation algo-

rithm [136]. In addition, to investigate the topological properties, the lattice configurations have been

cooled [137]. For a given configuration one cooling step consists of minimising the action locally on

a randomly chosen site x. This is achieved by constructing Qx =
∑

µ(Px+µ̂ + Px−µ̂) and replacing ux

by the normalised eigenvector corresponding to the largest eigenvalue of Qx. A cooling sweep corre-

sponds to one cooling step per lattice site on average. Using this procedure the instanton constituents

naturally emerge from the locally fluctuating fields.

For the topological charge on the lattice the geometric definition of [138] is used that leads to an

integer-valued instanton number. This definition and the chosen lattice action are sufficient for the

analysis of global topological properties in the vicinity of classical configurations. Thus, results are



68 CHAPTER 6. NONLINEAR SIGMA MODELS

0

0

0

0

11

22
44

66

−2−2
−4−4

−6−6

0

0

0

0

11

22
44

66

−2−2
−4−4

−6−6

0

0

0

0

11

22
44

66

−2−2
−4−4

−6−6

0

0

0

0

11

22
44

66

−2−2
−4−4

−6−6

0

0

0

0

11

22
44

66

−2−2
−4−4

−6−6

0

0

0

0
0.250.25

0.50.5

−0.25−0.25
−0.5−0.5

11

ln q

x1

x0

Figure 6.1: Logarithm of the topological density for the 1-instanton solution of the CP2 model (see

(6.8) and (6.20)) with symmetric constituents, µ1 = µ2 − µ1 = 1 − µ2 = 1/3 (cut off below e−5). The

parameters λi are chosen such that the constituents are localised according to (6.23) from left to right

at (a1, a2, a3) = (−5, 0, 5), (−5, 1, 4), (−5, 7,−2) (first line) and (−1, 0.5, 0.5), (0, 0, 0), (3,−1,−2)
(second line). Note that the x1-range has been changed in the lower right panel.

not affected by the improper scaling behaviour of the dynamical CPN models with N ≤ 2 [139].

6.1.2 Instantons at finite temperature

For a quantum system at inverse temperature β one identifies z ∼ z + iβ. Since β is the only length

scale in the problem all lengths are measured in units of β. In particular the coordinates become

dimensionless, z ∼ z + i is identified. Periodic k-instanton solutions (‘calorons’) are then given

by [140, 141]

vper(z) = b(0) + b(1)e2πz + · · ·+ b(k)e2πkz. (6.13)

By a global U(N + 1) symmetry transformation one can rotate vper such that the constant (and per

assumption non-vanishing) vector b(k) ∈ CN+1 points in the 0-direction, b
(k)
j = b

(k)
0 δj0.

The twisted model is only quasi-periodic in the imaginary time direction. This means that the

components vj of v are periodic up to phases e2πiµj with µj ∈ [0, 1), i.e., the vectors v and u are

periodic up to a diagonal element of the global symmetry U(N + 1). The U(N + 1)-invariants like |v|
and Aµ and hence also q stay periodic. Without loss of generality the phases are assumed to be ordered

according to µ0 ≤ µ1 ≤ · · · ≤ µN .

For the general solutions of the twisted model the Fourier ansatz

vj(z) = e2πµjz
∞∑

s=−∞

b
(s)
j e2πsz (6.14)

is considered where the coefficients b
(s)
j are demanded to be non-vanishing only for a finite range of s

(for each component j). This is because the corresponding maximum and minimum of the powers

κmax = max
j,s : b

(s)
j 6=0

(s+ µj), κmin = min
j,s : b

(s)
j 6=0

(s+ µj) (6.15)

then yield a finite topological charge Q. According to (6.8) one has to compute the following surface

integrals

Q =
1

4π

∫ β

0

dx0 ∂1 ln |v|2
∣
∣
∣

x1→∞

x1→−∞
= κmax − κmin ∈ N0 + {µj − µl | j, l = 0, . . . , n} . (6.16)
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Hence the total topological charge in the twisted model can have a fractional part, whose values are

restricted by the boundary conditions. By a global transformation κmin is enforced to be taken on in

the 0th component and by a (non-periodic) local transformation one further sets µ0 = 0 and κmin = 0,

such that Q = κmax. According to Eq. (6.6), these powers also govern the asymptotic values of the

fundamental fields uj .

The following analysis will mainly cover twisted instantons with integer-valued instanton number

Q = k ∈ N. They are obtained by κmax = k taken on in the 0th component, i.e., the highest coefficient

b(k) points in the 0-direction, b
(k)
j = b

(k)
0 δj0. Thus one can obtain the components vj by multiplying

each component vper,j from (6.13) with exp(2πµjz), which yields

v(z) = Ω vper(z), Ω = diag
(
e2πµ0z, . . . , e2πµNz

)
. (6.17)

For N = 1 the known twisted unit charged instanton solution [119] can be recovered in terms of

the gauge invariant field

v1(z)

v0(z)
=

b
(0)
1 e2πωz

b
(0)
0 + b

(1)
0 e2πz

, (6.18)

where µ0 = 0 and b
(1)
1 = 0 is used and µ1 is denoted by ω.

One-instanton sector

Firstly solutions with unit charge Q = k = 1 are considered in order to explore the topological density

of the instantons. v is multiplied by a constant such that b
(0)
0 = 1 and afterwards the Euclidean time x0

is shifted such that b
(1)
0 becomes real and non-negative. For these choices the density |v|2 only depends

on the absolute values λj = |b(0)j | with j = 0, 1, . . . , N . If, in addition, one defines λN+1 = |b(1)0 | and

µN+1 = 1, then it can be written in the condensed form

|v(z)|2 =
N+1∑

i=0

λ2i e
4πµix1 + 2λN+1e

2πx1 cos(2πx0). (6.19)

The corresponding topological charge density splits into N + 1 constituents at most. For CP2 this is

illustrated in Fig. 6.1 which shows ln q(x) for various choices of the parameters λi.

For the general CPN models the occurrence of the constituents can be understood geometrically.

To see this more clearly

|v(z)|2 =
N+1∑

i=0

e pi(x1) + 2e p̃(x1) cos(2πx0), (6.20)

is considered with

pi(x1) = 4πµix1 + 2 lnλi, p̃(x1) = 2πx1 + lnλN+1. (6.21)

In particular

p0(x1) = 0, pN+1(x1) = 4πx1 + 2 lnλN+1 = 2p̃(x1). (6.22)

Now the graphs of these N + 3 linear functions are compared, see Fig. 6.2 for three examples in the

CP2 model amounting to five exponential terms.

The dominant contribution to |v|2 in (6.20) at a fixed point x1 comes from the exponential term

whose graph is above the lines defined by the other exponential terms. Hence ln |v|2 is piecewise linear
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Figure 6.2: ln |v|2 and exponents pi and p̃ as a function of x1, see Eqs. (6.20) and (6.21), in the CP2

model. Left panel: (a1, a2, a3) = (−5, 1, 4), what leads to three well-separated constituents (equivalent

to second example in Fig. 6.1). Middle panel: (a1, a2, a3) = (−5, 7,−2), where the second and third

constituent merged (equivalent to third example in Fig. 6.1). Right panel: (a1, a2, a3) = (3,−1,−2),
where the time-dependent p̃-term becomes relevant (equivalent to sixth example in Fig. 6.1).

in the direction x1 up to exponentially small corrections that are maximal in transition regions, where

the highest lying graphs intersect.

Note that for a strictly linear ln |v|2 the topological density q ∝ ∆ ln |v|2 would vanish exactly,

whereas at cusps generated by intersections of linear parts the topological density would be a Dirac

delta distribution.3 As this is a good approximation to the actual ln |v|2, it follows that the topological

density of the twisted instantons splits into constituents localised at the intersection points of the lines.

Because of the ordering of the µ’s, the slopes of the linear functions pi are ordered as well. Note that for

x1 < −1/(2πµ1) lnλ1 the term exp(p0) dominates such that ln |v| ≈ 0 on the left of all constituents.

Correspondingly, ln |v| ≈ 4πx1 on the right of all constituents.

The maximum number of constituents is obtained, if all consecutive graphs intersect separately and

above the rest of the graphs, respectively. More precisely said, the twisted instanton of CPN splits into

N + 1 constituents, if, and only if, a1 ≪ a2 ≪ · · · ≪ aN+1,4 whereas ai is the intersection point of

the lines pi−1 and pi,

ai = − ln (λi/λi−1)

2π (µi − µi−1)
, i = 1, . . . , N + 1, (6.23)

i.e., in particular the twist parameters µi are distinct, 0 = µ0 < µ1 < · · · < µN < µN+1 = 1. These

positions ai are arbitrary provided the corresponding λ-parameters are chosen according to

lnλi = −2π

i∑

l=1

(µl − µl−1)al with µ0 = 0. (6.24)

Now, the case of the well-separated constituents is discussed. In the neighbourhood of the intersec-

tion point ai of the lines pi−1 and pi one approximates

|v(z)|2 ≈ λ2i−1e
4πµi−1x1 + λ2i e

4πµix1 , (6.25)

3In 3+1 dimensional Yang-Mills theory a similar singular localisation can be obtained in the far-field limit [125, 142].
4Thereby the condition ai−1 ≪ ai needs not to be taken too literally. It is sufficient, if ai−1 is not close to ai, whereas

the required distance is determined by the slopes of pi − pi−1 and pi−1 − pi−2.
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for x1 not too far from the constituent i,

1

2
(ai−1 + ai) ≤ x1 ≤

1

2
(ai + ai+1) , i = 1, . . . , N + 1. (6.26)

For i = 1 the lower bound for x1 is −∞ and for i = N + 1 the upper bound is +∞. The contribution

to the topological density of the ith constituent is

qconst,i(x) ≈
π (µi − µi−1)

2

cosh2 [2π(µi − µi−1) (x1 − ai)]
. (6.27)

This shape is the same for all CPN models, cf. [119] for the CP1 case. The constituent decays expo-

nentially with characteristic length 2π(µi−µi−1) (measured in units of β) away from its position ai. It

has a fractional topological charge Qconst,i = µi−µi−1 and these charges add up to 1 as they should. In

terms of the linear graphs the fractional topological charge is proportional to the difference of slopes

of the lines that meet (which also would give the amplitude of the delta distribution mentioned above),

and the total charge is the sum of all slope differences, which indeed bend the graph from p0 with slope

0 to pN+1 with slope 4π eventually.

Neighbouring constituents can merge adding up the fractional topological charges. This can be

understood as ‘pulling down’ the line that connects the two constituents in the graph of ln |v|2, in other

words by choosing the corresponding parameter λi small (cf. Fig. 6.2, middle panel).

Under which circumstances does the time-dependence of |v|2 contained in the last term of Eq. (6.20),

which is proportional to exp p̃(x1), play a role? Since the three graphs of p0, pN+1 and p̃ intersect at

the point (ã, 0) with 2πã = − lnλN+1 one finds

p̃(x1) ≤ max {p0(x1), pN+1(x1)} , (6.28)

such that the time-dependent p̃-term can contribute to the sum in (6.20) only in the neighbourhood of

ã. Furthermore, all other lines have to lie below (ã, 0).5 As the slopes of the pi(x1), i = 1, . . . , N are

between 0 and 1, these graphs are never dominant once they are below (ã, 0). This means that only one

transition point occurs. Hence time-dependence of the instanton appears iff the topological charge is

concentrated in one lump (which can be thought of as all constituents merged, cf. Fig. 6.2, right panel).

The case of non-distinct µ’s can be understood by considering the limit µj → µj−1 for some j’s.

Then the corresponding constituent becomes flatter and broader, in the limit it will be invisible and

‘massless’ (i.e., without topological charge/action; this has been ‘eaten’ by the constituent j + 1). In

this spirit also the periodic solution6 is recovered with µ0 = µ1 = · · · = µN = 0. The resulting

topological density then consists of only one constituent with unit charge, which can, but does not

have to be time-dependent (depending on where the invisible, massless constituents are localised).

This can be demonstrated by means of Fig. 6.2 (left panel), i.e., based on the case of well-separated

constituents: The limit is taken by sending the slopes of the graphs of p1 and p2 to 0. If all positions

ai are kept constant (by adjusting the λ-parameters), then p1,2 → 0 (as functions) and the resulting

topological density of the periodic solution is equivalent to the case of all constituents merged in the

5If one of the other lines pi lies well above that point, then the topological density becomes to a good approximation

static.
6In Yang-Mills theories this amounts to the Harrington-Shepard caloron [143].
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twisted model, cf. Fig. 6.1 (lower right panel) and Fig. 6.2 (right panel). If the limit is taken with all

λ-parameters kept constant (i.e., by sending the positions a1,2 to −∞), then p1,2 → 2 lnλ1,2 can lie

well above 0 in the limit and the topological density remains static, though it consists of only one unit

charged constituent.

