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Abstract. This thesis investigates spontaneous symmetry breaking in four fermion
theories. To obtain concrete results from this broad field of theories, the setting is spe-
cialized to Gross-Neveu models in three spacetime dimensions. In a first step, the
critical behavior and thermodynamics of the large flavor number approximation are dis-
cussed. After further specifying the model to one irreducible flavor, Monte Carlo lattice
simulation results are shown. On the one hand, precise estimates for the critical behavior
at zero temperature are given including the critical coupling and critical exponents of
the parity/chiral phase transition as well as the lattice artifact phase transition. On the
other hand, a first glance into an investigation of the finite temperature phase diagram
is provided.
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1 Introduction

1 Introduction
Symmetry is one of the most fundamental concepts in physics. It led to the formu-
lation of general relativity, the state-of-the-art description of macroscopic physics,
and can be used to derive the complete particle content of the standard model of
particle physics – the best description of microscopic physics nowadays. Symmetry
is strongly connected to conservation laws and can hence, in retrospective, also be
understood as important building block of earlier theories like Newton’s classical
mechanics or Maxwell’s electrodynamics.
Symmetry basically means that a transformation of the mathematical formu-

lation of a theory does not change the physically relevant quantities. The most
intuitive example might be translational invariance stating that the laws of physics
should not depend on the location they are formulated at. But there are many
more symmetries in nature that all can be divided into global and local symme-
tries. The former include symmetries, the transformations of which are the same
at every point is spacetime. The paradigmatic example is the Ising model [1] with
spins with value ±1 at every point of a lattice. A global transformation (under
which it is invariant) would be the flip ±1 → ∓1 at every point on the lattice.
A local transformation, in contrast, is allowed to vary between different points in
spacetime; that would mean a flip of only some of the spins. Though the latter is,
of course, no symmetry of the Ising model, local symmetries are a common phe-
nomenon in physical theories. Nevertheless, the focus of this thesis lies on global
symmetries.
At this point, it should be clear that formulating theories with a high degree

of symmetry is desirable and potentially even necessary to describe nature. How-
ever, in a lot of cases we observe a smaller symmetry than the original theory
allows. This is called spontaneous symmetry breaking (SSB) and occurs whenever
the ground state of the underlying theory is not invariant under the full symmetry.
Then, by symmetry there are other ground states with the same properties and no
a priori principle to choose one exists. Thus, it seems that the choice of a ground
state was spontaneous – justifying the naming. This concept allows to combine
high symmetry assumptions with seemingly contradicting experimental data like
in the case of the Higgs mechanism [2–4] which, by SSB, gives rise to the ex-
perimentally observed masses of particles that should have no mass by symmetry
restrictions.
Unfortunately, a lot of non-perturbative effects in state-of-the-art physics are

hard to compute and thus there are a lot of open questions concerning the long
established standard model. One way to tackle this issue is the use of toy models
conjectured to have similar properties like parts of the original theory but evaluated
more easily. Some four fermion theories (4FT) are candidates for such toy models.
Fermions are the building blocks of matter which interact via gauge bosons in
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the standard model. There, they obey a flavor symmetry (mixing different kinds
of fermions) and a chiral symmetry. Both are also shared (to some extent) by
4FT where no bosons exist as fundamental degrees of freedom but the fermions
interact directly via a point interaction. An exploration of the chiral symmetry in
the conceptually simpler 4FT can then build up an understanding of what might
happen in the hard to handle general theory.
But this was not the advent of 4FT. The first models of such kind were proposed

by Nambu and Jona-Lasinio [5, 6] as models for nuclei which were later found to
be described by quantum chromodynamics (QCD) instead [7]. Later, it was addi-
tionally found that 4FT arise as effective models from tight binding Hamiltonians
in solid state physics. In that setting, they can describe the electronic properties
of graphene [8, 9] and similar materials – also in the second sense, that a particular
4FT, the Thirring (TH) model, has strong parallels with 3-dimensional quan-
tum electrodynamics (QED3) [10]. Nowadays, another 4FT, Gross-Neveu (GN)
[11], gains attention because it is asymptotically safe [12] – a scenario potentially
similar to a theory of quantum gravity.
This thesis is intended to investigate SSB in 4FT. 4FT are a rather general class

of theories where the details concerning symmetries and potential SSB depend on
the concrete model and further parameters like the dimensionality and the number
of flavors, i.e. copies of fermions in use. We will therefore specialize the setting to
get concrete results: first to three dimensions – sticking close to the applications
to graphene and QED3 – and later even to one irreducible flavor. The latter is
a setting poorly discussed in the literature because of technical difficulties. In
particular, to the best of our knowledge we will show the first Monte Carlo (MC)
lattice simulation results for this model including the critical coupling of the so-
called chiral phase transition (which is actually a parity breaking phase transition)
and the critical exponents of this transition. Furthermore, we will contribute
insights to the discussion of the lattice artifact phase (LAP) – a phenomenon
encountered in various 4FT when discussed on the lattice. Finally, we will present
our first results and insights about the phase diagram in the temperature-coupling
plane. However, this part is a glimpse into ongoing research and therefore not
intended to be an exhaustive investigation.
This thesis is organized as follows: The next section, Sec. 2, is intended to give

an overview over general concepts used in this thesis. This implies that the ex-
planations in there are not specific to 4FT, to which a subsequent section (Sec. 3)
is dedicated. Sec. 2 is divided into two subsections: one concerned with the more
physical aspects (Sec. 2.1), i.e. phase transitions (Sec. 2.1.1) and quantum field
theories (QFT) (Sec. 2.1.2), the other (Sec. 2.2) with the basic notions and means
exploited in this work, namely MC methods (Sec. 2.2.1), finite size scaling (FSS)
(Sec. 2.2.2) and the pitfalls commonly encountered in the work with fermions on
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1 Introduction

the lattice (Sec. 2.2.3). Afterwards, Sec. 3 goes into detail about 4FT. Starting
from the general description of fermions by spinors (Sec. 3.1), 4FT are introduced
(Sec. 3.2), discussed (Sec. 3.3 and Sec. 3.4) and reformulated for further mathe-
matical treatment (Sec. 3.5). To build up a physical intuition for the models under
investigation, the first (Sec. 4) of the two results sections employs the well-known
large-Nf approximation scheme to explore the SSB and critical behavior (Sec. 4.2)
as well as some thermodynamical aspects (Sec. 4.3). Finally, the announced lattice
results of the three-dimensional GN model with one irreducible flavor are presented
in Sec. 5. After working out a proper formulation of the theory in Sec. 5.1 as well
as observables to inspect (Sec. 5.2), some rather technical aspects are discussed in
Sec. 5.3 and Sec. 5.4. Finally, we show the results obtained for vanishing tempera-
ture (Sec. 5.5) and the phase diagram in the temperature-coupling plane (Sec. 5.6).
This whole thesis works in natural units setting ~ = kB = c = 1.
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2 General Preliminaries
This first section is dedicated to the general principles fundamental for this work.
It is broadly divided in rather physical discussions in Sec. 2.1 and more numerical
topics in Sec. 2.2. However, it should be mentioned here that this division is by
no means strict, since we will see that the rather numerical properties have a lot
of physical implications.

2.1 Physical Preliminaries
2.1.1 Phase Transitions And Critical Behavior

Consider a physical system with one or more external parameters – collected in the
symbol λ – in thermodynamical equilibrium. If we now vary λ, we would usually
expect a mostly smooth behavior of macroscopic quantities describing the state of
the system. The connected regions where this expectation is correct, we want to
call a phase of the system.1 Typical phases are the state of aggregation of water
(the solid, liquid or gaseous phase) or the ferro- and paramagnetic phase of some
solids.
Phases are separated by so-called phase transitions at which the smoothness of

physical quantities does not apply. Phase transitions can be broadly divided into
two categories: First order phase transitions are characterized by a latent heat.
This usually involves discontinuous behavior of at least one extensive quantity and
coexistence of phases right at the critical point. The typical processes with such a
behavior are liquid-gas transitions. Since we will only shortly touch this topic in
the following, we do not go into detail here but refer the reader to the pertinent
literature, e.g. [13].
A second order phase transition is characterized by a divergent correlation length

ξ. Contrary to the first-order case, the two phases are identical at the critical point
allowing for a continuous behavior of extensive quantities and first derivatives while
their second derivatives may jump. The paradigmatic example exhibiting such a
transition is the Ising model [1]. Observables O for such systems usually behave
like [14]

〈O〉 ∼ τκO (2.1)

with the reduced parameter(s) τ = λ−λc
λc

and critical exponent κO.2 The critical
exponents are universal quantities in a sense that they are not affected by the
concrete microscopic nature of the regarded system but only by general properties

1This is a working definition that includes all commonly implied application as given in [13].
2The symbol 〈 · 〉 denotes the expectation value rigorously defined in Eq. (2.2).
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2 General Preliminaries

Tab. 2.1: Conventional notation of various critical exponents as found in [16]. In this ta-
ble, m denotes a mass parameter of the theory and p the momentum argument
of the two-point function. Historically τ was used for the reduced temperature
but in this work the symbol (and the corresponding exponents) will also be
used for other reduced parameters such as coupling constants.

Observable O Exponent κO Relation

Specific Heat −α ∼ τ−α

Order Parameter β ∼ τβ

Susceptibility −γ ∼ τ−γ

Correlation Length −ν ∼ τ−ν

Order Parameter 1
δ

∼ m
1
δ

Two-Point Correlation Function η ∼ p−D+2−η

like symmetries and dimensionality of the theory.3 Thus, theories can be clustered
into large universality classes with the same universal behavior. Some conventional
notations for the various critical exponents have been developed over the years.
Tab. 2.1 gives an overview over the most common ones.
One important observation regarding this thesis is the following: As the correla-

tion length diverges at the critical point, all other length scales become irrelevant.
This particularly implies that a finite lattice spacing a – as it will be introduced
during the discretization of the system (cf. Sec. 2.1.2) – does not change the
physics. Hence, the continuum limit of a discretized theory is obtained by tuning
external parameters to the critical point [7].

2.1.2 (Lattice) Quantum Field Theory

This work is concerned with QFT on the lattice. As in classical field theory, our
quantum field theoretical studies start from an action S that – if we assume locality
– can be written as spacetime integration of a corresponding Lagrangian density
L. In the so-called path integral formulation an observable O can be seen as a
functional on the space of configurations of this system and its expectation value

3For bosonic systems, it is known that adding the range of interactions to the above exhausts
the list of properties dividing the universality classes. For fermionic systems, there is still an
open discussion about this topic [15].
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2.2 Numerical Preliminaries

is then given by a weighted average over all possible configurations φ via

〈O〉 = 1
Z

∫
Dφ O[φ]eiS (2.2)

where the normalisation constant Z is fixed by demanding 〈1〉 = 1. The measure
Dφ on the space of configurations can be hard to define in general. However, if
we assume our spacetime to be a D = d+ 1 dimensional, finite lattice Λ, one can
simply use a4 |Λ| dimensional product of Lebesgue measures

Dφ =
∏
x∈Λ

dφx. (2.3)

From this starting point, one might try to find a well-defined continuum version of
the theory by |Λ| → ∞ and lattice spacing a→ 0 but this is usually not possible
in Minkowski spacetime [17].
The way to go for actually computing Eq. (2.2) is usually an analytic continua-

tion to imaginary time arguments t→ iτ , called Wick rotation. Then the action
is converted to an Euclidean action and the imaginary unit in the exponent
changes to a minus sign. Beside its mathematical advantages, this has a direct
physical interpretation: If one imposes (anti-)periodic boundary conditions in τ -
direction for (fermions) bosons and sets the length in time direction to be Lt = β,
the path integral becomes

Z =
∫

Dφ e−SE = tr e−βH (2.4)

the canonical partition function of our system at inverse temperature β = 1
T
with

its HamiltonianH. The effective Euclidean action SE is then given by the Hamil-
tonian. Later, we will work in the Euclidean (or Wick rotated) formulation but
omit the subscript E for notional convenience.

2.2 Numerical Preliminaries
From the various approaches developed to solve QFT since its early days, the
method of choice in this work is Monte Carlo (MC) simulations on the lattice. It
has been very successfully applied to various theories involving prominent examples
like the standard model (e.g. quantum chromodynamics (QCD) [7]), condensed
matter systems (including four fermion theories (4FT) [8]) and various beyond-
the-standard-model theories (e.g. [18]).
The basic idea of lattice QFT arises naturally from the approach of Sec. 2.1.2.

There, for the sake of well-definedness we defined the measure on the space of
4We use | · | on a finite set to denote the number of its elements.
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2 General Preliminaries

configurations for a finite spacetime lattice (cf. Eq. (2.3)). Physical quantities
like observables (Eq. (2.2)) or the partition function (Eq. (2.4)) now are finite
dimensional integrals to be solved and lattice simulations are meant to provide
efficient ways for finding numerical approximations of those integrals.
It should be pointed out that this method is – apart from technical issues –

applicable to any theory and parameter regime without approximations (besides
numerical uncertainties). This is the great advantage over other approaches like
perturbation theory [19] or functional renormalization group [20]. However, there
are two drawbacks, since one is usually interested in the continuum and infinite-
volume limit of a theory. First, the results must be extrapolated carefully from
the data obtained on the lattice. This can be done via FSS explained in Sec. 2.2.2.
Second, the theory has to be formulated consistently on the lattice. This particu-
larly includes that important properties like symmetries remain intact or at least
get restored during the extrapolation. An example of such restrictions is met in
Sec. 2.2.3.

2.2.1 Monte Carlo Methods And Importance Sampling

Our aim in this subsection is to find a method for efficiently computing expectation
values of observables O or, more abstractly speaking, high-dimensional integrals
of the form

I =
∫
G

dx f(x) (2.5)

for some integrable function f : G → C. Numerically I will be approximated via
a finite number N ∈ N of sampling points xi ∈ G, i ∈ {1, . . . , N} for example by
the average I

I ≈ I = 1
N

N∑
i=1

f(xi) (2.6)

or some more complicated scheme5. For slowly varying integrands f , a uniformly
distributed random choice of sample points in G yields a convergence rate ∼ 1√

N

[17]. By this convergence rate, it usually outperforms systematic sampling methods
as soon as the dimensionality of the integral gets high. This is called the Monte
Carlo (MC) method.
If f does not fit the assumption “slowly varying”, this can be taken care of by

changing the distribution to sample from. More concretely, if one uses sampling
points distributed according to p(x)dx for a probability density p : G → [0,∞)

5Examples can e.g. be found in [17].
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2.2 Numerical Preliminaries

such that
∫
p(x)dx = 1 and f(x)

p(x) is slowly varying, I is again well-approximated by

I = 1
N

N∑
i=1

f(xi)
p(xi)

. (2.7)

This idea of choosing the sample points according to their importance for the
approximation Eq. (2.6) is called importance sampling.
The final problem is the generation of points according to p. In this work we will

use a Metropolis algorithm that works as follows: Given some sampling point x we
propose a random change to x′ and draw a uniformly distributed random number
r ∈ [0, 1]. If p(x′)

p(x) > r, we append x′ to the sample and use it as starting point for
the next iteration; else, we start again from x. The generated configurations form
a Markov chain meaning that the choice and acceptance of every configuration
depends only on the last preceding configuration. It fulfills the so-called detailed
balance condition such that it can be shown to converge to the desired distribution
p (see [17] for details). However, the intermediate distributions, particularly at the
beginning of the chain may differ significantly from p because we did not specify
any condition on the (overall) starting point x. Thus, a thermalization phase at
the beginning of which the configurations do not contribute to Eq. (2.7) is required
in general [14].
Last, we translate this abstract description to our lattice QFT setting: The

integral I = 〈O〉 with integrand6 f(φ) = O[φ] e−S[φ]

Z
is defined on the space of

configurations. If S[φ] is real for all φ,7 this can be split into a probability density
p[φ] = e−S[φ]

Z
and a usually slowly varying observable such that we find the average

O to be an estimate for

〈O〉 ≈ O = 1
N

N∑
i=1
O[φi]. (2.8)

2.2.2 Finite Size Scaling

As already mentioned, one key problem of lattice simulations usually is the extrap-
olation to the thermodynamic limit, i.e. to infinite volume. The theory concerned
with this subject is called finite size scaling (FSS) [14, 21]. Its fundamental as-
sumption is that the correlation length ξ is the only relevant length scale of the
theory8 and from this it derives asymptotic scaling laws relating the expectation

6The a priori unknown normalization Z is not important for the Metropolis algorithm described
above and can be set to one for the algorithm. If desired, it can then be measured for O = 1.

