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Abstract

In this work we investigate properties of scale invariant theories. This kind of theories
describe a variety of phenomena, and two particular examples are discussed. On the one
hand, more than 100 years after the discovery of General Relativity by Einstein, we still
don’t know how to unify gravity and quantum mechanics. One possibility is that on very
small scales, gravity could be scale invariant, allowing for a finite ultraviolet completion. On
the other hand, we will study the phase diagram of graphene and related materials. Scale
invariant points in phase diagrams are related to second order phase transitions, and near
these universal behaviour is found.

To investigate these systems, nonperturbative renormalisation group methods are used. In
order to achieve trustworthy results, also technical progress, both analytical and numerical,
had to be made. On the analytical side, the Mathematica package xAct is used to derive
the equations underlying the scale invariance of the theories. To solve these numerically,
pseudo-spectral methods are systematically introduced in the present context for the first
time.

The results thus obtained support the ultraviolet completion of gravity by a scale invariant
point. The dependence on gauge fixing and parametrisation is investigated, and found
to be reasonably small. The 2-loop counterterm, being the hallmark of the perturbative
nonrenormalisability of gravity, is shown to be irrelevant at the scale invariant point. Finally,
the split-Ward identities are partially solved by resolving correlation functions.

Regarding graphene and similar materials, different levels of approximation show a very
good convergence of results for critical exponents and anomalous dimensions at the phase
transition studied. The combined power of both analytical and numerical methods excels
particularly - without either, the calculations wouldn’t be possible.



Zusammenfassung

In dieser Arbeit werden skaleninvariante Theorien untersucht. Diese Art von Theorien
beschreiben eine Vielzahl an Phänomenen, und im Weiteren werden zwei solche diskutiert.
Einerseits haben wir, über 100 Jahre nach Einsteins Aufstellung der Allgemeinen Relativität-
stheorie, noch keine Einsicht, wie die Gravitation mit der Quantenmechanik zu vereinbaren
ist. Eine Möglichkeit besteht darin, dass Gravitation bei sehr kleinen Längen skaleninvari-
ant ist, und so eine Ultraviolettkomplettierung ermöglichen würde. Andererseits werden wir
das Phasendiagramm von Graphen und verwandten Materialien studieren. Skaleninvariante
Punkte im Phasendiagramm beschreiben Phasenübergänge zweiter Ordnung, und sind mit
universellem Verhalten verknüpft.

Zur Untersuchung dieser Systeme werden nichtperturbative Renormierungsgruppenmeth-
oden angewandt. Um verlässliche Resultate zu erhalten, musste sowohl analytischer als auch
numerischer Fortschritt erreicht werden. Auf der analytischen Seite wird das Mathematica-
Paket xAct benutzt, um die der Skaleninvarianz zugrundeliegenden Gleichungen herzuleiten.
Um diese Gleichungen numerisch zu lösen, werden pseudospektrale Methoden erstmals in
diesem Kontext systematisch eingeführt.

Die so erreichten Resultate sprechen für die Ultraviolettkomplettierung der Gravitation
durch einen skaleninvarianten Punkt. Eich- und Parametrisierungsvarianz fallen gering
aus. Die 2-Schleifen-Divergenz, die die perturbative Nichtrenormierbarkeit der Gravitation
anzeigt, ist am skaleninvarianten Punkt abwesend, und der entsprechende Operator irrele-
vant. Außerdem werden sogenannte split-Wardidentitäten partiell durch die Berechnung von
Korrelationsfunktionen gelöst.

Bezüglich Graphen und verwandter Materialien zeigen unterschiedliche Näherungsstufen
eine ausgezeichnete Konvergenz für die Werte von kritischen Exponenten sowie anomalen
Dimensionen am untersuchten Phasenübergang. Die kombinierte Stärke von analytischen
und numerischen Methoden zeigt sich hier besonders, so wären die Resultate nicht erreichbar
gewesen, wenn auch nur eines von beiden gefehlt hätte.
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1. Introduction

Nature looks very different at different length scales. Already the Greeks postulated that
matter consists of small components which they called ατoµoν (atomon), literally the indi-
visable. It might be puzzling that everything that we experience in everyday life is indeed
composed of discrete structures. On the other hand, if we look at our solar system, we
humans play a negligible role in the dynamics of the celestial bodies. There is thus a natural
hierarchy in the importance of degrees of freedom at a given length scale: only degrees of
freedom with a typical scale similar to the natural scale of a given process contribute signif-
icantly to it. Small fluctuations cannot affect the motion too much and details are in that
sense washed out. Likewise, fluctuations of much larger length scale are not influenced by
the process, and can be seen as frozen. For most things in real life, we can just forget about
the fact that the underlying structure of matter is atoms and molecules, and describe the
motion of a thrown ball idealised as an extended classical object with spherical symmetry.
Similarly, to calculate the motion of the Earth around the Sun, we can safely neglect the
human degrees of freedom, and our solar system is in the same way irrelevant for the large
scale structure of our Universe.

These simple examples make clear that an effective description of nature will involve
different degrees of freedom at different length scales. There is also a natural direction from
small scales to larger scales, from atoms to molecules, from molecules to brokkoli, from
brokkoli to planets, and ultimately to the whole Universe1. The aim of this thesis is to study
some aspects of the scale dependence of nature in seemingly completely distinct systems,
which however share many structural features.

Not only do the effective degrees of freedom depend on the length scale considered, but
also the interaction of these degrees of freedom are dependent on the length or energy scale2.
As an example, imagine to throw a ball to somebody. Depending on how fast the ball is
thrown, different interactions between ball and the hit person can happen. At 1m/s, the
target person should be able to catch the ball, and might return it to you. The situation
changes if the balls’ velocity is increased to say 100m/s, which might end up in having to
call an ambulance and being charged by a law suit. Even more extreme, if the ball is thrown
relativistically, the quantum structure of the air can be probed. The energy might be so

1An impressive interactive animation of the scales in our Universe can be found at [1].
2We will interchangeably use length and energy scale in this work. Large length scales correspond to small

energy scales and infrared, whereas small length scales correspond to high energies and the ultraviolet.
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Fig. 1.1.: Artist’s depiction of quantum spacetime. Image taken from [4].

high that the air is ionised and destroys everything in its neighbourhood, including you and
the person you threw the ball to [2].

In a very similar fashion, elementary particles, which are loosely speaking to the best of our
knowledge the microscopic degrees of freedom, interact differently with changing energy scale.
This is encoded in so-called running couplings, and the dependence on energy is described
by β functions. The best model that describes these interactions to an amazing accuracy is
the Standard Model, a quantum field theory with symmetry group SU(3)× SU(2)× U(1).
These groups capture the strong, weak, and electromagnetic interaction. One particularly
astonishing prediction of the Standard Model is the g-factor of the electron,

g = 2


1 + α

2π + . . .

≈ 2.0023193043617(15) , (1.1)

where α is the fine-structure constant. Classically, it is exactly 2, and corrections are due to
QED (and to lesser extend QCD) vacuum effects. The agreement on the numerical value of
the g-factor between theory and experiment is 12 decimal digits [3].

Our daily experience shows however that something is missing in the Standard Model,
which is intimately tied to the names of Newton and Einstein - gravity. To date, there is
no satisfactory theory of quantum gravity, even without matter. Many competing theories
are on the market, including loop quantum gravity [5–14], string theory [15–20], causal
dynamical triangulations [21–27], causal sets [28–34], asymptotic safety [35–47], group field
theory [48–56] and several more [57, 58], however none of them solves all open problems.
One of the fundamental questions here is what happens to spacetime itself at very small
length, or very high energy scales, of the order of the Planck energy,

EPl =

ℏc5

GN

≈ 1.956× 109J ≈ 1.22× 1019GeV . (1.2)

This energy corresponds to the rest mass energy of a particle of Planck mass: 21.7647µg,
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1. Introduction

Fig. 1.2.: Honeycomb lattice structure of graphene. The diamond-shaped unit cell consists of two
atoms, marked in red and blue for illustration.

which is approximately the US RDA for vitamin D for adults [59]. One could imagine that
spacetime is fundamentally discrete, and the smooth geometry that we observe only emerges
at larger length scales, similar to the smoothening of the discrete atom structure in everyday
objects as tables or cats. Definitely quantum effects will play a role in the microscopic
structure of spacetime. An artists depiction of this is shown in Figure 1.1, where one zooms
into spacetime more and more, finally probing ripples of spacetime itself. Part of this thesis
is concerned with a particular approach, asymptotic safety, to find a theory of quantum
gravity.

The attentive reader might now raise the question whether we should care at all what
spacetime does at these tiny length scales, as firstly we might never be able to measure it
anyway, and secondly it might be not important for the infrared observations that we have
access to. Technically, the property that aspects of macroscopic physics don’t depend on
microscopic details is called universality [60], and has been observed in many systems, e.g.
the BKT phase transition in liquid-helium films [61, 62] and atomic gases [63–66], or a phase
transition described by the Ising model [67] (originally proposed to describe ferromagnets) in
binary mixtures [68–70] and potentially the chiral phase transition [71–74]. This is definitely
a fair statement, although one should stress that fundamental research is important, even if
the impact on real life is not immanent. If Einstein hadn’t been funded to eventually develop
General Relativity, we wouldn’t have GPS which undoubtably has a major impact on the
real world. Another argument lies in the intrinsic human thirst of knowledge, to understand
the why and how of the Universe. General Relativity again is a prominent example, which
predicted a lot of by now observed phenomena, from black holes to gravitational lensing
[75–77], and more recently gravitational waves [78].

Let us for a moment apparently switch topics completely. In 2010, the Nobel Prize in
physics was awarded to Andre Geim and Konstantin Novoselov “for groundbreaking exper-
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iments regarding the two-dimensional material graphene” [79]. Graphene has very distin-
guished material properties, which are due to the hexagonal, or honeycomb lattice structure
of its carbon atoms, indicated in Figure 1.2. To only name a few, graphene is very strong, yet
still flexible, and has excellent thermal and electrical conducting properties. The relativistic
symmetry of the low energy effective degrees of freedom in graphene induced many studies
of effective field theories using Dirac fermions [80–114]. Similar materials have also been
studied extensively [115–141].

Now, what in all worlds do graphene and quantum gravity have in common? The short
answer is that several properties of these systems are (believed to be) gouverned by a so-
called interacting fixed point. At fixed points, a given system is scale invariant, which means
that it looks the same on every length scale. A real world example which comes close to being
scale invariant is romanesco - the whirly structure of its parts repeats itself when zooming
in on it. Fractals are another, more mathematical example which also exhibit approximate
scale invariance, or self-similarity. A prominent example for this is the Mandelbrot set, see
Figure 1.3.

Drawing from the properties of these fixed points, several very interesting questions might
be answered. On the gravity side, the quest is to find an ultraviolet completion, or (together
with the Standard Model) a “theory of everything”. In the authors eyes, this is one of
the most important fundamental questions in physics. Regarding the material properties of
graphene and related materials, one hope might be to make predictions on the properties
of high Tc superconductors. Also, very soon silicon might have to be replaced as material
for computer chips due to quantum tunneling becoming important in transistors at a size
of a few nanometers. In 2008, graphene-based single-electron transistors were produced for
the first time, and the relevant scale was estimated to be about 1nm [142]. The most recent
silicon-based chips that are commercially available have a 14nm microarchitecture (Intel
Skylake and AMD Zen).

The fact that the systems that we want to study are supposed to have an interacting,
as contrasted to a noninteracting, fixed point puts several technical difficulties on us. Con-
ventionally, e.g. when studying the Standard Model, perturbative expansions around the
uncoupled theory can be employed to calculate the energy dependence of the couplings.
Even though for most examples this expansion is only asymptotic3, reasonable results can
be obtained by resummation techniques. This is in general impossible for a theory which is
interacting strongly, and nonperturbative methods have to be used. Several methods are on
the market which all have their advantages and disadvantages. By a lattice discretisation
[143, 144], the theory can be probed directly in a nonperturbative manner, gauge invariance
can be maintained explicitly, and one has easy access to observables like the Polyakov loop.
On the other hand, fermions are notoriously difficult to implement, and even worse, in some

3This is a technical term refering to the property that the series doesn’t converge to the function that one
wanted to represent.
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Fig. 1.3.: The Mandelbrot set, which is an example for approximate scale invariance.

parts of the parameter space, the so-called sign problem can arise, where the lattice approach
practically breaks down. More recently, a very promising approach came up in the study of
scale invariant theories, namely the conformal bootstrap method [145–149]. The idea here is
to guess the relevant operators in the theory and then to solve consistency conditions arising
from the operator product expansion of correlation functions. With this method, an incred-
ible precision can be reached for observables like the critical exponent, which gouverns how
the correlation length diverges near a phase transition. One downside is that only conformal
theories can be studied yet, but sometimes one is interested in the full scale dependence of
quantities, and neither can one study effective low energy theories which don’t possess a
suitable fixed point.

We will settle with another approach, the functional renormalisation group. It is based
on the idea to find an interpolating function between the microscopic and the macroscopic
description of the theory, and following Wilson [150], to "integrate out" degrees of freedom
from high energies to low energies, in complete analogy to the physical intuition that we
laid down in the beginning. One can derive an exact integro-differential equation which
maps out this interpolation [151, 152]. The disadvantage here is that this equation is so
complicated that presumably we will never be able to solve it exactly, except in very special
cases. Therefore, approximations are necessary. Ideally, the approximated theory is still
close to the original theory, and precise results can be obtained. For this one has to identify
and describe the physical degrees of freedom which gouvern the dynamics of the system, and
this can be a tough problem in general. Still, a lot of nice results have been obtained in
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recent years, and thus also confidence in and understanding of the method has grown.
Let us now pose the concrete research questions that we want to address in this work.

Regarding the quantisation of gravity, an often heard criticism of the asymptotic safety
approach was that as soon as the two-loop counterterm is included in the approximation,
the scenario will break down. The significance of this counterterm comes from perturbation
theory, where it hallmarks the above mentioned difficulty to quantise gravity by standard
means. We will show that this criticism can be refuted - the operator is irrelevant at the
ultraviolet fixed point of asymptotic safety. Another point of potential danger is that the
scale dependence of couplings is not directly observable, and thus generically depends on
gauge fixing and the choice of parameterisation. We will study the influence of different
gauge fixings and parameterisations on the ultraviolet completion. Finally, as a first step
towards observables, we will calculate correlation functions in quantum gravity. There, we
study correlators on both flat and curved backgrounds, and present a method to go beyond
common vertex expansion schemes.

For graphene and related materials, we study a particular low energy effective model to
describe aspects of the phase diagram. In particular, we study the phase transition between
the semimetal and the charge-density-wave phase. We show, by studying different levels of
approximation, that the so-called derivative expansion seems to show very good convergence,
and we present precise estimates on critical quantities.

This thesis is structured as follows: in chapter 2, we repeat some basic notions of quantum
field theory and the functional renormalisation group. Chapter 3 collects the analytical and
numerical tools used in this work. We first sketch how the analytic equations used in this work
are derived by means of computer algebra, a notebook of a minimal working example which is
described there can be found in appendix A. Subsequently we introduce the numerical tools
that we use to solve the aforementioned equations. Both conceptual and implementational
details are presented. The chapter ends with an explicit example, namely the O(N) model
at criticality. Further results obtained with these numerical tools, which don’t fit into the
main discussion of the thesis, are collected in appendix B.

Starting from chapter 4, we present the main results of the thesis, beginning with the
quantisation of gravity. First, we discuss the two-loop counterterm and its (in-)significance
in the Asymptotic Safety Scenario in section 4.1. Section 4.2 deals with gauge and param-
eterisation dependence in gravitational renormalisation group flows. Parts of the explicit
results of this section are collected in appendix C. We continue with correlation functions
in quantum gravity in section 4.3, with some information collected in appendix D. The fi-
nal part of this chapter, section 4.4, tries to go beyond the vertex expansion to deal with
correlation functions. Some related results are collected in the appendices E, F and G.

After the gravitational part, chapter 5 collects results on the condensed matter part of
this thesis. We start with a short physical introduction to Dirac materials in section 5.1.
Subsequently, we discuss results for the critical Gross-Neveu-Yukawa model in section 5.2,
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1. Introduction

and its supersymmetric version, the Wess-Zumino model, in section 5.3. Appendix H collects
conventions on the Clifford algebra, whereas appendix I comprises further supersymmetric
results. We close with a conclusion in chapter 6.

The compilation of this thesis is solely due to the author. However many parts of the pre-
sented results are based on work with colleagues, and were published in several articles. The
implementation of the pseudo-spectral code explained in chapter 3 was done in collaboration
with Julia Borchardt, as were the results on flows in appendix B, [153, 154]. The results on
the two-loop counterterm in quantum gravity in section 4.1 were obtained with Holger Gies,
Stefan Lippoldt and Frank Saueressig [47]. The analysis of gauge and parameterisation de-
pendence in section 4.2 was carried out together with Holger Gies and Stefan Lippoldt [155].
Results on correlation functions in quantum gravity in the first part of section 4.3 were ob-
tained with Nicolai Christiansen, Jan Meibohm, Jan Pawlowski and Manuel Reichert [45],
the second part presents unpublished results together with Stefan Lippoldt, as does appendix
F. All supersymmetric results, including section 5.3 and appendix I, are due to collaboration
with Marianne Heilmann, Tobias Hellwig, Marcus Ansorg and Andreas Wipf [156].

10



2. Flows in quantum field theory and
condensed matter systems

In this chapter we lay the foundations to understand the results presented subsequently.
The typical starting point in quantum field theory (QFT) is the path integral. From there,
using a scalar field as example, we derive an equivalent formulation by means of the effective
average action. This object fulfills an exact functional integro-differential equation. We then
elucidate the relation of this formulation with scale invariance as mentioned in the intro-
duction. Further, the embedding of critical phenomena as well as the problems encountered
with gauge theories are discussed.

2.1. Functional renormalisation group
A great deal of information about a QFT is stored in its correlation functions4. The prime
example in introductory lectures is electron-electron scattering, which is described by a four-
point function (two incoming, two outgoing electrons). To obtain this correlator, we have to
average the product of four fields at different spacetime points over all allowed physical field
configurations. Configurations are weighted with the microscopic, or classical action S, so
that

⟨ϕ(x1) . . . ϕ(x4)⟩ := N

Dϕϕ(x1) . . . ϕ(x4) eiS[ϕ] . (2.1)

Here, N is a normalisation constant which is of no interest to us. For practical calculations,
we often have to perform a Wick rotation, which effectively changes the weight to e−SE[ϕ],
with the euclideanised action SE. We will assume in the rest of this work that this is always
possible in our cases. Another point to note is that the measure Dϕ will in general not exist,
and has to be regularised. Again, for simplicity we assume that this has been taken care of,
and we will not bother any longer with it, but indicate that the integral is regularised at an
ultraviolet cutoff scale Λ.

An efficient way to access all correlation functions is the generating functional Z[J ], or

4The folklore is that all information is stored in them, but this is strictly speaking not true. This is
immediately clear when one considers, e.g., the geodesic distance of two spacetime events [157], which is
commonly not introduced as an operator in the action.
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2. Flows in quantum field theory and condensed matter systems

the generating functional of connected correlators W [J ],

Z[J ] ≡ eW [J ] =


Λ
Dϕ e−SE [ϕ]+J ·ϕ , (2.2)

where we used de Witt’s compressed notation for the source term J · ϕ =


ddx√gJ(x)ϕ(x).
Correlation functions are then obtained by n-fold functional differentiation w.r.t. the field
and setting the source to zero afterwards.

Even more efficient in storing the correlation functions is the effective action Γ, which is
the Legendre transform of W :

Γ[ϕ] = sup
J

(J · ϕ−W [J ]) . (2.3)

By construction, the effective action is convex. An easy calculation elucidates the meaning of
the effective action. Taking the functional derivative w.r.t. the field, we obtain the quantum
equation of motion,

δΓ[ϕ]
δϕ(x) = J sup(x) , (2.4)

which gouverns the dynamics of the expectation value of the field, including all quantum
effects.

Shifting the argument in the definition of the generating functional, and using the defini-
tion of the effective action, we can derive a functional differential equation for the effective
action:

e−Γ[ϕ] =


Λ
Dφ e−SE [ϕ+φ]+

δΓ[ϕ]
δϕ

·φ
. (2.5)

It is possible to solve this equation directly by some approximation scheme, e.g. a vertex
expansion of Γ[ϕ], schematically

Γ[ϕ] =
∞
n=0

1
n!Γ

(n) · ϕn . (2.6)

The expansion coefficients Γ(n) are the one-particle irreducible proper vertices. If this ansatz
is inserted into (2.5), an infinite tower of coupled equations arises, the so-called Dyson-
Schwinger equations. They are of great use when the ultraviolet theory is fixed, as for
example in standard gauge theories, see e.g. [158–163]. Since we are also interested in
quantum gravity, where we don’t know the microscopic action, we will follow a different
route.

In the introduction, we mentioned Wilson’s idea to successively integrate out modes. This
idea can be implemented by the functional renormalisation group (FRG), which we will
explain in the following. The key point is to introduce a so-called effective average action Γk
which interpolates between the microscopic action S in the ultraviolet (UV) and the standard
effective action Γ in the infrared (IR), where k is the interpolation parameter which ranges

12
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from the UV cutoff Λ down to 0. To construct this interpolating functional, we introduce a
regulator term ∆Sk, such that

eWk[J ] =


Λ
Dϕ e−SE [ϕ]−∆Sk[ϕ]+J ·ϕ . (2.7)

The regulator term is quadratic in the field ϕ and can be seen as a momentum dependent
mass term,

∆Sk[ϕ] = 1
2ϕ ·Rk · ϕ . (2.8)

The kernel Rk needs to satisfy three properties to guarantee well-definedness and the correct
limits in the IR and UV:

• it should regularise the IR by gapping modes with an effective mass ∼ k,

lim
q2/k2→0

Rk(q2) ∼ k2 > 0 , (2.9)

• it should vanish for k → 0,
lim

k2/q2→0
Rk(q2) = 0 , (2.10)

• and it has to diverge near the UV cutoff scale,

lim
k2→Λ2→∞

Rk(q2)→∞ . (2.11)

For convenience, let us introduce the RG “time” t by

t = ln k

Λ . (2.12)

With a simple calculation, one can derive a functional integro-differential equation for the
parametric dependence of the effective average action, the so-called Wetterich equation [151,
152],

∂tΓk = 1
2STr


Γ(2)
k + Rk

−1
· ∂tRk


. (2.13)

The STr stands for the super-trace, which sums over discrete indices, gives fermionic con-
tributions a negative sign, and acts as functional trace regarding differential operators. By
construction, this equation is finite both in the IR (by the momentum dependent mass gap)
and the UV (by the vanishing of the regulator for large arguments), and is thus well-defined.
The right-hand side is called the flow of the effective action, and the t-derivative of a dimen-
sionless coupling is exactly its β function.

Equation (2.13) has several remarkable properties. For once, it is an exact equation,
and thus carries the full information of the path integral. Second, it is of one-loop form,
nevertheless it is nonperturbative. Finally, it allows for systematic approximation schemes

13
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(in this context often called truncations), which makes it practically usable. We shall not
discuss the derivation and other properties of (2.13) further, rather refering the reader to
standard literature [35, 151, 152, 164–170]. To reduce clutter of notation, in the rest of this
work we will drop the subscript k on scale dependent quantities if there is no danger of
confusion.

2.2. Truncations, fixed points and asymptotic safety
It is plausible that (2.13) is far to difficult to be solvable in the general case, thus we have
to resort to approximations. The very existence of approximation schemes is a nontrivial
statement. To see this, let us introduce the so-called theory space F . Having fixed the field
content of a given theory, we want the fields to behave appropriately, i.e. they need to be
in some kind of Schwartz space S5. The theory space is then defined as the space of all
functionals Γ : S → R which are invariant under the symmetry group G of the theory,

F = {Γ : S → R|∀g ∈ G, gΓ = Γ} . (2.14)

In general, F is a Banach space of infinite dimension, and it is not clear whether we can
define a basis at all. To make any progress, we will assume that we can in fact define a basis
in terms of invariant monomials, Fn. For a fixed index set I, we can thus expand

Γ =

n∈I

λnFn . (2.15)

The generalised couplings λn are then coordinates of F . Both the couplings and invariant
monomials can be interpreted in a general sense. In particular, the potential of a scalar field
would be interpreted as a generalised coupling corresponding to the unit monomial, and the
wave function renormalisation as the coordinate of the kinetic term monomial. The set of β
functions of all considered couplings define a vector field on F , and integral curves are RG
trajectories. Geometrically, when we approximate a theory, we project this vector field on a
subspace spanned by our chosen index set I. A good approximation preserves the important
features of the full theory space.

The theory space is characterised by special points where all β functions of dimensionless
couplings vanish. These points are called fixed points, and correspond to the scale invariant
points mentioned in the introduction. To define dimensionless couplings, we use the RG
scale k. If dλ is the mass dimension of the coupling λ, then the dimensionless coupling λ̄ is
defined as

λ̄ = k−dλλ . (2.16)

5In fact, in a more precise setting, one would have to deal with sections of bundles over a manifold. This
makes the definition of a suitable Schwartz space even more difficult [171].
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2.3. Gauge theories

By construction, every theory space has at least one fixed point, namely where all dimension-
less couplings vanish. This is the Gaußian fixed point. In this work, we are more interested
in so-called non-Gaußian, or interacting fixed points, which are characterised by the fact
that not all couplings vanish.

Not only the existence of fixed points is of interest, we also want to know about their
stabilty, i.e. how do trajectories in their neighbourhood behave. For this, we linearise the
flow around the fixed point. The (generalised) eigenvalues of the linearised flow determine
the stability. If a given eigenvalue is positive, the corresponding eigenvector, which is a
combination of monomials, is attracted towards the fixed point when the scale is lowered,
i.e. in the IR, and likewise repulsed from it when the scale is increased, i.e. in the UV. These
eigenvectors are called irrelevant. By contrast, if the eigenvalue is negative, the attraction
is towards the fixed point in the UV and the repulsion away from the fixed point in the IR.
We call the corresponding eigenvector relevant. Eigenvectors with vanishing eigenvalue are
called marginal. Critical exponents are the negative of the eigenvalues.

The classification into relevant, irrelevant and marginal applies both to quantum gravity
and condensed matter systems. In the first case, the idea is that the UV completion is
achieved by an interacting fixed point which has only finitely many relevant directions. We
want to end up exactly in the fixed point in the UV to arrive at a fundamental theory valid
at all energy scales, and if the critical manifold of the fixed point is finite-dimensional, we
only have to specify a finite number of couplings by experiment. The latter condition ensures
predictivity. This scenario of a UV completion by such a fixed point is called asymptotic
safety (AS) scenario of quantum gravity. In a more general setting, AS is a generalisation of
asymptotic freedom. In the latter, it is the Gaußian fixed point which gives rise to the UV
completion.

In a condensed matter context, we typically consider low energy effective theories, and
study phase transitions. To see universal behaviour, we only need to be near the fixed point,
and thus we also have to tune the relevant couplings to select a suitable trajectory. If there is
only one relevant parameter, then the relevant critical exponent is related to the divergence
of the correlation length at a second order phase transition. In this context, fixed points
with only one relevant parameter are often called stable.

2.3. Gauge theories
Theories with gauge symmetries bring some obstacles to the calculation of the flow. In
path integral language, we would integrate over physically equivalent configurations, and
essentially get the volume of the gauge group at every spacetime point. This clearly diverges
for any manifold or noncompact gauge group. From the perspective of the flow equation,
the same divergence arises: the propagator enters the flow equation, and it has zero modes
when gauge symmetries are present.
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2. Flows in quantum field theory and condensed matter systems

A further problem arises in quantum gravity. The very formulation of the FRG relies on
the fact that we can distinguish high from low momentum modes. In a background invariant
setting, such a statement doesn’t make sense. A way around is the so-called background
field method, which we shall explain in this section.