Finally, it is also possible to generate solutions with topological charge less than 1 from these in-

stantons. Technically one has to avoid the asymptotics ln |v| ≈ 4πx1 for large x1.7 Hence, if the

corresponding parameter λN+1 = |b(1)0 | is vanishing (in the Fourier ansatz there is no integer phase

e2πz), then the total topological charge of the configuration is less than 1. A phase with κmax < 1 then

gives the total topological charge (i.e., governs the asymptotics for large x1). Also these configurations

consist of constituents with the same formulae for locations, sizes and charges. The number of con-

stituents varies from N down to 1, depending on how many of the remaining parameters λ are zero (in

the graph the corresponding lines and intersection points are missing).

Interestingly, all these configurations have in common that the constituents in them are ordered

along the noncompact direction. This has already been observed in [119] and substantiated by topo-

logical considerations. Here it can best be understood from Eq. (6.23). The fractional charge of the ith

constituent, µi−µi−1, is fixed by the twist in the boundary condition. These charges can be realised in

isolation only if the ordering of their positions, a1 ≪ · · · ≪ aN+1, applies. If some ai do not obey this

ordering, then constituents emerge with the sum of the individual fractions as their topological charge.

In other words, ‘pulling a constituent through a neighbouring one’ results not in a different ordering

but in joining the constituents to a bigger one, cf. Fig. 6.1 (upper and lower right panels).

Notice that by giving up the choice κmin = 0 the constituents can be rearranged cyclically; this can

become relevant on the lattice, where x1 is naturally periodic.

This ordering is of course related to the selfduality which dictates that all solutions are functions

of x1 + ix0; antiselfdual solutions will have the opposite ordering. Therefore this phenomenon may be

particular to 1 + 1 Euclidean dimensions.

k-instanton sector

The general twisted instanton solution of Eqs. (6.13) and (6.17) with integer-valued topological charge

k corresponds to the norm

|v(z)|2 =
k(N+1)
∑

i=0

epi(x1) + 2
k∑

s=1

(k−s)(N+1)
∑

i=0

ep̃
(s)
i (x1) cos

(
2πsx0 + ϕi+s(N+1) − ϕi

)
, (6.29)

where one introduces

pi(x1) = 4πµix1 + 2 lnλi,

p̃
(s)
i (x1) = 2π(2µi + s)x1 + ln

(
λiλi+s(N+1)

)
=

1

2

[
pi(x1) + pi+s(N+1)(x1)

]
.

(6.30)

Two indices of b
(s)
j can be encoded into one, i = s(N + 1) + j, and

λi =
∣
∣b

(s)
j

∣
∣, ϕi = arg

(
b
(s)
j

)
, µi = µj + s (6.31)

7Still, the gauge where κmin = 0 is used and hence the asymptotics for small x1 is kept.
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Figure 6.3: Logarithm of the topological density for the charge-2 instanton of CP2, with non-symmetric

constituents, µ1 = 0.55, µ2−µ1 = 0.15, 1−µ2 = 0.3. The positions of the constituents from left to right

are (a1, a2, a3, a4, a5, a6) = (−10,−6,−2, 2, 6, 10), (−10,−4,−4, 2, 6, 10), (−6,−6,−6, 2, 6, 10)
(first line) and (−10,−4,−2, 0, 6, 10), (−10,−2,−2,−2, 6, 10), (0, 0, 0, 0, 0, 0) (second line).

is defined, where s = 0, . . . , k, j = 0, . . . , N . To arrive at (6.29) the constant vector b(k) is trans-

formed into the 0-direction. Similarly as for the one-instanton solution the constituents are localised

at the transition points of the piecewise linear function |v(z)|2. The topological density thus splits

into at most k(N + 1) constituents. Well-separated constituents are static and exponentially localised

at ai, i = 1, . . . , k(N + 1), given in an analogous manner as in the 1-instanton case, cf. Eq. (6.23).

The constituents carry the fractional charge µi − µi−1 and from the periodicity of the µ’s in Eq. (6.31)

follows that they are again ordered, see also Fig. 6.3 (upper left panel).

Again one finds

p̃
(s)
i (x1) ≤ max

{
pi(x1), pi+s(N+1)(x1)

}
, (6.32)

since the three graphs of pi, pi+s(N+1) and p̃
(s)
i all intersect at

ã
(s)
i = − ln

(
λi+s(N+1)/λi

)

2πs
. (6.33)

Therefore the time-dependent term containing p̃
(s)
i only contributes to the sum in (6.29) if the s(N +1)

constituents at the positions ai+1, . . . , ai+s(N+1) merge to one constituent with integer charge s. The

integer s thus determines the maximal frequency of the emerging constituent measured in units of the

smallest possible frequency. This behaviour is illustrated in Fig. 6.3 for 2-instanton solutions of the

CP2 model. Note that the freedom ϕi of choosing the complex phase of the parameters b
(s)
j enters only

as shifts in the time dependence, Eq. (6.29).

Cooling of lattice data

Charge-one instantons of the CP2 model containing up to the maximal number of three constituents

are reproduced with a cooling of lattice data. The simulations have been performed on a 6 × 100

(temporal×spatial) lattice at coupling g−2 = 2. In the spatial direction periodic boundary conditions

are imposed whereas in the temporal direction the vj are twisted with prescribed µj . Then a particular

configuration is cooled. During the cooling procedure configurations with |k| = 1 and two or more well

separated constituents are fairly stable even with this type of unimproved cooling (at least up to 105

cooling sweeps). Nevertheless, also the typical annihilation of selfdual and antiselfdual constituents

is observed. Only a small fraction of configurations is cooled to a state with three clearly separated

constituents. One of these is shown in Fig. 6.4 at three different cooling stages. More often one ends
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Figure 6.4: The cooling procedure is applied to a CP2 configuration of the Monte-Carlo ensemble with

twists µ1 = 0.15, µ2−µ1 = 0.5, 1−µ2 = 0.35. Three stable constituents emerge after several cooling

sweeps (10, 25, 500 from left to right). Here only the positive part of q is shown.

up with only two constituents. These results indicate that in a dynamical simulation topological objects

with fractional charge (given by the twist parameters µj) may be as relevant as they are in Yang-Mills

theories.

6.1.3 Zero modes of the Dirac operator

Minimal coupling to fermions

The bosonic CPN model is extended by introducing a massless Dirac fermion ψ, for the time being

minimally coupled, such that the action has the form

S =

∫

d2x
(
(Dµu)

†Dµu+ iψ̄γµDµψ
)
. (6.34)

Here the chiral representation of the γ-matrices is used for which γ∗ = iγ0γ1 is diagonal,

γ0 =

(

0 i

−i 0

)

, γ1 =

(

0 1

1 0

)

, γ∗ =

(

−1 0

0 1

)

. (6.35)

Splitting the Dirac spinor into chiral components ψ = (ϕ, χ)T the Dirac equation in the background of

a self-dual configuration splits into the Weyl equations

(
∂ − u†∂u

)
ϕ = |v| ∂

(
|v|−1 ϕ

)
= 0,

(
∂̄ − u†∂̄u

)
χ = |v|−1 ∂̄ (|v|χ) = 0,

(6.36)

where ∂ and ∂̄ denote the derivatives with respect to the complex coordinates z = x1 + ix0 and

z̄ = x1 − ix0. It follows that the zero modes have the form

ϕ(x) = f(z̄) |v| and χ(x) =
g(z)

|v| (6.37)

with (anti-)holomorphic functions f(z̄) and g(z). Similarly as for the bosonic fields quasi-periodic

boundary conditions for the fermion field are imposed,

ψ(x0 + 1, x1) = e2πiζψ(x0, x1) with ζ ∈ [0, 1). (6.38)
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The functions f, g can be expanded in Fourier series,

ϕ(x) =

∞∑

s=−∞

α(s) |v| e2π(s+ζ)z̄,

χ(x) =
∞∑

s=−∞

β(s)e2π(s+ζ)z/ |v| .
(6.39)

These modes are only square integrable on the cylinder if the coefficients α(s), β(s) and the twist pa-

rameter ζ fulfil certain constraints. Recall that the asymptotic behaviour of the general solution with

charge Q = κmax (κmin = 0 is used) is

lim
x1→−∞

|v| = 1 and lim
x1→∞

|v| ∝ e2πQx1. (6.40)

Therefore there are no normalisable left-handed zero modes ϕ.8 The quantum number s of the right-

handed zero modes is constrained by 0 < s+ ζ < Q.

This immediately leads to the index theorem for right-handed zero modes. For integer topological

charge two cases for the fermionic phases ζ must be distinguished:

ζ = 0 : Q− 1 zero modes,

ζ ∈ (0, 1) : Q zero modes.
(6.41)

For fractional topological charge the floor function ⌊ · ⌋ : R → Z and the fractional part { · } : R →
[0, 1) are introduced such that Q = ⌊Q⌋ + {Q}. It follows

ζ = 0 : ⌊Q⌋ zero modes,

ζ ∈ (0, {Q}) : ⌊Q⌋ + 1 zero modes,

ζ ∈ [{Q} , 1) : ⌊Q⌋ zero modes.

(6.42)

Now the localisation properties of the (right-handed) zero modes in the background of the instanton

with integer charge Q = k are investigated. They have the explicit form

∣
∣χ(s)(x)

∣
∣
2
= e4π(s+ζ)x1−ln|v|2 , s = 0, . . . , k − 1, (6.43)

with |v|2 from (6.29). It is helpful to first consider well-separated constituents for which ln |v|2 be-

comes time-independent and piecewise linear,

ln |v(z)|2 ≈ {pi(x1) = 4πµix1 + 2 lnλi | ai < x1 < ai+1} , (6.44)

as described in Sec. 6.1.2. Clearly, the zero mode has maximal amplitude at points where ln |v|2 −
4π(s + ζ)x1 is minimal. At these x1 the vertical distance between the graphs of the approximately

piecewise linear function ln |v|2 and the linear function 4π(s + ζ)x1 is minimal. For s + ζ in the

interval (µi−1, µi) the minimum is at x1 = ai where the graphs of pi−1 and pi intersect. The situation

is depicted in Fig. 6.5.

8For anti-instantons with negative topological charge the left-handed modes become normalisable.



76 CHAPTER 6. NONLINEAR SIGMA MODELS
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4π(s+ ζ)x1

Figure 6.5: Piecewise linear function ln |v|2
and linear function 4π(s+ζ)x1 for the exam-

ple of s+ζ ∈ (µ1, µ2). For x1 < a1 the slope

of ln |v|2 is 4πµ0 = 0, for a1 < x1 < a2 it

is 4πµ1, for a2 < x1 it is 4πµ2. The vertical

distance between the graphs is minimal at a2
where the zero mode is localised.

Hence, for generic values of ζ the zero mode is lo-

calised at one constituent. The profile of the zero mode is

symmetric about the constituent i for the particular value

s+ ζ = 1
2
(µi−1 + µi),

∣
∣χ(s)(x)

∣
∣2 ∝ 1

cosh [2π(µi − µi−1)(x1 − ai)]
. (6.45)

Interestingly, the profile is almost constant between the

ith and (i + 1)th constituent for ζ = µi. These ‘bridges’

can be understood by the fact that in this region the graphs

of ln |v|2 and 4π(s+ ζ)x1 are parallel (up to exponentially

small corrections) at these values of s and the fermionic

phase ζ .

Altogether the zero modes walk along the ordered set

of constituents when changing the fermionic phase ζ . With

phases at the bounds ζ = 0 resp. ζ = 1 (or ζ = {Q}
for configurations with fractional charge) the zero modes become constants asymptotically. In other

words, these zero modes have ‘bridges’ coming from −∞ resp. reaching out to +∞ and hence are not

normalisable.

Similar arguments apply if two or more constituents merge. A few examples are given in Fig. 6.6.

Zero modes on the lattice

Using the overlap operator [144] with quasi-periodic boundary conditions for the U(1) gauge field it is

possible to analyse its zero modes [145] in the background given by the cooled lattice configurations.

In general the overlap operator is given in terms of the Dirac-Wilson operator DW by

Dov = 1− γ∗ sign(H), H = γ∗(σ −DW) (6.46)
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Figure 6.6: Minimally coupled fermionic zero modes (yellow) in the background of 1-instanton con-

stituents (red) of the CP2 model with symmetric constituents, µ1 = µ2 − µ1 = 1 − µ2 = 1/3. In the

first line the constituents are well-separated at (a1, a2, a3) = (−5, 0, 5), in the second line from left to

right they are at (−2.5,−2.5, 5), (−2.5,−2.5, 5), (0, 0, 0), i.e., two respectively three constituents have

merged. The fermionic twist is ζ = 1/6, 1/4, 1/3 (first line) and 2/3, 5/6, 1/2 (second line).
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Figure 6.7: Fermionic zero modes of the overlap operator for the CP2 model with twists µ1 = 0.15, µ2−
µ1 = 0.5, 1 − µ2 = 0.35 after application of 25 cooling sweeps (compare to Fig. 6.4, middle panel).