7If this condition is not met, the formulation has a sign problem (SP) which is discussed in
Sec. 2.2.3.

8Interestingly, in the context of 4FT in large-Nf limit (see Sec. 4) this is found not to be true.
Instead, a non-vanishing chemical potential provides a second length scale and introduces

11



2 General Preliminaries

values 〈 · 〉L on a finite lattice with its linear size L. For simplicity, we assume the
lattice Λ to be (hyper-)cubic and lattice spacing a to be one, i.e. V = |Λ| = LD.
Near a second order critical point λc, any observable O exhibits a critical be-

havior governed by a critical exponent κO according to Eq. (2.1). In particular,
for the correlation length where we denote ν = −κξ we find

ξ ∼ τ−ν ⇒ τ ∼ ξ−
1
ν (2.9)

for τ = λ−λc
λc

. On the lattice of linear size L, the lattice correlation length ξL
is restricted to ξL ≤ L and thus a reasonable assumption is ξL = min{ξ, L}. If
L� ξ, we expect to describe the infinite-volume physics well such that

lim
L/ξ→∞

〈O〉L = 〈O〉 . (2.10)

If ξ � L, L replaces ξ as the physically relevant scale. This introduces lattice
artifacts. Combining Eq. (2.1) with Eq. (2.9), we conclude that

〈O〉L ∼ τκOL [1 + . . . ] ∼ ξ
−κO

ν
L [1 + . . . ] ∼ L−

κO
ν [1 + . . . ] (2.11)

where the dots include higher order behavior in τ . Thus, there exists a function
fO obeying

fO(s)→

1, s→ 0
L
κO
ν 〈O〉 , s→∞

(2.12)

and interpolating between these limiting behaviors such that

〈O〉L = L−
κO
ν fO(s)[1 + . . . ] (2.13)

for the scaling variable s = L
1
ν

ξ(τ)
1
ν
.

From these considerations, one is now able to extrapolate observables of interest
to the infinite-volume limit, e.g. an order parameter or the susceptibility of the
system. An equally interesting observation is that (to leading order) functions U
of observables the exponents of which cancel exhibit an L-independent value at
criticality, i.e. s = 0. By this property, U allows the determination of the critical
point independent of the critical exponents. Furthermore, its derivative at the
critical point

ln dU
dλ

∣∣∣∣∣
λ=λc

= 1
ν

lnL+ . . . (2.14)

additional finite size effects strongly dependent on the ratio between the linear system size L
and the length scale from the chemical potential [22].
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2.2 Numerical Preliminaries

yields direct access to the correlation length critical exponent ν [16].9 This was
first observed by Binder [23] who recommended to use the cumulants of the
distribution as such functions. This will be made concrete in Sec. 5.2.
After all, the above discussion is a good approximation only sufficiently close to

criticality where the higher orders – hidden in the dots – are negligible. Otherwise,
one can continue the expansion to

〈O〉L = L−
κO
ν fO(s)[1 + L−wOf

(C)
O (s) + . . . ] (2.15)

and further by introducing one (or more) correction function f (C)
O and correction

exponent wO > 0 and repeat the discussion as above.

2.2.3 Fermions On The Lattice

176 H. B. Nielsen, M. Ninoraiya / A bsence of neutrinos on a lattice ( H)  

particle must be taken as a CP-transformed one and thus has opposite helicity. In 
1 + 1 dimensions the antiparticle of a right mover (a right-moving particle) is also a 
right mover. 

We consider a general class of lattice fermion theories in 1 + 1 dimensions whose 
action is the 1 + 1 dimensional version of the 3 + 1 dimensional case (1.2). We thus 
take ~k to be a complex N-component field in order to keep generality. We are 
interested in the 1 + 1 dimensional generic case analogous to that considered in sect. 
2 of Absence I in 3 + 1 dimension. 

For a generic (or one may equally well think of a random) hamiltonian in 1 + 1 
dimensions there are no degeneracies of the energy levels at all. In fact, in order to 
have just two-level degeneracy [say ~oi(p) and 0:i+l(p) ], three parameters must be 
restricted in the hamiltonian H(p ) .  But since there is only one p, this can not be 
done for a generic hamiltonian. 

It is generic, however, that the wave-packet velocity, 

d~°i p=pr v, = -d--~- p , (2.1) 

is non-zero at the Fermi energy. Here a Fermi "surface" Pc, which is a point in 1 + 1 
dimension, satisfies ~0i(pe) = 0 since it is natural to take the Fermi energy to be zero. 
(A generic dispersion relation is shown in fig. 1.) So in such a generic theory 
low-energy excitations of the vacuum are such that fermion states with p close to a Pr 
are excited. So for the particles relevant at low energy one finds 

. doo i P=Pf o~i(p)=(p-pr)--~p + O ( ( p - p , ) 2 ) .  (2.2) 

i I 

I \ c /  / ~ ' ", P 
' N -1-1- / I " 

I [ - -  
I I 

BRILLOUIN- ZONE 

Fig. 1. Typical dispersion laws for 1 + 1 dimensional (complex) lattice Weyl fermion field theory. Each 
curve is dosed since end points should be identified. Each of the crossing points a - f  is a Fermi "surface" 

which represents one species of Weyl fermion. 
Fig. 2.1: Arbitrary one-dimensional dis-

persion relations as they could
arise on a lattice with periodic
boundary conditions from [24].

To end this section, we will add two ad-
ditional remarks that mainly apply to the
simulation of fermions. These will be the
existence of so-called doublers and the in-
famous sign problem (SP).
Already Wilson [25] in 1977 knew that

simulating fermions on a lattice does not
show the expected particle content. With
a naive discretization of the derivative in
one spacetime dimension, there are ex-
actly twice as much fermions on the lat-
tice as in the original theory [26]. These
additional particles are called doublers.
The reason for this was found by Nielsen
and Ninomiya [24, 27]. The famous
Nielsen-Ninomiya theorem (NNT) states as formulated in [17]:

Theorem 2.1. There exists no translational invariant formulation of fermions on
a lattice that is

1. local, i.e. has a smooth fourier transform (FT),

2. chiral, i.e. preserves the full chiral symmetry in the free theory,

3. free of doublers and

4. has the correct continuum limit for lattice spacing a→ 0.
9In formula Eq. (2.14) L should be seen as dimensionless quantity. More formally, one would
use a reference length L0 and formulate this with the variable b such that L = bL0.
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2 General Preliminaries

We will not give the rigorous proof here (see the original papers for that [24, 27])
but sketch an intuitive argument: Consider any smooth dispersion relation on a
one-dimensional, periodic lattice (with continuous time, e.g. Fig. 2.1). Then, its
zeros correspond to particles of the theory. But due to smoothness and periodicity
there is always an even number of zeros, i.e. an even number of particles. For
example, the naive derivative yields a sinusoidal dispersion relation with two nodes.
Although all the “mild assumptions” – as it is called in the original work [27] –

are desirable properties of a theory, the obvious workaround is dropping at least
one of them. For Nf = 1, which we will investigate in Sec. 5, dropping the freedom
of doublers is not an option and for the observation of chiral symmetry (breaking)
one is tempted not to drop the chirality, too. Thus, dropping the locality is the
way to go in this work. This is e.g. done by the so-called SLAC-derivative. It was
introduced in [28, 29] and implements the exact Dirac cone dispersion relation
−i∂µ = pµ which corresponds to

∂SLAC
µ (x, y) =


0 for xµ = yµ

π
Lµ

(−1)x
µ−yµ

sin( π
Lµ

(xµ−yµ)) else (2.16)

in real space where Lµ is the number of lattice points in direction µ.10

The term sign problem (SP) is used for the following problem arising in MC
simulations: If the action is not real, the term 1

Z
e−S cannot be interpreted as a

probability density which was crucial for the MC importance sampling to work
properly. At first glance, there is a simple workaround called reweighting; any
observable O obeys

〈O〉 = 1
Z

∫
Dφ O[φ]e−S[φ] =

∫
Dφ O[φ]e−i=S[φ]e−<S[φ]∫

Dφ e−i=S[φ]e−<S[φ] =

〈
Oe−i=S[φ]

〉
<S

〈e−i=S[φ]〉<S
(2.17)

where 〈 · 〉<S denotes the expectation value with respect to probability density
1

Z<S
e−<S and thus can be calculated via expectation values from real actions. The

remaining problem is a numerical one: Since
〈
e−i=S[φ]

〉
<S

might be a pretty small
number, the division on the right hand side of Eq. (2.17) must be carried out with
a high precision and thus the expectation values – approximated by means over the
configurations – must have high precision. This results in an exponential scaling
of the uncertainty of a quantity derived by reweighting with the lattice volume
[32, 33] and usually spoils all attempts to work with large lattice sizes making the
extrapolation to the thermodynamic limit infeasible. The SP does not exclusively
10In other contexts, particularly gauge theories, dropping locality does not work [30] and the

SLAC-derivative was abandoned from that part of the lattice community. Since there are
only global symmetries in our case, we do not run into such problems [31].
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occur within fermionic theories but is particularly often encountered there. It then
arises from the term ln detD after integrating over the fermions (cf. Eq. (3.30),
[17]).
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3 Four Fermion Theories

3 Four Fermion Theories
After the general setup is defined and the physical notions as well as the means
to compute physical quantities are explained, we will use this section to introduce
spinors, describing the fermionic degrees of freedom in a system, and a particular
class of theories involving them, the so-called four fermion theories (4FT). It will
also include a further discussion of their properties and the usual reformulation
via a Hubbard-Stratonovich (HS) transformation that will bring them into a
form more suitable for analytical as well as numerical calculations.

3.1 Spinors And Representations
The most fundamental principle in defining our theories is the spacetime symme-
try, particularly the Lorentz symmetry. Every physical object should have a
well-defined transformation behavior under such transformations and must there-
fore transform via a representation of the corresponding symmetry group which
is, to include particles with half-integer spin, the universal (double) cover of the
Lorentz group, the so-called spin group. That is why the fermionic degrees of
freedom we want to describe here are held in spinors, i.e. objects transforming un-
der representations of the spin group that are no representations of the Lorentz
group [34]. InD dimensions, the irreducible representations11 are 2bD2 c dimensional
and hence spinors can be seen as column vectors with 2bD2 c Grassmann-valued12

entries, called Dirac spinors, where bqc denotes the largest integer smaller than
q. To form quantities invariant under Lorentz transformation, we introduce the
(Euclidean) Dirac conjugate13 ψ = ψ† such that (the spinor part of) terms
involving ψψ does not change during a transformation.
Beside the irreducible representation, one can also form reducible representations

acting on higher dimensional objects. This might cause some confusion since the
same physical properties can be encoded in very different mathematical statements
depending on the representation in use, as will be seen in Sec. 3.3 and Sec. 3.4. For
example in D = 3, the above paragraph states that the irreducible spinors are two-
component objects. Nevertheless, most of the literature on the topic is concerned
with four-component Dirac spinors, and thus a reducible representation. This is
the natural setup in the application to graphene [8, 9] as well as in QED3 [10]. The
11A subtlety occurs in odd dimensions: While the irreducible representation is unique (modulo

unitary transformations) in even dimensions, there are two inequivalent irreducible represen-
tations in odd dimensions [35].

12More mathematically, they are elements of the exterior algebra, but from a physical point of
view this just ensures the anti-commutation property desired for fermions.

13The reader may be more familiar with the Minkowski version ψ = ψ†γ0 but this does not
lead to invariant quantities in Euclidean spacetime [17].
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3.2 General Four Fermion Theories

three-dimensionality can then be obtained from neglecting the dependence on one
coordinate or equivalently using only three out of the four available γ-matrices14.
When dealing with an even number Nf of copies of two-component spinors, so-
called flavors, one can combine always two of them into a four-component spinor
while at the same time directly summing the corresponding 2× 2 γ-matrices into
4× 4 matrices. More precisely, one has to combine one flavor from one irreducible
representation and one from the other, which particularly implies that naively
plugging in two-component spinors for reducible four-component spinors and vice
versa will not yield the same theory in general. Nevertheless, carefully evaluated
there is a relation between the irreducible representation for even flavor numbers
Nf and the reducible formulations. There is no such equivalence between odd
flavor irreducible models and reducible models.