In the background field method, we split the quantum field g into an arbitrary background
ḡ and a fluctuation h, which is not restricted to be small in any sense. The nature of this
splitting is in general a question of taste, physical predictions cannot depend on it6. In
approximations, there will be a residual dependence, and we will investigate this issue later.

With this splitting, manifest background gauge/diffeomorphism invariance can be imple-
mented, and we can actually formulate gauge fixing terms and a regulator which respect this
background symmetry [35]. At the end of the calculation, i.e. after all modes have been
integrated out (k = 0), we can set the fluctuation to zero and end up with the full effective
action.

The above reasoning would apply if the action, gauge fixing and regulator would indeed
respect the splitting in background and fluctuation. It is however obvious that the gauge
fixing and the regulator break the split symmetry by construction. Still, the effective action
at k = 0 depends on only one field. For that reason, we actually have to deal with an effective
action which now depends on two fields individually. The information on the breaking of
the split symmetry is encoded in the split-Ward, or Nielsen identities. Schematically, it
relates the derivative of the effective action w.r.t. to the background metric to that w.r.t.
the fluctuation field,

δΓ
δh
∼ δΓ
δḡ

+R+ G , (2.17)

where R and G are contributions that arise from the fact that the regulator and the gauge
fixing depend on the background and the fluctuation individually.

There are basically two approaches to deal with this issue. The first possibility is to try
and solve both the flow equation and the Nielsen identities simultaneously, see e.g. [35, 39,
40, 165, 172–184]. This bears both conceptual and technical difficulties, that is why we focus
on another approach. Instead of solving the Nielsen identities at every scale, we see it as a
kind of boundary condition in the IR, and we will solve the flow for the two-field system.
In the context of gravity, this has been established by so-called bimetric flows [39, 44, 173,
185, 186], which consider the two metrics, and fluctuation flows [41, 43, 45, 187–189], which
consider the background metric and the fluctuation as fields. Both approaches are closely
related, but the exact mapping is nontrivial.

Let us stress that the Nielsen identities have to be taken seriously. As a worst case scenario
for what can go wrong, we refer to [190] where the authors show that by improper treatment,
the (universal!) 1-loop β function for QCD can be changed. On the other hand, it is fair to
notice that calculations in quantum gravity are complex, and it only became possible in the

6This statement is true if the change in the measure is taken into account.
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2.3. Gauge theories

recent past to actually go beyond the background approximation, which basically neglects
the difference of background and full metric. Some of the results that we will discuss later
use the background field approximation, and some go beyond it.
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This chapter is devoted to the technical tools used to derive and solve the flow equations.
In the first section, as a concrete example, we disucss the derivation of β functions of the
O(N) model with the help of the Mathematica package xAct [191–196]. Its intended use
is mainly calculations in gravity, but it can be easily extended to treat any kind of field
content. Afterwards, we present how to numerically solve the equations encountered in the
search for fixed points. This is done by pseudo-spectral methods, which are exceptionally
well suited for smooth problems due to their high accuracy and low computational cost.
We first focus on the basics and main properties of pseudo-spectral expansions, then sketch
the actual implementation of these methods. To illustrate their usage, we finally solve the
fixed point equations for the O(N) model at NLO in the derivative expansion derived in
the beginning of this chapter. For an extensive discussion of pseudo-spectral methods, see
[197–200].

3.1. Tensor algebra
We will assume that the reader is familiar with the basics of xAct, which can be found in the
documentation of the package available on the web page [191]. To illustrate the use of xAct
in the derivation of flow equations, we shall study the concrete problem of deriving the flow
equation for the O(N) model in next-to-leading order (NLO) in the derivative expansion.
For this, the following ansatz for the effective average action as a functional of the O(N)-
symmetric vector ϕa is used:

Γ =


d3x
1

2Zϕ(ρ) (∂µϕa) (∂µϕa) + 1
2Yϕ(ρ) (∂µρ) (∂µρ) + V (ρ)


. (3.1)

The index a runs from 1 to N , and we introduced ρ = ϕaϕ
a/2. The regulator is chosen as

∆S =


d3x


1
2ϕaRϕ


p2

k2


ϕa

, (3.2)

and the aim is to derive the β functions of V , Zϕ and Yϕ. We take special care of all index
structure, since this is also necessary in the code. In particular, the same index cannot stand
on the same height in a given expression.

A notebook containing the derivation of these flow equations is included in the supplemen-
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3.1. Tensor algebra

tal material of [201], and we reproduce the full code in appendix A. We will explain some
details here. After reading the necessary packages, constants for the number N of the sym-
metry and the dimension are defined. Then, the flat spacetime together with its metric are
defined. Another flat manifold with metric is needed for the O(N) symmetry of the fields.
The vector field ϕa is then a tensor with a single O(N) index. Several definitions follow
to give the calculation some ease. This includes momentum vectors and constant symbols
for lengths of momentum vectors as well as scalar functions V , Z and Y , the regulator and
shortcuts for the transverse and longitudinal propagator. We finally implement a modified
version of a variational derivative, VD, which acts in momentum space. Its arguments are
the vector field w.r.t. which the derivative is taken, its momentum vector and its index. The
section Truncation sets up the truncation and the regulator.

With these preparations, one can actually start the calculation. The first task is to cal-
culate the propagator, which is the inverse of the regularised two-point function. The latter
is calculated with the above mentioned variational derivative VD. We can parameterise the
propagator by a longitudinal and a transverse part, and then use the SolveConstants func-
tion to find the coefficients. The final ingredient for the flow equations are the three- and
four-point vertex, which are defined in the same section.

Now, all ingredients are together, and the calculation of the flow equations is just a trace
of matrix products, taking care of the correct momentum/index structure and prefactors.
The flow equations can directly be read off of the calculated traces.

This completes the derivation of the flow equations for the O(N) model, and we will show
how to solve them in the next chapter by pseudo-spectral methods. Before we do so, let us
mention how we can treat fermions.

For fermionic fields, it is enough to use a vector bundle. Spinors are vectors on this
bundle, whereas their adjoints are covectors. No metric exists in general on this bundle,
but everything we need is a delta anyway, which is defined automatically. With this vector
bundle, gamma matrices and their products can be defined straightforwardly. For example,
γµ in the code is a tensor with one spacetime and two vector bundle indices. The Clifford
algebra can be implemented without specifying an explicit representation.

The sole difficulty in treating fermions is their anticommutativity. This is solved by a
construction which the author called “ordered fermion product” (OFP). An OFP carries a
list of ordered fermions, and an indicator which is needed to resolve products of OFPs. All
fermionic fields by construction can only appear inside such an OFP. With this, one can
easily define the functional derivative of an OFP w.r.t. a fermion, where care must be taken
whether the derivative acts from the left or from the right.
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3.2. Pseudo-spectral expansion
To simplify the discussion, in the following we will consider a single function depending on
a single variable. The methods extend rather straightforwardly to the general case by using
a tensor product. To be precise, let f : [a, b] → R be a smooth function on a fixed interval
[a, b] 7. Without loss of generality, we will restrict ourselves to [−1, 1]. The aim is to solve
the differential equation

L[f ](x) = 0 , (3.3)

where L is a nonlinear differential operator. To solve this equation, the idea is to expand f

into a series of orthogonal polynomials. In particular, we will choose Chebyshev polynomials
of the first kind, such that

f(x) =
∞
n=0

fnTn(x) . (3.4)

The Tn are defined by the relation

Tn(cos(x)) = cos(nx) , n ∈ N0 , (3.5)

solve the differential equation


1− x2


T ′′
n (x)− xT ′

n(x) + n2Tn(x) = 0 , (3.6)

and are orthogonal w.r.t. the measure µ(x) = 1/


(1− x2) ,

 1

−1
µ(x)Tn(x)Tm(x)dx = π

1 + δn0
δnm . (3.7)

The equation (3.4) is exact as long as f is in a suitable function space, which we will always
assume in the following. The key observation is that if f is sufficiently “nice”, i.e. typically
smooth, then the expansion converges very quickly, and only a small number of coefficients
of the infinite sum have to be retained to represent it accurately. This will be discussed in
more detail below.

To solve (3.3), we insert (3.4) with a finite number of terms, n ≤ N , and evaluate it at a
given set of points. At these so-called collocation points, we enforce the differential equation
strictly, thus obtaining a nonlinear system of equations for the coefficients fn. This then can
be solved with standard methods as a Newton-Raphson iteration. Alternatively, one can use
a Galerkin method, which employs the orthogonality to project onto the first N polynomials.
Under suitable assumptions [197], both methods agree up to machine precision. Also notice
that there is a one-to-one map between the coefficients fn and the values of the function f

at the collocation points, and both can be used in the actual implementation.

7Infinite intervals can be treated by a compactification.
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-1.0 -0.5 0.0 0.5 1.0

Fig. 3.1.: Collocation points of the Gauß grid for N = 40.

By the theorem of conserved difficulty, there is of course a price to pay for the high accuracy
and efficiency in the expansion in orthogonal polynomials. Since the basis functions are
nonvanishing almost everywhere, the discretised differential matrices are dense. This is in
contrast to, e.g., the finite difference method, where only a number of neighbouring points is
considered to calculate any derivative. To nevertheless obtain decent convergence and speed,
the domain can be decomposed, and the function is then expanded on every subdomain. The
resulting systems are only coupled via continuity, and thus give rise to much sparser matrices.
This hybrid of spectral methods and finite elements is often called spectral elements method.

Let us come back to the series (3.4) and discuss the specific choice of Chebyshev poly-
nomials. An equally valid choice would be to use Legendre Polynomials, which are defined
on the same interval and share the main convergence properties. Still, it was shown [202,
203] that Chebyshev polynomials converge slightly better in the generic case. The latter are
intimately related to Fourier series, which explains their exceptional convergence. Yet, no
periodicity condition has to be imposed on the function f .

If f is defined on an infinite interval, it might be tempting to use Laguerre or Hermite poly-
nomials instead of Chebyshev polynomials together with a compactification. It is however
easy to see that this is in general not a good idea for the following reason. The asymptotic
behaviour of the function f is fixed, but the asymptotic behaviour of a finite sum of Laguerre
or Hermite polynomials changes when altering the number of terms retained. Increasing the
order of a Laguerre or Hermite series thus doesn’t necessarily lead to a better representation
of the interpolated function.

The convergence of the collocation method crucially depends on the choice of collocation
points. It turns out that there is actually one class of point sets which is useful in practice,
and the different grid choices essentially differ in the treatment of the boundary of the
interval. The Lobatto grid includes both boundaries,

xn = − cos

nπ

N


, (3.8)

the Gauß grid contains neither,

xn = − cos


n+ 1

2


π

N + 1

 , (3.9)
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Fig. 3.2.: Comparison of the domains of convergence of a Taylor expansion (orange) and a Cheby-
shev expansion (blue) if the interpolated function has a pole at i/2. The Taylor expansion
converges in a disk with radius 1/2, whereas the Chebyshev expansion converges in an
ellipse with foci ±1 and semi-minor axis 1/2, which is a superset of the disk.

and the left (right) Radau grid contains only the left (right) boundary,

xn = cos


(N − n)π
N + 1

2


, or (3.10)

xn = − cos


nπ

N + 1
2


. (3.11)

As an example, the Gauß grid for N = 40 is shown in Figure 3.1. The Runge phenomenon,
known from interpolation on an equidistant grid, is avoided due to the nonequidistant distri-
bution with asymptotic density of points 1/


(1− x2) [204]. This underlines that the choice

of collocation points is the key for accuracy.
Let us now discuss some mathematical properties of Chebyshev expansions, focussing

on convergence. Darboux’s principle tells us that rate and domain of convergence of any
given expansion is dictated by the singularity structure of the function f , including poles,
logarithms, branch cuts, discontinuities and fractional powers. In Figure 3.2, we compare the
domains of convergence of a Taylor expansion (orange) and a Chebyshev expansion (blue)
of a function which is assumed to have a pole at x = i/2, depicted by the cross. The
Taylor expansion converges in a disk with radius 1/2, but the domain of convergence of the
Chebyshev expansion is an ellipse with foci ±1 and semi-minor axis 1/2, strictly including
the disk of the Taylor expansion. In particular, the whole real interval [−1, 1] is inside the
domain of convergence of the Chebyshev expansion. This is always the case as long as there
is no singularity (in the above sense) contained in this interval.

After this rather intuitive treatment of convergence, let us introduce some basic notions.
The algebraic index is the largest q ∈ R+ such that

lim
n→∞

|fn|nq <∞ . (3.12)
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For finite q, we say that the series (3.4) converges algebraically, and the coefficients decrease
in absolute value as a power law, fn ∼ O(n−q). If (3.12) is true for all real q, the coefficients
decrease faster than any power law, and the series is said to converge exponentially. With
this, we can define the rate of exponential convergence by

lim
n→∞

| ln(|fn|)|
n

=


∞, supergeometric,

0 < c <∞, geometric,

0, subgeometric .

(3.13)

Note that the rate of convergence is an asymptotic quantity. In practical applications, the
effective rate of convergence might differ from the asymptotic one, if the actual rate of
convergence only sets in at a precision lower than what is resolved.

Finally, let us discuss the quality of the approximated series. Three different types of errors
arise. The most obvious one is the truncation error, which originates from the fact that only
finitely many coefficients of the series are taken into account. The so-called interpolation
error comes from the collocation method, namely that we insist that the interpolant and the
function agree on a finite set of points. Finally, the most subtle error comes from the fact that
a truncated series differs from the exact expansion up to the same order due to discretisation
effects. Since in practice, we do not know the exact solution, we have to estimate these errors.
It is often assumed that all three errors have the same order of magnitude, and we will do so
too. The truncation error can practically be estimated by the rate of convergence and the
size of the last retained coefficient, noting that all Chebyshev polynomials are bounded by
unity. For geometric exponential convergence,

f(x)−
N
n=0

fnTn

 ≤
∞

n=N+1
|fn| ≤ κ

∞
n=N+1

e−cn = κ e−cN

ec − 1 ∼ |fN | , (3.14)

while for algebraic convergence,
f(x)−

N
n=0

fnTn

 ≤
∞

n=N+1
|fn| ≤ κ

∞
n=N+1

n−q = κ ζ(q,N + 1)

=


N

q − 1 −
1
2 +O(N−2)


κN−q ∼ N |fN | .

(3.15)

Here κ is a positive real constant which depends on the function f , and ζ(a, b) is the Hurwitz
zeta function. In practice, one can fit the last few retained coefficients to estimate c and q,
respectively.
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3.3. Algorithmic details and implementation
Now we will discuss some details of the actual use of pseudo-spectral methods, and show why
not only theoretically, but also practically they offer many advantages. To evaluate a sum
of Chebyshev polynomials, the Clenshaw algorithm [205] is used, which is a generalisation
of Horner’s method, and can be applied to any class of functions which is defined by a
three-term recurrence. For Chebyshev polynomials, one computes the values bn with

bN+2 = bN+1 = 0 ,

bn = fn + 2xbn+1 − bn+2 .
(3.16)

The value of the function f at x is then given by

f(x) = f0 + xb1 − b2 . (3.17)

Due to the recursive nature of the Clenshaw algorithm, it is both fast and stable. A similar
algorithm exists to calculate the coefficients f ′

n of the Chebyshev expansion of the derivative
of f . Clearly, f ′ is a polynomial of order N − 1, and the coefficients are

f ′
N−1 = 2NfN ,

f ′
N−2 = 2(N − 1)fN−1 ,

f ′
n = 2(n+ 1)fn+1 + f ′

n+2 ,

f ′
0 = f1 + 1

2f
′
2 .

(3.18)

It is also possible to invert this algorithm to get an expansion of the primitive function.
With these preparations, (3.3) can indeed be transformed to a system of nonlinear equations
for the coefficients fn. This system is then solved by a stabilised Newton-Raphson iteration.
The Jacobian that arises there can be made almost block-diagonal if multiple domains are
used. To calculate the Jacobian, automatic differentiation is employed, which delivers deriva-
tives w.r.t. coefficients numerically to machine precision. For an introduction to automatic
differentiation see [206–208]. To achieve high performance, a curiously recurring template
pattern is employed.

Numerical results on differential equations that are presented in this work are based on
C++ code written jointly with Julia Borchardt, using the libraries BOOST [209], Eigen [210]
and Blitz [211]. Fixed point equations were discussed in [153], whereas flows were studied
in [154]. Several other works have used (parts of) the code [156, 201, 212, 213].
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3.4. Example: Fixed point structure of the O(N) model
To illustrate the use of pseudo-spectral methods in the present context, we will now discuss
the O(N) model in 3 dimensions for N = 1, 3 at NLO in the derivative expansion. For
N = 1, we end up with the well-known Wilson-Fisher fixed point [214]. It is probably
the best studied model in the FRG [153, 215–224], and describes the critical behaviour of
interacting spins. The case N = 3 describes many properties of magnetic materials, e.g. the
Curie transition in isotropic ferromagnets, and antiferromagnets at the Néel transition point
[225]. The results for N = 1 have been published in [201].

Both models are described by the following ansatz for the effective average action:

Γ =


d3x
1

2Zϕ(ρ) (∂µϕa) (∂µϕa) + 1
2Yϕ(ρ) (∂µρ) (∂µρ) + V (ρ)


. (3.19)

The index a of the O(N)-symmetric vector field ϕa runs from 1 to N , and we introduced
ρ = ϕaϕ

a/2. For N = 1, the two kinetic terms are linearly dependent, and we will set Y = 0
in this case. The regulator is chosen as

∆S =


d3x


1
2ϕaRϕ


p2

k2


ϕa

, (3.20)

and we choose the Litim regulator for definiteness [226]. To discuss critical behaviour,
dimensionless or renormalised quantities have to be introduced. At the present order of
approximation, there is an ambiguity in how to define the renormalised quantities, namely
in the choice of where we normalise the wave function renormalisation Zϕ. In the following,
we will fix Zϕ(0) = 1, a broader discussion of this issue together with regulator variations
can be found in [201] for the Ising model. The anomalous dimension is thus defined as

η = −∂t lnZϕ(0) . (3.21)

The flow equations were derived with xAct as described in the previous chapter. As a side
remark, since the potential itself doesn’t appear on the right-hand side of the flow equation,
only its derivatives, we will solve the flow equation for the derivative of V .

We will start with the Ising model. In Figure 3.3, the solution to the fixed point equations
is shown. For the first critical exponent and the anomalous dimension, we find

θ1 = 1.597 ,

η = 0.049 .
(3.22)

This can be compared to results obtained by other methods, e.g. Monte Carlo (MC) [227]
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Fig. 3.3.: The solution to the fixed point equations of the Ising model.

and conformal bootstrap (CBS) [149]:

θMC
1 = 1.58725(25) ,

ηMC = 0.03627(10) ,

θCBS
1 = 1.587375(10) ,

ηCBS = 0.0362978(20) .

(3.23)

The first critical exponent agrees rather well with the (computationally much more expen-
sive) results from MC and CBS, the anomalous dimension needs further improvement. These
results can be optimised by varying the regulator [201], reducing this discrepancy. Even bet-
ter results can be obtained by the so-called BMW-approximation [221, 228], which retains
both field and momentum dependence, but is again computationally much more expensive.

In a similar fashion, we can now discuss the O(3) model. Again, we show the solution
to the fixed point equations in Figure 3.4, this time comprising three functions. The first
critical exponent and the anomalous dimension are

θ1 = 1.430 ,

η = 0.052 .
(3.24)

Again, we compare to recent MC [229] and CBS [230] results:

θMC
1 = 1.4053(20) ,

ηMC = 0.0378(3) ,

θCBS
1 = 1.4043(55) ,

ηCBS = 0.03856(124) .

(3.25)

The same comments as in the Ising case apply here - the critical exponent is reasonably
close for the rather small costs, and significant improvement is expected once momentum
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Fig. 3.4.: The solution to the fixed point equations of the Heisenberg, or O(3) model.

dependence is included.
We should stress that to obtain these results numerically, the code ran only a few seconds

on an Intel i7-4770S@3.1GHz. This is to be contrasted to the immense computational cost
of MC and CBS calculations.
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4. Quantum gravity

After the technical part, we will now turn our attention to the first physical application, the
quantisation of gravity. This chapter discusses four different aspects of the Asymptotic Safety
(AS) approach to quantum gravity. In the first part, we present the most impressive result
of the whole thesis: we show that the 2-loop counterterm, which hallmarks the breakdown
of perturbation theory in gravity, is an irrelevant operator at the interacting fixed point
of AS. Second, we study the gauge and parameterisation dependence of background flows,
which also checks what potentially can happen in more extended truncations. Afterwards, we
switch to genuine bimetric calculations. There, we discuss results on gravitational correlation
functions obtained by a vertex expansion in the fluctuation field, and introduce a new notion
of locality. We will consider couplings up to linear order in the background curvature. Some
aspects of the gauge dependence of correlation functions is discussed. Finally, we open a new
door to possible truncations by showing how to overcome the limitations of vertex expansions
in quantum gravity, allowing for the resolution of arbitrarily high correlation functions.

The first part was published in [47], the second in [155], the third in [45] and includes yet
unpublished results obtained with Stefan Lippoldt; the final part is still work in progress.

In this section we work exclusively with Euclidean signature, assuming that a Wick rota-
tion can be done back to Lorentzian signature. A potential way to overcome this is the use
of an ADM decomposition [231–237].

4.1. The gravitational two-loop counterterm in Asymptotic
Safety

General relativity, based on the Einstein-Hilbert action, provides a highly successful classical
description of gravitational phenomena from sub-millimeter to cosmic scales. A central
puzzle for the construction of a consistent quantum theory of gravity is its perturbative
nonrenormalisability. This is manifested by the fact that an expansion in terms of Newton’s
constant about flat spacetime gives rise to a divergence at two-loop order. This spoils
meaningful predictions for S-matrix elements, unless a Goroff-Sagnotti counterterm of the
form [238–240]

ΓGS
div = 1

ϵ

209
2880

32πG
(16π2)2


d4x
√
g Cµν

κλCκλ
ρσCρσ

µν (4.1)
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4.1. The gravitational two-loop counterterm in Asymptotic Safety

with the Weyl tensor Cµνρσ, is added to the bare action in order to cancel the divergence (in
dimensional regularisation). In combination with power counting arguments, this is taken
as a signal that an infinite number of counterterms is needed to render the full perturba-
tive expansion meaningful. Since renormalisation theory relates each counterterm to a free
parameter to be fixed from experimental data, the appearance of the Goroff-Sagnotti term
suggests that the perturbative quantisation of the Einstein-Hilbert action requires fixing in-
finitely many parameters. This observation is often interpreted as evidence that conventional
quantisation of gravity is doomed to fail.

The presence of the counterterm (4.1) triggered the investigation of a variety of alternative
routes towards quantising gravity, e.g. by modifying the quantisation rules, changing the
fundamental degrees of freedom, or abandoning local quantum field theory altogether as a
fundamental framework for quantum gravity [241–243]. Ultimately, any consistent quantum
gravity theory allowing for a classical limit containing Einstein’s theory of gravity, as well
as its semi-classical extension as a low energy effective theory for quantised gravitons, has
to clarify the fate of the divergencies related to the Goroff-Sagnotti term.

This requirement is more than a technical necessity, as renormalisability - beyond being
a strategy of handling divergencies - is a statement about the separability of low energy
observables from physics at highest energy scales. For instance, quantum gravity scenarios
that start from discretised building blocks of spacetime and a fundamental length scale
may render all divergencies finite. Still, S-matrix elements would generically receive large
contributions from potentially large higher order operators, requiring to fix a substantial, if
not infinite, set of physical parameters.

At first sight, a natural solution appears to be that the divergencies cancel, e.g. because
of a new symmetry at a more fundamental level. While certainly possible, the problem of
separation of low energy physics from highest energy scales may come in again through the
backdoor, as this symmetry has to be broken (or restored) at low energy potentially requiring
a fine-tuned separation of scales and a large number of parameters.

An indiscriminate association of (4.1) with quantum field theory approaches to quantum
gravity ignores the fact that the Wilsonian viewpoint of renormalisation already offers a
solution to this puzzle: higher dimensional operators decouple from the low energy physics
proportional to an inverse power of a high scale Λ, provided such operators do not acquire
large anomalous dimensions. For instance, the C3 operator in (4.1) would be expected
to decouple ∼ 1/Λ2 if the anomalous dimension was small. If so, the 1/ϵ-pole may merely
indicate a subleading log-correction as sensed by dimensional regularisation. This may sound
like a circular argument, as such conclusions can only be drawn in perturbation theory
after the theory has been renormalised. Nevertheless, the Wilsonian viewpoint is known to
hold also in systems with a similar breakdown of perturbative quantisation, where a well-
controllable UV limit is facilitated by the existence of an interacting RG fixed point [244–
246].
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4. Quantum gravity

In this section, we provide novel evidence that the Goroff-Sagnotti term is indeed an
irrelevant operator from the Wilsonian viewpoint. Our results demonstrate that the challenge
posed by the perturbative two-loop analysis is solved by a renormalisation flow that decouples
the high scale physics from (semi-)classical Einsteinian low energy gravity in much the same
way as in conventional quantum field theories. For this, we determine the decoupling of the
Goroff-Sagnotti term towards the IR quantitatively.

The new ingredient compared to the perturbative analysis is the investigation of the RG
flow beyond the perturbative Gaußian fixed point (GFP). In fact, our results confirm the
existence of an interacting non-Gaußian fixed point (NGFP) that controls the high energy
limit of gravity, as required for the AS scenario [35, 245–250]. By now, the existence of
a suitable NGFP has been established within many approximations [38, 41–45, 186, 251–
264]. In particular, it has been shown in the case of gravity coupled to scalar matter that
the AS mechanism remains intact once the one-loop counterterm is included [256, 257].
Paralleling this observation, we establish that the Goroff-Sagnotti term supplements only a
subdominant quantitative correction to the high energy behaviour of pure gravity: the C3

operator approaches an interacting fixed point in the UV and becomes irrelevant towards
the IR at an even enhanced rate compared to canonical scaling.

This demonstrates that the AS scenario for quantum gravity can solve this long-standing
puzzle in a constructive and quantifiable manner, disclosing the two-loop divergence of (4.1)
as a mere perturbative artifact.

4.1.1. Tensor monomial basis and perturbative analysis

We start by a short outline of how quantum gravity based on the perturbative quantisation
of the Einstein-Hilbert action,

ΓEH = 1
16πGN


d4x
√
g (−R + 2Λ) , (4.2)

fails. Here, GN is the Newton’s constant, Λ the cosmological constant and R the Ricci scalar.
Before we consider perturbation theory, we introduce a basis for curvature terms. It turns
out to be useful to employ a completely tracefree basis, which is equivalent to using the
irreducible components of the respective tensors. The basis in four dimensions up to order
three, ordered w.r.t. the power of curvature tensors, is given by

• order 0: 1,

• order 1: R,

• order 2: R2, SµνSµν and CµνρσC
µνρσ,

• order 3: R∆R, Sµν∆Sµν , R3, RSµνSµν , SνµSρνSµρ , SµρSνσCµνρσ, RCµνρσCµνρσ and
Cµν

κλCκλ
ρσCρσ

µν .
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4.1. The gravitational two-loop counterterm in Asymptotic Safety

In this, Sµν is the tracefree part of the Ricci tensor, and ∆ = −D2 is the Laplacian of the
covariant derivative D. In higher dimensions, two further invariants exist, SµνCµαβγCν

αβγ

and Cα
µ
β
νC

µ
ρ
ν
σC

ρ
α
σ
β. In four dimensions, the first vanishes because of the identity

CαµνρCβ
νµρ = 1

2C
αµνρCβ

µνρ , (4.3)

which follows from the first Bianchi identity. The second is proportional to the other C3

invariant in four dimensions, which can be derived from antisymmetrisation over 6 indices.
All other possible invariants that can be formed can be mapped onto this basis. In particular,
with the help of the second Bianchi identity, one can show that

Cµνρσ∆Cµνρσ = − (d−2)(d−3)
d(d−1) R∆R + 4d−3

d−2 Sµν∆S
µν + 4 d−3

(d−1)(d−2) RSµνS
µν + 4d(d−3)

(d−2)2 S
ν
µS

ρ
νS

µ
ρ

− 4d−3
d−2 SµρSνσC

µνρσ − 2
d
RCµνρσC

µνρσ − 2SµνCµαβγCν
αβγ

+ Cµν
κλCκλ

ρσCρσ
µν + 4Cα

µ
β
νC

µ
ρ
ν
σC

ρ
α
σ
β +DσDκ


− 4Cσ κ

µ νS
µν

− 8d−3
d−2 S

σ
µS

µκ + 4d−3
d−2 g

σκSµνS
µν + 2 (3d−4)(d−3)

d(d−1) RSσκ − 2 (d−3)(d−2)
d2 gσκR2


.