The fermionic twist is ζ = 0, 0.075, 0.15 (first line) and ζ = 0.4, 0.65, 0.825 (second line).

with a shift parameter σ ∈ (0, 2). For the present computations σ = 1 was used. Even for moder-

ately cooled configurations do the zero modes of Dov reflect the position of the fully cooled instanton

constituents for specific boundary conditions (see Fig. 6.7). Therefore the lattice results are in full

agreement with the analytical results and in addition the fermionic zero modes are excellent tracers for

instanton constituents on mildly cooled configurations.

Supersymmetric coupling to fermions

The supersymmetric CPN model [117, 146] contains N + 1 Dirac fermion fields ψj , j = 0, . . . , N , in

addition to the complex scalar fields uj . Its action is

S =

∫

d2x

(

(Dµu)
† (Dµu) + iψ̄γµDµψ +

1

4

((
ψ̄ψ
)2 −

(
ψ̄γ∗ψ

)2 −
(
ψ̄γµψ

) (
ψ̄γµψ

))
)

, (6.47)

where u and ψ are constrained by

u†u = 1, u†ψ = ψ̄u = 0. (6.48)

Introducing Weyl spinors, ψ = (ϕ, χ)T, the model is invariant under the on-shell N = (2, 2) super-

symmetry transformations

δu = ε1ϕ− ε2χ,

δϕ = +2iε̄1D̄u− ε̄1(ϕ̄ϕ)u+ ε̄2(χ̄ϕ)u,

δχ = −2iε̄2Du+ ε̄2(χ̄χ)u− ε̄1(ϕ̄χ)u,

(6.49)

with the covariant derivatives

D = ∂ − u†∂u and D̄ = ∂̄ − u†∂̄u (6.50)

and anticommuting parameters ε1,2 satisfying ε∗2 = ε̄1 and ε∗1 = ε̄2. Both spinors ϕ and χ have N + 1

components.
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The linearised Dirac equation in an external u-field splits into two Weyl equations,

(
1− uu†

)
Dϕ = 0 and

(
1− uu†

)
D̄χ = 0. (6.51)

For an instanton background with u = v(z)/|v| the Weyl equations simplify to

(1− Pv) ∂
(
|v|−1 ϕ

)
= (1− Pv) ∂̄ (|v|χ) = 0, (6.52)

where Pv projects onto the holomorphic v(z),

Pv = uu† =
vv†

|v|2
. (6.53)

It follows that a left-handed solution reads

ϕ(x) = |v| f(z̄), (6.54)

where f(z̄) is an arbitrary vector of anti-holomorphic functions orthogonal to v. None of these solu-

tions is normalisable. With the help of Pv∂̄Pv = ∂̄Pv one shows that a right-handed solution has the

form

χ(x) =
1

|v| (1− Pv) g(z), (6.55)

where g(z) is a vector of holomorphic functions. In order not to break supersymmetry g must fulfil the

same boundary conditions as the instanton solution v. Therefore, the choice of fermionic twists is very

limited here. Each function g can be constructed by linear combination of the basis elements {g(j,s)}
defined by

g(j,s)(z) = e2π(s+µj)zej, j = 0, . . . , N, s ∈ Z, (6.56)

where ej is the unit vector pointing in direction j. For the corresponding zero modes the squared norm

is
∣
∣χ(j,s)

∣
∣2 =

e4π(s+µj )x1

|v|4
n∑

l 6=j

|vl|2 . (6.57)

Normalisability of the zero mode in the k-instanton background requires

s =







0, 1, . . . , k for j = 0,

0, 1, . . . , k − 1 for j = 1, . . . , N.
(6.58)

In the case of well-separated instanton constituents one can approximate

∣
∣χ(i)

∣
∣
2 ≈ 1

|v|4
k(N+1)
∑

l mod (N+1) 6=i

epl(x1)+4πµix1 , (6.59)

where χ(i) = χ(j,s) is introduced for i = s(N + 1) + j. The linear functions pl(x1) are given in (6.30).

Again the maximum of |χ(i)| is easily found by considering the graphs of the linear functions 2pl(x1)

and pl(x1) + 4πµix1. In a logarithmic plot both the numerator and denominator of |χ(i)| are piecewise
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linear. For x1 < ai the slope of the numerator is larger and for x1 > ai+1 the slope of the denominator

is larger. This is illustrated in Fig. 6.8. Simple geometric arguments about these graphs reveal, that

the zero modes χ(i) with 0 < i < k(N + 1) split into two constituents located at ai and ai+1, which

have the same amplitude, but decay with different lengths. The zero modes χ(0) and χ(k(N+1)) have

only one maximum at a1 and ak(N+1), respectively. Some examples are plotted in Fig. 6.9. The general

right-handed zero mode has the form

χ =

k(n+1)
∑

i=0

βiχ
(i). (6.60)

Its (squared) norm splits into k(n + 1) or less constituents. They have the same analytic form pro-

portional to cosh−2 [2πQconst,i(x1 − ai)] and are located at the same positions ai as the instanton con-

stituents.

0

a1 a2 a3
x1

2ω0

2ω1

2ω2

2ω3

ω1 + ω0

ω1
+
ω2

ω 1
+
ω 3

ln |v|4
ln
∑

epl(x1)+4πω1x1

Figure 6.8: Logarithm of denominator and

numerator of
∣
∣χ(1)

∣
∣
2

in (6.59). The zero mode

has two maxima of equal amplitude at a1 and

a2.

There exists always a particular zero mode, whose

(squared) norm is proportional to the topological density

q =
1

4π
∆ ln |v|2 = 1

π

|v|2 |∂v|2 −
∣
∣v†∂v

∣
∣
2

|v|4
. (6.61)

Namely, since the squared norm of χ in (6.55) is

|χ|2 = |v|2 |g|2 −
∣
∣v†g

∣
∣2

|v|4
, (6.62)

the exact relation

|χ(x)|2 = πq(x) (6.63)

is obtained for the zero mode with g = ∂v, which means

that βi ∝ µiλi in Eq. (6.60).

The occurrence of this particular zero mode can also be understood as follows: Any instanton

background breaks half of the supersymmetry, namely the one generated by the parameter ε̄2. If
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Figure 6.9: Supersymmetrically coupled fermionic zero modes (yellow) in the background of 1-

instanton constituents (red) in the CP2 model with twist parameters µ1 = 0.55, µ2 − µ1 = 0.15,

1 − µ2 = 0.3. In the first line the zero modes χ(0), χ(1) and χ(2) (from left to right) with instanton

locations (a1, a2, a3) = (−5, 0, 5). In the second line the half-BPS state χinst with instanton locations

(−5, 0, 5), (−5, 2, 3), (0, 0, 0) (from left to right).
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the configuration uinst = v(z)/ |v|, ψinst = 0 is transformed with the broken symmetry then δψinst is

inevitably a zero mode of the Dirac operator because the action is invariant under the supersymmetry

transformation. In this way a non-vanishing right-handed zero mode

δχinst = −2iε̄2Du ∝ 1

|v| (1− Pv) ∂v, (6.64)

is obtained that is a zero mode with g ∝ ∂v. Except for irrelevant prefactors, this is exactly the zero

mode whose squared norm is equal to the topological density of the instanton.

6.1.4 Conclusions

Integer-charged instantons were constructed and analysed for twisted CPN models on a cylinder. The

twisted instantons with charge k support k(N+1) constituents. If these constituents are well-separated

then they become static lumps. The fractional charges and the shapes of the constituents’ topological

profile are governed by the phases in the boundary condition (and the scale β). The constituent posi-

tions are related to the collective parameters of the twisted instanton and hence free up to the demand

that for all constituents to be present their positions must be ordered.

Neighbouring constituents can merge adding up their charges. If at least N + 1 constituents merge

then the resulting lump becomes time-dependent. For a composite object containing multiples ofN+1

constituents time-dependent terms with higher frequencies contribute, respectively.

The analytic findings are in complete agreement with the corresponding numerical ones. The latter

were obtained by cooling lattice configurations of the twisted model with a non-vanishing topological

charge.

All fermionic zero modes in the background of the twisted instantons have been determined. This

has been achieved for minimally coupled fermions satisfying quasi-periodic boundary conditions in

the Euclidean time direction. Similarly as for gauge theories, the zero modes are localised at the

positions of the constituents and they may jump from one constituent to the neighbouring one if the

boundary conditions for the fermions are changed. Again the analytical findings have been compared

to numerical results. To that aim the zero modes of the overlap Dirac operator are determined for lattice

configurations with different degrees of cooling. Again analytical and numerical results fully agree, in

close analogy with the corresponding situation for SU(N) Yang-Mills theories. Even without much

cooling the zero modes detect the constituents of the fully cooled configurations.

In the supersymmetric CPN model the Dirac fermions transform according to the fundamental

representation of the global U(N + 1) symmetry group. The linearised field equations for the N + 1

fermion flavours define a supersymmetric Dirac operator. The square integrable zero modes of this

operator were studied and they generically split into k(N+1) constituents with maxima at the locations

of the instanton constituents. There exists always a particular zero mode whose norm squared is equal

to the topological charge density of the supporting instanton. This zero mode is generated by the

half-broken supersymmetry.

The results are in close parallel to the corresponding findings in SU(N) gauge theories. But since

twisted instantons, their constituents and the fermionic zero modes in CPN models are much simpler

than in gauge theories the results may be useful to shed further light on the relevant degrees of freedom

in strongly coupled models at finite temperature. The next natural step would be to include quantum
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fluctuations about twisted instantons to study the quantum corrections to the constituent picture.

In the SU(N) gauge theory there is a beautiful construction of the constituents based on the Nahm

transform [120]. A similar construction, with Nahm transform as introduced in [118], may further

simplify the construction of instanton constituents for twisted CPN models.

6.2 Supersymmetric O(3) sigma model on the lattice

For general N , the supersymmetricO(N) sigma model can be constructed from a Hermitian superfield

Φ = n + iᾱψ + i1
2
(ᾱα)f (6.65)

with N (flavour) components. n and f are real N-component scalar fields, ψ denotes N Majorana

spinor components and α is a constant Majorana spinor. Here, the Majorana basis is taken, such that

γ0 =

(

1 0

0 −1

)

, γ1 =

(

0 −1

−1 0

)

, C =

(

0 −1

1 0

)

, (ψ̄1, ψ̄2)a = (ψ1, ψ2)aC. (6.66)

with ‘a’ as flavour index of ψa The Lagrangian is given by

L =
1

2g2
(
∂µn · ∂µn+ iψ̄ · (/∂ψ)− f · f

)
(6.67)

and is invariant under global O(N) transformations

n→ Rn, ψ → Rψ, f → Rf with R ∈ O(3). (6.68)

The nonlinearity, that turns the free (massless) model into an interacting model with dynamical mass

generation, is introduced by imposing the constraint Φ · Φ = 1. In terms of the component fields this

constraint reads

n · n = 1, n · ψ = 0, n · f = i1
2
ψ̄ · ψ. (6.69)

There is no kinetic term for the auxiliary field f and it may be integrated out, which results in f =

i1
2
(ψ̄ · ψ)n. The path integral is thus given in terms of dynamical fields by9

Z =

∫

DnDψ δ(n · n− 1)δ(n · ψ)e−S[n,ψ]

with S =
1

2g2

∫

d2x
(
∂µn · ∂µn+ iψ̄ · (/∂ψ) + 1

4
(ψ̄ · ψ)2

)
. (6.70)

The N = (1, 1) supersymmetry that arises from the superfield formulation is then given by

δn = iǭψ, δψ = γµǫ∂µn+ iǫ1
2
(ψ̄ · ψ)n. (6.71)

Further the constraints (6.69) are invariant under this supersymmetry transformation. Alternatively

this model can be written in CP1 form and is then given by the corresponding action (6.47) with

constraints (6.48). In either case the fields obey nonlinear constraints which prevent the fermions from

9For the time being field independent prefactors of the path integral Z are omitted.
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being integrated out naively. To solve these constraints a stereographic projection of the superfields

can be performed and the model (with holonomic fermions) is given in terms of unconstrained fields ω

(complex scalar) and Ψ (Dirac fermion) by the action [42]

S =
2

g2

∫

d2x ρ2
(
∂µω̄∂µω − i

2
Ψ̄/∂Ψ+ i

2
∂µΨ̄γ

µΨ+ iρΨ̄γµΨ(ω̄∂µω − ω∂µω̄) + ρ2(Ψ̄Ψ)2
)

(6.72)

with measure ρ = (1 + ω̄ω)−1 and path integral Z =
∫
DωDΨ ρ−2 e−S[ω,Ψ].10 This CP1 formulation

explicitly implements a N = (2, 2) supersymmetry, which is the case for all two dimensional nonlinear

sigma models with Kähler target space [147]. Independent of the formulation there is a spontaneous

breaking of the Z2 chiral symmetry

ψ → Cψ ⇒ iψ̄ · ψ → −iψ̄ · ψ, (6.73)

and the two corresponding ground states are the supersymmetric bosonic ground states [15].