3.2 General Four Fermion Theories
The theoretical models of interest in this work are four fermion theories (4FT)
given by Lagrangians of the form

L = LK + LI =
Nf∑
a=1

ψa
(
i/∂ − im

)
ψa −

g2

2Nf

Nf∑
a,b=1

(
ψaM1ψa

) (
ψbM2ψb

)
. (3.1)

The fundamental degrees of freedom are held by Dirac spinors ψ, ψ in the irre-
ducible representation describing the fermions that come in Nf different copies,
the flavors. The mass m as well as the four-fermion coupling g are scalar parame-
ters of the theory and M1,M2 matrices acting in spinor space. The slash notation
means contraction with the γ-matrices, i.e. /∂ = γµ∂µ, which are elements of the
Clifford algebra defined via

{γµ, γν} = 2ηµν (3.2)

where η is the spacetime metric15 and {·, ·} denotes the anti-commutator. We will
usually imply a summation over corresponding flavor indices and sometimes even
omit flavor indices by the identifications ψ = (ψ1, . . . , ψNf )> and ψ = (ψ>1 , . . . , ψ

>
Nf

).
The first term LK of Eq. (3.1) is the usual kinetic term of fermionic theories. The

second term LI is the eponymous interaction term coupling four (anti-)fermionic
fields to each other. The various choices possible for M1 and M2 correspond to
different 4FT. Frequently discussed examples are16

14See Eq. (3.2) and context for a definition.
15Since we are working in the Euclidean formulation, we have ηµν = δµν .
16A detailed investigation of the 4FT space in dimension 2 < D < 4 is e.g. done in [15].
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3 Four Fermion Theories

1. Gross-Neveu (GN) [11]

LI = − g2

2Nf

Nf∑
a=1

(
ψaψa

)2
=: − g2

2Nf

(
ψψ

)2
, (3.3a)

i.e. M1 = 1 = M2, (3.3b)

2. Thirring (TH) [36]

LI = − g2

2Nf

Nf∑
a,b=1

(
ψaγ

µψa
) (
ψbγµψb

)
=: − g2

2Nf

(
ψγµψ

)2
, (3.4a)

i.e. M1 = γµ, M2 = γµ (sum convention), (3.4b)

3. Nambu-Jona-Lasinio (NJL) [5, 6]

LI = − g2

2Nf

Nf∑
a=1

[(
ψaψa

)2
−
(
ψaγ

5ψa
)2
]

=: − g2

2Nf

[(
ψψ

)2
−
(
ψγ5ψ

)2
]
,

(3.5a)
i.e. M

(1)
1 = 1 = M

(1)
2 , M

(2)
1 = γ5 = M

(2)
2 (3.5b)

which can only be defined (reasonably) if there exists a non-trivial

γ5 = i
D
2

d∏
µ=0

γµ (3.6)

matrix in D dimensions which is only true for even numbers of dimensions.
For fixed spacetime dimension D there is only a fixed number of linearly inde-
pendent theories since M1 and M2 can always be expanded into a basis of the
corresponding matrix space yielding a linear combination of basis theories. Ad-
ditionally, though the setting of Eq. (3.1) might seem to prohibit interactions
between the various flavors, i.e. terms like

ψaMψb, (3.7)

those can be rewritten as linear combinations of the allowed flavor-singlet terms
by the use of Fierz identites as e.g. done in [15]. The only restrictive assumption
(besides Lorentz invariance) in Eq. (3.1) is therefore the explicit flavor symmetry
introduced by the fact that every flavor is treated equally.
In this thesis, we will only work in the irreducible representation with D = 3.

However, the reducible representation admits a slightly larger class of 4FT to be
defined: While they would formally be exactly of the form of Eq. (3.1) (but ψ, ψ
would be four-component spinors), half the irreducible flavors could then have a
minus sign in front of the interaction term. Irreducibly, this would be achieved by
allowing a slightly non-trivial flavor structure (M1)ab = (−1)aM1δab.
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3.3 Symmetries Of Four Fermion Theories

3.3 Symmetries Of Four Fermion Theories
4FT exhibit a rich pool of global symmetries. The maximally symmetric fermionic
theory is the free massless theory given by LK for m = 0. Its symmetries are:17

External Symmetries.

1. Poincaré symmetry: A general Lorentz transformation is given by

xµ → x′ν = Λν
µx

µ (3.8)

for any Λ ∈ SO(D).18 Though we are using a Euclidean spacetime, we
will stick to this term to describe the corresponding spacetime symmetry. If
not stated else, a Euclidean metric is always implied. It acts on spinors
via

ψa(x)→ e−
i
4ωµν [γµ,γν ]ψa(x′), ψa(x)→ ψa(x′)e

i
4ωµν [γµ,γν ] (3.9)

where ω denotes an anti-symmetric tensor of transformation parameters.
To get the full spacetime symmetry, the Poincaré symmetry, Lorentz
invariance is augmented by translational symmetry x→ x′ = x+ c for some
constant vector c which is

ψa(x)→ eic
µpµψa(x′), ψa(x)→ ψa(x′)e−ic

µpµ (3.10)

in spinor space with the momentum operator pµ. On the lattice, the Poincaré
symmetry is broken to a discrete subgroup depending on the lattice in use.

2. Parity: The usual parity transformation is given by a sign flip in all spatial
coordinates. But in odd dimensions, the described transformation has de-
terminant one corresponding to just a rotation. Thus a more general way to
define the parity transformation is

x = (x0, x1, . . . , xd−1, xd)→ x′ = (x0, x1, . . . , xd−1,−xd) (3.11)

which can be combined with spatial rotations to get the conventional form
in even dimensions. It acts on the spinors via

ψa(x)→ γ0 · · · γd−1ψa(x′), ψa(x)→ (−1)D ψa(x′)γd−1 · · · γ0. (3.12)
17The following discussion follows [15, 16].
18The Minkowski version is Λ ∈ SO(1, d) for d = D − 1.
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3 Four Fermion Theories

3. Time Reversal: The time reversal transformation is given by inversion (Z2)
of the time coordinate, i.e.

x = (x0, x1, . . . , xd)→ x′ = (−x0, x1, . . . , xd) . (3.13)

This acts on the spinors via

ψa(x)→ γd · · · γ1ψa(x′), ψa(x)→ (−1)D ψa(x′)γ1 · · · γd. (3.14)

4. Charge Conjugation: Charge conjugation transforms the spinors via

ψa → ψca = Cψ∗a, ψa → ψ
c

a = ψ>a C† (3.15)

which is again a Z2 transformation.

Internal Symmetries.

1. Flavor Symmetry: As already mentioned, every flavor is treated equally in
the Lagrangian Eq. (3.1). Thus, a unitary transformation U ∈ U(Nf ) acting
in flavor space does not change the Lagrangian

ψa → Uabψb, ψa → ψb
(
U †
)
ba
. (3.16)

2. Chiral Symmetry: If there exists a non-trivial γ5-matrix (as defined in Eq. (3.6))
inD dimensions, the kinetic term in the massless case is invariant under con-
tinuous chiral symmetry transformations (U(Nf ))

ψa →
(
eiαγ

5)
ab
ψb, ψa → ψb

(
eiαγ

5)
ba

(3.17)

with an hermitian parameter matrix αab in flavor space due to the anti-
commutation of γ5 with γµ. A special case of this is the discrete chiral
symmetry (Z2)

ψa → γ5ψa, ψa → −ψaγ5, (3.18)

which can be intact even if the continuous version is broken.

We see that in odd dimensions D there is no way of defining chirality and the
internal symmetry group is the U(Nf ) flavor symmetry. In even dimensions, the
maximal internal symmetry is a U(Nf ) × U(Nf ) of flavor and chiral symmetry.
The external symmetry group is the same for both.
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3.3 Symmetries Of Four Fermion Theories

At first glance, there seems to be a discrepancy between the reducible and the
irreducible formulation of GN that arise naturally19 in odd dimensions (cf. Sec. 3.1):
The internal symmetry group of the latter is U(Nf ) with N2

f degrees of freedom
while the former admits seemingly only for U(N red

f ) × U(N red
f ) transformations

with 2(N red
f )2 = 1

2N
2
f degrees of freedom. The missing 2(N red

f )2 degrees of freedom
are hidden in the discarded one of the γ-matrices, say γ3. Since γ3 anti-commutes
with all γ-matrices there is an additional symmetry of the kind of Eq. (3.17) with
γ3 instead of γ5. Furthermore, there is a non-trivial matrix commuting with each
of the γ-matrices in use, i.e. γ35 = iγ3γ5, yielding a U(N red

f ) symmetry similar to
Eq. (3.16) with Uab = (eiαγ35)ab. Thus, the degrees of freedom are exactly the same
and the actual symmetry group of the reducible model is U(2N red

f ). In a proper
basis the reducible formulation decouples the two (irreducible) flavors combined
in one four-component spinor [16]. In this basis the additional symmetries resolve
to just the U(Nf ) symmetry of irreducible flavors.
Finally, one should be aware that if there are continuous symmetries there is a

conserved current. In the classical case, this is the famous theorem by Noether
[37, 38]. In quantum physics, this is true for the expectation values as can be seen
by the use of Takahashi-Ward identities [19, 39, 40]

Theorem 3.1. Given a continuous symmetry transformation of the action, such
that φ→ φ+ δφ infinitesimally, that changes the Lagrangian by δL = ∂µK

µ there
exists a conserved four-current

Jµ = ∂L
∂ (∂µφ) δφ−K

µ such that 〈∂µJµ〉 = 0. (3.19)

The corresponding Noether charge

〈Q〉 =
∫

ddx
〈
J0
〉

(3.20)

is constant in time if 〈Jµ〉 vanishes sufficiently fast at the spatial boundaries.

For internal symmetries, one always finds Kµ = 0. Thus the flavor symmetry’s
conserved current is

Jµ = ψaγ
µ
(
αab + α†ab

)
ψb (3.21)

and the chiral symmetry’s conserved current is

Jµ = ψaγ
µγ5

(
αab − α†ab

)
ψb (3.22)

19In principle, one could use arbitrarily high dimensional reducible representations but we restrict
this discussion to the case described in Sec. 3.1.
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3 Four Fermion Theories

if αab is the matrix parametrizing the transformation (cf. Eq. (3.17)).
After specializing to D = 3 there will be no chiral symmetry. But the flavor

symmetry, more specific its U(1) part of simultaneous phase transformations, cor-
responds to fermion number conservation and the conserved Noether charge is the
fermion number

N =
∫

ddx ψγ0ψ. (3.23)

If one wants to study a nonzero net number of fermions in the theory, one has to
use the grand canonical partition function

Z = tr e−β(H−µN)

where we coupled the particle number to a chemical potential µ. In the continuum,
this corresponds to changing the kinetic part of the Lagrangian to

LK = iψ
(
/∂ −m+ µγ0

)
ψ. (3.24)

This does in general not apply to the lattice. Instead a careful evaluation of the
discretized currents leads to the correct implementation there (see [7, 41, 42] for
details).

3.4 Symmetry Breaking In Four Fermion Theories
Including additional terms in the Lagrangian might break some of the symmetries.
For example a mass term breaks parity in odd dimensions and chiral symmetry
in even dimensions. We will therefore not allow for an explicit mass term in the
following. Nevertheless, there are occasions when a mass is generated dynamically
(see below) and this dynamical symmetry breaking is one of the most interesting
features of the theory.
Adding interaction terms like those defined in Sec. 3.2 potentially breaks sym-

metries, too. This is not the case for the TH and NJL interactions defined by
Eq. (3.4) and Eq. (3.5), respectively, but GN (defined in Eq. (3.3)) breaks the
continuous chiral symmetry down to the discrete one in even dimensions.
Again, one can see that the relation between irreducible and reducible formula-

tion of a model is non-trivial: In case of the GN, it was already discussed that the
irreducible formulation in D = 3 admits for U(Nf ) transformations corresponding
to the four U(N red

f ) (flavor, chiral, γ3 and γ3γ5) symmetries which can be combined
into U(2N red

f ). Since the reducible representation is defined in D = 4 even, the
chiral symmetry is broken. Thus, GN cannot be equivalent in the reducible and
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3.5 Bosonization Of Four Fermion Theories

irreducible representation. Instead GN in the irreducible representation is equiv-
alent to an interaction20 (ψγ3γ5ψ)2 in the reducible representation which admits
the full U(2N red

f ) symmetry.
Beside the explicit breaking of symmetries by inclusion of terms that do so,

there exists another possibility of breaking a symmetry called spontaneous sym-
metry breaking (SSB). When spontaneously broken, the symmetry is preserved on
the level of the action but a non-vanishing vacuum expectation value breaks the
symmetry if one considers only small excitations above the vacuum [19]. If such a
non-vanishing vacuum expectation value is present in the theory, it might depend
on external parameters like coupling constant, temperature or chemical potential
and in that case the theory can show a transition from the symmetry preserving
to a spontaneously broken phase. In our fermionic theories, a typical breaking
mechanism is the formation of a non-vanishing condensate like

Σ =
〈
ψψ

〉
or Π =

〈
ψγ5ψ

〉
(3.25)

acting like a scalar, resp. pseudo-scalar, mass term and therefore breaking the
symmetries as described above.

3.5 Bosonization Of Four Fermion Theories
While the fermion bilinears can be handled analytically, the quartic interaction
terms cannot be evaluated directly. The usual workaround is application of the
so-called Hubbard-Stratonovich (HS) transformation. We demonstrate this
for the simplest model, the GN as defined compactly in Eq. (4.1). By introduction
of a bosonic auxiliary field σ one can rewrite the quartic exponential as

exp
(
− g2

2Nf

(
ψψ

)2
)

=
∫

Dσ exp
(
−Nfλσ

2 − iσψψ
)

(3.26)

where a factor
(√

π
λ

)V
with spacetime volume V has been included into the measure

and we introduced

λ = 1
2g2 . (3.27)

By use of Eq. (3.26), the partition function Eq. (2.4) for Lagrangian Eq. (4.1) can
be reformulated to

Z =
∫

DψDψ e−S[ψ,ψ] =
∫

DσDψDψ e
−
∫

dDx
(
ψ(x)D(x)ψ(x)+

Nf

2g2
σ(x)2

)
(3.28)

20The γ3γ5 matrix explicitly takes care of the fact that the irreducible spinors must belong to
the different representations as described in Sec. 3.1.
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with a fermion operator depending on the bosonic auxiliary field

D(x) =:
(
i/∂(x)− i (m− σ(x)) + iµγ0

)
. (3.29)

Now, the well-known formula for the fermionic Gaussian integral (e.g. [17]) can
be applied yielding

Z =
∫

Dσ det (D) e−Nfλ
∫

dDx σ(x)2
. (3.30)

Similar transformations by introduction of a vector field vµ for TH or a scalar σ
and a pseudo-scalar π for NJL can be performed in the other models.
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4 Large-Nf Limit
After the general discussion of four fermion theories (4FT) in the previous section,
we now specify the model under investigation: The GN interaction will serve as
a prototypical model for the study of spontaneous symmetry breaking. Hence,
putting together Eq. (3.1), Eq. (3.3) and Eq. (3.30) from now on we study

L = ψ
(
i/∂ − im+ iµγ0

)
ψ − g2

2Nf

(
ψψ

)2
, (4.1a)

or L = ψ
(
i/∂ − im+ iµγ0 + iσ

)
ψ +Nfλσ

2 (4.1b)

with potentially vanishing chemical potential µ.
In this section, we will follow a line of approximations leading to analytical

results for GN. Those are mainly two-fold:

1. We will consider the limit of large flavor numbers Nf . This is called the ’t
Hooft limit21 [43]. After the limiting procedure semi-classical approxima-
tions become exact. Concretely, we will use a saddle point approximation
of the path integral to investigate the critical behavior and thermodynamic
quantities analytically.

2. Our starting point will be the assumption that the auxiliary field σ is con-
stant in the thermodynamic equilibrium. This seems reasonable from the
physical point of view since in thermodynamical equilibrium there should be
no distinguished length scale [13]. Nevertheless, this is not mathematically
necessary: Particularly for GN and related models in two dimensions, the
’t Hooft limit allows a complete analytical treatment of the theory [44]
revealing an inhomogeneous crystalline phase for certain parameter settings
[45, 46]. Our method will be incapable of finding such phases. However, it is
yet unknown if such phases exist in any other dimension (since the solitonic
theory used is restricted to the two-dimensional setting) or even for large
(but not infinite) flavor numbers.