(4.4)

This equation shows that a covariantly constant Weyl tensor influences the Goroff-Sagnotti
term, and one must be careful in choosing a suitable background.

Let us now discuss the perturbative argument. By power counting at the one-loop order,
all operators quadratic in curvature will be generated [265]. This is to say, the one-loop
divergence has the form

Γ1l
div ∼

1
ϵ


d4x
√
g

a1R

2 + a2SµνS
µν + a3CµνρσC

µνρσ

, (4.5)

with coefficients ai that have to be determined. At the end of the day, only on-shell diver-
gences have to be renormalised. The on-shell condition, i.e. Einstein’s field equations, in
the tracefree basis read

R = 4Λ and Sµν = 0 . (4.6)

Thus, if we restrict to the case of a vanishing cosmological constant (which is reasonably
close to observation), the first two terms in (4.5) are off-shell divergences. Finally, in four
dimensions, the Euler characteristic

χE = 1
32π


d4x
√
g
1

6R
2 − 2SµνSµν + CµνρσC

µνρσ


(4.7)

is a topological invariant, which removes the final divergence. Thus gravity based on an
Einstein-Hilbert action is one-loop finite.

At two loops, the same on-shell argument can be used, and all but one of the basis
elements of third order in curvature vanishes. The only potential divergence can come with
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4. Quantum gravity

the monomial CµνκλCκλρσCρσµν . It turns out that no cancellation mechanism is present, and
the expected divergence indeed arises. This was shown first by Goroff and Sagnotti [238,
239], and later confirmed by van de Ven [240], the resulting divergence being (4.1).

4.1.2. Nonperturbative analysis - truncation

We study the gravitational RG flow projected onto the Einstein-Hilbert action supplemented
by the two-loop counterterm (4.1). Our ansatz for the gravitational part of the effective
average action, closely following [240], reads

Γ = ΓEH + ΓGS . (4.8)

Here
ΓGS = σ̄


d4x
√
g Cαβ

µνCµν
ρσCρσ

αβ (4.9)

is the two-loop counterterm found by Goroff and Sagnotti with a scale dependent coupling
σ̄. The gravitational part of the effective average action is supplemented by a standard
gauge fixing procedure and we adhere to the harmonic gauge used in [35]. Gauge fixing and
dependence of results on gauge choices will be discussed in the next section in more detail
to allow for a clean presentation of the results of this section. The perturbative result (4.1)
suggests that σ̄ diverges at least as ln k for k →∞ even in the flat space on-shell limit Λ→ 0
and after the Newton coupling has been renormalised.

The RG flow of the couplings is found by substituting the ansatz (4.8) into the flow
equation and computing the coefficients multiplying the curvature terms appearing in (4.2)
and (4.9). The evaluation of the trace utilises the technology of the universal RG machine
[266] together with off-diagonal heat kernel methods [267–272].

Two crucial features make this formidable computation feasible: firstly, we use the Ricci
scalar, tracefree Ricci tensor, and Weyl tensor to construct a basis for the interaction mono-
mials containing a fixed number of covariant derivatives. The essential building block of
the RG flow is the second functional derivative Γ(2) of the action. The corresponding term
ΓGS(2) arising from (4.9) results in a sum of terms containing at least one power of the
Weyl tensor. Since C is tracefree by construction, all its contractions with the metric
vanish, such that no term ∼ √gR or ∼ √g is generated. This entails that there is no
feedback of the Goroff-Sagnotti term on the RG flow of Newton’s constant and the cos-
mological constant. We conclude already at this point that the AS properties observed in
the Einstein-Hilbert sector are stable upon the inclusion of the Goroff-Sagnotti term. Sec-
ondly, the contribution of the Goroff-Sagnotti term to the two-point correlator is of the form
σ̄ (C + higher powers of the curvature). This structure implies that the β function encoding
the flow of σ̄ is a cubic in σ̄ with coefficients depending on Newton’s constant and the cos-
mological constant. As a cubic has at least one real zero, also the Goroff-Sagnotti coupling
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4.1. The gravitational two-loop counterterm in Asymptotic Safety

must have a fixed point and hence the associated dimensionless coupling does not necessarily
diverge for k → ∞. The remaining crucial question is whether the C3 term is a relevant
(as suggested by perturbation theory) or an irrelevant operator. In case of irrelevance, the
Goroff-Sagnotti term does neither require the fixing of an additional physical parameter nor
induces a proliferation of counterterms.

In order to determine the coefficients of this cubic it suffices to isolate the term ∼ C3

from the flow equation. As the curvature terms are orthogonal, any term containing a Ricci
scalar or tracefree Ricci tensor will not contribute to C3 and it is sufficient to keep track of
powers of the Weyl tensor and its covariant derivatives. Formally, this can be achieved with
a background metric ḡµν of a Ricci-flat K3-surface; our results are, however, independent
of such a convenient background choice. The vertices entering the computation have been
constructed with the Mathematica package xAct [191–196]. Employing the simplifications
of a K3-background, the Goroff-Sagnotti vertex contains 900 terms whereas the Einstein-
Hilbert vertex has only a single term. The computation was done with xAct within one
month of CPU time on a core with 2.8 GHz. Most of the CPU time is used for the two vertex
diagram due to the enormous number of terms generated by the product rule for covariant
derivatives. This makes the present computation quite formidable.

4.1.3. β functions

The RG flow resulting from the ansatz (4.8) is conveniently written in terms of dimensionless
couplings gi ≡ {λ , g , σ},

λ ≡ Λ k−2 , g ≡ Gk2 , σ ≡ σ̄k2 , (4.10)

and expressed in terms of the β functions

∂t gi ≡ βgi
(λ, g, σ) . (4.11)

The β functions for the dimensionless Newton’s constant and cosmological constant have
been known since the beginning of the AS program [35]. In four spacetime dimensions and
for the Litim regulator [226] they read

βg = (2 + ηN) g ,

βλ = (ηN − 2) λ+ g
2π


5

1−2λ − 4− 5
6ηN

1
1−2λ


.

(4.12)

Here ηN denotes the anomalous dimension of Newton’s constant,

ηN = g B1

1− gB2
, (4.13)
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with

B1 = 1
3π


5

1−2λ −
9

(1−2λ)2 − 5

,

B2 =− 1
6π


5
2

1
(1−2λ) −

3
(1−2λ)2


.

(4.14)

The ansatz (4.8) complements this system by a β function for σ,

βσ = c0 + (2 + c1)σ + c2 σ
2 + c3 σ

3 , (4.15)

where the coefficients ci(g, λ) are given by

c0 = 1
64π2(1−2λ)


2−ηN

2(1−2λ) + 6−ηN

(1−2λ)3 − 5ηN

378


,

c1 = 3g
16π(1−2λ)2


5(6− ηN) + 23(8−ηN )

8(1−2λ) −
7(10−ηN )
10(1−2λ)2


,

c2 = g2

2(1−2λ)3


233(12−ηN )

10 − 9(14−ηN )
7(1−2λ)


,

c3 = 6πg3(18−ηN )
(1−2λ)4 .

(4.16)

We emphasise that the highest order coefficient c3 is positive for any admissible λ, positive
Newton coupling g > 0, and ηN < 18. Positive c3 gives rise to at least one real fixed point
where the coupling σ is irrelevant. We have verified that c3 is gauge independent, and that
its positivity is independent of the metric parameterisation [155, 273–278], which we will
study in another context in the next section. The β function (4.15) is computed for the first
time and constitutes one of the main result of this thesis.

The gauge independence of c3 can readily be understood. For this, note that the coefficient
c3 comes from contributions where the two variations in the calculation of Γ(2) each act on
one Weyl tensor, such that only a single Weyl tensor remains. One then needs three such
insertions to get the coefficient cubic in σ, which is exactly c3. Thus, we only have to look
at the first variation of the Weyl tensor, where we can neglect the background curvature:

δCµν
ρσ = 2D[ρD[νh

T
µ]
σ] +D2δ

[σ
[νh

T
µ]
ρ] +O(R) . (4.17)

We can see that the first variation of the Weyl tensor only includes the transverse traceless
mode of the fluctuation, hT, which is the physical tensorial mode to linear order, and thus
independent of gauge choices.

4.1.4. Fixed points and RG flow

The Wilsonian viewpoint links renormalisability to fixed points gi,∗ of the underlying RG flow
where the β functions vanish. Linearising the β functions at a fixed point, local properties
of the flow are encoded in the critical exponents. Relevant directions, corresponding to free
parameters of the theory to be fixed by experiment, are associated with positive critical
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4.1. The gravitational two-loop counterterm in Asymptotic Safety

exponents.
Already the first calculations [35, 36, 279] revealed that the system (4.12) exhibits a GFP

and an NGFP,
GFPEH : λ∗ = 0, g∗ = 0
NGFPEH : λ∗ = 0.193, g∗ = 0.707 .

(4.18)

The GFP corresponds to a free theory and is a saddle point: trajectories with a positive
Newton coupling do not end at the GFP at high energies, reflecting the perturbative non-
renormalisability of the Einstein-Hilbert action in the Wilsonian framework. The NGFP
exhibits a complex pair of critical exponents

θ1,2 = 1.475± 3.043 i . (4.19)

Thus the NGFP is UV attractive for both Newton’s constant and the cosmological constant
making it suitable for AS.

The β function (4.15) clarifies the fate of the fixed point structure (4.18) once the coun-
terterm (4.9) is taken into account. Substituting λ∗ = g∗ = 0 into the β function for σ shows
that the GFPEH is mapped to

GFPGS : λ∗ = 0, g∗ = 0, σ∗ = − 7
128π2 . (4.20)

The stability coefficients of this fixed point coincide with the classical mass dimension of the
coupling constants; the GFP remains a saddle point.

Focusing on the NGFP, it is illuminating to first study the Einstein-Hilbert induced ap-
proximation of the β function, where only the terms originating from (4.2) contribute to the
running of σ. Since the contribution of the counterterm to the β function (4.15) is captured
by the coefficients c1, c2, and c3 this approximation corresponds to setting c1 = c2 = c3 = 0.
In this limit the flow has a unique fixed point solution,

sGFPGS : λ∗ = 0.193, g∗ = 0.707, σ∗ = −0.049, (4.21)

with critical exponent θ3 = −2. This is the analogue of the Gaußian fixed point for σ shifted
by the finite interactions of g and λ at the NGFP (4.18). The stability coefficient indicates
that the new direction is irrelevant in agreement with power counting arguments.

Taking into account the full nonlinear contributions from the C3 term, the cubic (4.15)
again has exactly one real root

NGFPGS : λ∗ = 0.193, g∗ = 0.707, σ∗ = −0.305 , (4.22)

extending the NGFP known from the Einstein-Hilbert projection. The new critical exponent
θ3 = −79.39 is again negative, so that the new direction exhibits an even enhanced irrele-
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Fig. 4.1.: Phase diagram in (g, λ, σ) space from two perspectives depicting trajectories emanating
from the NGFP. The thick blue line marks a trajectory with a long semi-classical regime
near the GFP.

vance. In fact, the positivity of c3 ensures that σ always has a fixed point for which C3 is
an irrelevant perturbation.

Figure 4.1 shows the phase diagram in the theory space spanned by (g, λ, σ). The flow
is gouverned by the interplay of the GFP (4.20) and the NGFP (4.22). The left panel
depicts a (g, λ) perspective illustrating that the inclusion of the Goroff-Sagnotti term leaves
AS as observed with the Einstein-Hilbert ansatz [35, 279] and the R2-extension [258] fully
intact. The thick blue line exemplifies a trajectory which crosses over from the NGFP
at high energies to the GFP at low energies. In the vicinity of the GFP the trajectory
develops a long semi-classical regime where the couplings scale classically. The right panel
presents a (g, σ) perspective; following the semi-classical trajectory towards higher energies,
we observe that the Goroff-Sagnotti coupling is first enhanced but then also attracted by the
NGFP in the deep UV. The dimensionful Goroff-Sagnotti coupling σ̄ → σ∗/k

2 hence vanishes
asymptotically for k →∞.

While the present ansatz (4.8) and calculation scheme give a unique answer (4.22) for the
fixed point, the number of real roots of the cubic β function (4.15) depends sensitively on
the fixed point values for g and λ. The inclusion of higher order operators thus has the
potential to yield three fixed points. This does, however, not change our conclusion about
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4.2. Gauge and parameterisation dependence

the irrelevance of the Goroff-Sagnotti term, as two of these fixed points have properties
equivalent to those discussed above. As an example, let us consider the case where we
neglect the cosmological constant, setting λ = 0 at all scales. Then, the NGFP for Newton’s
constant has three extensions to the g, σ-plane. The one corresponding to (4.22) is located
at g∗ = 12π/23 ≃ 1.639, σ∗ = −0.226 and has critical exponents θ1 = 23/11 ≃ 2.09 and
θ3 = −77.38. A second fixed point with the same g∗ and θ1 corresponds to the shifted
Gaußian fixed point for the Goroff-Sagnotti coupling with σ∗ = −0.0023 and critical exponent
θ3 = −6.06. This confirms the existence of the NGFP also in the zero-cosmological constant
case analysed by Goroff and Sagnotti.

4.2. Gauge and parameterisation dependence
Physical observables are independent of their computational derivation. Still, many prac-
tical computations are based on convenient choices for intermediate auxiliary tools such as
coordinate systems, gauges, etc. Appropriate parameterisations of the details of a system
simply decrease the computational effort. Beyond pure efficiency aspects, such suitable pa-
rameterisations can also be conceptually advantageous or even offer physical insight. This is
similar to coordinate choices in classical mechanics where polar coordinates with respect to
the ecliptic plane in celestial mechanics support a better understanding in comparison with,
say, Cartesian coordinates with a z-axis pointing towards Betelgeuse.

Appropriate parameterisations become particularly significant in quantum calculations.
While on-shell quantities such as S-matrix elements are invariant observables [280–282], off-
shell quantities generically feature parameterisation dependencies, including gauge, field pa-
rameterisation and regularisation scheme dependencies [283–285]. Further ordering schemes
such as perturbative expansions may defer such dependencies to higher orders (such as
scheme dependence in mass independent schemes), but these are merely special and not al-
ways useful limits. Approximation schemes that can also deal with nonperturbative regimes
may even introduce further artificial parameterisation dependencies which have to be care-
fully removed (e.g. discretisation artefacts in lattice regularisations).

In an ideal situation, this parameterisation dependence of a nonperturbative approxima-
tion could be quantified and proven to be smaller than the error of the truncated solution.
However, as soon as a result is parameterisation dependent, it is likely that some pathological
parameterisation can be constructed that modifies the result in an arbitrary fashion. This
suggests to look for general criteria of good parameterisations that minimise the artificial
dependence in approximation schemes which adequately capture the physical mechanisms.

A priori criteria suggest the construction of parameterisations that support the identi-
fication of physically relevant degrees of freedom, such as the use of Coulomb-Weyl gauge
in quantum optics, or the use of pole mass regularisation schemes in heavy-quark physics.
Further a priori criteria include symmetry preserving properties (covariant gauges, nonlinear
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field parameterisations) or strict implementations of a parameterisation condition such as
the Landau gauge limit α → 0. A major advantage of the latter is that some redundant
degrees of freedom decouple fully from the dynamical equations in such a limit.

Good parameterisations may also be identified a posteriori by allowing for a family of
parameterisations and identifying stationary points in the parameter space. This realises the
principle of minimum sensitivity [286, 287] (originally advocated for regularisation scheme
dependencies), suggesting those points as candidate parameters for minimising the influence
of parameterisation dependencies.

In this section, we investigate a two-parameter family of covariant gauges, a family of field
parameterisations and the role of momentum dependent field rescalings in quantum gravity
in this spirit. The family of gauges includes a (nonharmonic) generalisation of the harmonic
gauge (de Donder gauge), the latter being particularly useful for the analysis of gravitational
waves which presumably are the asymptotic states of quantum gravity. The a priori criteria
suggest to implement this gauge in the Landau gauge limit to decouple a redundant part of
the Hilbert space. In fact, in this limit we find a subtlety in the form of a degeneracy in the
subspace of scalar field components which is special to gravity.

We also investigate a one-parameter family of field parameterisations that includes the
most widely used linear split [288] as well as the exponential split [289–293] studied more
recently in the context of AS [273–275, 278] – both of which find support by discriminative
a priori arguments. We also take a brief look at the most general ultralocal four-parameter
family of parameterisations to quadratic order, corroborating the results of the one-parameter
family. In addition, we study the influence of momentum dependent field rescalings which
are commonly used in gravity in connection with the York decomposition. In the context of
the FRG, these parameterisation dependencies can mix nontrivially with the regularisation
of the spectrum of fluctuations. Therefore, the analysis of parameterisation dependencies
also explores implicitly the stability of the system in the UV.

Interestingly, we observe a nontrivial interplay between all these parameterisation de-
pendencies. Still, several stationary points can be observed in the results for the RG flow
where the system develops a remarkable insensitivity to the details of the parameterisation
choices. In particular, for the stable parameterisations, we observe the existence of a UV sta-
ble non-Gaußian fixed point which provides further quantitative evidence for the existence
of an asymptotically safe metric quantum gravity [245, 246]. In the stationary regime of
the parameterisation based on the exponential split, the resulting RG flow exhibits several
remarkable properties: (1) a possible dependence on the residual gauge parameter drops
out implying an enhanced degree of gauge invariance, (2) the RG flow becomes particularly
simple, such that the phase diagram in the plane of Newton’s and cosmological constant can
be computed analytically, (3) no singularities arise in the flow, such that a large class of RG
trajectories (including those with a classical regime) can be extended to arbitrarily high and
low scales, (4) the UV critical exponents are real and close to their canonical counterparts,
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4.2. Gauge and parameterisation dependence

and (5) indications are found that the AS scenario may not extend straightforwardly to
dimensions much higher than d = 4.

4.2.1. Quantum gravity and parameterisations

The technical goal of quantum gravity is to construct a functional integral over suitable
integration variables which in the long range limit can be described by a diffeomorphism
invariant effective field theory of metric variables approaching a classical regime for a wide
range of macroscopic scales. The fact that the first part of this statement is rather un-
specific is reflected by the large number of legitimate quantisation proposals [5, 57, 294].
Independently of the precise choice of integration variables, a renormalisation group ap-
proach appears useful in order to facilitate a scale dependent description of the system and
a matching to the long range classical limit which is given at least to a good approximation
by an (effective) action of Einstein-Hilbert type, see (4.2).

We confine ourselves again to a quantum gravity field theory assuming that the metric itself
is already a suitable integration variable. A first step towards a diffeomorphism invariant
functional integral then proceeds via the Faddeev-Popov method involving a gauge choice
for intermediate steps of the calculation. In this section, we use the background field gauge
with the gauge fixing quantity,

Fµ =

δβµD̄

α − 1 + β

d
ḡαβD̄µ


gαβ, (4.23)

which should vanish if the gauge condition is exactly matched. Here, gαβ is the full (fluctu-
ating) metric, whereas ḡαβ denotes a fiducial background metric which remains unspecified,
but assists to keep track of diffeomorphism invariance within the background field method.
Gauge fixing is implemented in the functional integral by means of the gauge fixing action

Γgf = 1
32πGNα


ddx
√
ḡḡµνFµFν . (4.24)

More precisely, this gauge choice defines a two-parameter (α, β) family of covariant gauges.
For instance, the choice β = 1 corresponds to the harmonic/de Donder gauge which together
with α = 1 (Feynman gauge) yields a variety of technical simplifications, being used in
standard effective field theory calculations [295–297] as well as in functional RG studies
[35, 250] of quantum gravity. More conceptually, the Landau gauge limit α → 0 appears
favourable, as it implements the gauge condition in a strict fashion and is a fixed point under
RG evolution [298, 299]. We will return to this statement in the next section on correlation
functions.

In the Euclidean formulation considered here, the parameter α is bound to be nonnegative
to ensure the positivity of the gauge fixing part of the action (this restriction may not be
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4. Quantum gravity

necessary for a Lorentzian formulation). The parameter β can be chosen arbitrarily except
for the singular value βsing = d− 1. To elucidate this singularity, let us take a closer look at
the induced Faddeev-Popov ghost term:

Γgh = −


ddx
√
ḡC̄µMµ

νC
ν , Mµ

ν = δF µ

δvν
, (4.25)

where vν characterises the vector field along which we study the Lie derivative generating
the coordinate transformations,

δgαβ
δvν

= δ

δvν
Lvgαβ = 2 δ

δvν
D(αvβ) . (4.26)

The corresponding variation of the gauge fixing condition yields

δF µ = 2

ḡµαD̄β − (1 + β)

d
ḡαβD̄µ


D(αδvβ) . (4.27)

Let us decompose the vector δvβ into a transversal part δvT
β and a longitudinal part Dβδχ.

For the following argument, it suffices to study the limit of the quantum metric approaching
the background metric gµν → ḡαβ, which diagrammatically corresponds to studying the
inverse ghost propagator ignoring higher vertices,

δF µ = (δµν D̄2 + R̄µ
ν )δvTν + 1

2

(d− 1− β)D̄µD̄ν + 4R̄µ

ν


D̄νδχ+O(g − ḡ) . (4.28)

In this form it is obvious that the longitudinal direction D̄νδχ is not affected by the gauge
fixing for β = d− 1 to zeroth order in the curvature. In other words, the gauge fixing is not
complete for this singular case βsing = d− 1. This singularity is correspondingly reflected by
the ghost propagator. The Faddeev-Popov operator in (4.25) reads

Mµ
ν = 2ḡµβD̄αD(αgβ)ν − 21 + β

d
ḡαβD̄µDαgβν . (4.29)

Decomposing the ghost fields C̄µ, Cν also into transversal C̄T
µ , C

Tν and longitudinal parts
D̄µη̄, D̄νη we find for the ghost Lagrangian

C̄µMµ
νC

ν = C̄T
µ


δµν D̄

2 + R̄µ
ν


CTν − η̄


d− 1− β

2 D̄4 + R̄µνD̄µD̄ν


η +O(g − ḡ) , (4.30)

where we have performed partial integrations in order to arrive at a convenient form and
dropped covariant derivatives of the curvature. This form of the inverse propagator of the
ghosts makes it obvious that a divergence of the form 1

d−1−β arises in the longitudinal parts.
This divergence at βsing = d− 1 related to an incomplete gauge fixing will be visible in all
our results below. In fact, β should be restricted to values smaller than the singular value -
for larger values, the scalar ghost propagates with the wrong sign of the kinetic term.
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4.2. Gauge and parameterisation dependence

Let us now turn to the metric modes. As a technical tool, we parameterise the fully
dynamical metric gµν in terms of a fiducial background metric ḡµν and fluctuations hµν
about the background. Background independence is obtained by keeping ḡµν arbitrary and
requiring that physical quantities such as scattering amplitudes are independent of ḡµν .
Still, these requirements do not completely fix the parameterisation of the dynamical field
g = g[ḡ;h]. Several parameterisations have been used in concrete calculations. The most
commonly used parameterisation is the linear split [288]

gµν = ḡµν + hµν . (4.31)

By contrast, the exponential split [289–293]

gµν = ḡµρ

eh
ρ
ν , (4.32)

is a parameterisation that has been discussed more recently to a greater extent [273–275,
278]. In both cases, h is considered to be a symmetric matrix field (with indices raised and
lowered by the background metric). If a path integral of quantum gravity is now defined
by some suitable measure Dh, it is natural to expect that the space of dynamical metrics g
is sampled differently by the two parameterisations, implying different predictions at least
for off-shell quantities – unless the variable change from (4.31) to (4.32) is taken care of by
suitable (ultralocal) Jacobians. While a parameterisation (and gauge condition) independent
construction of the path integral has been formulated in a geometric setting [288, 300–303],
its usability is hampered by the problem of constructing the full decomposition of h in
terms of fluctuations between physically inequivalent configurations and fluctuations along
the gauge orbit. Geometric functional RG flows have been conceptually developed in [172],
with first results for AS obtained in [40], and recently to a leading order linear-geometric
approximation in [304]. The relation between the geometric approach and the exponential
parameterisation was discussed in [274].

Here, we take a more pragmatic viewpoint, and consider the different parameterisations
of (4.31) and (4.32) as two different approximations of an ideal parameterisation. Since
the functional RG actually requires the explicit form of g[ḡ;h] only to second order in h in
the single metric approximation that we shall employ in this section, we mainly consider a
one-parameter class of parameterisations of the type

gµν = ḡµν + hµν + τ

2hµρh
ρ
ν +O(h3) . (4.33)

For τ = 0, we obtain the linear split, whereas τ = 1 is exactly related to the exponential split
within our truncation. Incidentally, it is straightforward to write down the most general,
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ultralocal parameterisation to second order that does not introduce a scale,

gµν = ḡµν + hµν

+ 1
2

τhµρh

ρ
ν + τ2hhµν + τ3ḡµνhρσh

ρσ + τ4ḡµνh2


+O(h3) .

(4.34)

Here, h = hµµ is the trace of the fluctuation. As mentioned above, third and higher order
terms will not contribute to our present study anyway. Instead of exploring the full parameter
dependence, we will highlight some interesting results in this more general framework below.

The key ingredient for a quantum computation is the propagator of the dynamical field.
In our setting, its inverse is given by the second functional derivative (Hessian) of the action
(4.2) including the gauge fixing (4.24) with respect to the fluctuating field h,

16πGN Γ(2)κν
hh αβ


h=0,C=0

= 1
16α


8αδκναβ − [8α− (1 + β)2]ḡκν ḡαβ


(−D̄2)− 1− α

α
δ

(κ
(αD̄

ν)D̄β)

+ 1 + β − 2α
4α


ḡκνD̄(αD̄β) + ḡαβD̄

(κD̄ν)


+ R̄
4− 3τ

12 δκναβ −
1
3 ḡ

κν ḡαβ


− λ


(1− τ)δκναβ −

1
2 ḡ

κν ḡαβ


− (1− τ)S̄(κ

(αδ
ν)
β) + 1

2(S̄κν ḡαβ + S̄αβ ḡ
κν)− C̄κ

(α
ν
β) .

(4.35)
The symbol δκναβ denotes the symmetrised product of kronecker deltas, δκναβ = 1

2


δκαδ

ν
β + δκβδ

ν
α


.

Here and in the following, we specialise to d = 4, except if stated otherwise. A standard
choice for the gauge parameters is harmonic de Donder gauge with α = 1 = β for which
some parts simplify considerably. Simplifications also arise for the exponential split τ = 1;
in particular, a dependence on the cosmological constant λ remains only in the trace mode
∼ ḡκν ḡαβ. As discussed in the last section, terms proportional to S and C can be dropped
since they don’t contribute to the β functions for Newton’s constant and the cosmological
constant.