Using a construction based on a ‘twisted’ form of the continuum action11 with nilpotent supercharge

an explicit lattice realisation corresponding to the action (6.72) with one preserved (scalar) supersym-

metry has been given in [43, 44], which allows for a generalisation to generic CPN target spaces and

supersymmetric nonlinear sigma models in four dimensions. This lattice construction makes use of

the Wilson derivative and therefore introduces soft supersymmetry breaking terms which vanish in the

continuum limit. Further this discretisation will break the Z2 chiral symmetry and, more importantly,

the target space O(3) symmetry. It is the purpose of this section to investigate the problems arising

from the broken target space symmetry and to give a lattice regularisation of the supersymmetric O(3)

nonlinear sigma model with intact target space symmetry.

6.2.1 Quenched model

To put the regularisation of the full supersymmetric model on solid grounds the applied techniques are

exemplified in the bosonic sector of the theory. For the specific case of the bosonic O(3) nonlinear

sigma model with action

S =
1

2g2

∫

d2x ∂µn · ∂µn (6.74)

and constraint n ∈ S2, i.e. n ·n = 1, there have been lots of algorithmic advances, e.g. powerful cluster

algorithms [148] that are applicable for generic O(N) models. Although the naive generalisation

of cluster algorithms for generic CPN models will not cure the problem of critical slowing down

[149] recent formulations based on the strong coupling expansion [150,151] also allow for an efficient

simulation with these target spaces. By using the specialised algorithms precise numerical results have

been obtained, e.g. for the renormalised zero momentum four-point coupling [152] and the step scaling

function of the finite volume mass gap [153, 154] where exact continuum results have been computed

by the thermodynamic Bethe ansatz [155].

The pitfall of these highly efficient lattice techniques is, that a generalisation to include the fermionic

dynamics is not straightforward. For that reason the present analysis sticks to a formulation that is suit-

able for simulations with the hybrid Monte-Carlo algorithm as discussed in Chapter 4.

10The factor ρ−2 in the path integral measure arises from integrating out the auxiliary fields after constructing the model

in the superfield formalism.
11This is not to be confused with the twisted boundary conditions in the previous section.
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Naive ambiguities and target space invariance of the lattice regularisation

The fermionic constraint n · ψ = 0 in the constrained formulation forbids to naively integrate out the

fermionic degrees of freedom. Therefore a prescription in terms of unconstrained variables allows

for a straightforward treatment of the fermions in the full model. Based on the action (6.72) the

corresponding formulation of the bosonic sector is given by the path integral

Z =

∫

Dω ρ2e−S[ω], S = 2g−2

∫

d2x ρ2 ∂µω ∂
µω̄ (6.75)

for a complex scalar ω and measure factor ρ = (1+ωω̄)−1. The relation to the original field n is given

by

n = ρ






2Reω

2 Imω

1− ωω̄




 , ω =

n1 + in2

1 + n3
(6.76)

where w arises from a stereographic projection of the unit sphere to the complex plane. If now a

regularisation using a nearest neighbour interaction is applied, the lattice action is given by

S = 2g−2
∑

〈xy〉

ρ2xy |ωx − ωy|2 . (6.77)

At this point an ambiguity in defining ρ2xy arises. ρ2xy must interpolate between ρ2x and ρ2y, where both

become identical in the continuum limit. Naively, such an interpolation may be based on the arithmetic

mean, ρ2xy = 1
2
(ρ2x + ρ2y). However, if one performs a variable transformation of the standard action

S = 1
2g2

∑

〈xy〉(nx − ny)
2 in the formulation based on the constrained n-field, the geometric mean

ρ2xy = ρxρy is revealed and the underlying global O(3) symmetry of the continuum model is explicitly

preserved. By analytical means [102] this continuous global symmetry cannot be broken spontaneously

in two dimensions such that 〈ñ〉 = 0 with volume averaged field ñ = V −1
∑

x n.

To analyse a possible breaking of the O(3) symmetry in the formulation based on the arithmetic

mean simulations for both lattice prescriptions have been performed.12 It is shown in Fig. 6.10 that the

12For a simulation with the hybrid Monte-Carlo algorithm the factor ρ2 of the path integral measure of Eq. (6.75) has
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Figure 6.10: Scatter plot (projected to the ñ1–ñ3 plane) of the averaged field ñ for a lattice discretisa-

tion based on the arithmetic mean (left panel) and geometric mean (right panel) at g−2 = 1 and lattice

size N = 10× 10.
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Figure 6.11: The value of 〈ñ3〉 as indicator for a broken global O(3) symmetry for three lattice volumes

plotted over the coupling g−2 (left panel) and physical box size (right panel).

lattice prescription based on the geometric mean indeed gives O(3) symmetric results whereas for the

arithmetic mean only a O(2) symmetry around the ñ3 axis is found, which is a direct consequence of

the global U(1) symmetry ω → eiφω. Nevertheless, in the naive continuum limit both prescriptions

are expected to coincide. To investigate this issue Monte-Carlo simulations of the model based on the

arithmetic mean have been carried out with different lattice sizes N and at different couplings g−2. A

restoration of the O(3) symmetry would be indicated by a vanishing 〈ñ3〉 in the continuum limit. For

the considered coupling range 〈ñ3〉 is found to be independent of the lattice volume such that the result

is assumed to be free of finite size effects (see Fig. 6.11, left panel). By fitting the correlator

CB(t) = N−2
s Re

〈
∑

x,x′

ω(t,x′)ω̄(0,x)

〉

(6.78)

to CB(t) ∝ cosh(ma(t̂ − Nt/2)) the mass mL = maNs measured in units of the physical box length

can be extracted.13 The analysis of 〈ñ3〉 at fixed physical box size mL in the continuum limit (see

Fig. 6.11, right panel) clearly shows that 〈ñ3〉 grows to a value close to 1 in the limit of fine lattice

spacings, i.e. for large N and large g−2. Therefore it is impossible to reach the correct O(3) symmetric

continuum limit for a regularisation based on the arithmetic mean.

This observation implies that a restoration of the O(3) symmetry must be checked in any lattice

simulation which is based on a formulation that breaks the global target space symmetry on the lattice.

In [43, 44] this symmetry restoration has not been checked explicitly and it will be analysed here in

the context of the full supersymmetric model in Sec. 6.2.2 how crucial the breaking of the target space

symmetry for the proposed model with an intact supersymmetry on the lattice really is.

Although a straightforward discretisation based of the action (6.75) with unconstrained field ω

may break the target space symmetry it is still possible in the bosonic O(N) model to derive a lattice

regularised form with unconstrained field that is invariant under the O(N) symmetry. This is reached

by discretising the constrained continuum formulation to arrive at a lattice action

S =
1

2g2

∑

x,y

nT

xKxyny. (6.79)

been pulled into the action, S → S − 2
∑

x ln ρx.
13Due to the U(1) symmetry 〈ω〉 = 0, and an unconnected part of the correlator CB(t) vanishes.
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with kinetic operator Kxy. Afterwards the constraint is solved using n = ρ

(

2w

1− wTw

)

with w ∈

RN−1 and ρ = (1 + wTw)−1.14 The resulting action

S =
1

2g2

∑

x,y

ρxρy
(
4wT

xKxywy + (1− wT

xwx)Kxy(1− wT

ywy)
)

(6.80)

directly shows the need for ρxy to be given by the geometric mean and turns into (6.77) if a forward

derivative is used to construct Kxy while the path integral Z =
∫
Dw ρ2 e−S[w] again includes the

measure factor ρ2.15

Universality and the SLAC derivative

The SLAC derivative has been proven to be useful in the context of the Wess-Zumino models and

supersymmetric quantum mechanics. Because regularisations based on the SLAC derivative show

only small lattice artefacts and do not break the Z2 chiral symmetry explicitly this derivative shall also

be used for the supersymmetric nonlinear sigma model. Since it is not obvious a priori if the SLAC

derivative can be used for models with curved target space it will be tested if a known continuum result,

namely the scaling of the finite volume mass gap, can be reproduced.

As a quantity accessible even at a finite volume the step scaling function introduced in [153] is

computed. At finite spatial volume Ns the mass gap m(Ns)L can be computed by using periodic

boundary conditions and a large temporal extent. On every finite lattice the step scaling function Σ is

then computed according to

Σ(2, u, N−1
s ) = m(2Ns)2L|m(Ns)L=u

(6.81)

where the conditionm(Ns)L = u determines the bare coupling g−2 that is used on both spatial volumes

Ns and 2Ns. This step scaling function is expected to have an universal continuum limit σ(2, u) =

Σ(2, u, 0) = limNs→∞Σ(2, u, N−1
s ) and the precise numerical results so far [150, 154] coincide with

this universality. Here, this quantity is reproduced with the SLAC derivative at the popular point

u0 = 1.0595 with σ(2, u0) = 1.261210. (6.82)

Using the SLAC derivative the regularised action is given by

S = − 1

2g2

∑

x,y

nT

x (∂
SLAC
µ )2xyny (6.83)

and the corresponding formulation in terms of unconstrained fields may be derived from Eq. (6.80).

However, a simulation is directly possible in terms of the constrained n-field. Since the action is not

given by nearest neighbour interactions a cluster algorithm is not applicable and the hybrid Monte-

Carlo algorithm will be used instead. For that purpose the field n ∈ S2 is rewritten by n = Rn0 with a

fixed n0 ∈ S2 andR ∈ SO(3) such that the path integral turns into Z =
∫
DR e−S[R].16 The simulation

14For the O(3) model it is again possible to use a complex scalar ω = w1 + iw2.
15By a similar construction the CPN model can also be reformulated in terms of unconstrained fields while keeping the

full U(n) symmetry.
16The measure of the path integral is not affected by this variable transformation, i.e. a distribution of R according to
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Figure 6.12: Mass gap extracted from a logarithmic cosh fit of the correlator (6.84) in a range t̂ ∈
[t0, Nt − t0] for Ns = 6 (left panel) and Ns = 12 (right panel) at coupling g−2 = 1.309 for fixed

Nt = 6Ns. The shaded area denotes the usual accuracy of results at other g−2.

is then implemented with group valued dynamical fields R, the momenta of the ‘Hamiltonian’ used for

the hybrid Monte-Carlo algorithm will be elements of the Lie algebra so(3).

The O(3) invariant correlator is naturally defined as

C(t) = N−2
s

∑

x,x′

n(t,x′) · n(0,x) (6.84)

and the mass is extracted via a fit to

C(t) ∝ cosh(ma · (t̂−Nt/2)) (6.85)

on a logarithmic scale, to take into account contributions from t̂’s in the vicinity of Nt/2 for a sup-

pression of influences from higher excited states. However, reliable high-precision results can only be

determined if possible systematic errors are under control. To actually see the contribution of higher

excited states, one is interested in the extracted mass as a function of t0 where the fit is performed over

a range t̂ ∈ [t0, Nt − t0] for fixed Nt and Ns. This effect is analysed for Ns ∈ {6, 12} and Nt = 6Ns

for a coupling g−2 = 1.309, which is quite close to the the point of interest (6.82), with extremely

large statistics of about 5 · 109 configurations, distributed over 1 000 replica. The results (see Fig. 6.12)

show that for the larger lattice the contribution of higher excited states is well below the usual sta-

tistical accuracy that is used for most of the results given below (about 2 · 108 configurations). For

the smaller lattice there are two competing effects: For small t0 a contribution of higher states is well

visible whereas for large t0 the fluctuations arising from the non-locality of the SLAC derivative begin

to grow. Therefore the optimal choice, that leads to systematic errors at the order of statistical ones,

is given by t0 = Ns and will be used in the following. The second possible systematic error is given

by the finite Nt. For Nt too small a thermal contribution to the mass gap will be present. This effect is

investigated by keeping t0 = Ns fixed but varying Nt, see Fig. 6.13 for Ns ∈ {6, 12}. For the smaller

lattice the contributions at small Nt are more pronounced and become negligible for Nt > 6Ns while

for the larger lattice Nt > 5Ns is sufficient. To be unaffected by these systematic errors Nt = 8Ns

(Nt = 6Ns) is used for the smaller (larger, respectively) lattice of each step scaling computation.

the Haar measure on SO(3) will gain a flat distribution of n = Rn0 on S2. Only an irrelevant constant measure factor

corresponding to the local U(1) symmetry, that leaves Rn0 invariant, is obtained.
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Figure 6.13: Mass gap extracted from a logarithmic cosh fit of the correlator (6.84) in a range t̂ ∈
[Ns, Nt − Ns] for Ns = 6 (left panel) and Ns = 12 (right panel) at coupling β = 1.309 for different

Nt/Ns.