From the results of this section, we will be able to build up a physical intuition
and expectation for the less easily treatable case of Nf = 1 though a comparison
has to be handled with care since the both assumptions above are very restrictive
and particularly the first cannot be expected to be reasonable then. A similar
calculation with another focus can be found in [47].
21The ’t Hooft limit is usually defined as Nf →∞ while g̃2Nf = const., but since we already

normalized the interaction term by the definition of the coupling as g2

2Nf
= g̃2

2 , this additional
condition is not necessary here.
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4.1 Calculation Of The Partition Function
We start from the GN partition function in HS formulation (Eq. (3.30))

Z =
∫

Dσ (detD)Nf e−Nfλ
∫

dx σ2(x) (4.2)

where D means the single-flavor version of Eq. (3.29) because the full determinant
factorizes. If σ = const. as we assume in this part, the spacetime integration yields
a factor V in the exponent and the inclusion of σ into D results in a shift of the
eigenvalues to

λ± = −i (m− σ)±
√

(k0 − iµ)2 + ~k⊥ (4.3)

where ~k = (k0, ~k⊥) is the wave vector of the corresponding eigenstate. If we impose
anti-periodic boundary conditions in time direction, the possible frequencies k0 are
the so-called fermionic Matsubara frequencies

k0 = ωn = π

β
(2n+ 1) , n ∈ Z. (4.4)

Now, the determinant of D is given by

detD =
∏

λ, i=±
λi =

∏
λ

λ+λ− =
∏
~k

− (k0 − iµ)2 −M2 (4.5)

defining

M2 = ~k2
⊥ + (m− σ)2 . (4.6)

This determinant is positive and real since with k0 there is also −k0 in the product
yielding terms such as[
− (k0 − iµ)2 −M2

] [
− (−k0 − iµ)2 −M2

]
= M4 −M2µ2 + µ4 + · · · > 0 (4.7)

where some positive terms have been omitted. Thus, we have

ln detD = L2
∫ d2~k⊥

(2π)2 v(M(k⊥)), v(M) =
∞∑

n=−∞
ln
[
− (ωn − iµ)2 −M2

]
.

(4.8)

This sum obviously diverges. But, as used for example in [48], we can extract a
non-divergent relative expression by a convenient choice of the integration constant
in

v(M) =
∫

dM ∂v

∂M
. (4.9)

In the following, we will shift the HS field σ to be σ → σ −m
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4.1 Calculation Of The Partition Function

Derivation of v. To extract the relevant parts of v via Eq. (4.9) we make use of

tanh y = coth
(
y ± iπ2

)
=

∞∑
n=−∞

(
y ± iπ2

)
π2n2 +

(
y ± iπ2

) . (4.10)

First, we have

∂v

∂M
=

∞∑
n=−∞

2M
(ωn − iµ)2 +M2

= β
∞∑

n=−∞

x

[iπn+ (x+ iπα)] [−iπn+ (x− iπα)]
(4.11)

with the shorthand notations

α = 1
2 − i

βµ

2π , x = βM

2 . (4.12)

We use a partial fraction decomposition to get

2
β

∂v

∂M
=

∞∑
n=−∞

(
−iπn+ (x+ iπα)
π2n2 + (x+ iπα)2 + iπn+ (x− iπα)

π2n2 + (x− iπα)2

)
. (4.13)

The parts ∼ n are not absolutely convergent but converge to 0 if the sum is
evaluated in an alternating fashion. Thus, they are discarded here. It remains

2
β

∂v

∂M
=

∞∑
n=−∞

(x+ iπα)
π2n2 + (x+ iπα)2 +

∞∑
n=−∞

(x− iπα)
π2n2 + (x− iπα)2

= coth (x+ iπα) + coth (x− iπα)

= tanh
(
βM + βµ

2

)
+ tanh

(
βM − βµ

2

) (4.14)

where we plugged in Eq. (4.10) and Eq. (4.12). This can be integrated easily to
arrive at

v(M) =
∫

dM ∂v

∂M
= βM + ln

(
1 + e−βM+βµ

)
+ ln

(
1 + e−βM−βµ

)
+ const.

(4.15)

Performing the integrations. Next, we perform the integration in Eq. (4.8). The
integral consists of two parts (∼M and ∼ ln

(
1 + e−βM±βµ

)
). Since the first part

diverges we introduce a momentum cutoff Λ. Then this part of the integral yields

Λ∫
0

d2~k⊥
2π M = |σ|

3

3


√Λ2

σ2 + 1
3

− 1

 = −|σ|
3

3 + Λ3

3 + Λ
2 σ

2 +O
(
σ

Λ

)
. (4.16)

27



4 Large-Nf Limit

Finally, we integrate
∞∫
0

dk k ln
(
1 + e−βM±βµ

)
(4.17)

with the aid of

MdM = M
2k

2
√
k2 + (m− σ)2

dk = kdk. (4.18)

To do so, for s ∈ Z we define the polylogarithm Lis : C→ C [49] via

Lis+1(x) =
∫ x

0
dt Lis(t)

t
with Li1(x) = − ln(1− x). (4.19)

Then, the above integral yields
∞∫
0

dk k ln
[(

1 + e−βM+βµ
) (

1 + e−βM−βµ
)]

= −|σ|f
+
2 (σ, µ, β)
β

− f+
3 (σ, µ, β)

β2

(4.20)

where we used

f±s (σ, µ, β) = Lis
(
−e−β|σ|+βµ

)
± Lis

(
−e−β|σ|−βµ

)
. (4.21)

For later use, we remark

∂σf
±
k+1 = − sgn (σ) βf±k , ∂µf

±
k+1 = βf∓k , ∂βf

±
k+1 = −

(
|σ|f±k − µf∓k

)
(4.22)

as well as

f+
1 (σ, µ, β) = − ln [2 cosh β|σ|+ 2 cosh βµ] + β|σ|, (4.23)

f−1 (σ, µ, β) = − ln
cosh

[
β
2 (|σ| − µ)

]
cosh

[
β
2 (|σ|+ µ)

]
− βµ. (4.24)

4.2 Chiral Condensate And Critical Behavior
In the previous subsection we found the partition function to be

Z(µ,m, g) =
∫

Dσ exp
[
Nf ln detD − Nf

2g2Vβ σ
2
]

(4.25)
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4.2 Chiral Condensate And Critical Behavior

with the spacetime volume Vβ = βL2. After introducing the renormalized coupling
λR = 2π

g2 − Λ we find from Eq. (4.16) and Eq. (4.20)

Z =
∫

Dσ exp
[
−VβNf

2π

(
|σ|3

3 + λR
2 σ2 + |σ|

β2 f
+
2 (σ, µ, β) + 1

β3f
+
3 (σ, µ, β)

)
︸ ︷︷ ︸

=U

]

(4.26)

where a (cutoff dependent) constant offset has been included into the measure. As
one can see, the terms calculated in the previous subsection form a potential for σ.
For a given temperature and chemical potential, spontaneous symmetry breaking
manifests in a non-trivial global minimum of σ.

Calculation of the condensate. The condensate is given by the global minimum
of the potential U which will be found at one of the points with

0 = ∂σU = λRσ + σ

β
ln [2 cosh βσ + 2 cosh βµ] (4.27)

derived by use of Eq. (4.22) and Eq. (4.23). Solutions to this equation are either
σ = 0 or

σ = ± 1
β

arcosh
(1

2e
−λRβ − cosh βµ

)
(4.28)

which exists only if

e−λRβ ≥ 2 (cosh βµ+ 1) ⇔ |µ| ≤ 1
β

arcosh
(1

2e
−λRβ − 1

)
= µc(β). (4.29)

In particular, we have to choose a negative renormalized coupling λR to get any
non-trivial candidate. A second differentiation at σ = 0 shows

∂2
σU
∣∣∣
σ=0

= λR + 1
β

ln [2 + 2 cosh βµ] . (4.30)

Since we have chosen λR to be negative, we see that whenever the non-trivial
candidate exists (i.e. Eq. (4.29) holds) σ = 0 is a maximum and by U(±σ)→∞
for σ →∞ the non-trivial solutions must be minima. Thus, we find the condensate
to be

Σ = |σmin(µ, β)| =


1
β
arcosh

(
1
2e
−λRβ − cosh βµ

)
for |µ| ≤ µc(β),

0 else.
(4.31)
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Fig. 4.1: Phase diagram in the T -µ plane of the GN in the limit of large flavor number
Nf and in units of −λR as derived in Eq. (4.31). The dashed line indicates the
critical line given by equality in Eq. (4.29).

We see that there is a broken phase with non-vanishing condensate as well as a
phase with restored symmetry separated by the critical line of equality in Eq. (4.29).
The phase diagram is shown in Fig. 4.1.
Next, we investigate the critical exponents of the phase transition. We start

with the temperature dependence, i.e. we want to find β such that

Σ(τ) ∼ τβ (4.32)

for τ = T−Tc
Tc
→ 0.22 This can be explicitly solved for β

β = lim
τ→0

ln Σ
ln |τ | = 1

2 (4.33)

by extensive use of l’Hospital’s formula. In fact, one does not make use of
τ parametrizing the temperature dependence. Thus, defining a τµ = µ−µc

µc
or

τλR = λR−λR,c
λR,c

the same calculation holds such that

Σ(T, µ) ∼
(
T − Tc
Tc

µ− µc
µc

λR − λR,c
λR,c

) 1
2

(4.34)

22We assume to be in the broken phase, i.e. τ < 0, because the condensate vanishes otherwise.
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Fig. 4.2: Phase diagram in the T -λ plane of the GN model in the limit of large flavor
number Nf with Λ = 10 as derived in Eq. (4.36). The dashed line indicates the
critical line given by equality in Eq. (4.35).

close to a triple of corresponding Tc, µc, λR,c. This result could have been antici-
pated from the fact that we work in a mean field approximation in this section.
It is well-known that the critical exponents for such an approximation are always
the same, particularly β = 1

2 [17]. For the rest of this subsection, we will derive
analytical expressions for either µ = 0 or T = 0.

The special case µ = 0. For this special case, Eq. (4.29) can be solved explicitly
for β yielding

1
βc

= Tc,max = − λRln 4 (4.35)

where the subscript max is introduced to mark it as the maximal temperature
with a phase transition in µ (actually at µ = 0). Furthermore, from Eq. (4.31) we
find

Σ(µ = 0, β) = 1
β

arcosh
(1

2e
−λRβ − 1

)
(4.36)

in the broken phase (β ≥ βc). The potential U(σ) can be seen in Fig. 4.3(a). For
comparison with the lattice results later on, the phase diagram in the λ-T plane
is also shown in Fig. 4.2.

31



4 Large-Nf Limit

0.0 0.5 1.0 1.5 2.0
HS Field 

1.0

0.5

0.0

0.5

1.0
Ef

fe
ct

iv
e 

Po
te

nt
ia

l U
(

=
0) T = 0.01 R

T = 0.72135 R

T = 0.9 R

(a) Potential U(σ) for vanishing chemical
potential µ = 0 and three real values
of the temperature T in units of λR.

0.00 0.25 0.50 0.75 1.00 1.25 1.50
HS Field 

0.3

0.2

0.1

0.0

0.1

Ef
fe

ct
iv

e 
Po

te
nt

ia
l U

(
)

= 0.0 R

= 1.0 R

= 1.2 R

(b) Potential U(σ) for vanishing temper-
ature T = 0 and three real values of
the chemical potential µ in units of
λR.

Fig. 4.3: The effective potential U(σ) for µ = 0, resp. T = 0.

The special case T = 0. This time, by T → 0 we have β → ∞ and can
therefore discard all but the highest order terms in β (exactly those which are
hidden in the volume factor). This is best done directly in the potential. Since it
fulfills U(−σ) = U(σ) and U(−µ) = U(µ), we restrict ourselves to µ, σ ≥ 0 and
generalize the result afterwards. In particular, we have to evaluate the functions
f2 and f3 in the limit of large β. We make use of

lim
β→∞

Lis
(
−e−β(σ−µ)

)
βs

=

0 for µ ≤ σ

− (µ−σ)s
s! else

(4.37)

as derived in [49]. Now, the potential simplifies to

U(T = 0) =


σ3

3 + λR
2 σ

2 for µ ≤ σ
µ+λR

2 σ2 − µ3

6 else
(4.38)

with

0 = ∂σU =

σ2 + λRσ for µ ≤ σ

(µ+ λR)σ else
(4.39)

as the necessary condition for extrema which is solved by σ = 0 in both cases and
additionally σ = −λR for µ ≤ σ. It is easily seen that the latter is a minimum
if λR < 0. To resolve the case distinction, we assume σ in Eq. (4.39) to be the
minimizing one. Then, we see that

Σ(µ, β →∞) =

−λR for |<µ| < −λR
0 for |<µ| > −λR

and Σ ∈ [0,−λR] if |<µ| = −λR.

(4.40)
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Fig. 4.4: The condensate Σ for various temperatures T in units of λR including the
limiting case of T → 0.

Exactly at the critical point, we find that the potential gets flat (see Fig. 4.3(b))
for all |σ| ≤ −λR. This unusual critical behavior can be seen as the limiting case
from the small temperature regime (see Fig. 4.4). Only at temperature T = 0,
the phase transition in µ is of first order admitting coexistence of a continuum of
phases. This interpretation is underpinned by investigation of the susceptibility

χ = ∂2
mU =

−λR for |<µ| < −λR
µ+ λR for |<µ| > −λR.

(4.41)

For its definition, we shortly reintroduced an explicit mass and excluded the critical
point where it would be ill-defined. One can clearly see that there is no power law
singularity in Eq. (4.41) as we would expect for a second order phase transition
which strengthens the evidence for it to be of first order.

4.3 Thermodynamics
With the used independent variables, the corresponding thermodynamic potential
is the grand canonical potential J(T, µ, V ) given by

J = − lnZ
β

(4.42)
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Fig. 4.5: Pressure p̃ according to Eq. (4.45) in dependence of temperature T and chemical
potential µ for λR = −1.

where V = L2 = Vβ
β

is the physical volume. First, we see that this is easily
evaluated in a saddle point approximation where lnZ takes the form

lnZ = −V βNf

2π U(µ, β,Σ(µ, β)) +O
(
N
−1/2
f

)
(4.43)

and Σ is the (non-negative) σ-value where U takes the minimum for the given
parameters µ, β. To exploit this, we always consider T (or β), µ, V as independent
variables if not stated else and introduce the notation

ã = 2πa
NfV

(4.44)

for any suitable quantity a, i.e. ã is an intensive (per Volume) quantity per number
of flavors. With the above conventions we can compute thermodynamic quantities
like23 the pressure (which is the same as the grand canonical potential)

p̃ = − 2π
NfV

J = −U = −Σ3

3 −
λRΣ2

2 − Σf+
2

β2 −
f+

3
β3 , (4.45)

the entropy density

s̃ = − 2π
NfV

∂TJ = β2∂βU = −f+
1 Σ2 −

(
3f+

2
β
− µf−1

)
Σ− 3f+

3
β2 + µf−2

β
, (4.46)

the particle density

ñ = − 2π
NfV

∂µJ = −∂µU = −Σf−1
β
− f−2
β2 (4.47)

23The following formulae can be found for example in [13].
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Fig. 4.6: Entropy density s̃ according to Eq. (4.46) in dependence of temperature T and
chemical potential µ for λR = −1.

or the specific heat

c̃V = T (∂T s̃)V,n = T∂T s̃−
T (∂T ñ)2

∂µñ
(4.48)

where the analytical result of the latter is far too large to fit the page and does
not yield much additional insight. Instead, Fig. 4.5 to Fig. 4.8 show the results
as colormaps and slices of constant T . The temperature slices are chosen such
that the lowest is a good approximation to24 T → 0 while the highest shows the
behavior without any transition (above Tc(µ = 0) ≈ −0.72λR). In between, there
is one moderate temperature and one close to the maximal critical temperature.
The former’s transition point is still µc ≈ 1 while the latter’s is µc ≈ 0.3 as can be
read off conveniently from the specific heat (Fig. 4.8(b)). Please note that some
graphics have a discontinuous y-axis and different scales in the upper and lower
part.
In Fig. 4.5 we see that the potential (resp. pressure) is continuous everywhere

and differentiable for all T > 0 as we already discussed as the defining behavior
at a second order phase transition (cf. Sec. 2.1.1). In fact, raising the temperature
has the effect of smoothening the transition. While there is a pronounced kink
for low temperatures (becoming sharp for T → 0), even for moderate temperature
the transition is already not exactly locatable in the slices. Nevertheless, the
further discussion of its derivatives shows that it is not a smooth function of the
thermodynamical variables.
24The case T = 0 would have required an additional limiting procedure. This was neither

numerically nor analytically possible for c̃V . For the sake of comparability, it was decided to
always use a small but non-vanishing value for T .
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Fig. 4.7: Particle density ñ according to Eq. (4.47) in dependence of temperature T and
chemical potential µ for λR = −1.