A standard tool for dealing with the tensor structure of the propagator is the York decom-
position of the fluctuations hµν into transverse traceless tensor modes, a transverse vector
mode and two scalar modes,

hµν = hT
µν + 2D̄(µξ

T
ν) +


2D̄(µD̄ν) −

1
2 ḡµνD̄

2

σ + 1

4 ḡµνh , (4.36)

D̄µhT
µν = 0, ḡµνhT

µν = 0, D̄µξT
µ = 0 . (4.37)

It is convenient to split Γ(2) into a pure kinetic part P which has a nontrivial flat space
limit, and a curvature dependent remainder F = O(R̄). This facilitates an expansion of the
propagator (Γ(2))−1 = (P + F)−1 =

∞
n=0

(−P−1F)nP−1.
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Let us first concentrate on the kinetic part P :

PhT
µν
αβ = 1

32πGN

δµναβ

∆− 2(1− τ)λ


, (4.38)

PξT
µ
α

= 1
16πGNα

δµα∆

∆− 2α(1− τ)λ


, (4.39)

P(σh) = 1
16πGN

3 (3−α)∆−4α(1−τ)λ
4α ∆2 3

8α(β − α)∆2

3
8α(β − α)∆2 (β2−3α)∆+4α(1+τ)λ

16α

 , (4.40)

where ∆ = −D̄2. In this form it is straightforward to calculate the propagator (P)−1. In
particular, the transverse traceless mode hT does not exhibit any dependence on the gauge
parameters. As discussed above, a priori criteria suggest the Landau gauge limit α → 0 as
a preferred choice for the gauge fixing, as it strictly implements the gauge fixing condition.
Whereas the choice of α and β, in principle, are independent, a subtle interplay can arise
with certain regularisation strategies as will be highlighted in the following.

By taking the limit α → 0 while keeping β finite, we make the gauge fixing explicit. In
particular, we find for the gauge dependent modes

PξT
−1µ

α
→ α

16πGN

∆2 δµα , (4.41)

P−1
(σh) →

−16πGN

3 ∆−2

(3−β)2

4 ∆− (3− β2 + (3 + β2)τ)λ

 β2 −6β∆
−6β∆ 36∆2

 . (4.42)

The transverse mode ξT
µ decouples linearly with α → 0 and hence is pure gauge in the

present setting. Whereas finite parts seem to remain in the (σh) subspace, we observe that
the matrix P−1

(σh) in (4.42) becomes degenerate in this limit (i.e., the determinant of the
matrix in (4.42) is zero). Effectively, only one scalar mode remains in the propagator. The
nature of this scalar mode is a function of the second gauge parameter: taking the limit
β → −∞, the remaining scalar mode can be identified with σ, while the limit β → 0 leaves
us with a pure h mode.

Whereas the transverse modes in (4.41) decouple smoothly in the limit α→ 0, the decou-
pling of the scalar mode in (4.42) is somewhat hidden in the degeneracy of the scalar sector
with the corresponding eigenmode depending on β. This can lead to a subtle interplay with
regularisation techniques for loop diagrams as can be seen on rather general grounds by the
following argument. Structurally, the propagator in the (σh) sector has the following form
in the limit α→ 0 and for small but finite β, cf. (4.42)


P(σh)

−1
→

O(β2) O(β)
O(β) O(1)

 . (4.43)

Regularisations of traces over loops built from this propagator are typically adjusted to the
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spectrum of the involved operators. Let us formally write this as

Tr

LRP−1(. . . )


, (4.44)

where LR denotes a regularising operator and the ellipsis stands for further vertices and
propagators. Now, it is often useful to regularise all fluctuation operators at the same scale,
e.g., the spectrum of all ∆’s should be cut off at one and the same scale k2. Therefore, the
regularising operator LR inherits its tensor structure from the Hessian Γ(2) of (4.35). In the
(σh) sector, the regularising operator can hence acquire the same dependence on the gauge
parameters as in (4.40),

LR,(σh) →
1
α

O(1) O(β)
O(β) O(β2)

 , (4.45)

for α→ 0 and small β. The complete scalar contribution to traces of the type (4.44) would
then be of the parametric form

Tr

LRP−1(. . . )


(σh)
→ 1

α
O(β2) . (4.46)

For finite β, such regularised traces can thus be afflicted with divergencies in the Landau
gauge limit α → 0. If this happens, we still have the option to choose suitable values of
β. In fact, (4.46) suggests that still a whole one-parameter family of gauges exists in the
Landau gauge limit, if we set β = γ ·

√
α, with arbitrary real but finite gauge parameter γ

distinguishing different gauges.
We emphasise that this is a rather qualitative analysis. Since the limit of products is not

necessarily equal to the product of limits, the trace over the matrix structure of the above
operator products can still eliminate this 1/α divergence, such that any finite value of β
remains admissible.

In the following we observe that the appearance of the 1/α divergence depends on the
explicit choice of the regularisation procedure, as expected. Still, as this discussion shows,
even if this divergence occurs, it can perfectly well be dealt with by choosing β = γ

√
α and

still retaining a whole one-parameter family of gauges in the Landau gauge limit.

4.2.2. Parameterisation dependent RG flow

Whereas exact solutions of the flow equation so far have only been found for simple models,
approximate nonperturbative flows can be constructed with the help of systematic expansion
schemes. In the case of gravity, a useful scheme is given by expanding Γ in powers of
curvature invariants. The technical difficulties then lie in the construction of the inverse
of the regularised Hessian


Γ(2) + R

−1
, corresponding to the regularised propagator, and

performing the corresponding traces.
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4.2. Gauge and parameterisation dependence

A conceptual difficulty lies in the fact that Γ[g, ḡ] should be computed on a subspace of
action functionals that satisfy the constraints imposed by diffeomorphism invariance and
background independence. In general, this requires to work with g and ḡ independently
during large parts of the computation [173–175, 185]. Such bimetric approaches can, for
instance, be organised in the form of a vertex expansion on a flat space as will be discussed
in the next section, or via a level expansion as developed in [44], see [186, 187, 264] for
further bimetric results. For the present study of parameterisation dependencies, we confine
ourselves to a single metric approximation, defined by identifying g with ḡ on both sides of
the flow equation, after the Hessian has been analytically determined. In this section, we
therefore from now on do no longer have to distinguish between the background field and
the fluctuation field as far as the presentation is concerned, and hence drop the bar notation
for simplicity.

Spanning the action in terms of the Einstein-Hilbert truncation and neglecting the flow of
the gauge fixing and ghost sector [260–262], we use the universal RG machine [266, 271, 272]
as our computational strategy. The key idea is to subdivide the Hessian Γ(2) into a kinetic
part and curvature parts with a subsequent expansion in the curvature. This is complicated
by terms containing uncontracted covariant derivatives in Γ(2) which could invalidate the
counting scheme. Within the present truncation, this problem is solved with the aid of
the York decomposition (4.36). This helps both to set up the curvature expansion as well
as to invert the kinetic terms in the corresponding subspaces of transverse traceless (TT),
transverse vector (T) and scalar modes. From a technical point of view, we again use the
package xAct to handle the extensive tensor calculus.

Schematically, the flow equation for the Einstein-Hilbert truncation can then be written
as

∂tΓ =


d4x
√
−g


STT + ST + Sσh + Sgh + SJac


, (4.47)

where the first three terms denote the contributions from the graviton fluctuations as param-
eterised by the York decomposition (4.36). The fourth term Sgh arises from the Faddeev-
Popov ghost fluctuations, cf. (4.30). The last term SJac comes from the use of transverse
decompositions of the metric (4.36) and the ghost fields (4.30). The corresponding functional
integral measure over the new degrees of freedom involves Jacobians which – upon analogous
regularisation – contribute to the flow of the effective average action.

At this point, we actually have a choice that serves as another source of parameterisation
dependencies studied in this section: one option is to formulate the regularised path integral
in terms of the decomposed fields as introduced above. In that case, the Jacobians are
nontrivial and their contribution SJac is listed in the appendix C, (C.21). Alternatively, we
can reintroduce canonically normalised fields by means of a nonlocal field redefinition [37,
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305], √
∆− Ric ξµ → ξµ ,

∆2 + 4
3DµRµνDν σ → σ ,

√
∆ η → η ,

(4.48)

and analogously for the longitudinal antighost field η̄. (Here, we have used (Ric ξ)µ = Rµνξν .)
This field redefinition goes along with another set of Jacobians contributing to the measure
of the rescaled fields. As shown in [37], the Jacobians for the original York decomposition
and the Jacobians from the field redefinition (4.48) cancel at least to the order in background
curvature we consider here. Therefore, if we set up the flow in terms of the redefined fields
(4.48), the last term in (4.47) vanishes, SJac

fr = 0.
For an exact solution of the flow, it would not matter whether or not a field redefinition

of the type (4.48) is performed. Corresponding changes in the full propagators would be
compensated for by the (dis-)appearance of the Jacobians. For the present case of a truncated
nonperturbative flow, a dependence on the precise choice will, however, remain, which is
another example for a parameterisation dependence. This dependence also arises from the
details of the regularisation. The universal RG machine suggests to construct a regulator R
such that the Laplacians ∆ appearing in the kinetic parts are replaced by the rule

∆→ ∆ + R(∆) . (4.49)

Since the field redefinition (4.48) is nonlocal, it also affects the kinetic terms and thus takes
influence on the precise manner of how modes are regularised via (4.49). In other words, the
dependence of our final results on using or not using the field redefinition (4.48) is an indirect
probe of the regularisation scheme dependence and thus of the generalised parameterisation
dependence we are most interested in here.

Here, we focus on the RG flow of the effective average action parameterised by the oper-
ators of the Einstein-Hilbert truncation. For this, we introduce the dimensionless versions
of the gravitational coupling and the cosmological constant, analogously to the previous
section, and determine the corresponding RG β functions for g and λ, by computing the
S terms on the right hand side of the flow (4.47) to linear order in the background curva-
ture. Many higher order computations have been performed by now [38, 42, 248, 251–259,
306], essentially confirming and establishing the simple picture visible in the Einstein-Hilbert
truncation.

Whereas the fixed point values g∗ and λ∗ are RG scheme dependent, the critical exponents
θi are universal and thus should be parameterisation independent in an exact calculation.
Also, the product g∗λ∗ has been argued to be physically observable in principle and thus
should be universal [37]. Testing the parameterisation dependence of the critical exponents
θi and g∗λ∗ therefore provides us with a quantitative criterion for the reliability of approxi-
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Fig. 4.2.: Linear split without field redefinition: residual dependence of our estimates for the univer-
sal quantities on the gauge parameter γ in the limit α→ 0. We find a common stationary
point at γ = 0 and a remarkably small variation of the results on the level of 0.1% for
g∗λ∗ and 1.6% for Reθ in the range γ ∈ [−2, 2].

mative results.

4.2.3. Generalised parameterisation dependence

With these prerequisites, we now explore the parameterisation dependencies of the follow-
ing scenarios: we consider the linear (4.31) and the exponential (4.32) split, both with and
without field redefinition (4.48), and study the corresponding dependencies on the gauge pa-
rameters, focusing on a strict implementation of the gauge fixing condition α→ 0 (Landau
gauge). As suggested by the principle of minimum sensitivity, we look for stationary points
as a function of the remaining parameter(s) where universal results become most insensitive
to these generalised parameterisations. For the following quantitative studies, we exclusively
use the piecewise linear regulator [226, 307], R(x) = (k2 − x)θ(k2 − x), for reasons of sim-
plicity. Studies of regulator scheme dependencies which can also quantify parameterisation
dependencies have first been performed, e.g., in [37, 248].

Linear split without field redefinition

Let us start with the case of the linear split (4.31) without field redefinition (4.48). Here,
the degeneracy in the sector of scalar modes interferes with the regularisation scheme, as
illustrated in (4.46). Hence, in the Landau gauge limit α → 0, we choose β = γ

√
α,

which removes any artificial divergence, but keeps γ as a real parameter that allows for
a quantification of remaining parameterisation/gauge dependence. We indeed find a non-
Gaußian fixed point g∗, λ∗ for a wide range of values of γ. The critical exponents form a
complex conjugate pair. The estimates for the universal quantities g∗λ∗ and the real part of
the θ’s (being the measure for the RG relevance of perturbations about the fixed point) are
depicted in Figure 4.2.

We observe a common point of minimum sensitivity at γ = 0. In a rather wide range of
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parameterisation g∗ λ∗ g∗λ∗ θ

nfr τ = α = γ = 0 0.879 0.179 0.157 1.986± 3.064i
nfr τ = 0, α = β = 1 0.718 0.165 0.119 1.802± 2.352i
fr τ = α = 0, β = 1 0.893 0.164 0.147 2.034± 2.691i
fr τ = 0, α = β = 1 0.701 0.172 0.120 1.689± 2.486i
fr τ = α = 0, β = −∞ 0.983 0.151 0.148 2.245± 2.794i
fr τ = 1, β = −∞ 3.120 0.331 1.033 4, 2.148
fr τ = 1.22, α = 0, β = −∞ 3.873 0.389 1.508 3.957, 1.898

Tab. 4.1.: Non-Gaußian fixed point properties for several parameterisations, characterised by the
gauge parameters α, β or γ, as well as by the choice of the parameterisation split parame-
ter τ with τ = 0 corresponding to the linear split (4.31) and τ = 1, being the exponential
split (4.32). Whether or not a field redefinition (4.48) is performed is labeled by “fr” or
“nfr”, respectively.

gauge parameter values γ ∈ [−2, 2], our estimates for g∗λ∗ and Reθ vary only very mildy
on the level of 0.1% and 1.6%. Given the limitations of the present simple approximation,
this is a surprising degree of gauge independence lending further support to the AS scenario.
The extremising values at γ = 0 are near the results of [253, 254, 266] where the same gauge
choice (α = β = 0) was used. The main difference can be traced back to the fact that our
inclusion of the (dimensionful) Newton’s constant in the gauge fixing term (4.24) renders the
gauge parameter α dimensionless as is conventional. If we ignored the resulting dimensional
scaling, our extremising result would be exactly that of [266] and in close agreement with
[253, 254] with slight differences arising from the regularisation scheme. It is also instructive
to compare with [308], where the on-shell contributions to the flow have been singled out
yielding a gauge independent fixed point value for the cosmological constant of λ∗ = 0.261.
Though the calculation also employs the linear split without field redefinition, the on-shell
projection requires special choices for the field decomposition, the ghost sector, and the
regularisation scheme. The quantitative differences to our results which includes also off-
shell contributions can be taken as a measure for the influence of all these sectors. We
summarise a selection of our quantitative results in Table 4.1.

Exponential split without field redefinition

As a somewhat contrary example, let us now study the case of the exponential split (4.32)
also without field redefinition (4.48). Again, we find a non-Gaußian fixed point. The corre-
sponding estimates for the universal quantities at this fixed point in the Landau gauge limit
α = 0 are displayed in Figure 4.3. At first glance, the results seem similar to the previous
ones with a stationary point at γ = 0. However, the product g∗λ∗ shows a larger variation
on the order of 5% and the critical exponent even varies by a factor of more than 40 in
the range γ ∈ [−2, 2]. We interpret the strong dependence on the gauge parameter γ as a
clear signature that these estimates based on the exponential split without field redefinition
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Fig. 4.3.: Exponential split without field redefinition: residual dependence of our estimates for the
universal quantities on the gauge parameter γ in the limit α→ 0. A common stationary
point is again present at γ = 0, but the estimates for the universal quantities exhibit a
substantial variation in the range γ ∈ [−2, 2]: g∗λ∗ varies by ∼ 5% and Reθ even by more
than a factor of 40. The latter is a clear signal for the insufficiency of the parameterisation.

should not be trusted.
In fact, the real part of the critical exponents, Reθ, have even changed sign compared to the

previous case implying that the non-Gaußian fixed point has turned UV repulsive. Similar
observations have been made in [273] for the harmonic Feynman-type gauge α = 1 = β and
an additional strong dependence on the regulator profile function R(x) has been found. We
have verified that our results agree with those of [273] for the corresponding gauge choice.
In summary, this parameterisation serves as an example that nonperturbative estimates
can depend strongly on the details of the parameterisation (even for seemingly reasonable
parameterisations) and the results can be misleading. The good news is that a study of the
parameterisation dependence can – and in this case does – reveal the insufficiency of the
parameterisation through its strong dependence on a gauge parameter.

Linear split with field redefinition

For the remainder, we consider parameterisations of the fluctuation field which include field
redefinitions (4.48). The canonical normalisation achieved by these field redefinitions has not
merely aesthetical reasons. An important aspect is that the nonlocal field redefinition helps
to regularise the modes in a more symmetric fashion: the kinetic parts of the propagators
then become linear in the Laplacian which are all equivalently treated by the regulator
(4.49). A practical consequence is that the interplay of the degeneracy in the scalar sector
no longer interferes with the regularisation, i.e., the gauge parameter β can now be chosen
independently of α. Concentrating again on the Landau gauge limit α → 0, we observe for
generic split parameter τ that β = 0 no longer is an extremal point.

Our estimates for the universal quantities for the case of the linear split (4.31) with field
redefinition (4.48) and α → 0 are plotted in Figure 4.4. In order to stay away from the
singularity at β = 3, cf. (4.30), we consider values for β < 3 down to β → −∞. The
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Fig. 4.4.: Linear split with field redefinition: residual dependence of our estimates for the universal
quantities on the gauge parameter β in the limit α → 0. A common stationary point is
approached for β → −∞. Near the harmonic gauge β = 1 (green dashed vertical line),
both quantities have an extremum. For the whole range of β values, the estimates for the
universal quantities exhibit rather small variations of 1% for g∗λ∗ and 10% for the more
sensitive critical exponent Reθ.

longitudinal ghost mode decouples in the limit β → −∞.
A non-Gaußian fixed point exists, and a common extremum of g∗λ∗ and Re θ occurs for

β → −∞. Near β = 1 marking the harmonic gauge condition, both quantities are also close
to an extremum (which does not occur at exactly the same β value for both quantities). All
fixed point quantities for this case are listed in Table 4.1 (“fr τ = α = 0, β = 1”). These
values agree with the results of [40]. They are remarkably close, e.g., to those for the linear
split without field redefinition. The situation is similar for the other extremum β → −∞
(“fr τ = α = 0, β = −∞” in Table 4.1). For the whole infinite β range studied for this
parameterisation, g∗λ∗ varies on the level of 1%. The more sensitive critical exponent Re θ
varies by 10% which is still surprisingly small given the simplicity of the approximation. Let
us emphasise again that varying β from infinity to zero corresponds to a complete exchange
of the scalar modes from σ (longitudinal vector component) to h (conformal mode) and
hence to a rather different parameterisation of the fluctuating degrees of freedom.

Exponential split with field redefinition

Finally, we consider the exponential split (4.31), τ = 1, with field redefinition (4.48). Having
performed the latter has a strong influence on the stability of the estimates of the universal
quantities at the non-Gaußian fixed point, as is visible in Figure 4.5. Contrary to the linear
split, we do not find a common extremum near small values of β: neither β = 0 nor the
harmonic gauge β = 1 seem special, but, e.g., the product g∗λ∗ undergoes a rapid variation
in this regime.

Rather, a common extremal point is found in the limit β → −∞. In fact, g∗λ∗ becomes
insensitive to the precise value of β for β ≲ −2 (with a local maximum near β ≃ −3, and
an asymptotic value of g∗λ∗ ≃ 1.033 for β → −∞). This estimate for g∗λ∗ is significantly
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Fig. 4.5.: Exponential split with field redefinition: residual dependence of our estimates for the
universal quantities on the gauge parameter β in the limit α→ 0. A common stationary
point is approached for β → −∞, whereas no common minimum sensitivity point is
found near the harmonic gauge β = 1 or β = 0 (dashed vertical lines). Below β ≲ −2, the
critical exponents become real with the non-Gaußian fixed point remaining UV attractive.
For β → −∞, the results become independent of the gauge parameter α.

larger than for the other parameterisations. The deviation may thus be interpreted as the
possible level of accuracy that can be achieved in the simple Einstein-Hilbert truncation.

As an interesting feature, the critical exponents become real for β ≲ −2, and approach
the asymptotic values θ = {4, 2.148} for β → −∞. The leading exponent θ = 4 reflects the
power counting dimension of the cosmological term. This is a straightforward consequence
of the fact that the λ dependence in this parameterisation τ = 1, β → −∞ disappears
from the propagators of the contributing modes. The leading nontrivial exponent θ = 2.148
hence is associated with the scaling of the Newton’s constant near the fixed point, which
is remarkably close to minus the power counting dimension of the Newton coupling. The
latter is a standard result for non-Gaußian fixed points which are described by a quadratic
fixed point equation [101, 309]. The small difference to the value θ = 2 arises from the RG
improvement introduced by the anomalous dimension in the threshold functions (“η-terms”
as discussed in the appendix C). Neglecting these terms, the estimate of the leading critical
exponents in dimension d is d and d−2, as first discussed in [275]. Also our other quantitative
results for the fixed point properties are in agreement with those of [275] within the same
approximation.

The significance of the results within this parameterisation is further underlined by the
observation that the results in the limit β → −∞ become completely independent of the
gauge parameter α. In other words, the choice of the transverse traceless mode and the
σ mode (β → −∞) as a parameterisation of the physical fluctuations removes any further
gauge dependence.

The present parameterisation has also some relation to [276, 277], where in addition to the
exponential split the parameterisation was further refined to remove the gauge parameter
dependence completely on the semi-classical level. More specifically, the parameterisation of
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Fig. 4.6.: Linear split with field redefinition: dependence of estimates for the fixed point values (left
panel) and the critical exponents (right panel) on the gauge parameter α and harmonic
gauge condition β = 1. No qualitative and only minor quantitative differences are found
for the Feynman gauge α = 1 in comparison to the Landau gauge α = 0.

the fluctuations was chosen so that only fluctuations contribute that also have an on-shell
meaning. In essence, this removes any contribution from the scalar modes to the UV running.
At the semi-classical level [277], the nontrivial critical exponent is 2 as in [275] and increases
upon inclusion of RG improvement as in the present work. The increase determined in [276]
is larger than in the present parameterisation and yields θ ≃ 3 which is remarkably close to
results from simulations based on Regge calculus [310, 311].

The present parameterisation with β → −∞ is also loosely related to unimodular gravity,
as the conformal mode is effectively removed from the fluctuation spectrum. Still, differences
to unimodular gravity remain in the gauge fixing and ghost sector as unimodular gravity is
only invariant under transversal diffeomorphisms. It is nevertheless interesting to observe
that corresponding FRG calculations yield critical exponents of comparable size [312, 313].

In fact, the present parameterisation allows for a closed form solution of the RG flow as
will be presented below.

Landau vs. Feynman gauge

Many of the pioneering computations in quantum gravity have been and still are performed
within the harmonic gauge β = 1 and with α = 1 corresponding to Feynman gauge. This is
because this choice leads to a number of technical simplifications such as the direct diagonal-
isation of the scalar modes as is visible from the off-diagonal terms in (4.40). Concentrating
on the linear split with field redefinition, we study the α dependence for the harmonic gauge
β = 1 in the vicinity of the Landau and Feynman gauges. For early results on the α

dependence, see [314].
Our results for the non-Gaußian fixed point values are shown in the left panel of Figure 4.6.

In essence, the fixed point values show only a mild variation during the transition from the
Landau gauge α = 0 to the Feynman gauge α = 1. In particular, the decrease of g∗ is slightly
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4.2. Gauge and parameterisation dependence

compensated for by a mild increase of λ∗. Effectively, the observed variation is only on a
level which is quantitatively similar to other parameterisation dependencies, cf. Table 4.1.

A similar conclusion holds for the more sensitive critical exponents. Real and imaginary
parts of the complex pair are shown in the right panel of Figure 4.6. Starting from larger
values of α, it is interesting to observe that the imaginary part Im θ decreases with decreasing
α. This may be taken as an indication for a tendency towards purely real exponents; however,
at about α = 1 this tendency is inverted and the exponents remain a complex pair in between
Feynman gauge and Landau gauge within the present estimate.

In summary, we observe no substantial difference between the results in Feynman gauge
α = 1 and those of Landau gauge α = 0 in any of the quantities of interest for the linear
split and with field redefinition. Our results show an even milder dependence on the gauge
parameter in comparison to the study of [37], where the regulator was chosen such as to
explicitly lift the degeneracy in the sector of scalar modes in the limit α → 0. The present
parameterisation hence shows a remarkable degree of robustness against deformations away
from the a priori preferable Landau gauge. Hence, we conclude that the use of Feynman
gauge is a legitimate option to reduce the complexity of computations.

Generalised parameterisations

Having focused so far mainly on the gauge parameter dependencies for fixed values of the
split parameter τ , we now explore the one-parameter family of parameterisations for general
τ . For this, we use the Landau gauge α = 0 and take the limit β → −∞, where the
fixed point estimates of all parameterisations used so far showed a large degree of stability.
Figure 4.7 exhibits the results for the non-Gaußian fixed point values (left panel) and the
corresponding critical exponents (right panel).

A comparison of the results for τ = 0 and τ = 1 reveals the differences already discussed
above: an increase of the fixed point values and the occurrence of real critical exponents for
the exponential split τ = 1. From the perspective of the principle of minimum sensitivity,
it is interesting to observe that the fixed point values develop extrema near τ ≃ 1.22. The
product g∗λ∗ is maximal for τ = 1 +

√
3

24


278
π

1/4
. Also for this parameterisation, the critical

exponents of the fixed point are real and still close to the values for the exponential split,
cf. Table 4.1. For even larger values of τ , the critical exponents form complex pairs again.

To summarise, in the full three-parameter space defined by τ , β and α ≥ 0, we find a
local extremum, i.e., a point of minimum sensitivity, at α = 0, β → −∞ and τ near the
exponential split value τ = 1. From this a posteriori perspective, our results suggest that the
exponential split (with field redefinition) in the limit where the scalar sector is represented
by the σ mode may be viewed as a “best estimate” for the UV behaviour of quantum Einstein
gravity. Of course, due to the limitations imposed by the simplicity of our truncation, this
conclusion should be taken with reservations. The resulting RG flow for τ = 1 is in fact
remarkably simple and will be discussed next.
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Fig. 4.7.: Parameterisation dependence of fixed point values (left panel) and critical exponents
(right panel) as a function of the split parameter τ for the Landau gauge α = 0 and
β → −∞. The fixed point values exhibit extrema near τ ≃ 1.22, for the product of fixed
point values, this occurs at τ = 1 +

√
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1/4
(red dashed vertical line). In this regime,

the critical exponents are real and close to their values for the exponential split τ = 1
(green dashed vertical line).

Analytical solution for the phase diagram

Let us now analyse more explicitly the results for the RG flow for the exponential split
with field redefinition in the limit β → −∞. Several simplifications arise in this case. The
exponential split removes any dependence of the transverse traceless and vector components
of the propagator on the cosmological constant. The remaining dependence on λ in the
conformal mode is finally removed by the limit β → −∞. As a consequence, the cosmological
constant does not couple into the flows of the Newton coupling nor into any other higher order
coupling. Still, the cosmological constant is driven by graviton fluctuations. As emphasised
above in subsection 4.2.3, any remaining gauge dependence on the gauge parameter α drops
out of the flow equations. For the RG flow of Newton coupling and cosmological constant,
we find the simple set of equations:

∂tg ≡ βg = 2g − 135g2

72π − 5g , (4.50)

∂tλ ≡ βλ =

−2− 135g

72π − 5g


λ− g


43
4π −

810
72π − 5g


. (4.51)

In addition to the Gaußian fixed point, these flow equations support a fixed point at

g∗ = 144π
145 , λ∗ = 48

145 , g∗λ∗ = 6912π
21025 , (4.52)

cf. Table 4.1. Also the critical exponents can be determined analytically,

θ0 = 4, θ1 = 58
27 . (4.53)

54



4.2. Gauge and parameterisation dependence

-∞ -2 -1 - 3
4 - 1

2 - 1
4 - 1

8 0 1
8

1
4

1
2

3
4 1 2 ∞

36π
145

72π
145

108π
145

144π
145

gλ

g

Fig. 4.8.: Global phase diagram in the (g, gλ) plane for the exponential split with field redefinition
and β → −∞. Arrows point from IR to UV indicating the approach to the UV fixed
point at g∗ = 144π/145 and λ∗ = 48/145. The color indicates a measure for the flow
velocity, (∂tg)2 + (∂t(gλ/


1 + g2λ2))2.