With the systematic errors under control it is possible to compute the step scaling function in the

continuum limit. For that reason the couplings are tuned to provide nearly a mass gap according to

u0 on the smaller lattice with sizes Ns ∈ {4, 6, 8, 10, 12, 16, 20}. The corresponding Σ(2, u, N−1
s ) are

plotted over u for a subset of theseNs in Fig. 6.14 (left panel), and a linear interpolation based on eight

different coupling g−2 allows for the extraction of Σ(2, u0, N
−1
s ) at the point u0 = 1.0595 (cf. Tab. 6.1

for explicit values). By applying Symanzik’s theory of lattice artefacts it has been calculated in [154]

that finite a corrections are of order O(a2(ln a)3) and appear nearly linear for a large range of compu-

tationally accessible lattice sizes [156]. For that reason an extrapolation to a = 0 based on the formula

Ns Σ(2, u0, N
−1
s ) g−2

4 1.28914(19) 1.22906(6)

6 1.27938(18) 1.31071(5)

8 1.27368(34) 1.36526(9)

10 1.27049(31) 1.40622(8)

12 1.26742(33) 1.43903(8)

16 1.26587(35) 1.48986(8)

20 1.26416(70) 1.52870(12)

Table 6.1: Value of the step scaling func-

tion Σ(2, u0, N
−1
s ) after interpolating to

u0 = 1.0595 for different spatial lattice

sizes Ns and corresponding g−2 at which

m(Ns)L = u0 is reached.

Σ(2, u0, N
−1
s ) = σ(2, u0) + A ·

(
B

Ns

)2(

ln
B

Ns

)3

(6.86)

is used. Only the results forNt = 4 have been omitted because

of the large systematic errors introduced by the fluctuations

arising from the SLAC derivative for large lattice spacings.

The extrapolation is shown in Fig. 6.14 (right panel) and a

value of σ(2, u0) = 1.2604(13) is extracted in complete agree-

ment with the exactly known result in the continuum limit of

Eq. (6.82). Therefore a discretisation of the (bosonic) O(3)

nonlinear sigma model with the SLAC derivative is feasible

and may also be used for the full supersymmetric model.

6.2.2 Supersymmetric model

It has been found in the setting of the quenched model that a broken target space symmetry in the

lattice formulation may prohibit the restoration of this symmetry in the continuum limit of the quantum

theory even though in the (naive) classical continuum limit the symmetry is recovered. For that reason

there is need for a reinvestigation of the supersymmetry preserving lattice formulation of [43, 44] with

an emphasis on that restoration. To be unaffected by this broken global symmetry a formulation of

the supersymmetric O(3) nonlinear sigma model will be constructed on the lattice that is explicitly

invariant under the global O(3) symmetry. Eventually the dynamics of this formulation is investigated

with the SLAC derivative.
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Figure 6.14: Left panel: Step scaling function for lattices with spatial size Ns ∈ {4, 6, 8, 12}. Shaded

regions indicate error bounds of a linear interpolation. Right panel: Continuum limit of the step scaling

function for u0 = 1.0595. The shaded area indicates the error bounds of a fit according to Eq. (6.86),

where the value for N−1
s = 0.25 has been omitted. The black dot marks the continuum value given in

Eq. (6.82).

Drawbacks of a Q exact lattice formulation

The formulation of [43, 44] is constructed by starting from the CP1 formulation of the O(3) sigma

model. It has been possible to give a Q exact formulation where Q denotes the generator of a ‘twisted’

supersymmetry. Furthermore it has been checked for a restoration of corresponding Ward identities and

for a non-vanishing chiral condensate. These results imply that supersymmetry is restored although the

used Wilson mass breaks supersymmetry softly. The explicit action and path integral are given after

a Hubbard-Stratonovich transformation [157], to get rid of the four fermion interaction, in terms of

complex scalars ω = ω1 + iω2, σ = σ1 + iσ2 and Dirac fermion Ψ by

Z =

∫

DwDσDΨ ρ−2 e−S[ω,σ,Ψ] with

S =
2

g2

∑

x

(
ρ2x(∆

s
+ω)x(∆

s
−ω̄)x + ρ2x(mWω)x(mWω̄)x +

1
2
σxσ̄x

)

︸ ︷︷ ︸

=SB

+
2

g2
Ψ̄M [ω, σ]Ψ. (6.87)

The fermion matrix is given in the chiral basis by

M [ω, σ] =

(
ρ2

2
mW − ρ3ω̄(mWω) + h.c. ρ2(∆s

+ − 2ρω̄(∆s
+ω) + σ)

ρ2(∆s
− + 2ρω(∆s

−ω̄)− σ̄) ρ2

2
mW − ρ3ω̄(mWω) + h.c.

)

. (6.88)

Further the definitions mW = 1
2
(∆+

+∆
−
− +∆+

−∆
−
+), ∆± = ∆1 ± i∆2, and ∆s

µ = 1
2
(∆+

µ +∆−
µ ) are used,

where ∆± denotes the usual forward and backward derivative operators. To not break supersymmetry

periodic boundary conditions must be used also for the fermions. The difference to a straightforward

discretisation is given by an improvement term ∆S that vanishes in the continuum theory, similar to

the case of the Nicolai improved action in the N = 2 Wess-Zumino model,

∆S =
4

g2

∑

x

ρ2x (∆
s
1ω2∆

s
2ω1 −∆s

1ω1∆
s
2ω2) . (6.89)

For the simulation of this model the hybrid Monte-Carlo algorithm with the naive fermionic action
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Figure 6.15: Monte-Carlo timeline of ñ3 (left panel) and ∆S (right panel) for a simulation of the lattice

model (6.87) at coupling g−2 = 1.5 on an 8× 8 lattice.

is used. This has the advantage that no additional fluctuations and possible instabilities, that arise from

an approximation of the fermion determinant by pseudo-fermions, overshadow potential conceptual

shortcomings of the lattice formulation.

In close analogy to the N = 2 Wess-Zumino model (see Sec. 3.2.1) the improvement term is

analysed for a lattice size of N = 8 × 8 at coupling g−2 = 1.5. During the whole simulation a value

of SB ≈ 2N is found (with statistical fluctuations of about 10%) in accordance with the simplest Ward

identity [44], which is a consequence of the (nearly, up to the Wilson mass) lattice supersymmetry.

However, the Monte-Carlo timelines of ñ3 (as defined in the quenched model in Eq. (6.76)) and ∆S can

shed some light on the influence of the improvement term on the dynamics, see Fig. 6.15. At a certain

point in the simulation the value of ñ3 freezes out and the improvement term starts growing largely

negative.17 Just as for the Nicolai improved Wess-Zumino model the simulation is driven away from

the continuum physics, where ∆S must vanish, into an unphysical phase.18 This implies that the severe

problems of a supersymmetrically improved action must be taken into account also for simulation of

supersymmetric sigma models. For that reason only configurations from the physical phase with nearly

vanishing improvement term should be taken into account for the computation of expectation values.

But similar to the Wess-Zumino model it has been found that tunnelling events to the unphysical phase

are hampered for larger lattices and larger g−2, i.e. in the continuum limit. Nevertheless, from these

observations it may be proposed that similar effects could arise in other lattice models with exact

supersymmetry that are constructed from a (Q exact) twisting procedure, e.g. two dimensional N = 2

super Yang-Mills [158].

But why did this instability not show up in the results of [44]? The explanation may lie in the used

rational hybrid Monte-Carlo algorithm. As explained in Sec. 4.4 spectral bounds must be chosen to

cover the spectrum of M †M . Typically these are obtained by test runs with rather pessimistic bounds

and small statistics, such that only the physical phase with ∆S ≈ 0 is present. But for the simulation

that is shown in Fig. 6.15 the lowest eigenvalue of M †M decreases by a factor of 10−5 when entering

the unphysical phase.19 For that reason the rational hybrid Monte-Carlo algorithm with spectral bounds

that are not applicable to the whole simulation will be an inexact algorithm and will give an arbitrarily

17Every other part of the bosonic action SB is positive definite.
18On the configurations before the simulation breaks down the normalised improvement term ∆S/N fluctuates around

zero with a width of about 0.002.
19The largest eigenvalue of M †M is kept at the same order of magnitude in the unphysical phase.
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Figure 6.16: Left panel: 〈ñ3〉 for different lattice volumes N = N2
s at four couplings g−2. The infinite

volume extrapolation according to Eq. (6.90) is indicated by the shaded areas. Right panel: Infinite

volume values of 〈ñ3〉 for different g−2.

small acceptance rate for the unphysical configurations that dominate the path integral. Furthermore

sign detM is not positive definite and a deflated rational hybrid Monte-Carlo algorithm is necessary

to get reliable expectation values (cf. Fig. 4.8).

These results imply that for a reasonable measurement of 〈ñ3〉 large couplings g−2 must be used in

order to suppress the unphysical phase. Since the continuum limit is reached for g → 0 measurements

will be affected by finite size corrections. On this observable the corrections are assumed to vanish

exponentially with growing volume,

〈ñ3〉 (Ns) = 〈ñ3〉 (∞) + Ae−BNs , (6.90)

such that a fit to this functional form for Ns ∈ {10, 11, 12, 13, 14, 16} and corresponding lattice vol-

umes N = N2
s reveals the infinite volume value for g−2 ∈ {3.5, 4.0, 4.5, 5.0}, see Fig. 6.16 (left

panel). Although 〈ñ3〉 shrinks for fixed Ns and growing g−2, the infinite volume values tend to grow

for larger g−2, see Fig. 6.16 (right panel). Therefore the O(3) symmetry will not be restored in the

infinite volume continuum limit of the lattice model (6.87).

All these results have a crucial implication. Although the formulation (6.87) may restore the full

N = (2, 2) supersymmetry on the lattice, the resulting continuum model is not the supersymmetric

O(3) (or CP1, equivalently) model because the global O(3) symmetry, that cannot be broken sponta-

neously in the continuum model [102], is not restored in the continuum limit. Therefore it is necessary

to construct a lattice formulation that explicitly implements the O(3) target space symmetry.

O(3) invariant lattice formulation

To get rid of the constraints (6.69) in the path integral formulation (6.70) with a three-component Her-

mitian superfield Φ as defined in Eq. (6.65), the stereographic projection is generalised to superspace

by using a two-component Hermitian superfield

Υ = w + iᾱχ+ i1
2
(ᾱα)g with Φ =

1

1 + ΥTΥ

(

2Υ

1−ΥTΥ

)

. (6.91)



6.2. SUPERSYMMETRIC O(3) SIGMA MODEL ON THE LATTICE 91

By this construction the superspace constraint Φ·Φ = 1 is identically fulfilled and the action is rewritten

(in the continuum, after integrating out the auxiliary field g) to

S =
2

g2

∫

d2x ρ2
(
∂µw · ∂µw + iχ̄ · /∂χ+ 2iρ(χ̄ · w)γµ(∂µw · χ)− 2iρ(χ̄ · ∂µw)γµ(w · χ) + 4(χ̄ · χ)2

)

(6.92)

with ρ = (1 + wTw)−1 and path integral Z =
∫
DuDχ ρ−2 e−S[w,χ]. However, a straightforward

discretisation of this expression will not necessarily ensure the underlying O(3) symmetry in the con-

tinuum.

To arrive at an O(3) invariant lattice regularisation the constrained formulation (6.70) is directly

discretised,

Z =

∫

DnDψ
∏

x

(
δ(nx · nx − 1)δ(nx · ψx)

)
e−S[n,ψ]

with S =
1

2g2

∑

x,y

(
nT

xKxyny + iψ̄T

xMxyψy +
1
4
(ψ̄T

x δxyψy)
2
)
, (6.93)

where ‘ψT’ denotes ‘transpose in flavour space’. The (derivative) operators K and M can be specified

later under the condition that they approach −∂µ∂µ and /∂, respectively, in the continuum limit. Now

the stereographic projection of superfields (6.91) is used, which implies the transformation of the

component fields on each lattice site according to

n = ρ

(

2w

1− wTw

)

, ψ = ρ

(

2χ− 4ρ(wTχ)u

−4ρ(wTχ)

)

= ei(w)χi (6.94)

with (flavour) basis vectors ei. An orthonormal basis can be constructed by taking Ei = (2ρ)−1ei and

the fermionic field is then given by ψ = Eiλi, λi = 2ρχi. Using this variable transformation the path

integral Z =
∫
DwDλ ρ2 e−S[w,λ] is given in terms of unconstrained fields by the action

S =
1

2g2

∑

x,y

(

4ρxw
T

xKxywyρy + ρx(1− wT

xwx)Kxy(1− wT

ywy)ρy

+ iλ̄Tx
(
(12 − 2wxw

T

xρx)Mxy(12 − 2wyw
T

y ρy) + 4ρxwxMxyw
T

y ρy
)
λy +

1
4
(λ̄Txδxyλy)

2
)

.

(6.95)

With a Hubbard-Stratonovich transformation it is possible to eliminate the four fermion interaction by

introducing a (real) auxiliary scalar field σ. The path integral Z =
∫
DwDσDλ ρ2 e−S[w,λ,σ] is then

given by the action

S =
1

2g2

∑

x,y

(

4ρxw
T

xKxywyρy + ρx(1− wT

xwx)Kxy(1− wT

ywy)ρy + σxδxyσy

+ iλ̄Tx
(
(12 − 2wxw

T

x ρx)(Mxy + δxyσx)(12 − 2wyw
T

y ρy) + 4ρxwx(Mxy + δxyσx)w
T

y ρy
)
λy

)

.