The entropy density (Fig. 4.6) in general rises with rising temperature. This
is a well-known fact [50]. Furthermore, it is continuous but shows a kink for all
temperatures that have a phase transition in µ as we expect for a second order
phase transition. This kink becomes arbitrarily weak with rising temperature and
vanishes at µc = 0 at the maximal critical temperature.25 Above, the entropy
density is smooth. As for the pressure, the critical line is not recognizable in the
colormap due to continuity.
This is different in the particle density for low temperatures (Fig. 4.7). For low

temperatures, there is a steep ascent close to the transition that can be seen to
be a smoothened version of an actual jump at T = 0. This jumping behavior
is related to the so-called Silver Blaze property. In [32], it is explained for the
massive free fermion case: The chemical potential is the amount of free energy
needed to increase the particle number. If this is smaller than the particle’s mass
there will be no excitation and the particle number does not change. Otherwise,
particle creation is possible and sets in as soon as µ exceeds m. In our case, the
non-vanishing condensate Σ also serves as a mass term because we assumed it to
be homogeneous. At T → 0, we have Σ→ −λR = const. in the broken phase such
that the same argumentation holds as long as µ < −λR. The discontinuity in the
particle density then occurs because with the onset of particle creation (right at
the transition) the mass-like Σ jumps to zero and one can see the free massless
particle’s behavior. For non-zero temperatures this jump is smoothened by the
smoothening of the Fermi-Dirac distribution [32] and in our case additionally
by the fact that Σ goes to zero continuously.
The most complicated behavior is shown by the specific heat (cf. Fig. 4.8). To

get a more complete picture of the changes in T , we added some more temperature
25It is already hardly noticeable for T = −0.7λR in Fig. 4.6(b) but after proper rescaling it can

still be made out.
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Fig. 4.8: Specific heat c̃V according to Eq. (4.48) in dependence of temperature T and
chemical potential µ for λR = −1.

slices to Fig. 4.8(b). There we see the following behavior: For high temperatures
without a phase transition it is a smooth, rising function in µ. Lowering the
temperature below Tc,max, the specific heat jumps between the broken and the
restored phase. This is the expected behavior at a second order phase transition
and can be seen as a clear cut in the colormap Fig. 4.8(a). This jump becomes
smaller for smaller temperatures but for every finite temperature the limit from
the left is larger than the limit from the right. Also, the overall magnitude of c̃V
decreases when lowering the temperature.
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5 Lattice Results for Nf = 1

5 Lattice Results for Nf = 1
This section contains the main results of the thesis. We will present lattice results
for the critical coupling constant and critical exponents at zero temperature and
the lattice phase diagram in the temperature-coupling plane for a single irreducible
flavor (without chemical potential). To the best of our knowledge, this thesis is the
first to present such findings from Monte Carlo (MC) lattice simulations. Before
we can start the discussion of the results, we first work out the concrete formulation
and observables in use.

5.1 Dualization Of Gross-Neveu
From now on we consider a single flavor only. Accordingly, the index on a spinor
field denotes the spinor components. As was observed in [51], the Nf = 1 GN
model suffers a severe sign problem (SP). It is therefore not feasible to simulate it
within the standard approaches. For this thesis, we will instead reformulate the
model in terms of a dual variable k – an approach that is similar to ideas in [52].
It was originally introduced in [16, 51]. This will not completely cure the SP but
at least make it much more tractable (see [51] and Sec. 5.4). Furthermore, the
possibility of exact reweighting (see Sec. 2.2.3) arises since the reweighting factor
can be calculated easily during the simulation.
We consider the generating functional, i.e. the partition function Eq. (3.28) with

classical sources η, η, given by

Zη,η =
∫

DσDψDψ exp
(
−ψDψ − λσ2 + ηψ − ψη

)
. (5.1)

We define the fermionic part to be

W =
∫

DψDψ exp
(
−ψi

(
/∂ +m

)
ψ − ψiσψ + ηψ − ψη

)
(5.2)

and expand the exponential of the interaction part yielding

W =
∫

DψDψ exp
(
−ψi

(
/∂ +m

)
ψ + ηψ − ψη

)∏
x,i

(
1− ψi(x)iσ(x)ψi(x)

)
(5.3)

which is exact due to the Grassmann properties of the spinor fields. For every
tuple (x, i), this can be written via a number kx,i ∈ {0, 1} as

W =
∫

DψDψ exp
(
−ψi

(
/∂ +m

)
ψ + ηψ − ψη

)∏
x,i

1∑
kx,i=0

(
−ψi(x)iσ(x)ψi(x)

)kx,i
.

(5.4)
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Next, we can rearrange the finite sum and product as a sum over all configurations
K = (kx,i ∈ {0, 1} : x ∈ Λ, i ∈ {0, 1}) ∈ {0, 1}2|Λ| and obtain from that

W =
∑

K∈{0,1}2|Λ|

∫
DψDψ exp

(
−ψi

(
/∂ +m

)
ψ + ηψ − ψη

)∏
x,i

(
−ψi(x)iσ(x)ψi(x)

)kx,i
.

(5.5)

For any fixed configuration, we perform the integration over all spinor fields with
kx,i = 1. What remains is the following integral where the integration includes
only those spinors where kx,i = 0

W =
∑

K∈{0,1}2|Λ|

∫
DψDψ exp

(
−ψi

(
/∂ +m

)
ψ + ηψ − ψη

)
(−i)k

∏
x,i

σ(x)kx,i

(5.6)

defining kx = kx,0 + kx,1 and k = ∑
kx,i∈K kx,i. By a variable transformation

−ψi
(
/∂ +m

)
ψ + ηψ − ψη = −ψ′i

(
/∂ +m

)
ψ′ − η

(
i
(
/∂ +m

))−1
η (5.7)

in the remaining spinor fields we can perform the integrations (including the σ
integration) yielding

Zη,η = C
∑
K∈K

det (iD[K]) exp
(
−η (iD[K])−1 η

)
w(K) (5.8)

where C =
(√

π√
λ

)V
, D[K] denotes the reduced fermionic operator

(
/∂ +m

)
with

every I = {xi}-th row and column removed when kx,i = 1 and the weight of the
configuration w(K) is

w(K) = 1
C

(−i)k
∫

Dσ
∏
x,i

σ(x)kx,i exp
(
−λσ(x)2

)
=
(−1

2λ

) k
2

(5.9)

if for every x ∈ Λ we have kx,0 = kx,1 and vanishes otherwise. From that, we see
that the set K ⊂ {0, 1}2|Λ| to sample from consists only of those configurations
where kx,0 = kx,1. The partition function of the theory without sources is then
given by

Z = C
∑
K∈K

det (iD[K])w(K) (5.10)

such that we can sample K-configurations in our Monte-Carlo simulations.
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5.2 Observables In Dual Formulation
Now, that we have a formulation ready for simulation, we need to know what
correspondence there is to physical quantities. An intuitive starting point would
be the chiral condensate26

〈
ψψ

〉
= − (2λ) 〈σ〉 (5.11)

because it serves as an order parameter for the symmetry breaking in GN. Unfor-
tunately, in MC simulation there is no spontaneous symmetry breaking in a strict
sense due to the detailed balance condition27: Since the symmetry is not explicitly
broken, the probability density of any observable obeys this symmetry. By detailed
balance, we know that every configuration can be reached within the simulations
and from the symmetry it is further clear that configurations that are identical
modulo this symmetry appear with same probability in equilibrium. Thus, we
know by symmetry that

〈σ〉 = 0. (5.12)

Only in the infinite volume limit, the small transition probability between the
positive and negative configurations is suppressed to zero, hence yielding actual
spontaneous symmetry breaking. The usual fix for this well-known problem is
to consider the absolute value’s expectation which is invariant under the trans-
formation. This would indeed work but we do not have direct access to σ for a
given configuration and hence cannot calculate this. Yet, there is another way to
derive an expectation value of the chiral condensate, namely, by the same means
as in Sec. 4.2 via the minimum of the effective potential. We will call this the
local condensate since it is the expectation value of σ at every point on the lattice
independently and becomes a global expectation value only after employing trans-
lational invariance. In the finite Nf case there is no analytical expression for the
effective potential known but it can be calculated from observables measurable in
our simulations (see [51] for details). For Nf = 1, its minimum28 is given by

Σloc =


√

2λ
√
〈n〉− 1

3
〈n〉 〈n〉 ≥ 1

3

0 else
(5.13)

26We will call this the chiral condensate although there is no concept like chirality in D = 3.
This is a convention in the literature with its origin in the reducible representation.

27This is also argued in [23]. More on the detailed balance condition can be found in [17].
28By symmetry, there is an additional minimum −Σloc but if we would include this, averaging

would again yield the above problem.
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5.2 Observables In Dual Formulation

with the k-density

n = k

2V . (5.14)

A detailed derivation of the corresponding effective potential can be found in [51]
and the minimization can then be carried out analytically. The local condensate
has the great advantage that it will be exactly zero as soon as the broken phase
is left while any global quantity would assume a small but non-vanishing value
due to fluctuations. This makes it easy to precisely detect the phase transition
in the local condensate. However, there is nothing known about its FSS behavior
because the arguments from Sec. 2.2.2 do not apply any longer. Even derivation
from the assumption of FSS behavior for 〈n〉 is not applicable because we will
see in Sec. 5.5.2 that the physically relevant parameter region is far away from the
lattice artifact phase (LAP) transition where FSS arguments concerning 〈n〉 would
hold.
Another typical approach to find a phase transition is via the peak of the sus-

ceptibility which is the first derivative of the order parameter. Since the latter is
continuous but not differentiable at a second order phase transition, its suscepti-
bility should be sharply peaked at the transition smoothened only by finite size
effects. If one defines the susceptibility from the local condensate via

χloc =


Σloc
2λ + V

2Σloc

〈n2〉−〈n〉2
(1−〈n〉)2 〈n〉 ≥ 1

3

0 else,
(5.15)

at least for the chirally broken phase, one obviously gets a peak where the local
condensate tends to zero. Since this is a local quantity, again FSS theory does
not apply and no smoothening effect of the finite lattice will be present. Particu-
larly, one can see that near the transition small statistical fluctuations of Σloc will
gain importance making the precise determination more and more computationally
expensive.
A completely different starting point for the investigation of the simulation re-

sults is the native variable n (Eq. (5.14)). For example, the n-susceptibility

χn =
〈
n2
〉
− 〈n〉2 (5.16)

and the fourth-order Binder cumulant (in n)

Un = 1− 〈n4〉
3 〈n2〉2

(5.17)

are straightforwardly defined. As one can see from its definition, Eq. (5.14), n
is the density of the local interactions on the lattice. From the local condensate
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5 Lattice Results for Nf = 1

Eq. (5.13), we know that the phase transition occurs at 〈n〉 = 1
3 but it is unclear

if this is a distinguished point in the definitions of the n-susceptibility Eq. (5.16)
and the n-Binder cumulant Eq. (5.17). However, those have the advantage of
being global observables such that the FSS behavior is known. In fact, we will see
in Sec. 5.5.2 that they will be of no use for investigation of the expected phase
transition but indicate the set-in of a LAP.
Finally, higher order expectation values in ψψ, resp. σ, are not flawed by the

symmetry restrictions and can be defined as usual. This implies, for example, the
four-fermion term

g2

V

〈(
ψψ

)2
〉

= −(2λ)
V

〈
σ2
〉

= 1 + 〈n〉 (5.18)

and the fourth-order Binder cumulant in σ

Uσ = 1− 〈σ4〉
3 〈σ2〉2

= 4
3 −

2
3 (1 + 〈n〉) −

〈n2〉 − 〈n〉2

3 (1 + 〈n〉)2 . (5.19)

By the symmetry restriction
〈
ψψ

〉
= 0, Eq. (5.12), we see that the four-fermion

term also equals the conventionally defined susceptibility

χ = d2 lnZ
dm2 =

〈(
ψψ

)2
〉
−
〈
ψψ

〉2

︸ ︷︷ ︸
=0

(5.20)

but as we know from 〈n〉 ∈ [0, 1] that this will not be peaked at any point.29

5.3 Evaluation Details
In this subsection we give some technical details of the simulation and evaluation.
As already announced in Sec. 2.2.1, the simulations were perform with a simple
local Metropolis update algorithm. More details about the implementation can be
found in [16]. Since the such generated Markov chain is usually strongly correlated
[14] only every 100-th configuration was stored for evaluation. Possible further
autocorrelations are taken care of later in the evaluation. Depending on the lattice
size, 200 to 20, 000 configurations have been generated and the (Markov chain)
time series for n (Eq. (5.14)) were used for the computation of the observables
from Sec. 5.2.
29Actually, it would be peaked if we performed the infinite volume limit before integrating out

the fermions. But as explained above, on every finite lattice the latter term vanishes exactly
because we integrate positive and negative contributions symmetrically. Only in the infinite
volume limit the measure becomes spontaneously asymmetric and a peak could be found.
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5.3 Evaluation Details

In detail, the thermalization phase was self-consistently determined as follows:
From the starting configuration D[K] = 1 corresponding to n = 1, the time series
drops to (fluctuations around) the expectation value 〈n〉 ≤ 1. Therefore, the
equilibrium can be defined as the time t0 were the time series firstly drops below
the average. To avoid underestimation, this approximation was repeated after
removing all configurations with t ≤ t0. If t0 does not change anymore between
two iterations, it was considered to be the relaxation time. It should be stressed
here that this dynamical determination of the thermalization intrisically excludes
a time series if it did not reach stationarity yet. The beginning of a time series
is shown in Fig. 5.1. For sufficiently large time series, the thermalization period
usually does not influence the average over the ensemble significantly and thus the
typical number of iterations is one.
From the thermalized time series, estimators for the observables were calculated

via the corresponding functional relation to n where the expectation value was
approximated by the mean average. The statistical uncertainty (given by the
standard deviation) of such estimators was estimated via a Jackknife analysis [14]
with bin size b = 50. Nevertheless, the integrated autocorrelation time τint was
computed for some ensembles to get a notion of the possible impact. This was
done as suggested in [14] via a self-consistent truncation δmax of the series