The fact that the largest critical exponent corresponds to the power counting canonical
dimension of the cosmological term is a straightforward consequence of the structure of
the flow equations within this parameterisation: as we have ∂tg = (2 + η(g))g and ∂tλ =
(−2 + η(g))λ + O(g), the existence of a non-Gaußian fixed point requires η(g∗) = −2. As
the stability matrix is triangular, the eigenvalue associated with the cosmological term must
be −4 and thus θ0 = 4. Rather generically, other parameterisations lead to a dependence of
η also on λ and thus to a more involved stability matrix.

In the physically relevant domain of positive gravitational coupling g > 0, the fixed point
g∗ separates a “weak” coupling phase with g < g∗ from a “strong” coupling phase g > g∗.
Only the former allows for trajectories that can be interconnected with a classical regime
where the dimensionless g and λ scale classically, i.e., ∂tg ≃ 2g and ∂tλ ≃ −2λ such that
their dimensionful counterparts approach their observed values. Trajectories in the strong
coupling phase run to larger values of g and terminate in a singularity of βg at gsing = 72π/5
indicating the breakdown of the truncation.

All trajectories in the weak coupling phase with g < g∗ run towards the Gaußian fixed
point for g and thus, also the flow of λ in the infrared is dominated by the Gaußian fixed
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point. This implies that all trajectories emanating from the non-Gaußian fixed point with
g ≤ g∗ can be continued to arbitrarily low scales, i.e., are infrared complete. They can thus
be labeled by their deep infrared value of gλ approaching a constant, which may be identified
with the product of Newton coupling and cosmological constant as observed at present. A
plot of the resulting RG flow in the plane (g, gλ) is shown in Figure 4.8. It represents a global
phase diagram of quantum gravity as obtained in the present truncation/parameterisation.
We emphasise that no singularities appear towards the IR contrary to conventional single
metric calculations based on the linear split.

The flows (4.50) and (4.51) can be integrated analytically. Converting back to dimensionful
couplings, the flow of the running Newton coupling G(k) satisfies the implicit equation

GN = G(k)
1− 145

144πk
2G(k)

 27
29
, (4.54)

where GN is the Newton coupling measured in the deep infrared k → 0. Expanding the
solution at low scales about the Newton coupling yields

G(k) ≃ GN


1− 15

16πk
2GN +O


(k2GN)2


(4.55)

exhibiting the antiscreening property of gravity.
The flow of the dimensionful running cosmological constant Λ(k) can be given explicitly

in terms of that of the running Newton coupling,

Λ(k) = 162k2

25 − 43G(k)k4

16π + ℓk2

144π − 145G(k)k2

 25
29

− 144π
3625G(k)


87 + 25ℓ


144π − 145G(k)k2

 25
29

. (4.56)

Here, ℓ = − 29
86400 (2−133−21π−54)

1
29 (125ΛGN + 432π), and Λ is the value of the classical

cosmological constant in the deep infrared k → 0. The low scale expansion about k = 0
yields

Λ(k) ≃ Λ


1− 15
16πk

2GN +O

k4

Λ2 ΛGN , (k2GN)2


. (4.57)

Thus, Λ(k)/G(k) = Λ/GN + O(k4), implying a comparatively slow running of the ratio
towards the UV. This explicit solution of the RG flow might be useful for an analysis of “RG
improved” cosmologies along the lines of [315–322].

Generalised ultralocal parameterisations

For the most general, ultralocal parameterisation (4.34), it turns out that the flow equation in
our truncation does only depend on the linear combinations T1 := τ/4+τ3 and T2 := τ2/4+τ4,
leaving only two independent split parameters. Instead of exploring the full high dimensional
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4.2. Gauge and parameterisation dependence

parameter space, we try to identify relevant points as inspired by our preceding results. For
instance for the choice T1 = 1/4 and T2 = −1/8, any dependence on α drops out, indicating
an enhanced insensitivity to the gauge choice. The resulting flow equations are

∂tg = 2g + 135(β − 3)g2

(5β − 3)g − 72(β − 3)π , (4.58)

∂tλ = −2λ+ g((−669 + 215β)g + 36(β − 3)π(4− 15λ))
4π((3− 5β)g + 72(β − 3)π) . (4.59)

In the limit β → −∞, these are identical to the exponential split in the same limit. The
non-Gaußian fixed point occurs at

g∗ = 144π(β − 3)
145β − 411 , λ∗ = 48(β − 3)

145β − 411 , g∗λ∗ = 6912π


β − 3
145β − 411

2

. (4.60)

Apart from the pathological choice βsing = 3 (incomplete gauge fixing) where this fixed point
merges with the Gaußian fixed point, no further extremal point is observed except for the
limit β → −∞. The critical exponents are

θ0 = 4, θ1 = 58
27 + 16

45(β − 3) . (4.61)

Also the exponents become minimally sensitive to the choice of β for β → −∞.
As an oddity, we mention the particular case β = 3/5, where the flow equations acquire a

pure one-loop form. In this case, the second critical exponent is exactly 2 as it must, since
the slope of a parabolic β function at the interacting fixed point is minus the slope at the
Gaußian fixed point [309].

More importantly, the interdependence of gauge and parameterisation choices is also visible
in the following fact: we observe that the choice of the gauge parameter β → −∞ removes
any dependence of our flow on the parameter T2, independent of the value of α. In other
words, this limit brings us back exactly to the case which we discussed above in subsection
4.2.3, such that the seemingly much larger class of parameterisations (4.34) collapses to a
one-parameter family.

Arbitrary dimensions

Finally, we discuss the stability of the UV fixed point scenario and its parameterisation
dependence in arbitrary dimensions, focusing on d > 2 (for a discussion of d = 2 in the
present context, see [273, 275, 277]). In fact, there are some indications in the literature
that the parameterisation dependence is pronounced in higher dimensions. Whereas standard
calculations based on the linear split generically find a UV fixed point in any dimension
d > 2 and gauge fixing parameter α, see e.g. [323, 324], a recent refined choice of the
parameterisation to remove gauge parameter dependence on the semi-classical level arrives
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Fig. 4.9.: Parameterisation dependence of fixed point value for g∗λ∗ as a function of the split param-
eter T1 in the Landau gauge α = 0 and β → −∞ for different dimensions d = 3, 4, 5, 6, 7
(from bottom to top). Vertical lines mark the value of the parameter T1 = 1/d preferred
by independence of the gauge parameter α. For d ≥ dcr ≃ 5.731, the fixed point product
g∗λ∗ develops a singularity at T1 = 1/d.

at a different result [276, 277]: the UV fixed point can be removed from the physical region if
the number of physical gravity degrees of freedom becomes too large. As the latter increases
with the dimensionality, there is a critical value dcr above which asymptotically safe gravity
does not exist. The resulting scenario is in line with the picture of paramagnetic dominance
[263, 325], which is also at work for the QED and QCD β functions: the dominant sign of
the β function coefficient arises from the paramagnetic terms in the Hessian which can be
reversed if too many diamagnetically coupled degrees of freedom contribute.

Our results extend straightforwardly to arbitrary dimensions. Starting, for instance, with
the most general parameterisation (4.34) in d dimensions, the flows of g and λ depend only
on the linear combinations T1 = τ/d+ τ3 and T2 = τ2/d+ τ4. Comparable results as in d = 4
dimensions apply: in the limit of β → −∞, also T2 drops out such that a one-parameter
family remains. In turn, a complete independence of the gauge parameter α can be realised
with the parameterisation specified by T1 = 1/d and T2 = −1/(2d).

We illustrate the stability properties of the AS scenario in arbitrary dimensions by choosing
the Landau gauge limit α → 0 as well as β → −∞, keeping T1 as a free parameter. Then,
we know a priori that T1 = 1/d would be a preferred choice from the view point of gauge
invariance; it would also correspond to the exponential parameterisation τ = 1, τ3 = 0.
Figure 4.9 displays the fixed point values for g∗λ∗ as a function of T1 for various dimensions
d = 3, . . . , 7. While d = 3 exhibits a rather small parameterisation dependence, d = 4
reproduces the earlier results of Figure 4.7 (left panel) now as a function of T1 with an
extremum not far above T1 = 1/4. By contrast, g∗λ∗ develops a kink for d = 5 that turns
into a singularity for d = 6 and larger. For increasing d, the kink approaches the preferred
parameterisation T1 = 1/d (vertical dashed lines in Figure 4.9). The singularity in g∗λ∗

occurs for a critical dimension dcr ≃ 5.731.
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This observation suggests the following interpretation: whereas we can identify a UV fixed
point for any dimension as long as we choose T1 sufficiently far away from T1 = 1/d, we
find a stable fixed point scenario only for d = 3 and d = 4 integer dimensions. Already for
d = 5, the fixed point product g∗λ∗ can change by two orders of magnitude by varying the
parameterisation, which is at least a signature for the insufficiency of the truncation. For
d ≥ dcr ≃ 5.731, g∗λ∗ can become unboundedly large as a function of the parameterisation,
signaling the instability of the fixed point.

If these features persist also beyond our truncation, they suggest that the AS scenario may
not exist far beyond the spacetime dimension d = 4. Whereas this does not offer a dynamical
explanation of our spacetime dimension, it may serve to rule out the mutual coexistence of
extra dimensions and asymptotically safe quantum gravity.

4.3. Correlation functions
In the remaining two sections of the quantum gravity part of this thesis, we go beyond the
background field approximation used in the previous sections, and consider an effective action
which depends on both the background metric and the fluctuation field. As discussed earlier,
this is an important step towards a solution to the Nielsen identities, which encode that the
effective action actually is a functional of only one metric. We will start by introducing
the setting, then discuss correlation functions in flat and curved spacetime, and in the next
section introduce a method to treat correlation functions of arbitrarily high order. Parts
of this section are based on [45], as well as yet unpublished work with Stefan Lippoldt
(correlation functions in curved spacetime and gauge dependence).

4.3.1. Vertex expansion in quantum gravity

Lots of information on a quantum field theory is stored in its correlation functions. The
most important information is stored in the propagator, which also drives the flow equa-
tion. In fact, in the presence of a background field, we have to be more precise here. The
second variation that appears in the flow equation is a variation w.r.t. the fluctuation field.
This immediately suggests that a good approximation scheme should resolve the fluctuation
propagator as good as possible. By taking two fluctuation derivatives of the flow equation,
one sees that the flow of the two-point function in turn is driven also by the three- and
four-point function. Clearly, the flow of the n-point function involves correlators of order up
to n+ 2, indicating the infinite hierarchy of the flow equation. A natural expansion scheme
is the vertex expansion, schematically8

Γ[ḡ, h] =

n

1
n!Γ

(n)[ḡ, 0] · hn . (4.62)

8In this general discussion, we suppress the ghost fields.
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For technical reasons, we will first study such an approximation on a flat background, ḡ = δ,
later also treating couplings to background curvature.

If we wouldn’t break the Nielsen identities by the introduction of the regulator and the
gauge fixing, derivatives w.r.t. ḡ and h would coincide. Since we cannot do so, these deriva-
tives will not agree, and different couplings have to be introduced. Again, it is useful to
introduce a basis to classify invariants. In appendix D, we introduce a basis for correlation
functions with up to three fluctuation fields, two derivatives and one background curvature.
On a flat background, it is also straightforward (up to numerical complexity) to treat the
full momentum dependence of correlation functions [43].

The sheer size of the basis of the correlation functions shows that in practice it will be
difficult to resolve all correlation functions up to a certain order. In a first treatment, severe
approximations will be made in order to render computations feasible. We build on the
parameterisation for vertex functions introduced in [43, 326]. In particular, we parameterise
the correlation functions as9

Γ(n)(p) =


n
i=1


Z(p2

i )

G
n
2 −1
n (p)T (n)(p,Λn) , (4.63)

where T (n) is the classical tensor structure of the vertex obtained by the n-th functional
derivative of (GN times) the Einstein-Hilbert action, and the cosmological constant replaced
by a uniform fluctuation coupling Λn, which represents the constant part of the vertex.
Further, Z(p2

i ) is the momentum dependent wave function renormalisation, and the couplings
Gn parameterise the interaction vertices between gravitons. We stress that the first genuine
dynamical coupling is G3. In the following we will approximate all fluctuation couplings Gn

by a single, momentum independent G3. An extension to resolve G3 and G4 has recently
been put forward in [188]. It turns out that the general momentum dependence induced by
the flow equation is well modelled by this ansatz.

As stressed earlier, an important issue in quantum gravity is the background indepen-
dence of physical observables. We emphasise that in the present framework, based on an
effective action Γ[ḡ, h], we have the paradoxical situation that the background independence
of observables necessitates the background dependence of the vertex functions Γ(n) of the
dynamical fields. Importantly, an ansatz Γ[ḡ, h] = Γ[ḡ+h] violates background independence
and dynamical diffeomorphism invariance, see e.g. [40, 165, 172].

4.3.2. Local quantum gravity

In this section we present the first calculation of the genuine dynamical gravitational coupling
G3. Here we build on the general setup for flows of fully momentum dependent vertex
functions in quantum gravity developed in [41, 43]. This expansion naturally resolves the

9With this choice, the fluctuation field h has mass dimension 1 in d = 4.
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physically important difference between the graviton wave function renormalisation and the
gravitational couplings. The existence of the UV and IR fixed points is confirmed in this
enhanced approximation, thus providing further evidence for the AS scenario. Interestingly,
the ultraviolet fixed point exhibits one irrelevant direction, along with two relevant ones,
in accordance with the hypothesis of a finite dimensional critical hypersurface. For related
results in f(R) gravity see e.g. [327, 328].

A well-defined Wilsonian block spinning requires locality of the flow in momentum space.
Here we show that the flows of the graviton two- and three-point functions are local in
momentum space. This nontrivial property is linked to diffeomorphism invariance.

Locality

The FRG is based on the idea of a successive integration of momentum shells, or, more
generally, spectral shells of spectral values of the given kinetic operator. Hence, it relies
on the distinction of small and large momentum or spectral modes. A functional RG step
implements the physics of momentum/spectral modes at a given scale k and is inherently
related to local interactions.

Locality in momentum space implies in particular that the flows of vertices at a given
momentum scale k decay relative to the vertex itself if all momentum transfers (momentum
channels) ti are taken to infinity. For example, for the four-point vertex we have t1, t2, t3 being
the well-known s, t, u-channels, with e.g. s = (p1 + p2)2. Hence, locality reads schematically

lim
ti/k2→∞

|∂tΓ(n)(p)|
|Γ(n)(p)| = 0 , with p = (p1, ..., pn) , (4.64)

where a projection on one of the tensor structures of the vertex is implied. For the limit
(4.64) each diagram in the flow of a given vertex has an infinite momentum transfer. Thus,
the diagrams are only sensitive to fluctuations far above the cutoff scale.

It is easily proven that (4.64) applies to standard renormalisable quantum field theories
in four dimensions including non-Abelian gauge theories that involve momentum dependent
couplings. In these theories, the locality property follows from power counting arguments.
However, for perturbatively nonrenormalisable theories in four dimensions power counting
suggests nonlocal flows and (4.64) must be a consequence of nontrivial cancellations. In
gravity this has been shown for the graviton propagator [41, 43]. It is also reflected in the
symmetry relation between graviton diagrams contributing to the Yang-Mills propagator
[329]. Moreover, it is easily verified that a ϕ4-theory with a momentum dependent coupling
such as ϕ2∂2ϕ2 does not satisfy the locality condition (4.64), as no cancellation between
tensor structures is possible. We conjecture that momentum locality in quantum gravity is
linked to diffeomorphism invariance.

Note that (4.64) does not hold, even for quantum field theories which are perturbatively
renormalisable in four dimensions, if some of the channels ti/k2 stay finite: the flow always
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Fig. 4.10.: Logarithmic plot of the flows |∂tΓ(2)| and |∂tΓ(3)| (solid red and light green curves)
and the corresponding ratios |∂tΓ(2)|/|Γ(2)| and |∂tΓ(3)|/|Γ(3)| (dashed orange and dash-
dotted dark green curves) as functions of p2/k2. The norm refers to the tensor projection
discussed below (4.65). All quantities are evaluated at (g, µh, λ3) = (1, 0.1,−0.7). The
flows are multiplied with 50 for convenience. The ratios decay with 1/p2 for large p since
the associated flows quickly approach constant values, satisfying (4.64).

involves diagrams with a finite momentum transfer. However, those diagrams correspond to
IR processes such as Bremsstrahlung, which is why they do not reflect the UV behaviour of
the theory. In summary the above discussion suggests that the relation (4.64) is a necessary
requirement for local quantum field theories.

In the following, we show that (4.64) also applies to the graviton three-point function.
Together with the momentum locality of the two-point function shown in [41, 43] this pro-
vides strong indications for the momentum locality of RG gravity. Figure 4.10 depicts the
momentum dependence of the flows for the graviton two- and three-point functions, |∂tΓ(2)|
and |∂tΓ(3)|, respectively as well as the corresponding ratios according to (4.64). Since |∂tΓ(2)|
and |∂tΓ(3)| quickly approach constants, the ratios decay with 1/p2 for large momenta.

Flows of Correlation Functions

The flow of the three-point function is obtained by three field derivatives of the flow equation
for the effective action. It is depicted in Figure 4.11. We employ a de Donder type linear
gauge condition in the Landau gauge limit of vanishing gauge parameter (α = 0, β = 1).

The right hand side of the vertex flows usually includes all types of tensor structures
admitted by symmetry irrespective of the ansatz for the vertices. For the flow equations
for the couplings Λn and Gn we have to project the tensorial vertex flow appropriately: we
focus on the transverse traceless parts of the flow, and reduce all external graviton legs to its
spin-2 parts by using transverse traceless projectors ΠT. The flow of Λn is extracted from the
momentum independent part of the n-th vertex flow at p = 0. Consequently, we decompose
T (n)(p,Λn) into its momentum independent part T (n)(0, 1) and the part T (n)(p, 0), which is
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Γ̇
(3)
k = − 1

2
+ 3 − 3 + 6

Fig. 4.11.: Diagrammatic representation of the flow of the three-graviton vertex. Double and dashed
lines represent graviton and ghost propagators, respectively, filled circles denote dressed
vertices. Crossed circles are regulator insertions. All diagrams are symmetrised with
respect to the interchange of external momenta p.

at least quadratic in p, according to

T (n)(p; Λn) = ΛnT (n)(0; 1) + T (n)(p; 0) . (4.65)

The full tensor flow with transverse traceless external legs is then contracted with T (n)(0; 1)
or T (n)(p; 0) in order to yield scalar expressions that are related to the flow of Λn or Gn,
respectively. In particular, we denote the contraction of the right-hand side with T (n)(0, 1)
and T (n)(p, 0)/p2 by Flow(n)

Λ and Flow(n)
G , respectively. The factor of 1/p2 in the definition

of the flow for the gravitational coupling accounts for the fact that the corresponding tensor
projector is proportional to p2. For convenience, the definition of Flow(n) also includes the
factor i Z

−1/2
h (pi). For the graviton three-point function these objects take the generic form

Flow(3)
Λ/G =

 d4q

(2π)4


∂tR(q2)− ηϕi

(q2)R(q2)

Fϕi,Λ/G(p, q, Gn,Λn) , (4.66)

where n ∈ {3, 4, 5} and a sum over species of fields ϕi is understood, which includes gravitons
and the corresponding ghost fields. The contributions encoded in Fϕi

originate from the
diagrams displayed in Figure 4.11. Note that (4.66) is only a function of the anomalous
dimension

ηϕi
(p2) := −∂t lnZϕi

(p2) , (4.67)

since all wave function renormalisations Zϕi
drop out. The expressions for the flow of the

three-point function still depend on the external momenta p = (p1, p2, p3), where p3 can be
eliminated using momentum conservation. Therefore, the kinematic degrees of freedom can
be parameterised by the absolute values of the remaining two momenta |p1|, |p2| and the
angle ϑ12 between them. For the proof of locality we work with the most general momentum
configuration. For the flows Flow(3)

Λ/G the maximally symmetric momentum configuration is
used,

p := |p1| = |p2| ϑ12 = 2π/3 . (4.68)

In summary, we have specified a projection procedure for the spacetime indices and a kine-
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matic configuration for the graviton field momenta. It remains to relate Flow(3)
G and Flow(3)

Λ

to the flow of the couplings G3 and Λ3, respectively. The flow of G3 is most conveniently
isolated by evaluating the projected flow at two momentum scales p = k and p = 0 and
subtracting the results. For the dimensionless coupling g3 = k2G3 we obtain

∂tg3 = (2 + 3ηh(k2))g3 −
24
19(ηh(k2)− ηh(0))λ3g3 + 2Ng

√
g3 k


Flow(3)

G (k2)− Flow(3)
G (0)


,

(4.69)
with a normalisation factor N−1

g := T (3)(k; 0) ◦Π3
T ◦ T (3)(k; 0), where ◦ denotes the pairwise

contraction of indices. Another possibility is the evaluation with a p2-derivative at p = 0.
This procedure is less accurate in approximating the momentum dependence of the flow. On
the other hand, it allows for an analytic flow equation for the couplings G3. The difference
between these momentum projections is discussed below. The flow of the dimensionless
coupling λ3 = Λ3/k

2 is obtained by evaluating the flow at p = 0, which leads to

∂tλ3 =


3
2ηh(0)− 1− ∂tg3

2g3


λ3 + Nλ√

g3
Flow(3)

Λ (0) , (4.70)

with N−1
λ := T (3)(0; 1) ◦ Π3

T ◦ T (3)(0; 1). The setup is complemented by flow equations
for the graviton gap parameter µ = −2Λ2/k

2, the fully momentum dependent anomalous
dimensions ηϕi

(p2) and the coupling of the one-point function λ1/
√
g1 = Λ1G

−1/2
1 /k3. The

flows for the couplings µ and λ1/
√
g1 are extracted from the graviton two- and one-point

functions at vanishing external momenta, respectively. The anomalous dimensions ηϕi
(p2)

are solutions to Fredholm integral equations, extracted from the two-point functions, see
[43].

The projection procedure just described can also be formulated on the level of monomials.
For the flow of the constant part of the three-graviton vertex, λ3, the invariant is

hµ
νhν

ρhρ
µ , (4.71)

whereas the flow of g3 is taken from the linear combination

6
19hµ

ρhρ
ν∆̄hν

µ − 1
19hµνhρσD̄

µD̄νhρσ + 14
19h

µνhρσD̄(µD̄ρ)hνσ . (4.72)

Proof of Locality

In order to prove (4.64) for the three-point function, an arbitrary kinematic configuration is
used and parameterised by |p1|, |p2| and the angle ϑ12. The large momentum limit is then
characterised by |p1| = |p2| = p→∞. Simple power counting of the momentum structure of
the flow leads to the naïve expectation that limp/k→∞ Flow(3)

G ∼ p2. In this case the ratio in
(4.64) would tend to a constant. However, an analytic asymptotic expansion around p =∞
shows that the p2-contribution vanishes identically in the large momentum limit by nontrivial
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cancellations between all diagrams in Figure 4.11. As a consequence, limp/k→∞ Flow(3)
G tends

to a constant and the ratio in (4.64) vanishes. This is valid for all values of the angle ϑ12, i.e.
for all kinematic configurations. For an explicit example see Figure 4.10 for the symmetric
momentum configuration. The figure further displays that (4.64) is also satisfied by the
graviton two-point function, see also [41, 43]. We conclude that locality is always satisfied
by the flows of two- and three-point functions. We emphasise again that it is indispensable
that all external momenta are taken to infinity. Indeed, for configurations with mixed UV-IR
limit equation (4.64) does not hold.

UV Fixed Point

Fixed points are defined by vanishing flows of all dimensionless dynamical couplings, that
is g3, λ3 and µ in the present setup. Most importantly, we find a UV fixed point with one
irrelevant direction that is approximately directed along the λ3-axis.

The following results are obtained with the regulator R(x) = Γ(2)|µ=0(x) r(x) where
xr(x) = (1 − x)θ(1 − x) [226, 307]. Moreover, we identify λ3 ≡ λ4 ≡ λ5 in order to
close the flow equations, and use the notation g := g3. The UV fixed point described below
is obtained with the finite difference procedure, leading to the flow equations (4.69) and
(4.70), as well as the one for µ already presented in [43]. The anomalous dimensions are
evaluated with their full momentum dependence. The fixed point values read

(g∗, µ∗, λ3∗) = (0.66,−0.59, 0.11) , (4.73)

with the critical exponents θ1, θ2 and θ3 given by10

(θ1/2, θ3) = (1.4± 4.1 i,−14) . (4.74)

As already mentioned above, the UV fixed point (4.73) has the interesting property that it is
not fully UV attractive: it exhibits two relevant and one irrelevant direction. In (4.74), this is
reflected by two critical exponents with positive real parts, θ1 and θ2, and one with negative
real part, θ3. The irrelevant direction of the UV fixed point (4.73) is approximately directed
along the λ3 axis. The critical exponents corresponding to the UV relevant directions of the
fixed points are complex, which accounts for a spiral behaviour of RG trajectories in the
vicinity of the UV fixed point. Note that θ3 in (4.74) is one order of magnitude larger than
θ1 and θ2. This kind of instability of critical exponents was also found in [328] within f(R)
gravity. There, a convergence of the critical exponents to smaller values was observed after
the inclusion of higher order operators, i.e. higher powers Rn. Indeed, θ3 becomes smaller
if the dynamical couplings g4 and λ4 are included [188].

Finally, we have checked numerically that the momentum dependencies of our ansatz for

10Note that in the published version [45], the conventions for the critical exponents is exactly opposite.
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Fig. 4.12.: Phase diagram for the couplings g, λ3 and µ in two different views. The phase diagram
was calculated using the analytic equations (4.75)-(4.78). The system exhibits a non-
trivial UV fixed point, F1, with two attractive and one repulsive direction. The Gaußian
fixed point and a nontrivial IR fixed point are denoted as F2 and F3, respectively. The set
of trajectories that approach F1 constitute a two-dimensional UV critical hypersurface
represented in gradient colours.

the vertex dressing and that of Flow(2) and Flow(3)
G are in very good agreement. Therefore,

a momentum independent G3 is a valid approximation over the whole momentum range. In
particular, the full momentum dependence of the anomalous dimensions was found to model
very accurately the higher order p dependence of Flow(3)

G .

Global Phase Diagram and Analytic Flow Equations

The flow equation (4.69) does not have a closed analytic form. However, for a more acces-
sible presentation, analytic flow equations are favourable. An analytic expression for ∂tg is
obtained by taking a derivative of Flow(3)

G with respect to p2 at p = 0. We stress that this
method is considerably less accurate in modelling the momentum dependence of the flow.
Nonetheless, the resulting analytic flow equation for g shares the main features with (4.69).
This even holds for graviton and ghost anomalous dimensions set to zero, ηh = ηc = 0.
Table 4.2 displays the properties of the nontrivial fixed point as obtained from the different
methods.