(6.96)

At each lattice point the vectors {n,Ei} form an orthonormal basis and may be composed as columns

of a SO(3) matrix R = (n,E1, E2). However, the vectors Ei as constructed above are only a specific

choice for the basis of fermionic fields and may be redefined by a (local) SO(2) rotation. Therefore
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the local basis is given by a (now general) SO(3) matrix R, such that

n = Rn0, (E1, E2) = Rκ with n0 =






1

0

0




 , κ =






0 0

1 0

0 1




 , (6.97)

and the path integral becomes in terms of new dynamical variables R ∈ SO(3)

Z =

∫

DRDσDλ e−S, S =
1

2g2

∑

x,y

(
nT

0R
T

xKxyRyn0+σxδxyσy+iλTx κ
TRT

xC(Mxy + δxyσx)Ryκ
︸ ︷︷ ︸

Qxy

λy
)
.

(6.98)

By changing the dynamical fields from w to R the measure factor ρ2 in the path integral is absorbed

in the Haar measure on SO(3). This renders the structure of the lattice action rather simple by the

cost of introducing a local SO(2) freedom to choose the basis vectors Ei. Integrating out the (now

unconstrained) Majorana fermions λ leads to a path integral

Z =

∫

DRDσ signPf Q e−SB−ln|PfQ|, SB =
1

2g2

∑

x,y

(
nT

0R
T

xKxyRyn0 + σxδxyσy
)

(6.99)

and simulations are performed in the sign quenched ensemble, i.e. signPf Q is dropped from the sim-

ulations and must be handled by reweighting afterwards. In this formulation the invariance of the path

integral under the local SO(2) transformation is manifest. The bosonic action is unaffected under

κ → κS with S ∈ SO(2) and Qxy → Q′
xy = ST

xQxySy. This also leaves the Pfaffian invariant by

using Eq. (5.24),

Pf Q′ =

(
∏

x

detSx

)

Pf Q = Pf Q. (6.100)

Technically, the effective fermionic action is rewritten according to ln |Pf Q| = 1
2
ln detQ and the

hybrid Monte-Carlo algorithm with naive fermionic action is used, such that the Hamiltonian evolution

of the group valued R field is similar to the quenched case.

Now that the formulation is completely O(3) symmetric the operators M and K need to be speci-

fied. Motivated by the results for the Wess-Zumino models and the supersymmetric quantum mechan-

ics, the regularisation here is build upon the SLAC derivative, i.e.

Kxy = −
∑

z,µ

(∂SLAC
µ )xz(∂

SLAC
µ )zy, Mxy = (γµ∂SLAC

µ )xy. (6.101)

With this discretisation it can be shown similar to Sec. 5.2.2 that bosonic action and Pfaffian are un-

changed under σ → −σ, which translates (by integrating out the σ field) into the explicit realisation of

the chiral Z2 symmetry on the lattice.20

Supersymmetry breaking on the lattice

Although the O(3) symmetry is now explicitly realised in the lattice formulation, supersymmetry is

broken by the discretisation. This happen in two places in the path integral representation of Eq. (6.93).

20In contrast to the situation in the N = 1 Wess-Zumino model this symmetry does not depend on the fermionic

boundary conditions (or the lattice size) because of the two Majorana flavours.
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Firstly the supersymmetry transformation (see Eq. (6.71)) of the action is given by

δS = − 1

2g2

∑

x

[
(ψ̄x · ψx)ǭγµ

(
(∂SLAC
µ ψ)x · nx + ψx · (∂SLAC

µ n)x
)]

6= 0, (6.102)

which would vanish in the continuum according to

(∂µψ) · n + ψ · (∂µn) = ∂µ(ψ · n) = 0. (6.103)

Secondly the supersymmetry transformation is not compatible with one constraint in (6.69),

δ(nx · ψx) = γµǫnx · (∂µn)x 6= 0 (6.104)

In both cases the non-invariance under the supersymmetry transformation can be traced back to the

failure of the Leibniz rule on the lattice. Therefore, in the following the focus lies on the restoration of

supersymmetry in the continuum limit of the proposed lattice model.
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Figure 6.17: Average sign of the Pfaffian for

different couplings g−2 on lattices sizes rang-

ing from 5× 5 to 11× 11.

To check if the sign quenched approximation is applica-

ble simulations on lattice sizes ranging from 5 × 5 to

11× 11 have been performed over a coupling range g−2 ∈
[0.4, 1.2]. The results that are based on 105 configura-

tions per data point (see Fig. 6.17) indicate that the av-

erage sign of the Pfaffian is quite small for smaller g−2,

which is equivalent to coarse lattices. Also the sign prob-

lem worsens for larger lattice volumes at fixed coupling. In

these cases the probability based (sign quenched) Monte-

Carlo sampling will not correspond to the relevant configu-

rations in an unquenched ensemble and statistical errors on

reweighted measurements will become rather large. Never-

theless, with the the standard Monte-Carlo techniques sim-

ulations are only possible without taking the sign into account, such that a reweighting becomes un-

avoidable. Technically, this sign problem prohibits the simulation on large lattices anyway, so that

there is no need to introduce pseudo-fermions. But still the Pfaffian sign is only given in terms of the

bare couping g. The dependence on the physical volume and the physical lattice spacing can only be

given in terms of a mass that sets the physical scale.

Chiral symmetry breaking

For unconstrained fermionic fields the O(3) invariant chiral condensate
〈
iψ̄x · ψx

〉
would be given

directly by the diagonal elements of the inverse fermion matrix. Here, the fields ψ are subject to

constraints. Nevertheless, the same relation is also revealed in terms of the unconstrained fermions λ,

〈
iψ̄x · ψx

〉
= Z−1

∫

DnDσDψ δ(n · ψ)δ(n · n− 1) (iψ̄x · ψx) e−S

= Z−1

∫

DRDσDλ iλ̄Tx κ
TRT

xRxκ
︸ ︷︷ ︸12

λx e
−SB−

i
2g2

λTQλ
=
〈
iλ̄x · λx

〉
= g2

〈
trf,s(CQ

−1
xx )
〉
.

(6.105)
with ‘trf,s’ as trace over flavour and spinor indices.
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Figure 6.18: Left panel: Probability density of the volume averaged chiral condensate for lattice size

9×9 at a bare coupling g−2 = 1 in the sign quenched and reweighted ensemble. Right panel: Constraint

effective potential (normalised to min(Ξa) Û(Ξa) = 0) of the chiral condensate for different lattice

volumes at g−2 = 0.64 computed using up to 3 · 107 configurations.

The Z2 chiral symmetry (6.73) is expected to be broken spontaneously in the infinite volume

limit [15] and the supersymmetric ground states correspond to the two ground states of this broken

symmetry. A discretisation based on the SLAC derivative ensures this chiral symmetry on the lattice

by the cost of having a non-local derivative. Therefore
〈
iψ̄ · ψ

〉
will vanish for every finite lattice

volume and is therefore not sufficient to trace a broken symmetry. Instead, this symmetry breaking is

analysed by histograms of the volume averaged chiral condensate Ξa = N−1
∑

x ψ̄x · ψx. Fig. 6.18

(left panel) clearly shows a double peak structure of the chiral condensate distribution ρ(Ξa), coincid-

ing with the two ground states. The reweighting process reveals that a cancellation between positive

and negative Pfaffians happens mostly for Ξa ≈ 0. In the analysis of the constraint effective potential

Û(Ξa) = − ln(ρ(Ξa))/N for several lattice volumes at fixed coupling (see Fig. 6.18, right panel) no

running of the two minima is visible, such that there will be a spontaneous chiral symmetry breaking

in the infinite volume limit of the lattice model.

Fermionic masses

The theory has no intrinsic mass scale given as parameter of the Lagrangian. However there is a

relation between mass gap and bare coupling by dimensional transmutation. Further in the MS scheme

it is possible to compute the mass gap [159,160] in relation to ΛMS. In the N = 1 Wess-Zumino model

it has been found that the fermionic mass is less affected by finite size effects than the bosonic mass.

For that reason the fermionic mass is used to set the physical scale, i.e. the physical box length and the

lattice spacing, in the lattice regularised theory.21

In analogy to the bosonic case (6.84) the O(3) symmetric fermionic correlator is constructed as

〈
iψ̄x · ψy

〉
= Z−1

∫

DnDσDψ δ(n · ψ)δ(n · n− 1) (iψ̄x · ψy)e−S

= Z−1

∫

DRDσDλ iλ̄Txκ
TRT

xRyκλye
−SB−

i
2g2

λTQλ
= g2

〈
trf,s(RxκCQ

−1
xy κ

TRT

y )
〉
.

(6.106)

The corresponding timeslice correlator is given by CF(t) = N−2
s

∑

xx′

〈
iψ̄(t,x) · ψ̄(0,x′)

〉
. To measure

the mass in one of the ground states the configurations are projected, without loss of generality, to the

21Supersymmetry and the degeneracy of bosonic and fermionic mass is broken by the finite lattice spacing and the finite

box size. Therefore the restoration of equal masses must be checked in the corresponding limits.
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Figure 6.19: Fermionic masses in units of the box length (left panel) and lattice spacing (right panel)

for different lattice volumes and bare couplings g−2 computed using up to 2 · 107 configurations.

sector with Ξ > 0.22 Using these definitions the fermionic masses are obtained by a cosh fit to the

correlator over the range t̂ ∈]0, Nt[. A comparison of the fermionic masses for different lattice sizes

(see Fig. 6.19) reveals that finite size effects on mFa are below the statistical error bars if mFL & 5.
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Figure 6.20: Average sign of the Pfaffian over

the physical volume in units of the fermionic

mass at different lattice sizes.

With this mass scale at hand it is now possible to give

〈signPf Q〉 over the physical volumemFL. The results are

shown in Fig. 6.20 and imply that for the present lattice

sizes the sign problem worsens when the lattice spacing

is refined at fixed volume mFL. In contrast to the Wess-

Zumino models, where the sign problem becomes weaker

in the continuum limit, for the O(3) sigma model the sign

problem becomes severe in the continuum limit at fixed

physical volume. This turns out to be a technical problem

making simulations close to continuum limit at fixed phys-

ical volume exceptionally hard, so that the present analysis

is only based on rather small lattice sizes.

Bosonic masses

As supersymmetry predicts the degeneracy of bosonic and fermionic mass it is important to check

if they match up in the lattice simulations. The bosonic masses mBL are extracted similar to the

quenched case from theO(3) invariant correlator (6.84) via a cosh fit over the range t̂ ∈]0, Nt[. Further

the bosonic correlator is unaffected by a change in σ, such that no projection to one ground state is

necessary. After the bosonic masses are determined a comparison of bosonic and fermionic mass at

different couplings and lattice sizes reveals a possible restoration of the degenerate spectrum. Calcu-

lations have been performed on lattice sizes N ∈ {52, 72, 92} over a coupling range g−2 ∈ [0.4, 1.2].

The direct comparison is shown in Fig. 6.21 (left panel) and the results seem to be disappointing at

first sight. The bosonic masses lie considerably below the fermionic partners and for larger lattices

this trend becomes even more pronounced. However, this does not necessarily imply that supersym-

metry will be broken in the continuum limit. As was found in the N = 2 Wess-Zumino model, for a

supersymmetric theory with a spontaneously broken Z2 symmetry the masses will split in the strongly

coupled limit at finite physical box sizes. E.g. for a coupling at the edge of the applicability of one-

22Technically this is achieved by flipping the sign of σ for configurations with Ξ < 0, such that Ξ → −Ξ.
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Figure 6.21: Left panel: Direct comparison of bosonic and fermionic mass in units of the box size

for three different lattice sizes. The dotted line denotes the case mF = mB. Right panel: Difference

mBL −mFL for varying box size mFL on a 5 × 5 lattice. The shaded area denotes a fit according to

Eq. (6.107) for mFL > 6.

loop perturbation theory with a box size mFL ≈ 10 a 20% splitting with a smaller bosonic mass is

observed (see Fig. 3.15) although one supersymmetry is implemented on the lattice. From that point

of view the supersymmetric O(3) nonlinear sigma model is similar to a very strongly coupled N = 2

Wess-Zumino model. The finite size effects may be even larger and a mass splitting of much more than

20% is not surprising for mFL < 10. Only an analysis of the mass ratio mB/mF in the large volume

limit can uncover a restoration of degenerate masses. This is exemplarily shown for the results on the

5 × 5 lattice in Fig. 6.21 (right panel). Despite the fact that lattice artefacts are rather large the basic

concept becomes clear. In the limit of large volumes a relation

mBL = mFL−∆M ⇒ mB

mF

= 1− ∆M

mFL
(6.107)

with constant ∆M is found such that the ratio tends to 1 and the masses will be degenerate in the

infinite volume limit.23

But still the accessible physical volumes at larger lattices do not allow for a reliable extrapolation

of the corresponding ∆M and no continuum limit can be taken at the moment. Therefore it is an

open question if Eq. (6.107) also applies in the continuum limit and supersymmetry will be restored.