τint(δmax) = 1
2 +

δmax∑
δ=1

ntnt+δ − nt nt+δ
n2
t − nt2

(5.21)

such that δmax ≥ 6τint(δmax) where the overscore means averaging in t. The relative
uncertainty of such an estimate is then approximated [14] by

∆τint

τint
≈
√

24τint

N
(5.22)

if N is the number of configurations used for the estimate. The effect of auto-
correlation can be seen in Fig. 5.1 and some autocorrelation times are given in
Fig. 5.2. Both indicate that a bin size b = 50 as used in the Jackknife method will
surely capture all autocorrelations. However, the autocorrelation time depends on
λ significantly. This will be discussed in Sec. 5.5.2.
Finally, the estimates for the crossing of the Binder parameters Eq. (5.17)

used in Sec. 5.5.2 are obtained as follows. A small region I around the roughly
estimated crossing is fitted with least squares to a linear function U(λ) = Aλ+B.
This can be done analytically from {λi, U(λi)} with λ1, . . . , λn ∈ I and yields

A =
n
∑n
i=1 λiU(λi)−

∑n
i,j=1 λiU(λj)

n
∑n
i=1 λ

2
i − (∑n

i=1 λi)
2 , (5.23a)

B = 1
n

n∑
i=1

U(λi)−
A

n

n∑
i=1

λi. (5.23b)
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Fig. 5.1: The (simulation) time series in n for L = 16 and λ = 0.1257 truncated to the
first 100 entries. The dashed lines indicate the average over the whole ensemble
and the first derived thermalization period. The solid lines indicate the next
(and final) iteration step. Finally, one window of correlated measurements
computed via Eq. (5.21) from the untruncated series is drawn as shaded blue
area.
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Fig. 5.2: Integrated autocorrelation times according to Eq. (5.21) and Eq. (5.22) over
the inverse coupling λ. One observes a significant dependence on both, V and
λ, which is discussed in Sec. 5.5.2.
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5.4 Remarks On The Sign Problem

After having these linear approximations the crossing point of U (L0) and U (bL0) is
simply

λ(L0)
c (b) = BbL0 −BL0

AL0 − AbL0

. (5.24)

This final formula with the plugged in expressions Eq. (5.23) is then directly used
to obtain the crossing points. The statistical uncertainty can now be estimated
by nearly straightforward jackknifing: One estimator for U(λi) is obtained by
excluding one bin of data. From that the corresponding estimator for λ(L0)

c is
computed. Since the number of bins might vary between the values of λi and L
the choice of bins is done independently and randomly, generating only as many
estimators as the smallest number of bins in the data series.

5.4 Remarks On The Sign Problem
As already discussed, the sign problem (SP) can be a severe problem in lattice
simulations (cf. Sec. 2.2.3). After reformulation of the partition function in the
dual variables, we observe that it is appreciably eased though it is not yet fully
understood why. This subsection presents the current state of knowledge about
the SP.
First, the determinant is real for all configurations K such that ei=S = ±1. Fur-

thermore, it is exactly known which configuration contributes which sign. This can
be proven as follows: From Sec. 3.3, we know that in the original formulation the
theory is invariant under charge conjugation. After choosing a concrete realization
of the γ-matrices as the Pauli matrices, we can use

C =

 0 1

−1 0

 (5.25)

as charge conjugation matrix. Now, we decompose the complex fermion fields into
real Majorana-like [35] spinors η1, η2 via

ψ = η1 + iη2, ψ = −
(
η>1 − iη>2

)
C. (5.26)

The partition function can then be written in terms of these new spinors (implicitly
assuming the spacetime integration, which is a sum on the lattice, in the exponent)

Z =
∫

Dσ

( 2∏
r=1

Dηr

)
exp

(
−η>r

(
iC /∂ − iσ

)
ηr − λσ2

)
. (5.27)
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Now, we can proceed exactly as in the derivation of the dual formulation to arrive
at

Z =
∑
K∈K

∫
Dσ

( 2∏
r=1

Dηr

)
exp

(
−η>r

(
iC /∂[K]

)
ηr − λσ2

)
(5.28)

where we reformulated the partition function in terms of interaction point con-
figurations K and introduced the reduced operator /∂[K] with removed rows and
columns as above (cf. Eq. (5.8)). But now we see that the path integral factorizes
because for both Majorana flavors we had to remove the same rows and columns.
Thus, we see

Z =
∑
K∈K

[∫
Dη exp

(
−η>

(
iC /∂[K]

)
η
)]2

w(K) (5.29)

and conclude by comparison with Eq. (5.10) that

det iD[K] =
[∫

Dη exp
(
η>
(
−iC /∂[K]

)
η
)]2

. (5.30)

For the following steps we introduce the short-hand notations U = −iC /∂[K],
η(xi) = ηi, l = (i, j) and expand the exponential

√
det iD[K] =

∫ V∏
i=1

dηi
V∑
j=1

1∑
ni,j=0

(
η>i Uijηj

)ni,j =
∑
N

∫ V∏
l1=1

dηl1
(
η>l1Ulηl2

)nl (5.31)

where we exchanged summation and multiplication by summing over possible link-
ing configurations N . Now, the integrations factorize into closed loops L because
the integration at the end points of an open path will vanish. Hence, we can write√

det iD[K] =
∑
N

∏
L∈N

W (L) (5.32)

with30

W (L) =
∫ ( L∏

l=1
dηl
)
η>1 U1

L∏
l=2

(
ηlη
>
l Ul

)
η1 = − tr

L∏
l=1
CUl = −iL tr

L∏
l=1

/∂[K]l. (5.33)

Now, there will be nν links in direction ν = 0, 1, 2. Every link in direction ν
contributes a factor γν to the product. Now, we can always reorder the γ-matrices
30Some words on the notation may be appropriate here: In Eq. (5.33), we enumerated the links

from the loop L to be l = 1, . . . , L such that l can be counted through. As an index l still
means the tuple (i, j) for U and its first, resp. second, entry on the (transposed) spinor.
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5.4 Remarks On The Sign Problem

such that we have γnνν but every swap of two γ-matrices introduces a minus sign.
After combining the product of swapping sign into sgn(L) we can write

W (L) = −iL sgn(L)
(

L∏
l=1

∂[K]l
)

tr (γn0
0 γn1

1 γn2
2 ) (5.34)

where ∂[K]l means the l = (i, j) element of the reduced discrete partial deriva-
tive in use, i.e. the SLAC-derivative with the corresponding rows and columns
removed31. Because γ2

ν = 1 we just have to consider nν modulo two which yields
only two non-vanishing cases

W (L) = −2 sgn(L)
(

L∏
l=1

∂[K]l
)(−1)L2 n0 = n1 = n2 = 0

(−1)L−1
2 n0 = n1 = n2 = 1.

(5.35)

By L = n0 +n1 +n2 (not modulo two), we see that the exponent is integer-valued
in both cases. We finally conclude that the determinant of iD[K] is the square
of a real number and therefore positive. Hence, the partition function can be
formulated as follows

Z = C
∑
K∈K

(−1)V n det iD[K]
( 1

2λ

)V n
= C

V∑
V n=1

(−1)V n
( 1

2λ

)V n
Zn (5.36)

using the interaction density n from Eq. (5.14) and grouping the configurations K
into K(n), denoting those with exactly k = 2V n ones in it, and introduced

Zn =
∑
K(n)

det (iD[K]) . (5.37)

In Eq. (5.36) we see that every configuration with an odd number of interaction
points contributes a minus sign while every even configuration yields a positive
contribution.
After the above discussion, we now know the, in general hard to determine, sign

of each configuration. By this knowledge, it is now particularly easy to obtain the
reweighting factor

〈
ei=S

〉
<S

from the relation

1 = 〈n0 + n1〉 = 1
〈ei=S〉<S

(〈
n0e

i=S
〉
<S

+
〈
n1e

i=S
〉
<S

)
(5.38)

(for a properly normalized partition function) where we have used the reweighting
formulation from Eq. (2.17) in the last equation. Since ei=S is known exactly on
31In this context, the removal is done by replacing the row/column by the corresponding

row/column of 1.
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every configuration, an exact reweighting hence requires just a simple normaliza-
tion of

〈
n0e

i=S
〉
<S

+
〈
n1e

i=S
〉
<S

. This is no cure of the SP because it persists,
hidden in the possibility that the expression in parentheses might be close to zero
making the normalization numerically instable. However, we observed that the
reweighting procedure actually does not affect any observable we used. We there-
fore suspect that there is a further argument why the SP could be more mild in
this formulation. After all, we have an easy way to determine the reweighting
factor and the reweighting procedure does not enlarge the statistical uncertainty
significantly. Thus, the SP has no significant effect on the simulation results.

5.5 Results For Vanishing Temperature
We start with the results for vanishing temperature. Here, the only external
parameter is the coupling g2 or equivalently λ. Though we will use mostly λ
during the discussion, in accordance to the physical background we will stick to
the term “strong coupling” for large g2 meaning small values of λ. It will turn out
that the lattice model under investigation actually features two phase transitions,
first the expected parity breaking “chiral” condensation and second a transition
into a phase of strong lattice artifacts. They will be discussed successively starting
with the expected one. The lattice simulations were performed as parameter scans
in λ for all lattice sizes32 V = L(L− 1)2 with L = 6, 8, . . . , 16.

5.5.1 Investigation Of The Physical Phase Transition

The Local Chiral Condensate. Fig. 5.3 shows the local condensate according to
Eq. (5.13). One can clearly see that there is a non-vanishing condensate for strong
couplings that vanishes continously but not smoothly at a critical coupling λc. By
these properties it fulfils all expectations about an order parameter for a second
order phase transition. From the discussion of second order phase transitions in
Sec. 2.1.1 we know that it then has a critical behavior

Σloc = const.

(
λ− λc
λc

)β
+ . . . (5.39)

(cf. Eq. (2.1)). Thus, a fit of this form to a region close enough to the phase
transition yields a good estimation of the critical coupling λc as well as the order
parameter’s critical exponent β. The results from least squares fits can be seen in
Fig. 5.7, resp. Fig. 5.4.
As expected, the usage of a finite lattice introduces deviations. Unfortunately,

for the local quantities there is no FSS theory available to describe their behavior.
32As discussed in [16], the correct boundary conditions need an even number of lattice points in

temporal direction and odd number of points in spatial directions.
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5.5 Results For Vanishing Temperature

However, under the assumption that the overall scaling behavior is sufficiently
monitored by these 6 lattice sizes, the smoothness of the values for the critical
coupling admits a naive fit via an ansatz

λc(L) = const.

Lκ
+ λc(L→∞) (5.40)

where κ is some exponent and the offset λc(L → ∞) is an extrapolation to the
infinite lattice. Even without the exact FSS arguments, this should be at least
reasonable as an expansion to lowest order. The extracted critical coupling is then
given by

λ(Σloc)
c = 0.1268(1). (5.41)

To the best of our knowledge, the only other published value of this coupling is a
MC result on a 16× 15× 15 lattice from [51] with33 0.130(3). This is consistent,
though less precise, with our estimates.
The critical exponents (Fig. 5.4) do not show such a monotonic behavior. In-

stead, it seems that they are fluctuating around their exact value. This shows that
the local variables capture important physical aspects much better than typical
for global quantities. Presumably, this is the case because the order parameter
exactly vanishes at the (finite lattice) critical coupling and can therefore monitor
the behavior close to the critical point much better.34 As a rough estimate from
Fig. 5.4 one could use the mean of the extracted exponents

β = 0.406(8). (5.42)

To the best of our knowledge there is only one other publication including values for
the critical exponents in Nf = 1: Nowak et al. [53] use functional renormalization
group methods to derive the flow equations and calculate critical exponents from
that. Since they use a variety of methods differing in technical details they find
four values β = 0.406, 0.407, 0.411, 0.420. Our findings agree almost perfectly
with their lower values.

The Local Susceptibility. A similar evaluation can be done for the local suscep-
tibility (Eq. (5.15)) shown in Fig. 5.5. It is only reasonably defined for couplings
33For comparison, one has to switch from the TH inverse coupling λTH = 3λ to the GN inverse

coupling as used in this thesis.
34The estimates for this critical exponent should be compared to the results for βn from the

global quantity n (cf. Fig. 5.8(b)) which are far off from the conjectured correct value for
small lattices and show a clearly monotonic behavior. The latter estimates were also obtained
from direct fits to an order parameter which, in contrast, did not vanish exactly in one of the
phases.
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Fig. 5.3: Local condensate according to Eq. (5.13) for various linear lattice sizes L over
the inverse coupling λ with fits (solid lines) according to Eq. (5.39).
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Fig. 5.4: Critical exponent β from the local condensate (Eq. (5.13)) as a result of the
fits according to Eq. (5.39) in Fig. 5.3. In dashed lines, the values from [53] are
given (cf. text).
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(a) Linear lattice sizes 6, 10, 14.
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(b) Linear lattice sizes 8, 12, 16.

Fig. 5.5: Local susceptibility for various linear lattice sizes L over the inverse coupling λ
with fits (dashed lines) according to Eq. (5.43). For the sake of readability, the
data has been split into two subfigures. As discussed in Sec. 5.2, the uncertainty
in the data becomes huge close to criticality.
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Fig. 5.6: Critical exponent γ from the local susceptibility as a result of the fits according
to Eq. (5.39) in Fig. 5.5. The shaded area indicates the range of the values from
[53] (cf. text). It must be stressed here, that the fits were very unstable and
that the results should not be trusted more than the errorbars indicate (despite
the seemingly better agreement).
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Fig. 5.7: Critical coupling λc over the linear lattice size L from the fits in Fig. 5.3 and
Fig. 5.5.
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5.5 Results For Vanishing Temperature

lower than the (L-specific) critical value and divergences when approaching it from
the left. To the right, we set it to zero as follows from Eq. (5.13). Its critical be-
havior can therefore be fitted as

χloc = const.

(
λ− λc
λ

)−γ
(5.43)

from which we again extract an estimation for the critical coupling λc and its
critical exponent γ. This behavior is qualitatively well fulfilled by the data of
Fig. 5.5. However, as discussed during its introduction, statistical fluctuations
gain importance in the region close to the critical coupling making the data very
noisy in this region. Nevertheless, the fitting of Eq. (5.43) to the data yields results
very consistent with the available sources for comparison (cf. Fig. 5.7 and Fig. 5.6).
The critical coupling derived from the local susceptibility is also depicted in

Fig. 5.7. By the same means as above, we find

λ(χloc)
c = 0.1271(1). (5.44)

This is very close to the result from the local condensate though the uncertainties
do not overlap.
The susceptibility’s critical exponent γ is shown in Fig. 5.6. For this parameter,

the fits were particularly instable which results in large errorbars. Apart from
this instability, the extracted exponents show a similar behavior to those from the
local condensate, i.e. fluctuations around the exact value. A rough estimate from
Fig. 5.6 yields35

γ = 1.05(30). (5.45)

Again, there are values for comparison only from [53]. In fact, for γ they find
tiny deviations comparing the limiting from the symmetry broken, resp. restored,
phase. But by general arguments [14] they should agree on both sides yielding now
6 values36 in the range 1.050 . . . 1.077 to compare to. As before, the results almost
perfectly agree. If one would neglect the large uncertainty of this value, one could
again argue that the results are in favor of the lower values from [53]. However,
from the particularly noisy data this conclusion cannot be stated reliably.