The analytic flow equations for the presented vertex flow of gravity with vanishing anoma-
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Finite difference Derivative
η(p2) η ≡ 0 η(p2) η ≡ 0

g∗ 0.66 0.96 0.58 0.57
µ∗ −0.59 −0.35 −0.44 −0.16
λ3∗ 0.11 −0.024 0.028 −0.16

(λ1/
√
g1)∗ 0.39 0.19 0.22 0.11

θi 1.4± 4.1i 2.1± 2.4i 1.6± 5.5i 1.5± 1.8i
−14 −5.8 −6.5 −1.6
2.2 3 2.5 3

Tab. 4.2.: Properties of the UV fixed point for different momentum parameterisations, namely using
a finite difference of the flow and a derivative at p = 0. The values acquired with the
latter correspond to the analytic equations given in (4.75)-(4.78). Note that λ1/

√
g1 is a

nondynamical background coupling originating from the graviton one-point function.

lous dimensions are given by

∂tg = 2g + 8g2

19π

584λ3
3 − 910λ2

3 + 445λ3 − 299
4

15(µ+ 1)5 − 47
8(µ+ 1)2

− 5
8 +

864λ3
3 + 133λ2

3 − 112λ3 + 49
4

6(µ+ 1)4 − 60λ2
3 − 58λ3 − 15
6(µ+ 1)3

, (4.75)

∂tλ3 = −


1 + ∂tg

2g


λ3 + g

π

2λ3
3 − 4λ2

3 + 3λ3 − 11
20

(µ+ 1)4 − 44λ2
3 − λ3

(µ+ 1)3 + 1− 3λ3

(µ+ 1)2 + 6
5

 ,
(4.76)

∂tµ = −2µ+ 2g
π


16λ2

3 − 8λ3 + 7
4

3(µ+ 1)3 + 2λ3 − 1
(µ+ 1)2 − 1


, (4.77)

∂t


λ1√
g1


= −3 λ1√

g1
+
√
g

2π


1

(µ+ 1)2 + 4
3


. (4.78)

Figure 4.12 shows the phase diagram for the couplings (g, µ, λ3) as calculated from (4.75)-
(4.78). The purple lines are trajectories along the flow that terminate at the nontrivial UV
fixed point F1. The set of all trajectories constitutes the two-dimensional critical hypersurface
represented in gradient colours. In the IR, the trajectories flow towards F3 = (0,∞,−∞)
or, alternatively, towards (∞,∞,−∞). The IR fixed point F3 was also observed in [43]. In
the vicinity of F3 all couplings scale classically since for µ → ∞ the loop contributions to
the flow tend to zero. Neither the trivial Gaußian fixed point F2, nor the third, nontrivial
IR fixed point, which was first found in [43] and is located at (0,−1,∞), are reached by any
UV finite trajectory in the present setup. For the latter, this is expected to change if the
vertices are expanded about a curved background [330]. A detailed IR analysis is beyond
the scope of this work.
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4.3.3. Gauge dependence and curvature correlations

As a first step beyond the previous calculations, we now want to resolve correlation functions
on a curved background, though still in a curvature expansion. For this, we resolve the fol-
lowing aspects of the graviton propagator: both gap parameters, corresponding to the tensor
mode and the scalar mode, the full gauge dependence, and the full dependence on background
curvature to linear order in a curvature expansion. We also study the three-graviton vertex
in exactly the same approximation as in the previous section, however without anomalous
dimensions. This section is based on yet unpublished work with Stefan Lippoldt.

As it turns out, it is useful to change the tensor structure of the regulator. Specifically,
any regulator has to include at least the following terms:

∆S ∼


d4x
√
ḡ

hµν


R1(∆̄)Πµνρσ

TL + R2(∆̄)Πµνρσ
Tr


hρσ


. (4.79)

Here, ΠTL (ΠTr) is the projector onto the traceless (trace) part. In fact, a regulator with
these two structures is already enough to regularise everything. In the following, it will be
crucial that we choose a regulator which doesn’t depend on the gauge parameter α. Our
particular choice is

∆S ∼


d4x
√
ḡ


hµνR(∆̄)


Πµνρσ

TL − 3 + β(β − 2)
2 Πµνρσ

Tr


hρσ


, (4.80)

where prefactors are chosen such that in the Landau gauge limit, ∆̄→ ∆̄ + R(∆̄).
Since we want to resolve curved correlation functions, we have to specify the tensor mono-

mials and couplings that we want to study. We amend the classical Einstein-Hilbert action
by

Γcurv = 1
32π


d4x
√
ḡ hµν


RC C̄

µρνσ +RTLSTL Πµντω
TL S̄ωλΠTLτ

λρσ +RRTL R̄Πµνρσ
TL

+RSTr

S̄µν ḡρσ + ḡµνS̄ρσ


+RRTr R̄Πµνρσ

Tr


hρσ ,

(4.81)

We also resolve the two gaps, which we specify in the following way. We start by the second
variation of the Einstein-Hilbert action, then decompose the fluctuation h into traceless and
trace part, and label the corresponding prefactors as λTL and λTr, respectively. We finally
introduce another gap, λ̃, by the relation

λ̃ = −2β2λTL + 6λTr

(β − 3)2 . (4.82)

With this, in the Landau gauge limit, all propagators have the form ∆̄ + R(∆̄)− 2λ, either
with λTL or with λ̃. These two gaps are thus gauge independent, and might reduce potential
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gauge dependencies when coupling identifications are used11.

Landau gauge limit

We will now show that the limit α → 0 is indeed a fixed point of the flow, and that any
choice of β in this limit is also a fixed point. For this, observe that the graviton propagator
and all vertices on flat background are finite in the limit α → 0. To advance in the proof,
we have to specify a projection onto the flow of α. This is most naturally done with a York
decomposition after the flow has been calculated. The flow of α is then read off from the
kinetic term of the transverse vector, ξTµ∆̄2ξT

µ . On the other hand, the flow of β can then
be uniquely obtained from the correlator σ̄∆̄2σ̄, where σ̄ is the linear combination of the
scalar modes which is pure gauge to linear order [308],

σ̄ = σ + β

(d− 1− β)∆̄− R̄

h + ∆̄σ


. (4.83)

Schematically, the flow equation for α thus reads

∂t
1
α

= −∂tα
α2 ∼ Flow(2)

ξTµ∆̄2ξT
µ
, (4.84)

where the right-hand side is finite in the limit α→ 0, since the propagator, vertices and the
regulator insertion are all finite in this limit. The direct consequence is that in this limit, the
flow of α vanishes. Since the flow is quadratic in α, α is a marginal parameter. Furthermore,
for the flow of β, one obtains

∂t
β

α
= 1
α


∂tβ − β

∂tα

α


∼ Flow(2)

σ̄∆̄2σ̄
. (4.85)

Since again the right-hand side is finite in the limit α → 0, we obtain that ∂tβ vanishes in
this limit, showing that any choice of gauge fixing in the Landau gauge limit is a fixed point.
Clearly also β is an exactly marginal parameter in this limit. This discussion underlines that
the limit α→ 0 is indeed a physical limit which disentangles gauge and physical degrees of
freedom also during the flow.

Fixed point structure I - flat background

It is clear that the curvature couplings don’t feed into the flow equations of the “flat”
couplings g3, λTL, λ̃ and λ3. We thus first study the system of these four couplings, and
later the fixed point structure of the curvature couplings on the solution of this system.

To make contact with the previous section, we first choose β = 1, and investigate how the
fixed point structure changes upon the inclusion of the second gap. It turns out that now,

11In the following discussion, we refrain from the redefinition µ = −2λ.
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we find two viable fixed points, both with two relevant and two irrelevant directions. The
first fixed point, which might be related to the one found with a single gap, has coordinates

g∗ = 0.196 , λ3∗ = −0.008 , λTL∗ = 0.197 , λ̃∗ = 0.399 , (4.86)

with critical exponents

θ1,2 = 1.650± 3.698i , θ3 = −5.433 , θ4 = −28.59 . (4.87)

The second fixed point is situated at

g∗ = 0.928 , λ3∗ = 0.337 , λTL∗ = 0.201 , λ̃∗ = 0.344 , (4.88)

and has purely real critical exponents,

θ1 = 21.42 , θ2 = 3.325 , θ3 = −7.486 , θ4 = −17.21 . (4.89)

By contrast, for β = 0, only one fixed point with positive g3 and two relevant directions is
found,

g∗ = 0.168 , λ3∗ = 0.037 , λTL∗ = 0.250 , λ̃∗ = 0.419 , (4.90)

with critical exponents

θ1,2 = 0.933± 5.169i , θ3 = −3.318 , θ4 = −29.92 . (4.91)

There is a second fixed point in the physical regime with only one relevant direction at

g∗ = 0.033 , λ3∗ = −0.714 , λTL∗ = 0.077 , λ̃∗ = 0.453 . (4.92)

Its critical exponents are

θ1 = 1.686 , θ2,3 = −1.255± 1.407i , θ4 = −56.65 . (4.93)

We tend to view this fixed point as an artifact of the approximation since it is quite near
to the singularity at λ̃ = 1/2, which is vastly off-shell and might not be captured well by a
background curvature expansion.

For β = −1 (termed the physical gauge in [331]), the situation gets strange: both fixed
points of the choice β = 0 survive, however the fixed point with formerly 2 irrelevant direc-
tions now has only irrelevant directions, i.e. the flow is attracted towards the fixed point in
the IR. In its form this fixed point is not suitable anymore for a UV completion in the sense
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of AS. Its coordinates are at

g∗ = 0.083 , λ3∗ = −0.003 , λTL∗ = 0.272 , λ̃∗ = 0.448 . (4.94)

The critical exponents are

θ1,2 = −0.018± 7.359i , θ3 = −4.474 , θ4 = −52.09 , (4.95)

thus this fixed point is very near to being a suitable fixed point. At present it is not clear
how this strong dependence on the gauge choice comes about, and future investigations will
have to settle this issue. It might well be that either more momentum dependence or higher
order correlation functions need to be resolved to change the critical exponents for it to be
a viable UV fixed point. Also, completely opposite to the background flows studied above,
but following the trend just observed, in the limit β → −∞, no fixed point with positive g3

is found at all.

Fixed point structure II - curvature couplings

As an exploratory study, we now again fix β = 1 and study the curvature couplings at the
first fixed point, (4.86). To uniquely project on the tensor structures, we employ the basis
as introduced in appendix D. To make things explicit, we write down the flow equations for
all couplings with this gauge choice12:

∂tRC =
g(λ3(93−72RC)+36λ2

3−17)
162πϵ̃2 + g(48λ2

3−8λ3−3)(RC−1)
81πϵ̃3 − 8gλ3

9πϵ̃
ϵTL

+
−g(312λ2

3−304λ3+75)(RC−1)
324πϵ̃ − 2g(λ3(33−63RC)+609λ2

3+19)
81π

ϵ3
TL

+
−g(λ3(72RC−75)+36λ2

3−10)
162πϵ̃ + g((−120λ2

3+272λ3−87)RC−152λ3+57)
648πϵ̃2 + g(25−52λ3)

18π
ϵ2

TL

− g (4λ3 + 1) 2

216πϵ̃4 + 4g (λ3 − 2)
9πϵ̃2 + g (60λ2

3 + 72λ3 + 11)
162πϵ̃3

+ g (7 (264λ2
3 − 80λ3 − 3)RC − 1648λ2

3 + 240λ3 + 86)
216πϵ4

TL
+ 2g

3π , (4.96)

∂tRTLSTL = −
5g(−28λ2

3+λ3(−36RSTr+3RTLSTL+4)+1)
54πϵ̃2 −

10g((12λ2
3+4λ3−3)RSTr+(1−3λ3)λ3RTLSTL)

81πϵ̃3 + 10gλ3
9πϵ̃

ϵTL

+
5g(3(64λ2

3−40λ3+7)RTLSTL−4(384λ2
3−232λ3+39)RSTr)

324πϵ̃ + 5g(252λ2
3+λ3(132−216RTLSTL)+25)

243π
ϵ3

TL

12Note that with the chosen ansatz for the vertex expansion, (4.63), the fluctuation field h is dimensionful,
and thus the curvature couplings are dimensionless. We also already identified all higher order couplings
with the couplings of level 3.
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+
−5g(52λ2

3+λ3(−36RSTr+3RTLSTL−88)+27)
54πϵ̃ − 5g(13λ3+2)

9π
ϵ2

TL

+ 5g(4(3(1−2λ3)2+(−408λ2
3+224λ3−33)RSTr)+(216λ2

3−128λ3+21)RTLSTL)
648πϵ̃2ϵ2TL

− g (288λ2
3 + 6λ3 (324RSTr + 27RTLSTL − 8)− 35)

486πϵ̃3

+ g (6 ((4λ3 + 1) 2 + 2 (96λ2
3 + 32λ3 + 3)RSTr) + (96λ2

3 + 32λ3 + 3)RTLSTL)
648πϵ̃4

+ ϵTL


g (48λ2

3 + 12λ3 + 1)
162πϵ̃4 − 2gλ3

3πϵ̃3


+ g (λ3 + 1)

9πϵ̃2

− 5g (3 (40λ2
3 − 64λ3 + 13) + (204λ2

3 − 16λ3 − 33)RTLSTL)
324πϵ4

TL
− 5g

3π , (4.97)

∂tRRTL =
−5g(24λ2

3−16λ3+3)(3RRTL+9RRTr+1)
486πϵ̃3 − 5g(33λ3−10)

486πϵ̃2

ϵTL

+
5g(36λ2

3−28λ3+(72λ2
3−48λ3+9)RRTL−9(24λ2

3−16λ3+3)RRTr+6)
972πϵ̃2 −

5g(108λ2
3−93λ3+26)
486πϵ̃

− 5g(32λ3+47)
216π

ϵ2TL

− g (66λ2
3 + 42λ3 + 27 (4λ3 + 3)RRTL + 81 (4λ3 + 3)RRTr + 38)

243πϵ̃3

+ g (112λ2
3 + 40λ3 + 3 (96λ2

3 + 32λ3 + 3)RRTL + 9 (96λ2
3 + 32λ3 + 3)RRTr + 4)

648πϵ̃4

+
5g(24λ2

3−16λ3+3)(3RRTL+1)
243πϵ̃ − 5g(208λ2

3+348λ3+72(8λ3−3)RRTL−149)
324π

ϵ3
TL

+ ϵTL


g (48λ2

3 + 12λ3 + 1)
324πϵ̃4 − g (16λ3 + 9)

108πϵ̃3


+ 109g

216πϵ̃2

− 5g (1576λ2
3 − 896λ3 + 6 (768λ2

3 − 416λ3 + 87)RRTL + 187)
648πϵ4

TL
− 19g

36π , (4.98)

∂tRSTr =
5g(3λ3−2)(−12RSTr+RTLSTL+2)

324πϵ̃2 − 5g(8λ3−3)(RTLSTL−12RSTr)
648πϵ̃3 − 5g(λ3−1)

27πϵ̃
ϵTL

+
5g(3λ3−2)(−12RSTr+RTLSTL+2)

324πϵ̃ − 5g(8λ3−3)(RTLSTL−12RSTr)
648πϵ̃2 − 5g(52λ3−9)

216π
ϵ2

TL

+ − 5g(8λ3−3)(RTLSTL−12RSTr)
648πϵ̃

− 5g(−78λ3+(48λ3−26)RTLSTL+9)
324π

ϵ3TL
+ g(16λ3+3)(12RSTr+RTLSTL)

432πϵ̃4

− g (18λ3 + 12 (3λ3 + 1)RSTr + 3λ3RTLSTL +RTLSTL − 5)
162πϵ̃3 − g

12π

+ ϵTL


6gλ3 + g

108πϵ̃4 −
4gλ3 + g

108πϵ̃3


+ g (20λ3 − 11)

216πϵ̃2 + 5g (128λ3 − 39)RTLSTL

432πϵ4
TL

,

(4.99)

∂tRRTr = −g (RRTL + 3RRTr + 1)
3πϵ̃3 + g (3RRTL + 9RRTr + 1)

8πϵ̃4 + ϵTL


g

12πϵ̃4 −
g

12πϵ̃3


+ 5g

24πϵ̃2 + 5g (8RRTL + 5)
12πϵ3

TL
− 5g (3RRTL + 1)

4πϵ4
TL

− 5g
8πϵ2

TL
− 11g

36π . (4.100)
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As a shorthand, we introduced ϵTL = 1 − 2λTL and ϵ̃ = 1 − 2λ̃. Due to the orthogonality
of the curvature tensors, the term with a Weyl tensor can only contribute to its own flow
equation, likewise the terms with a tracefree Ricci tensor mix, as is the case with the terms
with a Ricci scalar. The fixed point values of the curvature couplings read

RC∗ = 0.164 , RTLSTL∗ = 1.131 , RRTL∗ = 0.453 , RSTr∗ = 0.476 , RRTr∗ = −0.252 .
(4.101)

The critical exponents group, which is again due to the curvature tensor basis,

θC = 1.386 , θS1 = 1.235 , θS2 = −1.441 , θR1 = 0.607 , θR2 = −31.49 . (4.102)

The relevant critical exponent θS1 mostly points into the direction of RSTr, whereas the rel-
evant critical exponent θR1 is strongly aligned with the coupling RRTL. The relatively small
fixed point values indicate that the classical tensor structure seems to be a good approx-
imation to the quantum tensor structure at the fixed point. Moreover, not all curvature
couplings are relevant, lending further support to a finite-dimensional critical hypersurface.

Let us stress that we calculated the flow equations for the curvature-fluctuation correla-
tions, (4.96)-(4.100), for the first time. They represent an important step towards correlation
functions in an arbitrarily curved spacetime.

4.4. Beyond the vertex expansion
The results of the preceding section show that in bimetric truncations the situation is not
yet under quantitative, and maybe even not under qualitative control. A natural question
that arises is whether this is inherent in the vertex expansion, and if so, how one can go
beyond it, and towards some kind of local potential approximation in quantum gravity. To
lay the foundations for this step is the aim of this last section.

4.4.1. Cayley-Hamilton theorem

We first have to make sense of the statement that we want some kind of local potential
approximation, i.e. a function which depends on the fluctuation field hµν . Functions depend
on scalar quantities, and in our context, these scalar quantities are the invariants of hµν
under coordinate transformations, i.e. under the action of the group GL(d). This follows
from the observation that we want indexfree objects, and in our Euclidean setup, this boils
down to exactly GL(d) invariance. In the following, it is useful to work with the matrix
h = ḡ−1h, which is a rank (1, 1) tensor, such that powers of h are automatically covariant.
It is furthermore convenient to introduce the trace and traceless part of h,

h = h
TL + 1

d
h1d , (4.103)
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where d is the dimension of spacetime and 1d is the Kronecker delta. In the following,
we will focus on scalar invariants of h without including derivatives, the generalisation is
however straightforward. Clearly, since h is a usual matrix, the scalar invariants are just the
d eigenvalues. Since the eigenvalues are difficult to handle in a functional QFT language,
we have to find a different way to represent the invariants. This is possible via the Cayley-
Hamilton theorem (CHT). Loosely speaking it states that substituting the matrix itself for
the eigenvalue in the characteristic polynomial gives the zero matrix. This immediately gives
a basis of monomials, namely the first d powers of the matrix, and an algorithm to expand
any power of the matrix higher than d into this basis. Invariants are then the traces of these
monomials and the determinant.

To be more concrete, in the following we specify again to d = 4. Since we are working in a
traceless decomposition, the first invariant is always the trace itself. Our choice for the four
invariants is

h1 = h ,

h2 = tr

h

TL
2

,

h3 = tr

h

TL
3

,

h4 = dethTL .

(4.104)

The CHT for hTL then reads13


h

TL
4
− 1

2h2

h

TL
2
− 1

3h3h
TL + h414 = 0 . (4.105)

The choice (4.104) is mainly due to the fact that it admits for a suitable truncation scheme.
Invariants can be truncated from higher label to smaller label. On the other hand, since hTL

is a real symmetric matrix, if h2 = 0, then also h3 = h4 = 0. A physical example for the
usefulness of this truncation scheme are fluctuations in the form of gravitational waves,

h
TL =


0 0 0 0
0 h+ h× 0
0 h× −h+ 0
0 0 0 0

 , (4.106)

which gives
h2 = 2


h2

+ + h2
×


,

h3 = 0 ,

h4 = 0 .

(4.107)

13For the general matrix h, the theorem reads h
4 − (trh)h3 + 1

2


(trh)2 − tr


h

2
h

2 −
1
6


(trh)3 − 3 tr


h

2 trh+ 2 tr

h

3
h+ det (h) 14 = 0.
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4.4. Beyond the vertex expansion

Here, h+ and h× are the two polarisation states of the gravitational wave in transverse
traceless gauge. Clearly there are also more general constraints on allowed values of the
invariants (4.104), which we shall however not discuss here.

Let us show a first application of this general setting. With the insights of the CHT,
the most general parameterisation of the full metric in terms of a background metric and a
fluctuation, without derivative terms, can be written down as

g = ḡ

A0 14 +A1 h

TL +A2

h

TL
2

+A3

h

TL
3

, (4.108)

where the Ai are functions of the four invariants (4.104). The inverse metric g−1 has a
similar exact representation,

g−1 =

B0 14 + B1 h

TL + B2

h

TL
2

+ B3

h

TL
3

ḡ−1 . (4.109)

The functions Bi can be expressed explicitly in terms of the Ai, and the general form is given
in the appendix E. For the special case of the linear split, where

Alin
0 = 1 + 1

4h , Alin
1 = 1 , Alin

2 = Alin
3 = 0 , (4.110)

we find
Blin

0 =
(Alin

0 )3 − 1
2A

lin
0 h2 + 1

3h3

(Alin
0 )4 − 1

2(Alin
0 )2h2 + 1

3A
lin
0 h3 + h4

,

Blin
1 = −

(Alin
0 )2 − 1

2h2

(Alin
0 )4 − 1

2(Alin
0 )2h2 + 1

3A
lin
0 h3 + h4

,

Blin
2 = Alin

0
(Alin

0 )4 − 1
2(Alin

0 )2h2 + 1
3A

lin
0 h3 + h4

,

Blin
3 = − 1

(Alin
0 )4 − 1

2(Alin
0 )2h2 + 1

3A
lin
0 h3 + h4

.

(4.111)

This can be proven by multiplying (4.108) from the left with (4.109) and demanding that the
product is the identity, repeatedly using the CHT. Similarly, we can calculate the determinant
of g, the full expression is again deferred to the appendix E. For the linear split, we obtain
the surprisingly simple expression

det g =

(Alin

0 )4 − 1
2(Alin

0 )2h2 + 1
3A

lin
0 h3 + h4


det ḡ . (4.112)

From this, we obtain the constraint

(Alin
0 )4 − 1

2(Alin
0 )2h2 + 1

3A
lin
0 h3 + h4 > 0 (4.113)

to ensure invertibility of the full metric. Let us again stress that there are no approximations
in the preceding expressions, they directly follow from the linear parameterisation of the
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metric and the CHT.
The tools developed here can be applied in a more general context, e.g. to study the

general dependence on the background tracefree Ricci tensor, or the field strength tensor
in gauge theories. As an illustration, we treat a pure U(1) gauge theory with a funcational
truncation in appendix G. It was recently argued that quantum gravity effects might cure the
triviality problem of the U(1) sector of the Standard model [332]. Clearly, an investigation
with functional truncations of the U(1) field strength needs to be carried out to substantiate
or refute this argument.

4.4.2. Towards a local potential approximation in quantum gravity

Having discussed the technical details, we can introduce the approximation scheme that we
want to propose in order to go beyond the vertex expansion. The first step is the analogue
of the local potential approximation in scalar field theories, i.e. we want to resolve the
momentum independent parts of all correlation functions. This can be done by the ansatz

ΓLPA = 1
16πGN


d4x
√
g (−R + 2V) . (4.114)

In this equation, the “fluctuation potential” V is the generalisation of the cosmological
constant, and depends on the invariants (4.104). In a first step, the Newton’s constant
might be treated parametrically in all equations.

At this point, one should mention that if we would also resolve the full field dependence
of all derivative terms, then a parameterisation of the full metric enters at no point in the
calculation, so one might worry how to get back to the single metric effective action. The key
observation is that the parameterisation (and with it the resolution of the Nielsen identities)
is hidden in the choice of the initial condition of the flow. In this sense, the present approach
is manifestly parameterisation independent.

One important comment on the viability of the truncation is necessary. Since we don’t
give the fluctuation field h a mass dimension in this approach, it is expected that we strictly
need to include an anomalous dimension. This comes from the following observation. The
flow equation for the dimensionless fluctuation potential v̄ reads schematically

∂tv̄ = −4v̄ +
4
i=1

ηhi
hi∂hi

v̄ + flowv̄ , (4.115)

where the ηhi
are the anomalous dimensions of the hi. The term with anomalous dimen-

sion, together with the first dimensional term, dictate the large field behaviour of v̄. More
explicitly, in the limit of hi →∞, while keeping the other invariants finite,

v̄ ∼ h
4/ηhi
i . (4.116)
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Fig. 4.13.: Ghost contribution to the fluctuation potential, if the graviton fluctuation is restricted to
a combination of trace and gravitational wave. The fluctuations must fulfill


1 + 1

4h1
2
−

1
2h2 > 0 for an invertible metric.

Neglecting the anomalous dimension thus seems to be a qualitatively bad approximation.
This is in some analogy to scalar theories at their lower critical dimension, where the scalar
field also becomes dimensionless. The crucial difference is that in quantum gravity, h is di-
mensionless in any dimension14, and thus one should always include an anomalous dimension
if one wants to resolve the field dependence qualitatively correctly.

It is rather ambitious to derive and solve the flow equation for V with all four invariants.
Still, as mentioned in the last section, seemingly reasonable truncation schemes exist, and
current work is devoted to the derivation of truncated flow equations for the fluctuation
potential. As a proof of concept, we shall derive the full ghost contribution to the flow of
the fluctuation potential.

For a clean presentation, we stick to the gauge choice β = 1. It turns out that with a rather
straightforward extension of the regulator, the contribution to the flow of V is independent
of β. The ghost action can be written as

Γgh =


d4x
√
ḡ c̄µ ḡ

µνFαβν Lcgαβ

= −


d4x
√
ḡ c̄µ [ḡµνgνρ] ∆̄cρ +O(R̄, D̄h) .

(4.117)

Here, Fαβµ = δβµD̄
α − 1

2 ḡ
αβD̄µ is the gauge fixing operator and Lc is the Lie derivative along

14In contrast to the previous sections, here we don’t parameterise the vertices with factors of dimensionful
couplings.
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the vector c. The regulator is chosen as

∆Sgh = −


d4x
√
ḡ c̄µR(∆̄) cµ . (4.118)

For the calculation around flat background, we can switch to momentum space. The prop-
agator is easily obtained for the general case by noting that we look for the inverse of

Γ(2)
gh + ∆S(2)

gh = −p2

ḡ−1 g + R(p2)

p2 1


≡ −p2ḡ−1g̃ , (4.119)

where g̃ is defined by the full metric g with the coefficient A0 being shifted by R(p2)/p2.
The propagator can thus be compactly written as

Ggh = − 1
p2 g̃

−1ḡ , (4.120)

where g̃−1 is given by the inverse of the full metric, expressed in terms of the (partly shifted)
coefficients of the metric itself. We can now easily evaluate the trace,

− tr [Ggh∂tR] = −


d4x
√
ḡ

1
8π2

 ∞

0
dp p3


1
p2 g̃

µν ḡµν


∂tR(p2)

= −


d4x
√
ḡ

1
8π2

 ∞

0
dp p


∂tR(p2)


(4B0 + h2B2 + h3B3)


A0→A0+R(p2)/p2

,

(4.121)
where the Bi are the coefficients of the inverse metric, expressed in terms of the coefficients
Ai of the metric, as given in (4.111) for the linear parameterisation.