For that reason a simple Ward identity is considered than allows for a more direct investigation of

supersymmetry restoration.

Path integral based Ward identity

Similar to the Ward identity for the action that is given in [44] an equivalent formulation can be con-

structed for the present lattice model. Starting from the path integral in the continuum,

Z =

∫

DnDψDf δ(n · n− 1)δ(n · ψ)δ(n · f − i1
2
ψ̄ · ψ)e−S[n,ψ,f ]

with S =
1

2g2

∫

d2x
(
∂µn · ∂µn+ iψ̄ · (/∂ψ)− f · f

)
, (6.108)

23For the 5× 5 lattice a fit to Eq. (6.107) for mFL > 6 gives ∆M = 2.56(10).
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Figure 6.22: Normalised action 〈SB〉 /N , which will take the value 1.5 if supersymmetry is restored

in the continuum limit as required by the Ward identity (6.112). Left panel: Measurements for different

lattice sizes at a range of physical volumes 5 < mFL < 11. Right panel: Results for fixed lattice volume

N = 7× 7 and couplings g−2 ∈ [0.4, 100] that reach the regime of small physical volumes (small g).

Q exactness is given by the twisted supercharge of [44] in the continuum, such that S = 1
2g2
QΛ with

Q2 = 0. This implies the continuum Ward identity

∂ lnZ
∂(g−2)

=
〈
−1

2
QΛ
〉
= 0, (6.109)

since action and measure are invariant under the symmetry transformation provided byQ. After putting

the theory on the lattice, integrating out the constrained auxiliary field f , and introducing the uncon-

strained field σ to cancel the four fermion interaction (in that order) one is left with a path integral,

Z = gN
∫

DRDσDλ e−S[R,σ,λ] (6.110)

with N as number of lattice sites and action given in Eq. (6.98).24 Here, the coupling dependent part is

important, such that only constant numerical factors may be dropped. The corresponding Ward identity

then turns into
∂ lnZ
∂(g−2)

= −Ng
2

2
− g2 〈SB〉+

g2

2
dimQ. (6.111)

If the theory is supersymmetric under Q the Ward identity is given by combining the continuum result

(6.109) with the lattice result (6.111),

〈SB〉 =
3

2
N, (6.112)

with SB defined in Eq. (6.99). To see a possible restoration of supersymmetry in the continuum limit

the bosonic action has been calculated for three lattice sizes in a coupling range where finite size effects

should be negligible, i.e. for mFL > 5.

The results that are shown in Fig. 6.22 (left panel) reveal that for the smallest (5 × 5) lattice

Eq. (6.112) is violated as much as 10% for mFL ≈ 5 and up to 20% at mFL ≈ 10. Therefore the

Ward identity violation grows for coarser lattice spacings. However, in the continuum limit at a fixed

physical volume mFL the Ward identity tends to be restored. Additionally one can explore the small

volume regime of this theory by sending g → 0 at fixed lattice volume to reach the continuum limit

with small lattice spacings. This has been performed on a 7 × 7 lattice for a large range of couplings

24The factor gN in front of the path integral stems from the Gaussian integrals that need to be carried out (for f ) or

introduced (for σ).
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g−2 ∈ [0.4, 100], see Fig. 6.22 (right panel). Here the Ward identity is explicitly restored in the limit of

large g−2 and small lattice spacing.

Altogether the Ward identity tends to be restored in the continuum limit at fixed physical volumes

and is explicitly restored at small physical volumes. Although the used lattice sizes are rather small

these observations imply that a supersymmetric continuum limit can be reached and that the non-

degeneracy of bosonic and fermionic mass is a finite size effect, which is also present in the continuum

theory. However, to come to a definite answer to the question of supersymmetry restoration simulations

on larger lattices would be necessary to show at least that 〈SB〉 /N does not undershoot and drop below

1.5 in the continuum limit at fixed mFL.

6.2.3 Conclusions

It has been demonstrated for the quenched model that the target space O(3) symmetry must be ensured

in the lattice discretisation. Even in the continuum limit of the lattice model there is no restoration

of the target space symmetry and a spontaneous magnetisation occurs in contradiction to the Mermin-

Wagner theorem [102]. To ensure the applicability of the SLAC derivative for a curved target space

the step scaling function has been verified in the continuum limit to high precision.

The analysis of the Q exact model of [44] reveals that the O(3) symmetry will not be restored if it

is broken by the discretisation in the supersymmetric model. Further the instabilities at coarse lattices

in a lattice model with an exact supersymmetry, that have been found in the N = 2 Wess-Zumino

model, are also recovered in this setting.

By using a stereographic projection it has been demonstrated that a discretisation of the supersym-

metric O(3) nonlinear sigma model is possible, which ensures the bosonic and fermionic constraint as

well as the target space symmetry. Using the SLAC derivative for bosonic and fermionic degrees of

freedom the chiral Z2 symmetry is implemented on the lattice and the spontaneous breaking is only

caused by dynamical effects. The theoretically predicted ground state structure has been checked with

histogram methods and two ground states, corresponding to the spontaneously broken chiral symmetry,

are found.

The bosonic and fermionic masses have been computed and they disagree considerably, which

can be traced back to finite size effects that cause a mass splitting in strongly coupled theories with

spontaneously broken Z2 symmetry. An analysis of a Ward identity based on the bosonic action shows

explicitly that supersymmetry is restored at small physical volumes and indicates that the Ward identity

will be fulfilled in the continuum limit at finite (large) physical volume.

Although the results are very encouraging so far there is one pitfall remaining. The sign problem

becomes worse in the continuum limit and a simulation on larger lattices will be exceptionally hard.

Further elaborate methods based on pseudo-fermions are not efficient since the sign of the Pfaffian

must still be computed for a reweighting of observables. However, the O(3) invariant formulation

does not specify the used derivative operators. It may turn out that a formulation based on the overlap

operator (to ensure the chiral symmetry) possesses a less severe sign problem and does therefore allow

for larger lattice sizes and a precise investigation of the supersymmetry restoration in the continuum

limit. Eventually the construction of an O(3) invariant formulation with one exact supersymmetry

on the lattice might be possible, which will ensure a supersymmetric and O(3) symmetric continuum

limit.
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Summary and outlook

In this work different supersymmetric models were studied on the lattice with an emphasis on the

ground state structure, supersymmetry restoration in the continuum limit of the corresponding lattice

models, and spontaneous supersymmetry breaking.

A supersymmetric quantum mechanics with dynamically broken supersymmetry was analysed with

a lattice model built upon a discretisation with the SLAC derivative. Observables that are computed via

Monte-Carlo simulations of the lattice regularised theory are in full agreement with results from the

diagonalised Hamiltonian. Bosonic and fermionic ground state can be distinguished on the lattice by

the impact of changing the fermionic boundary conditions on the sign of the fermion determinant. A

massless fermionic excitation was found that corresponds to the Goldstone fermion of the dynamically

broken supersymmetry. By a projection to one ground state it was possible to compute the energy gap

between ground state and first excited state. Due to the broken supersymmetry Ward identities are not

fulfilled and will additionally be affected by a finite temperature. The whole analysis demonstrates

that a complete treatment of theories with dynamically broken supersymmetry on the lattice is possi-

ble. Ground state structure, observables, and the low lying energy spectrum were determined reliably.

Additionally no counterterms are necessary to obtain the correct continuum theory.

In the study of the N = 2 Wess-Zumino model three different lattice derivatives have been com-

pared. For coarse lattices and large couplings the improvement term, that is introduced to implement

one exact supersymmetry on the lattice, leads to an unstable behaviour of the lattice model, irrespec-

tive of the chosen derivative. In the weak coupling regime the continuum extrapolation of the coupling

dependent renormalised mass coincides with perturbation theory. More importantly, all different lat-

tice prescriptions approach the same continuum result. The SLAC derivative shows the smallest lattice

artefacts and allows for much larger couplings in the Nicolai improved versions of the model. Results

in the intermediate coupling regime, at the edge of the applicability range of one-loop perturbation the-

ory, were obtained and (small) deviations from perturbative results were found. Only in that coupling

region supersymmetrically improved and unimproved formulations lead to different results, where in

the improved version lattice artefacts are suppressed. Although one supersymmetry is explicitly re-

alised in the improved lattice models a broken Ward identity is found for larger couplings, which can

be traced back to the measurement process, during which a projection to one ground state may be nec-

essary. This procedure to mimic an infinite volume ground state structure with a broken Z2 symmetry

amounts to supersymmetry breaking terms in the action and only Z2 invariant observables are insen-

sitive to this artificial supersymmetry breaking. Altogether the coupling region up to the breakdown

of one-loop perturbation theory is completely under control and reliable results can be obtained. The

most promising way to go beyond the perturbative region is given by Nicolai improved actions with

the SLAC derivative on larger lattice sizes than studied here and at even larger physical volumes to

suppress instabilities of the improvement term and finite volume effects.

In the N = 1 Wess-Zumino model with the chosen prepotential a supersymmetry breaking phase

transition was confirmed with a regularisation based on the SLAC derivative. For the first time the

corresponding renormalised critical coupling was determined and a regulator independence of this

coupling was demonstrated in the quenched model. At the phase transition a restoration of the Z2

symmetry goes at hand with the spontaneous breaking of supersymmetry. Supersymmetry restoration
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was examined with a Ward identity in the continuum, infinite volume, and zero temperature limit.

Bosonic and fermionic masses were determined at one specific coupling in the supersymmetric phase

and a massless fermionic mode, a goldstino, was found for spontaneously broken supersymmetry while

the bosonic mass vanishes with growing physical volume. Although the physical picture of this model

is now completely determined a few systematic uncertainties concerning the ordering of limits still

remain and need to be clarified in future works. Eventually a completely independent calculation using

another lattice regularisation is needed to directly confirm the independence of the given renormalised

critical coupling on the used discretisation of the full supersymmetric model.

Instanton constituents of twisted CPN nonlinear sigma models on a cylinder were constructed and

their fractional charges were related to the phases of the twisted boundary conditions. The instanton

structure that emerges from lattice cooling techniques is in agreement with the analytical findings.

For minimally and supersymmetrically coupled fermions the zero modes of the Dirac operator in the

background of twisted instantons were determined. Even on incompletely cooled lattice configurations

these zero modes are tracers for the instanton constituents, in coincidence with the analytical results.

In the supersymmetric O(3) nonlinear sigma model the relevance of an intact target space symme-

try in the lattice model has been demonstrated and a previously suggested lattice formulation was found

to break this symmetry even in the continuum limit. A lattice formulation that explicitly implements

the global O(3) symmetry was constructed independently of the used lattice derivative. To ensure the

applicability of the SLAC derivative for an O(3) target space the step scaling function of the finite

volume mass gap has been verified in the continuum limit to high precision. Thus, the supersymmetric

O(3) nonlinear sigma model was studied using an explicitly O(3) invariant lattice prescription with

the SLAC derivative, that ensures the chiral Z2 symmetry of the continuum model. The theoretically

predicted ground state structure is confirmed by the constraint effective potential of the chiral conden-

sate. Bosonic and fermionic masses are found to disagree, which can be understood, similarly to the

N = 2 Wess-Zumino model, from finite volume effects. A specific Ward identity tends to be restored

in the continuum limit at fixed physical volume and is explicitly restored in the limit of small physical

volumes. Unfortunately, the sign problem hinders the simulations from approaching the continuum

limit at fixed physical volume. Although the present formulation may in principle have a well behaved

supersymmetric continuum limit, this problem makes simulations exceptionally time consuming. Only

discretisations with a different derivative operator may show a better behaved sign problem.

In most of the considered models the SLAC derivative has proven to be successfully applicable,

which can be traced back to the absence of gauge fields in these models. Therefore it may be advan-

tageous to consider the SLAC derivative as an interesting alternative to Ginsparg-Wilson fermions in

simulations of the four dimensional N = 1 Wess-Zumino model [161].

Supersymmetrically improved lattice actions inevitably include periodic boundary conditions for

fermionic field which lead to a severe sign problem in supersymmetric theories with a spontaneously

broken supersymmetry. Therefore the applicability of the improvement program to these theories be-

comes questionable. Further there are two examples with unbroken supersymmetry, namely the N = 2

Wess-Zumino model and the supersymmetric CP1 nonlinear sigma model, where the supersymmetri-

cally improved lattice models possess an inherent instability. Thus, it may be proposed that these

instabilities can (in principle) occur in every supersymmetric lattice model that is constructed from a

nilpotent (scalar) supercharge and only further investigations may shed light on this issue.
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[41] G. Bergner, T. Kästner, S. Uhlmann and A. Wipf, Low-dimensional supersymmetric lattice

models, Annals Phys. 323 (2008) 946 [arXiv:0705.2212].