The Global Quantities. Results from the global quantities defined in Eq. (5.16)
to Eq. (5.20) are shown in the next subsection (see Fig. 5.8(a) to Fig. 5.11). In fact,
it seems that none of them shows distinguished behavior at the parity breaking
35Here, we included a second significant digit into the result for better comparison with the

literature.
36Actually, they find 8 values of which two pairs agree.
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phase transition that is indicated by the local quantities. Nevertheless, they all
point to a second order phase transition that will be discussed in the following
subsection.
There is the remote possibility that the extrapolations for estimating the location

of the parity breaking phase transition (Eq. (5.41) and Eq. (5.44)) are far from
reality because the lattice sizes L = 6, . . . , 16 hide some important behavior. But
in regards to the excellent agreement with the findings from [53], it seems highly
unlikely that significant finite size effects are concealed from this discussion.

5.5.2 Investigation Of The Lattice Artifact PhaseTransition

As discussed above, the global observables defined in Eq. (5.16) to Eq. (5.20) do
not respond to the parity breaking transition expected in the model. Nevertheless,
they do show interesting behavior: Both Binder parameters Un (Eq. (5.17)) and
Uσ (Eq. (5.19)) as well as the n-susceptibility χn (Eq. (5.16)) exhibit the typical
forms indicating a second order phase transition [14]; namely, these are a unique,
(up to higher orders) L-independent crossing point of the Binder cumulants and
a – with increasing L rising and sharpening – peak of the susceptibility. This
is clear evidence for another phase transition. Since two of the three discussed
observables are directly related to 〈n〉, it seems natural to assume that this could
be an order parameter for this transition.
This additional phase transition occuring only in the lattice formulation of the

theory is already known in the literature [54] and called lattice artifact phase
(LAP). The latest interpretation of this is given by [16, 51]. It makes use of the
lattice filling factor k – as they call it – resp. its density n (cf. Eq. (5.14)). There
it is argued that the additional phase occurs when the coupling becomes so strong
that the interactions on the lattice outnumber the points with free dynamics. In
this subsection, we will go into more detail about this and determine the locality
of this transition.

Mathematical Discussion. The dual formulation used in this thesis provides al-
ready a lot of insight on this problem. To get started, we recover some basic proper-
ties of the model: It is intuitively clear that for g2 → 0 we will recover free fermions
and for g2 →∞ the lattice will get filled up with interactions and the free dynam-
ics will be further and further suppressed. In the dual formulation (Eq. (5.10)) this
can be stated as follows. For g2 →∞ we have, by w(K) = (−1)V ng2V n (Eq. (5.9)),

Z(g2) = C
∑
n

(−1)V ng2V nZn → C(−1)V g2VZ1 (5.46)

with Zn from Eq. (5.37). It should be stressed here that Zn will strongly depend
on V but does not depend on g2 at all. For arbitrarily strong coupling, all but
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5.5 Results For Vanishing Temperature

the highest order in g are suppressed justifying the last limit in Eq. (5.46). Thus,
〈n〉 → 1 for g → ∞. Furthermore, Z1 = 1 and no fermion dynamics take place.
This can be interpreted as the whole lattice being blocked by interactions. A
similar argument for g2 → 0 leads to completely free dynamics, i.e. 〈n〉 → 0 and
Z(g2) → CZ0, as expected. This could have been also seen from the original
formulation.
Now, consider the second limiting case V → ∞ at fixed g2 > 1. We always

know that the completely filled lattice has Z1 = 1. For partial filling, there are
two possibilities: First, there might be an n < 1 such that Zn can compensate
the suppression by g2V (n−1). Such terms lead to significantly contributing config-
urations with n < 1 and hence 〈n〉 < 1. Second, if for no n < 1 the terms Zn
compensate the suppression, we have 〈n〉 = 1 for all couplings larger than g2. The
second case will be called LAP and we know that

lim
V→∞

Zng
2V (1−n) = 0 (5.47)

for all n < 1 there. What scenario we are in, may depend on the concrete value
of g2 and there could be a critical g2 where a transition may happen. A similar
result can also be obtained from a strong coupling expansion as done in [51]: In
the region of validity of such an expansion it can be shown that observables –
particularly 〈n〉 in our case – does not depend on λ in the infinite volume limit.
From the first discussion, one can then conclude that 〈n〉 = 1 in the region of
validity. Unfortunately, there is no reasoning in [51] nor known to us that the
strong coupling expansion should be valid for any finite g2.
Since we do not see any (feasible) method to compute Zn analytically, lattice

simulations are in need to explore which scenario holds. Since only after the
limiting procedure the above discussion applies strictly, the lattice results will not
show exactly 〈n〉 = 1 in the LAP but a slightly smaller value where the corrections
from the n-term are suppressed by g2V (n−1) which is finite before limiting.

Lattice Results. In Fig. 5.8(a) the interaction density n is shown. One could
conjecture that it approaches 1 in the strong coupling limit for all lattice sizes which
was argued in the previous paragraph. Additionally, there are two distinct regions
where 〈n〉 is increasing, resp. decreasing, with growing volume. This suggests
that there is indeed a finite critical coupling at which the transition to the LAP
happens. This transition should then be the (up to higher orders) L-independent
crossing point of all Un(L) and the point of divergence of χn in the infinite volume
limit. These quantities are shown in Fig. 5.9(a) and Fig. 5.10, respectively.
The first question to ask is of what order the phase transition is. In [55], an

exemplary discussion of the form of Binder cumulants for first and second order
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Fig. 5.8: Lattice results concerning the interaction density n (Eq. (5.14)).

transitions can be found. By comparison with the data from Fig. 5.9(a) we con-
clude that this must be a second order phase transition, since we already know
that 〈n〉 is the order parameter of the transition. Its susceptibility Fig. 5.10 also
shows the typical behavior as to be compared e.g. with [21]. Nevertheless, we will
focus the discussion on the Binder parameter because a detailed analysis from
the poor resolution and statistics obtained for the susceptibility would not be very
conclusive.
After the order of the transition is known, we can use the techniques from FSS,

particularly the fact that the Binder parameter exactly at the critical point is
(up to higher orders) independent of the lattice size37. In Fig. 5.9(a) this behavior
is clearly seen to happen around λ ≈ 0.11. To get a more precise estimate, we
include higher orders into the discussion. As stated in [16], the scaling of the
Binder cumulant’s crossing points λc(b) should then obey

λ−1
c (b) ≈ λ−1

c (L→∞) + const.

ln b (5.48)

if we compare the Binder crossing points between results from L0 and L = bL0.
This analysis is carried out in Fig. 5.9(b) by the means described in Sec. 5.3
where we use I = [0.1093, 0.1126]. The points for L0 = 6 still show some higher
orders’ influence, particularly for L = 8, i.e. the rightmost point (which is therefore
omitted in the fit). But all other points can almost perfectly be extrapolated via
37A subtlety arises here: Due to the different lattice sizes in temporal and spatial direction, it is

unclear which value to use for L in the formulae. But [16] finds that the actual choice does
not matter and we checked this statement carefully. Since we also found that this does not
affect the result, we will stick to the naive definition as used above.
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Eq. (5.48) yielding38

λ(artifact)
c = 0.10946(3). (5.49)

This is also estimated in [51] on an 8× 7× 7 lattice where 0.116(3) was found. In
fact, this result could have also been anticipated from the autocorrelation times
discussed in Sec. 5.3 (cf. Fig. 5.2). As [14] states, for a second order phase tran-
sition the autocorrelation time of simple local algorithms, like the Metropolis in
use here, scales according to τ−νz for some z usually ∼ 2. Thus, the strongest
autocorrelations appear close to the critical point. By the same reasoning as for
the FSS theory of observables, this translates also to a behavior like Lz if L� ξ,
explaining also the dependence on the lattice size L.
Finally, from the data we can extract various critical exponents. Since the LAP

transition’s order parameter is n, we will denote all exponents for this transition
with a subscript n to be distinguishable from the results for the parity breaking
transition. These can then be used to identify the universality class of the phase
transition and give a hint on the continuum model that will be obtained from the
continuum limit at this critical point. First, from a naive fit

〈n〉 = 1− const. (λ− λc)βn (5.50)

to the finite-L data we can extract

βn = 0.42(2) (5.51)
38This is the result of L0 = 8 because for L0 = 6 the finite size effects seem comparably large

and for L0 = 10 a fit between two points does not yield reliable uncertainties.
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(cf. Fig. 5.8(b)). In this formula we fixed λc to its value from the Binder crossing
point analysis above and extrapolated naively to infinite volume.39 Second, the
correlation length critical exponent ν can be obtained via the scaling behavior of

ln ∂U
∂λ

(L) = 1
νn

lnL+ const. (5.52)

as stated in [16].40 To obtain the slope of U , we again use Eq. (5.23). The results
can be seen in Fig. 5.9(c) and the linear fit yields

νn = 0.80(4). (5.53)

The last question to answer is if a universality class with these critical exponents is
known. Since the above analysis was only of moderate precision, we do not expect
to find a perfect match. Nevertheless, the results are in good agreement with the
D = 3 percolation universality class with its exponents [56]

βPerc. = 0.4273, νPerc. = 0.8960. (5.54a)

Percolation theory is concerned with the dynamics of stochastic clusters [57] which
seems reasonable from the point of view that we indeed describe the dynamics of
stochastically distributed interaction points in the dual formulation. But an in-
vestigation if these form clusters such that there could be a direct interpretation
as percolation is out of the scope of this thesis. Nevertheless, it should be men-
tioned that a connection to percolation theory can also be observed in other lattice
models like SU(3) gauge theory [58] or the Ising model [59].

5.6 The Phase Diagram Of Gross-Neveu
In this subsection, we will present first results about the phase diagram in the
T -λ plane. This is still work in progress and mainly intended to document the
current state. Therefore, the data might be noisier and sparser as desirable and
the results and interpretations a little less conclusive than the scientific standard
requires. Nevertheless, we will gain some interesting insights here to build on in
further research.

5.6.1 Preliminary Discussion

As already mentioned when introducing the Euclidean formulation, temperature
is varied by compressing the (imaginary) time direction of the lattice, usually via
39This is done as in the analysis of λc for the other transition.
40As before, we use L as dimensionless quantity. If L means a physical length, one should change

L→ L
L0 for some reference length L0.

59



5 Lattice Results for Nf = 1

changing the number of points Lt in this direction. Unfortunately, there is not
much freedom to do this for us because the computational cost of the algorithm
restricts us to small lattices up to L = 16. Additionally, a parameter scan in two
parameters needs much more data points.
Instead, we will restrict ourselves to medium sized lattices but introduce an

asymmetry that further compresses the temporal direction. Concretely, we use
L ∈ {9, 11, 13} spatial lattice points and Lt ∈ {2, 4, 6, 8} temporal points and vary
cT = a

at
where a is the spatial lattice spacing (set to one as always) and at is the

temporal lattice spacing. Thus, we find that the physical temperature is given by

T̃ (Lt, λ) = τ(Lt, λ)cT
Lt

(5.55)

where the fraction is the inverse temporal extent (in units of a) and τ denotes
the a priori unknown relation between lattice units and physical units. Typical
means of investigating this relation are measuring masses (and relating them to
physical ones) or the peak of the susceptibility. Unfortunately, for the physical
phase transition we only have the local susceptibility that has no finite peak height
and in a short investigation no (in both phases) non-vanishing masses were found.
Thus, an independent determination of τ was not possible during the restricted
period of work for this thesis. For starters, we set τ = 1 keeping in mind that the
such defined temperature

T = cT
Lt

(5.56)

is no physical quantity and the same value of T does not necessarily imply the
same physical temperature on different lattices. Furthermore, by introducing an
explicit asymmetry the spacetime integration measure is changed. This can be
compensated by including a factor41 √aat into the fermion fields but implies a
rescaling of the inverse coupling by42 cTa.
It should be stressed particularly that the above approximation via an asym-

metric lattice is only reliable in the medium and high temperature regime because
in the low temperature regime we have at = a

cT
→ ∞. This tells us that the

discretization errors will become huge in the limit cT → 0. It is actually more
appropriate to think about this limit as simulating Lt independent slices of a 2-
dimensional model with periodic boundary conditions in both directions.
For technical reasons it was more convenient to scan small rectangles in cT and

the unscaled λ. Thus, the resolution in λ becomes higher with decreasing temper-
ature but this was taken care of by additional finer scans in the high temperature
41This is true for dimensionful fermion fields. If a factor of a was already included to get

dimensionless fields, the factor is
√

at

a = √cT .
42As before, this would only be cT if the fermion fields are already dimensionless.
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Fig. 5.12: Three examples of fits (solid lines) to determine the maximum of the sus-
ceptibility at fixed temperature in the unscaled λ. Since the purpose of this
procedure was to determine precisely the peak position, some deviations be-
tween fit and data away from the peak were accepted. (1) cT = 2.8 on a
2× 9× 9 lattice fitted with a linear combination of Eq. (5.58) and Lorentzian
shape. (2) cT = 5.4 on the same lattice fitted only with Eq. (5.58). (3)
cT = 2.0 on a 4× 9× 9 lattice fitted with a linear combination of Gaussian
and Lorentzian function.

regime. Afterwards, the critical coupling at fixed T was estimated as the mean
between the first vanishing condensate and the last non-vanishing condensate.
The error bars given in Fig. 5.13 indicate the range between these two points of
measurement.
Additionally, one should keep in mind that the physically relevant quantity is

actually not the lattice parameter λc. As shown in [60], the renormalized cou-
pling becomes zero at (and negative beyond) the LAP transition. It is thus more
appropriate to think in terms of

λ̃ = λc − λ(artifact)
c (5.57)

to describe physics that could be related to continuum physics. That, combined
with the possibility that the critical line might run into the LAP during our sim-
ulations, is why we will also scan for the LAP transition to get at least some
notion about the relation of the two. On a finite lattice, this transition is indi-
cated by the maximum of the n-susceptibility (Eq. (5.16)). As already found in
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the T = 0 analysis, this can be clearly made out if the resolution is large enough
and provides means for locating the transition with a single lattice (as opposed
to the more precise but also much more time-consuming Binder analysis). At
fixed T , we then extract the position of the maximum by one of the following
methods:43 The method of choice was fitting a medium sized region R around
the maximal point λmax by a function f(λ). Its details strongly depended on the
shape of the peak and all the fits were faithfully adjusted by hand to give the most
precise and reliable result. Some examples of data and fits are shown in Fig. 5.12.
Generally, we varied the following parameters: The fit region was chosen to be
[λmax − ∆λ, λmax + ∆λ] with the width ∆λ chosen to include the upper approx-
imately 20-40% of the peak. Various fit functions were used, including a linear
combination of Gaussian and Lorentzian shaped functions (with shared peak
location) and for the more asymmetric peaks a shape proposed in [61] (in the form
given in [62])

f(λ) = A exp
− ln 4

2 (ln z)2

(
ln xm − λ
xm − λ0

)2
+ const.