To illustrate this result, let us consider the special case of the Litim regulator [226, 307], the
linear parameterisation and set h3 and h4 to zero. The integral can be calculated analytically,
but nothing can be learned from its explicit form. We show the function in Figure 4.13. If
one restricts the fluctuation to either pure trace or pure gravitational wave, the flow is

− tr [Ggh∂tR] = −2


d4x
√
ḡ
h1 − 4 lnA0

h2
1π

2 , (4.122)

or

− tr [Ggh∂tR] = −


d4x
√
ḡ
h2 − 2 ln


1− 1

2h2


8π2h2
, (4.123)

respectively. These functions are shown in Figure 4.14.
As a final remark in this section, we note that the Ricci scalar in the Einstein-Hilbert

term can be rewritten into a form most suitable in the present context, namely in a sum
of squares of Christoffel symbols. Since for the flow of V we only need the second variation
of the action, this form of the Ricci scalar makes this second variation particularly simple:
as we project the flow equation onto constant h and flat background ḡ = δ, and since the
Christoffel symbols are linear in derivatives, the only contribution to the second variation
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Fig. 4.14.: Ghost contribution to the fluctuation potential, if one only allows for trace fluctuations
(left panel) or gravitational waves (right panel). The trace fluctuation must satisfy
h1 > −4 in order for the background metric to be invertible. For purely gravitational
wave gravitons, we have 0 ≤ h2 < 2.

comes from the combination where each Christoffel symbol is varied once.
To show this, first note that the Ricci scalar can be expressed as

R = gαβ

ΓγγδΓδαβ − ΓγαδΓδγβ − ∂αΓγγβ + ∂γΓγαβ


, (4.124)

where Γ is the Christoffel symbol of the metric g, and ∂ denotes the standard partial deriva-
tive. Using basic identities from differential geometry, partial integration and dropping
boundary terms, we can rewrite

ddx√g gαβ [−∂αΓγαβ + ∂γΓγαβ]

=


ddx

Γγγβ ∂α

√
g gαβ


− Γγαβ ∂γ

√
g gαβ


=


ddx

Γγγβ


−√g gµνΓβµν


− Γγαβ

√
g

Γδγδgαβ −


Γαγδgδβ + Γβγδgαδ


=


ddx√g gαβ

−2ΓγγδΓδαβ + 2ΓγαδΓδγβ


,

(4.125)

and thus 
ddx√g R =


ddx√g gαβ


−ΓγγδΓδαβ + ΓγαδΓδγβ


. (4.126)

Notably, the same result can be obtained if one treats the Christoffel symbols as (1, 2)-
tensors and rewrites the partial derivatives as covariant derivatives plus the corresponding
Christoffel symbols, finally dropping the terms with covariant (in this case total) derivatives.
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Having presented the results on the quantisation of gravity, we will now switch to graphene
and related materials. We start by discussing some theoretical foundations of the study
of graphene, and then present our approximations and results for a particular subsystem.
Finally, we study the supersymmetric version of this model. In this chapter, we restrict
exclusively to d = 3.

5.1. Dirac materials
To describe graphene and other Dirac materials, we effectively need to take into account the
interactions of Dirac electrons which loosely speaking reside on the lattice sites. By tuning
different interactions, e.g. on-site or nearest-neighbour interactions, different phases can be
observed. Graphene is believed to be in the semimetallic (SM) phase [98, 333–337]. If on-site
repulsion is increased, a phase transition to a spin-density-wave (SDW) phase is observed,
whereas for stronger nearest-neighbour repulsion, the transition is towards a charge-density-
wave (CDW) phase [82, 87, 92, 338]. More exotic states are possibile, as topological quantum
spin hall states [88–90, 97] or Kekulé states [93–96]. An interesting question is what happens
at the critical point where these three phases meet. Possible scenarios include a further mixed
phase (2nd order tetracritical point), a first order phase transition only between SDW and
CDW (2nd order bicritical point with 1st order transition between the ordered phases), or
also first order transitions between the SM phase and the other two phases (1st order triple
point). This is depicted in Figure 5.1.

In the simplest approximation, these materials are described by a single-particle Hamilto-
nian for spin s electrons on the honeycomb lattice at half filling, together with on-site and
nearest-neighbour interactions [114]. If only the Fourier modes near the points K and K ′ are
considered, we end up with a low energy effective theory of free relativistic electrons on the
honeycomb lattice, which can be described by a Dirac theory [85]. To describe the two phase
transitions to CDW and SDW, we follow [114] and introduce two bosonic order parameters,

χ = ψ̄ψ ,

ϕa = ψ̄ (σa ⊗ 14)ψ .
(5.1)

Here, ψ is a Dirac spinor with two flavours in a four-dimensional reducible representation, σa
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5.1. Dirac materials

Fig. 5.1.: Structural phase diagram of graphene-like materials with on-site interaction U and
nearest-neighbour interaction V . The start indicates the position of graphene. For the
critical point in the shaded region, three possibilities come to mind: 2nd order tetracriti-
cal point (I), 1st order triple point (II) and 2nd order bicritical point with 1st order lines
between the two ordered phases (III). Image taken from [114].

is the Pauli matrix, and χ (ϕa) is the CDW (SDW) order parameter field. The corresponding
microscopic action reads

S =


d3x

ψ̄ (12 ⊗ γµ) ∂µψ + ψ̄ {(gχχ12 + gϕϕaσ

a)⊗ 14}ψ

+1
2 (∂µχ) (∂µχ) + 1

2 (∂µϕa) (∂µϕa) + V (ρχ, ρϕ)

,

(5.2)

where ρX = X2/2. Our conventions on the Clifford algebra are collected in appendix H. This
model is a combination of two Gross-Neveu-Yukawa models with O(1) and O(3) symmetry,
respectively. This kind of model plays an important role in many contexts. It can be regarded
as a toy model for an asymptotically safe theory [339], which underlines the dual role of a
given interacting fixed point in that it can describe either IR or UV. In four dimensions, the
Higgs-top sector of the Standard Model [212, 340] is described by such a theory, and it serves
as an effective low energy description of QCD [341–352] (quark-meson model). It is related
to the standard Gross-Neveu model [353] by a Hubbard-Stratonovich transformation.

In the following, we will study one of the subsystems of (5.2), namely the one with CDW
order parameter, in NLO in the derivative expansion. This will include all terms with at
most two derivatives and two fermions. The SDW subsystem is much more complicated
due to the additional index structure, and will be left for future research. The fixed point
structure of the coupled system can be inferred in part from the subsystems. Clearly, an
interesting possibility is a fully coupled fixed point, which was found in [114], but played
no role for graphene. It remains to be seen if the same conclusions can be drawn in more
extended approximations.

In some parts of the literature, the Gross-Neveu model with CDW (SDW) order parameter
is called chiral Ising (Heisenberg) model, in analogy to the pure bosonic models [354].

Before coming to results, let us discuss the symmetries of the model [92, 355]. There is a
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discrete Z2 reflection symmetry,

ψ → (1Nf
⊗ γ2)ψ, ψ̄ → −ψ̄(1Nf

⊗ γ2), χ→ −χ, ϕa → −ϕa , (5.3)

if at the same time the spatial momentum is reflected across the 1st axis. This corresponds
to the sublattice exchange symmetry. There is a further SU(2) spin rotation symmetry,

ψ → eiθnaσa⊗14ψ, ψ̄ → ψ̄e−iθnaσa⊗14 , χ→ χ, ϕa → Ra
bϕ
b , (5.4)

with the O(3) rotation matrix Ra
b = δab − 2θϵabcnc, where na is the rotation axis and θ the

rotation angle. Clearly, there is the U(1) charge conservation

ψ → eiθψ, ψ̄ → ψ̄e−iθ . (5.5)

On the honeycomb lattice, translational invariance corresponds to a chiral U(1) [91],

ψ → eiθ12⊗γ̄ψ, ψ̄ → ψ̄e−iθ12⊗γ̄ , (5.6)

where γ̄ = γ0γ1γ2. This symmetry is also related to the fact that the charge in every Dirac
cone sector at the Dirac points is conserved individually. Thus, the phases of the modes near
these points can be rotated independently. Furthermore, for the CDW order parameter, also
the spin can be rotated independently, giving rise to a further SU(2),

ψ → eiθnaσa⊗γ̄ψ, ψ̄ → ψ̄e−iθnaσa⊗γ̄ . (5.7)

This is however not a symmetry in the SDW sector.

5.2. Gross-Neveu-Yukawa model with CDW order
parameter

The renormalisation group will generically generate all operators compatible with the sym-
metries, even if their coupling at some scale vanishes. This means that even if we start with
the microscopic action (5.2), further operators will be generated during the RG flow. In the
following, we will study a truncation of the theory space to all operators consistent with the
symmetry which include at most two derivatives and bifermionic terms. In the first part,
we spell out the explicit form of this truncation, whereas in the second part, we discuss the
solution of the flow equations and compare to literature values. The results of this section
are published in [201].
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5.2.1. Truncation

Let us now build up the ansatz for the effective action for general flavour numbers Nf . The
purely bosonic part of our ansatz for the action reads

Γbos =


d3x
1

2Zχ(ρ)(∂µχ)2 − V (ρ)

, (5.8)

where the potential V and the bosonic wave function renormalisation Zχ depend on the field
χ via ρ = χ2/2. To this, we add a kinetic term for the fermions with fermionic wave function
renormalisation Zψ, and a Yukawa interaction gχ,

Γferm =


d3x
1

2Zψ(ρ)

ψ̄(1Nf

⊗ /∂)ψ − (∂µψ̄)(1Nf
⊗ γµ)ψ


+ gχ(ρ)χψ̄ψ


, (5.9)

and further interaction terms,

Γint =


d3x

i Jψ(ρ)(∂µρ)ψ̄(1Nf

⊗ γµ)ψ +X1(ρ)χ(∂µψ̄)(∂µψ)

+ i
2X2(ρ)(∂µχ)


ψ̄∂µψ − (∂µψ̄)ψ


+X3(ρ)(∂2χ)ψ̄ψ

+ 1
2X4(ρ)(∂µχ)


ψ̄(1Nf

⊗ Σµν)∂νψ − (∂νψ̄)(1Nf
⊗ Σµν)ψ


+1

2(X5(ρ) + 2X ′
3(ρ))(∂µχ)2χψ̄ψ


.

(5.10)

Here, [γµ, γν ] = 2Σµν . All functions are considered to depend on the renormalisation group
scale k, and the prefactors are chosen in such a way that all functions are real. The specific
linear combination in front of the last term is for pure convenience. Notice that in this
section only, we consider the action before Wick rotation. This is to ensure that our ansatz
respects unitarity, which is easier to check for a Minkowskian action (for a Euclidean action,
one has to impose reflection positivity [356]). Only after all algebraic manipulations have
been executed, we perform the Wick rotation to Euclidean space to be able to perform the
integration over the loop momentum.

In this ansatz, we neglect terms which contain ψ̄ γ̄ ψ. Such operators correspond to a
different order parameter, and break time reversal symmetry [87, 114]. Further, one could
form contractions of derivatives, γµ and Σµν with the fully antisymmetric symbol ϵµνρ. The
negligence of both can be justified a posteriori: the explicit calculation shows that no such
operator is generated by the above ansatz, at least to NLO.

The combination of (5.8), (5.9) and (5.10) significantly extends previous work, which only
resolved the field dependence of the potential [92, 100, 114, 153, 169, 339, 357], or the
potential and the standard Yukawa interaction [350, 358], while retaining field independent
wave function renormalisations, i.e. anomalous dimensions.

Critical phenomena of physical systems are described by fixed points, which are charac-
terised by the vanishing of all flows of the dimensionless quantities. For this, renormalised
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quantities are introduced. The renormalised fields read

χ̂ = Zχ(0)1/2k−1/2χ ,

ψ̂ = Zψ(0)1/2k−1ψ ,

ˆ̄ψ = Zψ(0)1/2k−1ψ̄ .

(5.11)

The renormalised potential and wave function renormalisations are defined as

V̂ (ρ̂) = k−3V (ρ) ,

Ẑχ(ρ̂) = Zχ(0)−1Zχ(ρ) ,

Ẑψ(ρ̂) = Zψ(0)−1Zψ(ρ) ,

(5.12)

and the renormalised interaction terms are

ĝχ(ρ̂) = Zχ(0)−1/2Zψ(0)−1k−1/2gχ(ρ) ,

Ĵψ(ρ̂) = Zχ(0)−1Zψ(0)−1k Jψ(ρ) ,

X̂1−4(ρ̂) = Zχ(0)−1Zψ(0)−1k3/2X1−4(ρ) ,

X̂5(ρ̂) = Zχ(0)−3/2Zψ(0)−1k5/2X5(ρ) .

(5.13)

The anomalous dimensions are given by

ηχ = −∂t lnZχ(0) ,

ηψ = −∂t lnZψ(0) .
(5.14)

We chose to normalise the renormalised wave function renormalisations to 1 at vanishing
field. This is natural for the flavour numbers that we discuss, since in that regime, the fixed
point lies in the symmetric regime. For other systems, it might be more convenient to fix
these functions at the vacuum expectation value, see [201] for a study of the dependence
of physical quantities on this choice for the O(1) model. From now on, we only discuss
renormalised quantities, and drop the hats for the sake of readability.

Finally, we have to specify the regularisation. For this, the action is amended by

∆S =


d3x


1
2χRχ


p2

k2


χ+ ψ̄Rψ


p2

k2


1Nf
⊗ /∂

p
ψ


. (5.15)

Momentum arguments are to be understood as the momenta after Wick rotation. As a
further quality check of the truncation, we will study several regulator kernels. We will

84



5.2. Gross-Neveu-Yukawa model with CDW order parameter

study the dependence of the results on the one-parameter family of regulators

Rχ(x) = k2

2exa − 1 ,

Rψ(x) = k

2exa − 1 .
(5.16)

In all cases, for the numerical integration of the threshold functions, an adaptive Gauß-
Kronrod 7-15 rule was employed [359]. It is enough to consider a finite momentum range
due to the regulator insertion in the flow equation. For the class of exponential regulators
we use, the integration range was chosen as

q ∈

0,


6
5 (− log (10−b))1/a k

 . (5.17)

Here, b is the number of significant digits of the numeric type used, e.g. 16 for double
precision. This range is chosen in a way that ∂tR at the upper limit is always smaller than
10−b by several orders of magnitude. Aspects of optimisation of the regulator in the present
context are discussed e.g. in [165, 218, 219, 226, 307, 360–365].

5.2.2. Results

Now, we will discuss the results for the flavour numbers Nf = 1, 2, the latter gouverning
the case of graphene. Since the bosonic anomalous dimension in this system is quite large,
one might expect that the derivative expansion converges slowly. Thus when including more
operators in a low order of the derivative expansion, it is possible that critical quantities
fluctuate rather strongly. This is only partially the case, as will be seen below.

Before we specialise the fermion flavour number, a general remark is in order. It turns out
that the flow equations of Jψ and X2 vanish identically if both Jψ and X2 vanish themselves,
i.e. they have a Gaußian fixed point. The technical reason for this is subtle, and can be
understood easiest in the conventions that we chose. Notice that the terms with Jψ and X2

in (5.10) are the only ones which have an explicit factor of i. Such a factor could only be
generated by the Clifford algebra, but in fact conventions can be chosen such that no explicit
factors appear there, see the appendix. The flow equation itself doesn’t provide factors of
i (except the overall prefactor in its Minkowskian form, which is exactly cancelled by the
Wick rotation), as is immanent when one stays in position space, rather than momentum
space. Hence it is indeed expected that these two functions have a Gaußian fixed point.
In systems where one expects a unique fixed point (besides the trivial fully Gaußian and
the Wilson-Fisher fixed point), as in our system, such terms can thus be neglected from
the outset. From the perspective of a flow, that is away from criticality, we start with the
microscopic action (5.2) (with ϕa = 0) in the UV. Since no factor of i appears there, quantum
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Fig. 5.2.: Fixed point solution to the Gross-Neveu model in three dimensions, for two fermion
flavours. The regulator parameter is a = 2. Importantly, the function X1 is positive, as
it contributes to the denominator of propagator functions, and can be seen as the second
order derivative analogue of the usual Yukawa coupling gχ.
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Fig. 5.3.: Regulator dependence of physical quantities of the Gross-Neveu model for Nf = 2. On
the left panel, the first critical exponent is shown. It doesn’t display an extremum,
and the principle of minimum sensitivity cannot be applied here. On the right panel,
the bosonic (blue dots) and fermionic (orange boxes) anomalous dimensions are plotted.
Interpolations help to guide the eye.

fluctuations will not generate operators including such a factor. This applies iteratively to
all operators that are generated, we thus conclude that no operators with explicit i can be
induced, independent of the approximation. Physically, this indicates that there could be a
hidden symmetry.

We will first discuss the case Nf = 2. The nonvanishing fixed point functions are shown
in Figure 5.2, for the regulator parameter a = 2. As expected, the derivative of the potential
is strictly positive, indicating that we are in the symmetric regime. The operators X1, X3

and X4 are parametrically suppressed, as expected from their mass dimension. By contrast,
X5 is quite large, but the corresponding operator comes with ∼ χ3, which suppresses it for
small field values.

We study the regulator dependence of the first critical exponent and the anomalous dimen-
sions to optimise the choice of a. This dependence is plotted in Figure 5.3. The optimised
values are

ηopt
χ = 0.7765 , aopt = 3.02 ,

ηopt
ψ = 0.0276 , aopt = 3.52 .

(5.18)

The first critical exponent doesn’t show an extremum, and cannot be optimised by the
principal of minimum sensitivity (PMS). In the parameter region that was considered, it
ranges between 0.992 and 0.996, thus we estimate

θ1 = 0.994(2) . (5.19)

In Table 5.1, we compare to results from the literature. The general agreement of all methods
is satisfactory, except for the results coming from unresummed ϵ-expansions. This deviation
is not surprising since for the case discussed here, ϵ = 1. Notably, the result for the fermionic
anomalous dimension obtained by the two-sided Padé approximation [366] is much closer to
our result, in contrast to results that only take into account either the expansion around
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θ1 ηχ ηψ

FRG (this work) 0.994(2) 0.7765 0.0276
FRG [358] 0.996 0.789 0.031
Monte Carlo [372] 1.00(4) 0.754(8) —
large-Nf [92, 373] 0.962 0.776 0.044
(2 + ϵ) 3rd order [367–369] 0.764 0.602 0.081
(2 + ϵ) 4th order resummed [370] 0.931 0.745 0.082
(4− ϵ) 2nd order [354] 1.055 0.695 0.065
2-sided Padé of ϵ-expansions [366] 0.948 0.739 0.041
conformal bootstrap [374] 0.88 0.742 0.044

Tab. 5.1.: Comparison of the first critical exponent and the anomalous dimensions of the Gross-
Neveu model with the literature, for two fermion flavours, Nf = 2. Apart from the
unresummed ϵ-expansions, all methods are in good agreement.

the upper or the lower critical dimension [354, 367–370]. In comparison to the former FRG
results [358], the critical exponent only changes on the per mille level, depending on the choice
of regulator. The bosonic anomalous dimension changes by 2%, the fermionic anomalous
dimension by roughly 10%. Let us also mention that recent work [371] suggested that the
compatibility with the cubic-lattice Monte Carlo results [372] might be a coincidence, as
there a sign problem was ignored, and it is even not clear if the symmetries in the continuum
are the same.

Let us now discuss the case of a single fermion flavour, Nf = 1. The optimisation with
respect to the regulator is shown in Figure 5.4, and the optimised values are

ηopt
χ = 0.5506 , aopt = 2.96 ,

ηopt
ψ = 0.0645 , aopt = 3.23 .

(5.20)
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Fig. 5.4.: Regulator dependence of physical quantities of the Gross-Neveu model for Nf = 1. On
the left panel, the first critical exponent is shown. Similar to the case of two fermion
flavours, it shows no extremum, and the principle of minimum sensitivity cannot be
applied here. On the right panel, the bosonic (blue dots) and fermionic (orange boxes)
anomalous dimensions are plotted. Interpolations help to guide the eye.
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θ1 ηχ ηψ

FRG (this work) 1.075(4) 0.5506 0.0645
FRG [358] 1.077 0.602 0.069
Monte Carlo [375] 1.25(3) 0.302(7) —
large-Nf [92, 373, 376] 1.361 0.635 0.105
(4− ϵ) 2nd order [354] 1.160 0.502 0.110
2-sided Padé of ϵ-expansions [366] 0.852 0.506 0.096
conformal bootstrap [374] 0.76 0.544 0.084

Tab. 5.2.: Comparison of the first critical exponent and the anomalous dimensions of the Gross-
Neveu model with the literature, for one fermion flavour, Nf = 1. The Monte Carlo
results conflict with the results obtained by the other methods, and the critical exponent
from the conformal bootstrap also deviates from other estimates.

As for the case Nf = 2, also here the critical exponent doesn’t show an extremum, and from
the dependence on the parameter a we estimate

θ1 = 1.075(4) . (5.21)

We again compare to different methods in Table 5.2. In contrast to the case of two fermion
flavours, the situation here is less settled, and different methods don’t agree as well. In
particular, the results obtained by Monte Carlo methods [375] deviate significantly from other
results. Future work will have to show which results are more trustworthy. When compared
to earlier FRG results, the situation is similar to Nf = 2: the critical exponent already
converged, and only changes by per mille, depending on the regulator. Both anomalous
dimensions change by almost 10%.

Let us at the end note that the long anticipated results from the conformal bootstrap
[374] didn’t resolve the tension between different estimates of the critical exponent. This is
to be contrasted with the situation for O(N) models, where the conformal bootstrap method
obtains the best results.

5.3. N = 1 Wess-Zumino model
As a final model, let us study the case Nf = 1/4, which corresponds to the supersymmetric
version of the Gross-Neveu-Yukawa model, also known as N = 1 Wess-Zumino model. For
this, we formulate everything in a language which explicitly maintains supersymmetry. This
was first introduced in [377–379]. The results that will be presented are published in [156],
further results from that work which don’t fit into the main line of the present text are
defered to appendix I. Related results on supersymmetry and the FRG can be found in [380–
384].
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5.3.1. Supersymmetric flows

Here we shall give a short overview on how to formulate the flow of a supersymmetric theory,
and will assume that the reader is familiar with the basic notions of supersymmetry, see e.g.
[385] for a review. Details on the derivation of the flow equation can also be found in [156,
379].

To formulate the flow equation, we first introduce a real superfield Φ which combines the
scalar field χ, an auxiliary bosonic field F and the fermion field ψ,

Φ = χ+ θ̄ψ + 1
2 θ̄θF . (5.22)

Here, θ and θ̄ are Grassmann variables with mass dimension −1/2. Supersymmetry trans-
formations are generated by the fermionic supercharges Q and Q̄,

Q = −i∂θ̄ − /∂θ ,

Q̄ = −i∂θ − θ̄ /∂ .
(5.23)

In three-dimensional Euclidean space, there are no Majorana fermions, thus the derivation
of the flow equation has to be done in Minkowski space, and only when performing the
integration over the loop momentum, we can Wick-rotate to Euclidean signature.

The next step is the introduction of the superpotential, which can be expanded in powers
of the Grassmann variables,

W (Φ) = W (χ) + 1
2W

′(χ)F θ̄θ − 1
4W

′′(χ)ψ̄ψθ̄θ . (5.24)

Supersymmetry puts severe constraints on allowed derivative interactions. The only super-
symmetric kinetic operator is

K = 1
2

D̄D − DD̄


, (5.25)

where D and D̄ are the supercovariant derivatives

D = ∂θ̄ + i/∂θ ,

D̄ = −∂θ − iθ̄ /∂ .
(5.26)

With this, the most general action with up to four derivatives, that is next-to-next-to-leading
order (NNLO) in the derivative expansion, reads

ΓWZ =


d3xdθdθ̄

2W (Φ)− 1

2Z(Φ)KZ(Φ)− 1
8Y1(Φ)K2Φ− 1

8Y2(Φ)(KΦ)(KΦ)

. (5.27)

Notice that the conventions slightly differ from the ones used in the nonsupersymmetric case
in what concerns the wave function renormalisation. As it turns out, it is useful to introduce
new functions Y = Y ′

2 and X = Y ′
1 + Y2, and we will only discuss these in the following.
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Fig. 5.5.: Fixed point solution of the Wess-Zumino model in three dimensions, at various levels of
approximation: LPA (only W ), NLO (W and Z), NNLO (all four functions).

Finally, the most general supersymmetric regulator reads

∆SWZ = 1
2


d3xdθdθ̄Φ


2r1(−∂2)− Z ′(Φ̄)2r2(−∂2)K


Φ . (5.28)

In this, Φ̄ is a background field where we normalise the wave function renormalisation. It will
be taken as the minimum of the potential. Having specified all ingredients, the derivation
of the flow equations follows the standard procedure.

For the results that we present below, we set r1 to zero, and r2 to be

r2(q2) =

k2

q2 − 1


Θ

k2

q2 − 1

, (5.29)

where q is the Euclidean momentum. Further, the anomalous dimension in the supersym-
metric conventions reads

η = −∂t ln(Z ′(Φ̄)2) . (5.30)

5.3.2. Results

As a first result, we prove the so-called superscaling relation

θ1 = 1
2(d− η), d ≥ 2 , (5.31)
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η θ1 θ2 θ3 θ4

LPA 0 3/2 −0.702 −3.800 −7.747
NLO 0.186 1.407 −0.771 −1.642 −3.268
NNLO 0.180 1.410 −0.715 −1.490 −2.423
resummed (4− ϵ) [386] 0.162 1.419
conformal bootstrap [387] 0.164

Tab. 5.3.: Comparison of the anomalous dimension and leading critical exponents of the Wess-
Zumino model in three dimensions obtained from various levels of approximation of our
work, and from perturbation theory and the conformal bootstrap approach.

which was first found in [379], and relates the anomalous dimension and the relevant critical
exponent. To prove it, we note that the only flow equation which depends on the first
derivative of the superpotential is the flow equation of the superpotential itself. By linearising
it around a putative fixed point, we obtain

∂tδW
′ =


η − d

2 + F(χ)∂χ + G(χ)∂2
χ


δW ′ , (5.32)

where δW is the perturbation around the fixed point, and F ,G are functions which depend
on the field and the fixed point functions. Clearly, a constant δW ′ is an eigenfunction to
the operator on the right-hand side, with eigenvalue (η − d)/2. If the variations of all other
functions are set to zero, we clearly get a solution to the full linearised system. Thus,
indeed we arrive at (5.31), which is valid nonperturbatively, and exact, as we did not make
any assumptions on the specific truncation in its derivation. Note that in this proof, we
neglected the variation of the anomalous dimension. For a recent discussion of this issue,
also in the context of scaling relations, see [224]. The tentative conclusion there was that to
obtain scaling relations within the FRG, the variation of the anomalous dimension has to be
neglected, as we did here. On the other hand, from the perspective of a flow near the fixed
point, the anomalous dimension changes, which seems to be in conflict with this.

Let us eventually discuss the numerical solution to the fixed point equations. The fixed
point functions are shown in Figure 5.5, at different levels of approximation: local potential
approximation (LPA), only including the superpotential W ; NLO, which includes W and Z;
NNLO, including all four operators. In Table 5.3, we present the anomalous dimension as
well as the leading critical exponents at the same levels of approximation, and compare to
literature values obtained by resummed perturbation theory around four dimensions, and
the conformal bootstrap. The agreement across the different methods is very satisfying, the
methods disagree only be a few percent.
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In this thesis, we investigated scale dependence and, in particular, scale independent points
of theories in a variety of physical contexts. Functional renormalisation group methods
were employed to carry out these investigations. Since the a priori exact flow equation
typically cannot be solved exactly, useful approximations have to be introduced. To obtain
quantitatively reliable results, we developed powerful analytical and numerical tools to deal
with extended approximations of the flow equation. In particular, on the analytical side,
we used the Mathematica package xAct [191–196] not only in the gravitational context, but
for arbitrary field content. With this, flow equations can be calculated very efficiently and
reliably. Numerically, pseudo-spectral methods have been systematically developed in the
present context. This includes both the analysis of fixed points as well as the resolution
of flows. These methods are heavily used in other contexts, as numerical general relativity
[388–391] or the AdS/CFT correspondence [392–394], where high precision and speed are
pivotal.

As a test case, we investigated the critical behaviour of the well-knownO(N) model in three
dimensions for N = 1 and N = 3, at NLO in the derivative expansion. The results for the
leading critical exponent and the anomalous dimension come out rather well for this simple
approximation, and are in qualitative agreement with in this case more accurate methods,
as lattice Monte Carlo methods or the conformal bootstrap approach. The discussion of
the flow of the O(N) model, and quantum mechanical potentials, were deferred to the first
appendix. There, we showed that also the flow is quantitatively well controlled by pseudo-
spectral methods. Most impressively, in d = 2.4 we showed a flow near the separatrix of
a multicritical fixed point and the lower dimensional equivalent of the Wilson-Fisher fixed
point. In the large N limit, we could show that the error in the integration of the flow is
due to the error in the initial condition, as here we could compare to the analytically known
flow. We conclude that the flow is efficiently described by pseudo-spectral methods in large
regions of theory space. We also studied bounded potentials in quantum mechanics, which
serve as a toy model for Higgs inflation [395]. Here, again a comparison with (numerically)
exact results for the ground state and first excited state energy was possible, and the results
of the flow yield good estimates of these quantities.