[42] V. A. Novikov, M. A. Shifman, A. I. Vainshtein and V. I. Zakharov, Two-Dimensional Sigma

Models: Modeling Nonperturbative Effects of Quantum Chromodynamics, Phys. Rept. 116

(1984) 103.

[43] S. Catterall and S. Ghadab, Lattice sigma models with exact supersymmetry, JHEP 05 (2004)

044 [arXiv:hep-lat/0311042].

[44] S. Catterall and S. Ghadab, Twisted supersymmetric sigma model on the lattice, JHEP 10 (2006)

063 [arXiv:hep-lat/0607010].
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Zusammenfassung

Symmetrien bilden die Grundfesten der modernen theoretischen Physik und führten zu der Entwick-

lung des Standardmodells der Teilchenphysik, welches erfolgreich die Physik auf Energieskalen un-

terhalb von 1 TeV beschreibt. Da jede weitere Symmetrie einer Theorie zu einer Einschränkung der

möglichen Streuamplituden führt, kommt als einzige Erweiterung von Poincaré-Symmetrie und in-

ternen Symmetrien nur eine Supersymmetrie in Frage, welche Teilchen mit ganzzahligem Spin und

Teilchen mit halbzahligem Spin verknüpft. Mit Hilfe von supersymmetrischen Erweiterungen des

Standardmodells können dessen offene Probleme, wie z.B. das Hierarchieproblem, das Auftreten von

Dunkler Materie oder das starke CP-Problem, gelöst oder zumindest abgeschwächt werden.

Supersymmetrische Modelle mit ungebrochener Supersymmetrie implizieren eine Entartung von

bosonischen und fermionischen Massen. Da jedoch keine Anzeichen einer solchen Entartung in den

bisherigen Experimenten sichtbar sind, kann Supersymmetrie, wenn überhaupt, nur in einer gebroch-

enen Form vorhanden sein. Nichtsdestotrotz ist eine Supersymmetrie-Algebra vorhanden, welche auch

im gebrochenen Fall Auswirkungen auf experimentelle Resultate hat. Es sind unter anderem auch diese

Effekte, welche am Large Hadron Collider in den kommenden Jahren untersucht werden sollen, so dass

es nötig ist, nicht-störungstheoretische Methoden zur Verfügung zu haben, mit denen sich supersym-

metrische Theorien untersuchen lassen.

Eine herausragende Stellung unter den nicht-störungstheoretischen Methoden nimmt die Gitter-

Regularisierung ein, mit deren Hilfe heutzutage ab-initio-Rechnungen des Hadronen-Spektrums in der

Quantenchromodynamik möglich sind. Daher wäre es wünschenswert, wenn sich dieses mächtige

Werkzeug auch für supersymmetrische Theorien verwenden ließe. Jedoch spielen Symmetrien auch

in gitterregularisierten Feldtheorien eine wichtige Rolle. Wenn eine Symmetrie der Kontinuumsthe-

orie auf dem Gitter nicht vorhanden ist, dann ist es möglich, dass diese im Kontinuumslimes ebenso

verletzt wird. Bestimmte Symmetrien jedoch lassen sich auf dem Gitter direkt implementieren (z.B.

Eichsymmetrien) oder aber kontrolliert brechen (z.B. die chirale Symmetrie masseloser Fermionen),

so dass diese Symmetrien auch im Kontinuumlimes gesichert sind.

Im Falle der Supersymmetrie, welche die Poincaré-Algebra erweitert, müssten mit vollständig im-

plementierter Supersymmetrie auf dem Gitter auch beliebige (infinitesimale) Translationen Teil der

Symmetriegruppe des Gitters sein, was im Widerspruch zum Vorhandensein eines endlichen Gitter-

abstandes steht, der nur endliche Translationen als Symmetrietransformation erlaubt. Somit ist eine

vollständige Realisierung der Kontinuums-Supersymmetrie-Algebra auf dem Gitter unmöglich und

Supersymmetrien können im Allgemeinen nur durch eine Feinjustage von Kopplungen der Gitterthe-

orie im Kontinuumslimes wiederhergestellt werden. Da dies bereits nicht-triviale Kenntnisse über

die zu untersuchende Theorie voraussetzt, wurden verschiedenen Ansätze entwickelt, um solche eine

Feinjustage zu vermeiden. Einer davon basiert auf der Möglichkeit, in Theorien mit erweiterter Su-

persymmetrie einen (skalaren) Teil davon explizit auf dem Gitter zu realisieren, so dass man die volle

Supersymmetrie im Kontinuumlimes automatisch erhält.

In der vorliegenden Arbeit werden verschiedene supersymmetrische Modelle in einer und zwei

Raumzeit-Dimensionen untersucht, welche wesentliche Bestandteile von realistischeren Theorien, wie

z.B. dem minimalen supersymmetrischen Standardmodell, beinhalten. Durch die separate Unter-

suchung der einzelnen Aspekte ist es möglich die Vor- und Nachteile der jeweils verwendeten Gitter-

methoden herauszuarbeiten. Zusätzlich erlaubt die niedrige Dimensionalität sehr präzise numerische

Studien, welche konzeptuelle und technische Probleme bei der Behandlung von supersymmetrischen



ZUSAMMENFASSUNG

Theorien auf dem Gitter aufdecken können.

Am Beginn der Untersuchung von supersymmetrischen Theorien auf dem Gitter steht das eher

pädagogische Beispiel einer supersymmetrischen Quantenmechanik mit dynamisch gebrochener Su-

persymmetrie. Hieran wird die grundlegende Anwendbarkeit von Gittermethoden auf Theorien mit

dynamisch gebrochener Supersymmetrie verifiziert. Dabei werden fundamentale Konzepte erläutert,

die auch in den weiteren untersuchten Modellen zur Anwendung kommen. Referenzwerte für Ob-

servablen können durch Diagonalisierung der Hamilton-Operators gewonnen werden, so dass ein

Verständnis der Supersymmetriebrechung auf einer gesicherten Basis geschieht. Die zugehörige Git-

terformulierung basiert auf der nichtlokalen SLAC-Ableitung, welche sich in vorherigen Untersuchun-

gen an einer ungebrochenen supersymmetrischen Quantenmechanik als besonders nützlich erwiesen

hat. Anschließend an eine Untersuchung der Grundzustandsstruktur wird dargestellt, wie sich das

tiefliegende Energiespektrum der Theorie aus Korrelatoren bestimmen lässt, wobei sich die energeti-

sche Entartung der Grundzustände im konstanten Anteil des fermionischen Korrelators widerspiegelt.

Abschließend wird eine Ward-Identität untersucht, welche auf Grund der gebrochenen Supersymme-

trie nicht erfüllt ist und zusätzlich noch durch endliche Temperaturen beeinflusst wird. All diese Re-

sultate können dabei ohne Feinjustage der Kopplungen der Gittertheorie gewonnen werden, so dass die

explizite Supersymmetriebrechung im Kontinuumslimes der Gittertheorie verschwindet und nur eine

spontane Brechung zurückbleibt.

Das N = 2 Wess-Zumino-Modell in 1 + 1 Dimensionen stellt die dimensional reduzierte Ver-

sion des vierdimensionalen N = 1 Wess-Zumino-Modells dar. Es basiert auf einem holomorphen

Superpotential, so dass die Supersymmetrie nicht spontan gebrochen werden kann. An diesem Modell

werden fünf verschiedene Gitterformulierungen verglichen, von denen drei eine explizite Realisierung

eines Teils der vollen Supersymmetrie auf dem Gitter darstellen. Dies wird durch einen Improvement-

Term erreicht, welcher jedoch zu Instabilitäten in den zugehörigen Gittermodellen führen kann. Für

schwache Kopplungen werden Kontinuumsextrapolationen von Massen mit störungstheoretischen Re-

sultaten verglichen, wobei die SLAC-Ableitung die geringsten Gitterartefakte aufweist. Es können

Resultate am Rande des Gültigkeitsbereiches der 1-Loop-Störungstheorie gewonnen werden, wobei

sich nur dort supersymmetrisch verbesserte Formulierungen signifikant von den Standardformulierun-

gen unterscheiden. Obwohl in den verbesserten Modellen eine Supersymmetrie explizit realisiert ist,

kann bei großen Kopplungen eine Brechung von Ward-Identitäten auftreten. Dies wird durch Details

des Messprozesses erklärt, im Rahmen dessen die Grundzustandsstruktur im unendlichen Volumen

simuliert wird. Somit wird das Modell bis hin zu Kopplungen, an denen die 1-Loop-Störungstheorie

zusammenbricht, ausführlich dargestellt, und es wird aufgezeigt, wie man Erkenntnisse darüber hinaus

gewinnen kann.

Die Durchführung von hochpräzisen Messungen stellt selbst in zweidimensionalen Theorien eine

große numerische Aufgabe dar. Daher werden die algorithmischen Verbesserungen, die im Verlaufe

dieser Arbeit benutzt wurden, am Beispiel des N = 2 Wess-Zumino-Modells exemplarisch dargestellt.

In diesem Zusammenhang zeigt sich, dass der etablierte
”
Rational Hybrid Monte-Carlo“-Algorithmus

nicht direkt auf die vorhandenen Modelle angewendet werden kann, sondern Modifikationen erfordert,

welche eine exakte Behandlung der kleinsten Eigenwerte der Fermion-Matrix mit einschließen.

Die Minimalversion einer supersymmetrischen Feldtheorie mit supersymmetriebrechendem Pha-

senübergang ist durch das N = 1 Wess-Zumino-Modell in 1 + 1 Dimensionen gegeben. In einer
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Regularisierung, welche auf der SLAC-Ableitung beruht, wird zum ersten Mal eine renormierte kri-

tische Kopplung bestimmt, wobei deren Regulatorunabhängigkeit am bosonischen Part des Modells

verifiziert wird. Am zugehörigen Phasenübergang geht eine Wiederherstellung der Z2-Symmetrie des

Modells mit der Brechung der Supersymmetrie einher. Die Wiederherstellung der Supersymmetrie

in der supersymmetrischen Phase wird mit Hilfe einer Ward-Identität untersucht, wobei der Grenz-

fall eines unendlichen Volumens, verschwindender Temperatur und des Übergangs zum Kontinuum

beachtet werden muss. Bosonische und fermionische Massen werden an einer ausgewählten Kopplung

in der supersymmetrischen Phase bestimmt. Das physikalische Bild dieses Modells wird komplet-

tiert durch die Existenz einer masselosen fermionischen Mode, des Goldstinos, in der Phase spontan

gebrochener Supersymmetrie.

Die letzte Modellklasse dieser Arbeit bilden (supersymmetrische) nichtlineare Sigma-Modelle.

Diese beinhalten Merkmale von nichtabelschen Eichtheorien, wie z.B. asymptotische Freiheit, dy-

namische Massenerzeugung und die Anwesenheit von topologischen Objekten. Im Hinblick auf die

letztgenannte Eigenschaft wird die Instantonen-Struktur von bosonischen nichtlinearen CPN -Sigma-

Modellen mit getwisteten Randbedingungen konstruiert und die gebrochenzahligen Ladungen werden

zu den Phasenparameteren der Randbedingungen in Beziehung gesetzt. Die Struktur, welche beim

”
Kühlen“ von Gitterkonfigurationen entsteht, deckt sich mit den theoretischen Resultaten. Für minimal

und supersymmetrisch gekoppelte Fermionen werden die Nullmoden des Dirac-Operators im Hinter-

grund der getwisteten Instantonen bestimmt. Die Untersuchung des Dirac-Operators auf dem Gitter

zeigt, dass die Nullmoden auch in einer dynamischen Theorie als Indikator für Instanton-Konstituenten

dienen.

Die Arbeit schließt mit einer Analyse des supersymmetrischen nichtlinearen O(3)-Sigma-Modells

auf dem Gitter. Die Relevanz einer intakten Targetraum-Symmetrie auf dem Gitter wird gezeigt. Je-

doch bricht eine bekannte Gitterformulierung dieses Modells die O(3)-Symmetrie sowohl auf dem

Gitter als auch im Kontinuumslimes. Daher wird eine gitterregularisierte Version des Modells unter

expliziter Beibehaltung der O(3)-Symmetrie konstruiert. Mit Hilfe der SLAC-Ableitung, welche die

chirale Symmetrie auch auf dem Gitter erhält, kann die analytisch vorhergesagte Grundzustandsstruk-

tur verifiziert werden. Bosonische und fermionische Massen werden bestimmt, wobei zu deren Ana-

lyse Einflüsse des endlichen physikalischen Volumens beachtet werden müssen. Die Wiederherstel-

lung der Supersymmetrie wird im Grenzfall kleiner Gitterkonstanten bei festgehaltenem physikalis-

chen Volumen und im Grenzfall extrem kleinen physikalischen Volumens durch die Messung einer

Ward-Identität bestätigt.
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