xm = λ0 −
z + z−1

2∆ , z =
√
h|∆|+

√
h2∆2 + 1

(5.58)

with constant offset const., full width at half maximum h, asymmetry parameter
∆ and peak location λ0 (in some cases linearly combined with a Lorentzian shape
with shared peak at λ0). If a successful combination of initial guess, functional de-
pendence and fit range was found, this usually gave a precise and reliable estimate.
Otherwise, we fell back to a method similar to the determination of the physical
critical line, i.e. the maximal point was chosen as critical one and its distance to
the second highest point as uncertainty. This last methods yields just a rough
estimate and was avoided where possible. Particularly, it introduces characteristic
artifacts that will also be seen for the parity breaking critical line at poor resolu-
tion: If the unscaled λc(cT ) varies only slowly in cT the such determined critical
line will be parallel to the T -axis. Thus, in the correctly scaled critical coupling
will have a saw-tooth shape where the artifact parts all point to the origin (see
e.g. the high temperature regime of 2 × 11 × 11 in Fig. 5.14(a)). In Fig. 5.12,
one can also see another problem with this method: While it needs relatively few
statistics to determine whether or not the chiral condensate is zero, fluctuations
in the maximum make it hard to determine the precise location with such a naive
approach. The example (3) shows two nearly equal maxima in the data while none
of them seems to be at the center of the peak as estimated by eye. In contrast,

43The choice of the method was done by hand for every temperature slice and the appropriateness
of the result was checked by eye for every point.
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Fig. 5.13: Phase diagram in the T -λ plane with the critical line of the parity breaking
transition and the critical line of LAP transition on a 2 × 9 × 9 lattice. The
leftmost region is the LAP, the rightmost region is the phase of restored sym-
metry. In between, the physical phase with broken symmetry is found. The
red extra tick on the x-axis indicates the λc(T = 0) from Eq. (5.41).

the fit finds the center pretty well though it is only a rough approximation at the
wings.

5.6.2 Results

The critical lines obtained from a scan in λ and cT on a 2×9×9 lattice can be seen
in Fig. 5.13. For all lattices the critical line is qualitatively the same (cf. Fig. 5.14,
5.15 and 5.16). For cT → 0, the curves all go to λc = 0. As already discussed,
this is not the limit T → 0. In fact, from the first lattice results (Sec. 5.5) we
already know that there should be a finite critical coupling λc(T = 0) ≈ 0.127.
Instead, one finds that the unscaled critical coupling becomes roughly constant
for sufficiently small cT and therefore the correctly scaled critical lines approach
the origin in an almost linear fashion. However, we see that a larger temporal
extent reduces this artifact in T .44 As a side remark we note that the hypothetical
theoretical model on the decoupled spatial slices at cT → 0 seems to have both
phase transitions (LAP and parity breaking) at finite coupling.
44This is clearly expected because the unreliable region of cT should stay approximately constant

while the denominator in Eq. (5.55) becomes larger.
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Above this obviously unphysical region, one observes a bump in the critical
line that (at least for the small to medium lattice sizes in use) extends beyond the
T = 0 critical coupling. If this would hold for all lattice sizes this would imply that
the critical line approaches the limit T → 0 from high λ and the maximal critical
coupling λc(T ) would not be observed for T → 0. Alternatively, one could imagine
that this is a finite size and discretization artifact that vanishes for sufficiently
large lattices. In this case, the critical coupling would become constant or even
slightly increasing with decreasing temperature. As can be seen in Fig. 5.1645 this
bump reduces its extent for a larger number of temporal points. This could be
seen as evidence for the latter scenario. However, the currently available data does
not allow any final conclusion on this.
In the high temperature regime, the situation is clearer: For every probed tem-

perature, we found a phase transition in λ. For increasing temperature the critical
line approaches λ = 0. This is physically plausible when compared to the typ-
ical toy models for symmetry breaking, e.g. the Ising model where maintaining
an order at higher temperature also needs a stronger coupling [17]. As an open
question, it remains whether or not there is a maximal critical temperature as in
the large-Nf case. However, to answer this question (at least negatively) lattice
simulations might not be the way to go because with this method one can only
probe discrete temperatures in a finite range and from this it is never possible to
exclude a crossing of λ = 0 for all temperatures. One should again stress at this
point that for all probed temperatures a phase transition at finite coupling was
found. This implies that there is a small coupling regime where no broken phase
exists at any temperature.
After this discussion of the similarities, we will now focus on the differences

between the various lattice sizes. In Fig. 5.14 the critical lines for fixed temporal
extent are shown. It can be seen clearly that the extracted critical lines are iden-
tical within the given resolution (which is admittedly poor for the larger lattices).
We thus conclude that the spatial extent is chosen large enough to capture the
qualitative and quantitative behavior according to the given resolution. Concern-
ing the temporal extent, this cannot be said. With increasing number of temporal
points the critical line is significantly moved towards smaller temperatures as can
be seen in Fig. 5.15 and Fig. 5.16. This is well understandable in the low tem-
perature regime because the decoupling artifacts for low cT set in later if we are
already at larger temporal extent. For high temperature, this might be a finite
size artifact. As stated in [7], finite size effects should be mainly expected from
the spatial extent which we found to be large enough to be used with Lt ∈ {2, 4}.
However, it should also be chosen in relation to Lt. Thus, one expects the finite

45This can also be conjectured about the data in Fig. 5.15 but there it is much too noisy claim
something about this region.
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Fig. 5.14: The critical lines of the parity breaking phase transition in the T -λ plane
for various spatial extents at fixed temporal extent. The red extra tick on
the x-axis indicates the λc(T = 0) from Eq. (5.41). Please note the different
y-axes.
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Fig. 5.15: The critical lines of the parity breaking phase transition in the T -λ plane for
various temporal extents at fixed L = 11. The red extra tick on the x-axis
indicates the λc(T = 0) from Eq. (5.41).

size effects to increase significantly whenever the ratio L
Lt

is enlarged appreciably.
In our case, this ratio is increased by a factor of 2 . . . 4 which could be a reason for
these huge effects. In this case, the critical line should converge after increasing
both, the spatial and the temporal extent, further. Another thing to keep in mind
is the fact that there is still the unknown relation to physical temperatures in-
volved. It is hence not clear if the temperature definition in use here (with τ = 1)
yields temperatures that can be compared between the various lattice sizes. This
will be explored further in the future. The second effect to be seen was already
discussed: The bump in the critical line moves to the left slightly. This is best
be seen in Fig. 5.16 and could be an explanation for the relatively large difference
between the peak of the bump and the critical coupling at T = 0.
Concerning the LAP transition line, one can note three things: First, the general

temperature dependence of this transition is similar to the physical one. It goes
to zero for cT → 0, exhibits a bump around cT ≈ 2 and approaches λ = 0 for large
temperatures. Second, the artifact line and the critical line never cross (inside the
scanned range). Thus, the results about the physical transition are not spoiled
by the strong artifacts expected in this phase. Finally, as already discussed the
renormalized λ̃ should be physically more relevant and hence the exact separation
of both lines is of particular interest. However, one can directly see in Fig. 5.16
(and also in Fig. 5.17) that this separation actually behaves pretty much the same
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Fig. 5.16: Comparison of the LAP and the parity breaking phase transition for two
temporal extents at fixed spatial extent L = 9. The red extra tick on the
x-axis indicates the λc(T = 0) from Eq. (5.41).
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on a 2× 9× 9 lattice. The red extra tick on the x-axis indicates the λ̃c(T = 0)
from Eq. (5.41) and Eq. (5.49).
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as the two individual lines. Particularly, it exhibits a bump that exceeds the critical
λ̃ = 0.0174(1) at T = 0 and approaches λ̃ = 0 at high temperatures. Furthermore,
Fig. 5.16 could be interpreted as evidence that the bump in the separation decreases
even faster than the bump of the individual lines. If this extends to a substantial
trend at larger lattices, this could be the final argument in favor of a close to zero
or even negative slope of the critical line at all temperatures. However, it must be
stressed again that the results in the current state are not conclusive, particularly
concerning the finite size effects.

5.6.3 Comparisons

After the general behavior is presented as good as possible from the data, we will
attempt a first comparison to related results. For starters, an internal comparison
with the results from Sec. 4.2 and Sec. 5.5 was already touched in the previous
subsection. There it was found that the T → 0 limit is not yet conclusively
monitored but does not contradict the previous results beyond what could be
explainable by finite size effects. A comparison to the large-Nf scenario could then
focus on three aspects: First, the simple shape of the critical line will presumably
not be conserved when going from Nf = ∞ to Nf = 1. This is comprehensible
because infinity is in most cases considered a pretty bad approximation of the
value one. One should, however, note that an expansion in N−1

f still yields a
good approximation at Nf ∼ 4 . . . 8 as found in [16]. On the other hand, it was
found in [47] that this approximation is already not reasonable any longer in the
N red
f = 1 case. Second, the presented lattice results are not conclusive about

the question whether or not there is a maximal critical temperature. If so, this
could be a similarity but as discussed above the data seems to be more in favor of
the second scenario where the λ = 0 axis is approached asymptotically. Finally,
the large-Nf approximation also predicts a maximal inverse critical coupling. As
discussed above, this is also expected from the lattice data though the decoupling
artifacts for cT → 0 forbid to see it. Additionally, in a medium sized region above
the bump the lattice critical line is almost linear which is similar to the large-Nf

case. One could imagine that the reduction of finite size effects could lead to a
low temperature behavior similar to the analytic result while the high temperature
receives unpredicted corrections in the finite Nf regime (or maybe not even this).
Again, we can only refer to the in-progress state of the results and omit a final
conclusion.
Concerning the literature, there are to the best of our knowledge only two pub-

lications (both by the same team) that present related results [63, 64]. However,
even for those it is not clear if they are applicable here because it is nowhere
stated in which representation they work. As we know from the general discussion
(Sec. 3), this crucially changes the model. On the other hand, it could be irrele-
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vant in their calculation or could at least be some approximation like the large-Nf

limit. We will thus attempt a comparison but keep in mind that discrepancies may
occur without any mistakes on either side just by incompatibility.
In [63], the temperature dependent critical inverse coupling λc is computed in

the massive case from a one-loop calculation. They find46

λc = 16
(
T ln

(
1 + e−

m
T

)
− π

1 + e
m
T

)−1
m→0−→ 16

ln 2
1
T

(5.59)

Fig. 5.18: The critical line for one to
length L compactified spatial
direction in units of the fi-
nite mass m (i.e. t = T

m , . . . )
from [64]. The solid line cor-
responds to the infinite L case
(cf. Eq. (5.59)), the dashed,
resp. dotted, line to shrinking
L.

which simplifies in the massless case.
While the high temperature behavior is
qualitatively similar to the findings of this
thesis, the low temperature prediction,
namely a symmetry broken phase for all
couplings, contradicts our results. This
is presumably an artifact of the massive
calculation. Though we had no problems
to obtain the limit from the final formu-
lae, there might be a problem of well-
definedness within their derivation and
its applicability is not established in the
massless case without further investiga-
tion. Particularly, with a mass term in-
cluded parity symmetry is explicitly bro-
ken such that for sufficiently small tem-
peratures the system is always in the bro-
ken phase. This is a crucial difference to
the intrisically massless case where a fi-
nite critical coupling exists at T = 0 and
explains the discrepancy.
In a follow up investigation [64], the same team did a similar calculation with

one spatial direction compactified to a length L. One could image that this might
shed a light on the finite size effects one will encounter in further research about
the lattice phase diagram. Their result is then not as easily written down as
Eq. (5.59) but is shown in Fig. 5.18. For all finite lengths, the compactification
implies a finite critical coupling at T = 0 and deviations from the uncompactified
result in the low temperature regime. At larger spatial extent the results more and
more resemble the uncompactified version. After all, this would again contradict
the expectations from this thesis. We finally see that the setting of [63, 64] is not
comparable to the one of this section.
46This follows from formula Eq. (37) in [63] after plugging in the corresponding expressions and

using the formula K± 1
2
(z) =

√
π
2z e
−z, Eq. (15) from [64].
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6 Conclusions And Outlook
The present thesis investigated spontaneous symmetry breaking (SSB) in four
fermion theories (4FT). To get concrete results from this broad field of theories,
the focus was put on Gross-Neveu (GN) models in three spacetime dimensions.
From the well-known large-Nf approximation a first glance on SSB was possible.

In this approximation, the critical exponents were found to be the mean field
critical exponents and various thermodynamical quantities were calculated and
analyzed. In particular, a light was shed on their behavior around the phase
transition and on the silver blaze property of the particle density.
Afterwards, the model was further specified to one irreducible flavor. The Monte

Carlo (MC) results obtained are (to the best of our knowledge) the first of their
kind. This is due to technical difficulties in this setting that could be circumvented
within a dual formulation that was only recently proposed in [16, 51]. Concretely,
for vanishing temperature the generally accepted phase structure with a lattice
artifact phase (LAP), a chirally/parity broken phase and a symmetry restored
phase was confirmed. For both transitions, a precise estimate for the critical
coupling and various critical exponents could be obtained from a finite size scaling
(FSS) analysis. For the physical transition, the former was in good agreement
with another estimate from MC simulations [51]; the latter confirmed a functional
renormalization group result [53]. The LAP transition was found to be in the
3-dimensional percolation universality class and the estimate for its location was
a refinement of the previous MC result in [51].
Finally, the current status of an investigation of the finite temperature phase

diagram was documented. As work in progress, the results were not fully conclusive
but a general notion was obtained. The best established result was the fact that
for every probed temperature a phase transition at finite critical coupling was
observed. Particularly, it was conjectured that the critical line would approach
λ = 0 asymptotically in the high temperature regime while for low temperatures
the critical value for T → 0 would match the previously found critical coupling at
T = 0 after finite size effects become negligible. For the shape of the critical line in
between several scenarios were discussed. After all, the general trends seem well-
established and the results for small lattices very reliable, while the in-progress
state of the research mainly affected the analysis of the scaling behavior.
As a next step in the understanding of SSB in 4FT, we will try to answer the

open questions concerning the phase diagram of the GN. To do so, it might be nec-
essary to further improve the algorithmic properties such that the necessarily large
parameter scans become feasible on larger lattices. This would also positively af-
fect the precision of the T = 0 estimates. After this structure is finally established,
one could turn to study the influence of chemical potential as already done in the
large-Nf limit. There are interesting results in two dimensions where the ground
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state of the theory was found to be not homogeneous but periodic [22, 45, 46, 65].
Until now, it is not known whether this is an artifact of the limiting procedure
or a physical phenomenon also present at finite flavor numbers. If this would be
physical, a lot of new questions arise, e.g. if there is a minimal flavor number at
which it occurs for the first time.
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