After testing our technical groundwork, we started to investigate several aspects of the
Asymptotic Safety Scenario for gravity. One of the main criticisms towards this scenario
was the expectation that, as soon as a “proper counterterm”, namely the so-called Goroff-
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Sagnotti term, was included in the approximation, the fixed point will fail to exist. In
perturbation theory the corresponding divergence arises at the two-loop order and hallmarks
the perturbative nonrenormalisability of gravity. Contrasting this expectation, we showed
by easy analytical arguments that this counterterm cannot harm the UV fixed point found
in the Einstein-Hilbert approximation. The central ingredients for the proof were the choice
of a suitable basis and a curvature expansion, which is either way necessary to be able to
project uniquely onto the counterterm. Due to the special choice of a tracefree basis, the
counterterm doesn’t feed back into the Einstein-Hilbert sector, leaving the earlier found UV
fixed point intact. From the generic form of the flow equation, it straightforwardly follows
that the β function of the coupling corresponding to the counterterm is cubic in itself, and
thus has at least one real fixed point. A simple calculation shows that further, there is
at least one fixed point where the coupling is irrelevant, in contrast to the situation in
perturbation theory. The explicit calculation of the β function for the new coupling then
suggested that the counterterm is even strongly irrelevant. This calculation thus refutes this
long-standing criticism, and strongly nourishes the possibility that quantum gravity could
be asymptotically safe.

We continued by an investigation of gauge and parameterisation dependencies in gravi-
tational RG flows. Contrasting parametrically ordered expansions of observables, off-shell
quantities generically show a dependence on choices of gauge fixing and parameterisation. We
analysed such dependencies pragmatically, studying the sensitivity and stability of the UV
fixed point with respect to variations of generalised parameterisations in an Einstein-Hilbert
approximation. Remarkably, the general qualitative dependence on parameterisations is
rather weak. For a huge range of possible choices, we found a suitable UV fixed point. How-
ever, there is a subtle interplay between gauge choice and parameterisations. The results
indicate that exceptional stability w.r.t. variations can be obtained in the exponential split
in the limit of the gauge parameter β → −∞, where the trace fluctuation is pure gauge. In
this limit, the flow equations in our approximation are independent on the gauge parameter
α, and the phase diagram can be calculated analytically. Moreover, in this special choice the
crossover to the IR regime is intact, thus we can make direct contact with general relativity
in this limit.

After these single metric results, we turned our attention to genuinely bimetric calcula-
tions. This step is crucial in order to solve the Nielsen identities arising due to the use of the
background field method. For the first time, we calculated a dynamical Newton’s coupling
by resolving the three-graviton vertex. We further resolved the momentum dependence of
parts of the propagator, and the constant part of the three-point function. The resulting
system shows again a viable UV fixed point suitable for AS. Remarkably, the dimension of
the critical hypersurface is one below the number of couplings. A new notion of locality was
introduced, which is related to a well-defined Wilsonian block spinning, and it was shown
that both the two- and three-graviton vertex fulfill this notion nontrivially. Perturbatively
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renormalisable theories automatically display this kind of locality. We thus conjecture that
the nontrivial property of locality is related to the diffeomorphism invariance of our setup.

Subsequently, we studied gauge dependence of correlation functions in a curved back-
ground as a combination of the two previous calculations. We have shown that, for suitably
chosen regulators, the Landau limit α→ 0 is a fixed point of the RG flow. Furthermore, in
this limit, any choice for the gauge parameter β is a fixed point. Both parameters correspond
to marginal operators. We further resolved both gap parameters of the graviton propagator.
The enhanced system shows a stronger dependence on gauge choices than the single metric
system. This might indicate that either more momentum dependence is needed, or higher
order correlation functions need to be resolved. A first step into the latter direction was
recently done in [188]. For the first time, we calculated β functions of fluctuation curvature
couplings. We restricted the analysis to the five couplings that arise in the graviton prop-
agator to linear order in the background curvature. In a typical gauge choice, we showed
that only some of these couplings correspond to relevant operators, again giving a hint to
the finite dimension of the critical hypersurface of the underlying fixed point.

In the final section on quantum gravity, we developed the techniques to go beyond the
limitations of the vertex expansion employed in all studies so far. In this quest, the Cayley-
Hamilton theorem plays a central role. We derived formulas for the inverse and the determi-
nant of the most general parameterisation of the metric not including derivative terms. Some
of the explicit formulas for the general case were deferred to the appendix, in particular the
explicit exact expression for the exponential split. As the first application of these ideas, we
proposed a truncation which resolves the constant part of correlation functions of arbitrarily
high order, similarly to a local potential approximation in scalar field theories. The meth-
ods that were introduced also can be applied in other contexts. One particular example of
functional truncations in a U(1) gauge theory was presented in the appendix. Truncations
of this kind will play a role in future investigations of asymptotically safe quantum gravity
coupled to matter - it was for example recently suggested that quantum gravity might solve
the triviality problem [332].

There are many future directions to investigate AS in quantum gravity further, and some
naturally evolve from the results of this thesis. For once, one should include all curvature
invariants up to the third order in the curvature to fully resolve the issue with the Goroff-
Sagnotti counterterm. Nontrivial interplay between the counterterm, second order invariants,
and thus induced Einstein-Hilbert couplings might still spoil the existence of the fixed point.
A potential way to get rid of gauge and parameterisation dependence is the usage of a
geometrically inspired quantisation procedure, for first exploratory studies see [40, 178, 181,
304, 331]. In bimetric calculations, we opened up new paths to approximate the effective
action, and hopefully we can soon make a big step towards qualitative and quantitative
resolution of the Nielsen identities. Last but not least, the best theory of quantum gravity is
worthless for the description of our Universe if it cannot account for matter. The inclusion
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6. Conclusion

of matter in AS calculations is currently a hot topic [39, 153, 236, 275, 278, 329, 332, 396–
417], and potentially the most important issue at the moment to lend further support to the
Asymptotic Safety Scenario.

Not only quantum gravity is potentially described by an interacting fixed point - these
scale invariant points also play a crucial role in the description of second order phase tran-
sitions in condensed matter systems. In the last chapter, we studied a particular model
for the CDW-semimetal phase transition of Dirac materials, of which graphene is a well-
known representative. In a bosonised language, we studied a very extended approximation
to calculate the leading critical exponent and the anomalous dimensions of the fermions and
the fermion condensate. For two fermion flavours, which corresponds to the graphene case,
agreeing results are found by various methods, including our work, Monte Carlo methods,
large Nf and ϵ expansions. By contrast, for a single flavour, different methods disagree on
the value of the critical quantities, and further investigations have to be carried out. Even
recent results from the conformal boostrap approach don’t resolve this tension. Still, the
surprising robustness of the presented FRG results compared to calculations with presum-
ably much worse truncations makes a strong point for its quantitative reliability in these
systems. We finally studied the supersymmetric case of this model, known as Wess-Zumino
model, in a manifestly supersymmetric formulation of the flow equation. The high degree of
symmetry allowed to include all operators with up to four derivatives. Again, the results are
very robust upon inclusion of further operators, emphasising the reliability of the results.
Some further results on sueprsymmetric flows in quantum mechanics were deferred to the
appendix. There, we were particularly interested in supersymmetry breaking.

The next steps on the condensed matter side of this thesis are rather obvious. Most nat-
urally, one should study the SDW-semimetal phase transition in a truncation similar to the
one studied in the CDW-semimetal transition. Due to the appearance of Pauli matrices, the
number of allowed operators increases dramatically, and an analysis will only be possible
with the methods that were developed here. If also in this case one finds that much sim-
pler truncations are quantitatively reliable, the final step towards the description of Dirac
materials is the combination of the two order parameters. In this setup, fully interacting
fixed points are conceivable [114], and they might play a crucial role in the description of the
structure of the phase diagram where SDW, CDW and semimetal phase meet. One exciting
possibility is the occurence of a new mixed phase, which might show very interesting material
properties, and could be verified experimentally.
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Appendix A.

Code for the derivation of the flow
equations for the O(N) model

On the following pages, we reproduce the Mathematica notebook to derive the flow equations
of the O(N) model in NLO.
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Appendix A. Code for the derivation of the flow equations for the O(N) model

This notebook gives a minimal working example on how to calculate flow equations for non-gauge
theories  with  xAct.  Specifically,  the flow equations for  the O(N)-model  in  NLO are derived.  For
convenience, the Wick rotation is already done.

Created with Mathematica 10.0.2.0

The distribution of this notebook is without any warranty, neither explicit nor implied.
Author: Benjamin Knorr
Date: 13.09.2016

Reading Packages
<< xAct`xTensor`;
<< xAct`xTras`;

Definitions
First, we define the number of scalars and the dimension of spacetime as constant symbols.

DefConstantSymbol NumScalar , PrintAs→ "";
DefConstantSymbol dimspacetime , PrintAs→ "";

Now, define the spacetime and a flat Euclidean metric.

DefManifoldspacetime , dimspacetime , {α, β, γ, δ, ϵ, ζ, θ, ι, κ, λ, μ, ν, ξ, τ};
DefMetric1, spacetimemetric [-α, -β], CD, PrintAs→ "η", FlatMetric→ True;

Here, the field space and a corresponding flat metric are defined.

DefManifoldfieldspace, NumScalar , IndexRange[a, z];
DefMetric1, fieldmetric -a, -b, CDϕ, PrintAs→ "ηϕ", FlatMetric→ True;

Ordinary derivatives of the field space metric, and field space derivative of spacetime metric vanish.

fieldmetric /: CD[_]@fieldmetric [__] = 0;
spacetimemetric /: CDϕ[_]@spacetimemetric [__] = 0;

Define the actual field as a vector in field space, and define the invariant plus replacement rules.
constantfields projects onto constant fields.

DefTensorϕ[a], fieldspace;
DefConstantSymbol [ρϕ];
torho = IndexRule[ϕ[a_]ϕ[-a_], 2ρϕ];
constantfields= {CD[_]@ϕ[_]→ 0};

Define momentum vectors and some constant symbols representing lengths of momentum vectors.

II



DefTensormom [μ], spacetime ;
DefTensormom1 [μ], spacetime ;
DefTensormom2 [μ], spacetime ;
DefTensormom3 [μ], spacetime ;
DefTensormom4 [μ], spacetime ;
DefTensordummymom [μ], spacetime ;
DefConstantSymbol momp , PrintAs→ "";
DefConstantSymbol momq , PrintAs→ "";
DefConstantSymbol momx , PrintAs→ "";
DefConstantSymbol momdummy , PrintAs→ "ℓ";

Define scalar functions of the truncation, propagator and regulator functions.

DefScalarFunction[V];
DefScalarFunction[Z];
DefScalarFunction[Y];
DefScalarFunction[GϕT];
DefScalarFunction[GϕL];
DefScalarFunctionRegϕ, PrintAs→ "ℛϕ";

DefScalarFunctionRegϕdot, PrintAs→ "ℛ

ϕ";

Variational derivative in flat space. Product rule etc. Works also on lists, with scalar functions, and
to arbitrary order. Arguments are a list of fields that are varied (here ϕ), then two lists with the scalar
momenta of the fields, and their indices, and finally the expression that is varied.

VDscalarlist_?ListQmomlist_ ?ListQ, alist_?ListQexprlist_?ListQ :=
Modulecounting, TableVDscalarlistmomlist , alist

exprlistcounting, counting, 1, Length@exprlist;
VDscalarlist_?ListQmomlist_ ?ListQ, alist_?ListQ[expr_] :=

IfLength@momlist ⩵ 1, VDscalarlist[[1]]momlist [[1]], alist[[1]][
expr], VDDropscalarlist, 1Dropmomlist , 1, Dropalist, 1
CollectTensors@

VDscalarlist[[1]]momlist [[1]], alist[[1]][expr];
VDscalar_?xTensorQ[mom_ ?xTensorQ, a_][CD[μ_]@X__] :=

ⅈmom [μ]VDscalar[mom , a][X];
VDscalar_?xTensorQ[mom_ ?xTensorQ, a_]expr_ /; Head[expr] === Plus :=

Plus@@TableVDscalar[mom , a][expr[[Q]]], Q, 1, Length@expr;
VDscalar_?xTensorQ[mom_ ?xTensorQ, a_]expr_ /; Head[expr] === Times  :=

Plus@@TableVDscalar[mom , a]@expr[[Q]]Drop[expr, {Q}],
Q, 1, Length@expr;

VDscalar_?xTensorQ[mom_ ?xTensorQ, a_][expr_?ConstantQ] = 0;
VDscalar_?xTensorQ[mom_ ?xTensorQ, a_]delta[_, _] = 0;
VDscalar_?xTensorQ[mom_ ?xTensorQ, a_]spacetimemetric [__] = 0;
VDscalar_?xTensorQ[mom_ ?xTensorQ, a_]fieldmetric [__] = 0;
VDscalar_?xTensorQ[mom_ ?xTensorQ, a_]

ten_?xTensorQμ_ /; VBundleOfIndex[μ] === Tangentspacetime  = 0;
VDscalar_?xTensorQ[mom_ ?xTensorQ, a_]

expr_ /; ScalarFunctionQHead[expr]⩵ True :=
Plus@@TableDerivativeUnitVectorLength@expr, counter /. List[X__]⧴ X

Head[expr]Tableexpr[[counter2]],
counter2, 1, Length@expr /. List[X__]⧴ X

VDscalar[mom , a][expr[[counter]]], counter, 1, Length@expr;
VDscalar_?xTensorQ[mom_ ?xTensorQ, a_]expr_Scalar :=

VDscalar[mom , a]NoScalar[expr];
VD[ϕ][mom_ ?xTensorQ, a_]ϕb_ := fieldmetric -a, b;
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Appendix A. Code for the derivation of the flow equations for the O(N) model

Truncation
Define the truncation: NLO O(N)-model.

Γk := ReplaceDummies 
1

2
Z

ϕ[-z]ϕ[z]

2
CD[-μ]@ϕ-bCD[μ]@ϕb+

1

2
Y

ϕ[-z]ϕ[z]

2
CD[-μ]@

ϕbϕ-b

2
CD[μ]@

ϕ[c]ϕ[-c]

2
+V

ϕ[-z]ϕ[z]

2
;

ΔSk := ReplaceDummies 
1

2
CD[-μ]@ϕ-bCD[μ]@ϕb

Regϕmomdummy 2

momdummy 2
;

Calculation of Propagator, Rdot and Vertices
Calculate the second variation.

Gamma2PlusR momp_ , a_, b_ :=
VD[{ϕ, ϕ}]mom1 , dummymom , -a, -bΓk+ΔSk /. constantfields/.

dummymom [μ_]⧴ -mom1 [μ] /. momdummy ⧴ momp //.
IndexRulemom1 [μ_]mom1 [-μ_], momp 2

 //.
torho // CollectTensors;

General ansatz for the Propagator.

Propagatormomp_ , a_, b_ :=

GϕTmomp 2, ρϕ fieldmetric a, b-
ϕ[a]ϕb

2ρϕ
+GϕLmomp 2, ρϕ

ϕ[a]ϕb

2ρϕ
;

Calculate the propagator functions.

PropagatorRules = GϕT→ Function{x, ρϕ}, Evaluate@#〚1〛,

GϕL→ Function{x, ρϕ}, Evaluate@#〚2〛 &@Moduletempvar , sol,

tempvar = Propagator[momp , a, -c]Gamma2PlusR momp , c, b //

CollectTensors //. torho // CollectTensors;
sol = GϕTmomp 2, ρϕ, GϕLmomp 2, ρϕ /. SolveConstants

tempvar ⩵ fieldmetric a, b, GϕTmomp 2, ρϕ,

GϕLmomp 2, ρϕ〚1〛 // Simplify  /. momp → x

;

Calculate the regulator insertion.

RegulatorDotmomp_ , a_, b_ :=
VD[{ϕ, ϕ}]mom1 , dummymom , -a, -bΔSk /. Regϕ→ Regϕdot /.

constantfields/. dummymom [μ_]⧴ -mom1 [μ] /.
momdummy ⧴ momp //. IndexRulemom1 [μ_]mom1 [-μ_],
momp 2

 //. torho // CollectTensors;

Calculate the vertices that are needed.
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Vertex3mom1_ , mom2_ , mom3_ , a_, b_, c_ :=
VD[{ϕ, ϕ, ϕ}]{mom1 , mom2 , mom3 }, -a, -b, -cΓk /. constantfields//.

torho // CollectTensors;
Vertex4mom1_ , mom2_ , mom3_ , mom4_ , a_, b_, c_, d_ :=

VD[{ϕ, ϕ, ϕ, ϕ}]{mom1 , mom2 , mom3 , mom4 }, -a, -b, -c, -dΓk /.
constantfields//. torho // CollectTensors;

Calculation of Flow
Now, we can derive the actual flow equations. All flows are to be understood as integrands, the

integration over the loop momentum momq (with integration measure dd q
(2π)d

) is still to be done. Also,

the fields and operators are bare, and thus at this stage, no anomalous dimensions occur.

Flow of V
The flow equation for the potential is just the Wetterich equation evaluated at constant fields.

flowV =

CollectTensors
1

2
Propagatormomq , a, bRegulatorDotmomq , -a, -b //.

torho // CollectTensors /. PropagatorRules

Flow of Z and Y
For the flow of Z and Y, the second derivative of the flow equation, again for constant fields, is
considered. One can easily see that 2 diagrams contribute to the flow, a tadpole and a self-energy
diagram.

Tadpole  diagram

TadpoleMomentumConservationRules =

mom2 [μ_]⧴ -mom1 [μ], mom4 [μ_]⧴ -mom3 [μ],
mom1 [-μ_]mom1 [μ_]⧴ momp 2, mom3 [-μ_]mom3 [μ_]⧴ momq 2

;

-
1

2
Vertex4mom1 , mom2 , mom3 , mom4 , a, b, c, d

Propagator[momq , -c, -e] // CollectTensors;
%RegulatorDotmomq , e, f // CollectTensors;
%Propagatormomq , -f, -d // CollectTensors;
% //. torho //. TadpoleMomentumConservationRules // CollectTensors;

TadpoleMomdeppart = CollectTensors

Coefficient[%, momp , 2] // CollectTensors /. PropagatorRules,

SimplifyMethod → Collect#,

ℛ

ϕ

2
, (-1+), 1ℛϕ

2
+22 ρϕY[ρϕ]+2 Z[ρϕ]+V′

[ρϕ]+2ρϕV′′
[ρϕ],

1

ℛϕ
2+2 Z[ρϕ]+V′[ρϕ]

,
1

dimspacetime
, FullSimplify  & 
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Appendix A. Code for the derivation of the flow equations for the O(N) model

Self-energy diagram

For  this  diagram,  momx denotes  the  cos of  the  angle  between the external  momentum momp
(vector mom1) and the loop momentum momq (vector mom2). Further, mom3=mom1+mom2. One

can show that momx  can be replaced by 1 /dimspacetime  here (thanks to Stefan Rechen-
berger for pointing this out to me).

SEMomentumConservationRules =

Joinmom1 [-μ_]mom1 [μ_]⧴ momp 2, mom2 [-μ_]mom2 [μ_]⧴ momq 2,
mom3 [-μ_]mom3 [μ_]⧴ momp 2

+2momp momq momx +momq 2
,

MakeRule[{mom1 [μ]mom2 [-μ], momp momq momx }],
MakeRule[{mom1 [μ]mom3 [-μ], momp (momp +momq momx )}],
MakeRule[{mom2 [μ]mom3 [-μ], momq (momq +momp momx )}];

Vertex3mom1 , mom2 , mom4 , a, e, f /. mom4 [μ_]⧴ -mom3 [μ];

%Propagator momp 2
+2momp momq momx +momq 2 , -f, -g //

CollectTensors;
%Vertex3mom1 , mom3 , mom4 , b, g, h /. mom1 [μ_]⧴ -mom1 [μ] /.

mom4 [μ_]⧴ -mom2 [μ] // CollectTensors;
%Propagatormomq , -h, -i // CollectTensors;
%RegulatorDotmomq , i, j // CollectTensors;
%Propagatormomq , -j, -e // CollectTensors;
% //. torho //. SEMomentumConservationRules // CollectTensors;

SEMomdeppart = CollectTensors

CoefficientSeries[%, {momp , 0, 2}], momp , 2 // CollectTensors /.

momx →
1

dimspacetime
/. PropagatorRules,

SimplifyMethod → Collect#, ℛ

ϕ

2
, (-1+),

1ℛϕ
2
+22 ρϕY[ρϕ]+2 Z[ρϕ]+V′

[ρϕ]+2ρϕV′′
[ρϕ],

1

ℛϕ
2+2 Z[ρϕ]+V′[ρϕ]

,
1

dimspacetime
, FullSimplify  & 

Flow equations

Adding both diagrams, we can read off the flow of Z (Y) by taking the prefactor of ηϕab ϕa ϕb).

flowZ = Collect

TadpoleMomdeppart +SEMomdeppart  /. ϕ[a_]→ 0 /. fieldmetric a_, b_→ 1,

ℛ

ϕ

2
, (-1+), 1ℛϕ

2
+22 ρϕY[ρϕ]+2 Z[ρϕ]+V′

[ρϕ]+2ρϕV′′
[ρϕ],

1

ℛϕ
2+2 Z[ρϕ]+V′[ρϕ]

,
1

dimspacetime
, FullSimplify 

flowY = CollectTadpoleMomdeppart +SEMomdeppart  /. ϕ[a_]→ 1 /.

fieldmetric a_, b_→ 0,

ℛ

ϕ

2
, (-1+), 1ℛϕ

2
+22 ρϕY[ρϕ]+2 Z[ρϕ]+V′

[ρϕ]+2ρϕV′′
[ρϕ],

1

ℛϕ
2+2 Z[ρϕ]+V′[ρϕ]

,
1

dimspacetime
, FullSimplify 
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Appendix B.

Solving flows with pseudo-spectral
methods

In this appendix, we show some results on solutions to flows based on pseudo-spectral nu-
merics, which are also published in [154]. Here, we change conventions slightly, and we refer
to the dimensionful potential by U , to the dimensionless potential by u, and ρ0 (ρ̃0) denotes
the dimensionful (dimensionless) vacuum expectation value.

B.1. Flows of the O(N) model
We first study flows of O(N) models for various N . For that, we choose a truncation similar
to (3.19), with some simplifications. We shall not consider the radial kinetic term, and
only study the scale dependence of the wave function renormalisation, i.e. effectively the
anomalous dimension, not the field dependence. This approximation is commonly called local
potential approximation prime (LPA′). For regularisation, we choose the linear optimised
cutoff [226, 360].

B.1.1. Flows for d = 3 and at large N : A comparison

In order to demonstrate the power of pseudo-spectral methods on a specific example, we
compare the analytical flow for large N with the numerically computed one. For that
purpose, we choose trajectories in the symmetry broken phase close to criticality to show
stability of the numerical method for 6 orders of magnitude (t ∈ [0,−12.4]). We employ
the limit N → ∞ [418] (where one only retains the scaling part and the fluctuation part
proportional to N) and switch to dimensional quantities as soon as the vacuum expectation
value starts scaling exponentially in t. We expand the first derivative of the potential on
[0, 0.2] for the dimensionless and on [0, 0.2kS] for the dimensional flow, where kS is the scale
of switching between both regimes. With this choice, the maximal field value is 10 − 20
times larger than the vacuum expectation value. In general, the field range must not be too
small in order to avoid boundary effects.
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Appendix B. Solving flows with pseudo-spectral methods
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Fig. B.1.: Absolute and relative error (δu′(ρ̃), δU ′(ρ) and δρ0/ρ0) of the first derivative of the
potential and the vacuum expectation value, respectively, as a function of the number of
coefficients Nx in field direction. The errors δU ′(ρ) and δρ0/ρ0 decreases exponentially.
For the error of u′(ρ̃) at t = −10, one can see a plateau which is due to the condition of
the differential equation. This indicates that the solution is accurate to almost machine
precision.

The initial condition reads

U ′
Λ(ρ) = −0.008443603515625 + 0.5ρ (B.1)

at t = 0 or k = Λ, where Λ is the UV cutoff. All dimensional quantities are to be understood
in units of Λ, which we set to 1. For switching to the dimensional version, we choose
ts = ln(kS/Λ) = −10.1. The pseudo-spectral discretisation in temporal direction is chosen
in such a way to achieve exponential convergence to machine precision. In order to compare
the analytical potential [418] with the numerically computed one, we employ the maximum
norm of their difference as error criterion.

In Figure B.1 the absolute deviation of the numerical flow from the analytical one in
dependence of the number of the coefficients Nx in field direction can be seen. The flow was
compared at two scales: t = −10 (k = 4.5 ·10−5), before switching to dimensional quantities,
and k = 4 · 10−6 (t = −12.4), after switching to dimensional quantities, where we have
stopped the integration. We also depict the relative error of the vacuum expectation value
at this scale. The more coefficients are taken into account, the higher the accuracy, which
can be seen by the exponential convergence of δU ′(ρ) and δρ0/ρ0 in particular. For the error
δu′(ρ̃) at t = −10 we see a plateau for Nx ≳ 60. This can be explained by the condition of
the differential equation. To illustrate this, we compare two analytically computed solutions,
one with the initial condition (B.1), and the other with a small deviation from it. To obtain
an error of about ∼ 10−11 at t = −10, one can allow for a deviation of 10−18 for the constant
term, and 10−16 for the linear term, which is about the order of magnitude that we can resolve
with long double. This example indicates how carefully time integration has to be done for
staying close to the original trajectory. On the other hand, it shows that we have integrated
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B.1. Flows of the O(N) model
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Fig. B.2.: Evolution of U ′(ρ) from blue (bottom) to orange (top) for N = 1 (left
panel; t = 0,−0.5,−1,−1.5,−1.7,−2,−2.1) and N = 4 (right panel; t =
0,−0.5,−1,−2,−3,−4,−5,−13). Convexity is seen in the flattening of U ′(ρ) for small
fields ρ < ρ0. Whereas U ′′(ρ) is still continuous for N = 4, in the single scalar case a
jump occurs.

out the flow close to machine precision over many orders of magnitude for Nx ≳ 60. This
fact is supported by the exponential convergence till ∼ 10−18 of the coefficients.

For the IR flow, the decrease of the error is slower, but still tends to the lower bound
∼ 10−11 for a large number of coefficients. The error is now dominated by the truncation
error of the expansion of the potential in field direction since convexity starts to set in. From
the asymptotic decrease of the last coefficients for Nx ≳ 60, we obtain a measure for the
truncation error which agrees very well with the errors depicted in Figure B.1. It is based
on an estimate for the sum over the neglected coefficients. In order to achieve machine
precision, more coefficients are needed.

We conclude that in a large part of theory space, the pseudo-spectral flow is highly efficient,
and we generically observe exponential convergence for an increasing number of Chebyshev
coefficients. Therefore, we concentrate in the following on the most challenging part of
theory space involving the build-up of nonanalyticities, the first adumbration of which we
just started to discuss.

B.1.2. Flows for d = 3 and N = 1, 4

In the spontaneously symmetry broken phase, the effective potential is nonconvex for all
intermediate scales k > 0. On the other hand, it is known that the effective potential has
to be convex at k = 0 even in LPA [217, 419]. While the outer region already is convex,
the inner region becomes flat during the IR flow. Since the radial mass does not vanish
for N = 1, the curvature jumps at the vacuum expectation value at k = 0. By contrast
for N > 1, the influence of Goldstone bosons partly suppresses this nonanalyticity. The
propagators ∝ (1 + u′(ρ̃))−1 and ∝ (1 + u′(ρ̃) + 2ρ̃u′′(ρ̃))−1 flow towards the singularity for
small ρ̃, pushing the convexity mechanism forward.
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Appendix B. Solving flows with pseudo-spectral methods
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Fig. B.3.: u′(0) approaches the singularity −1 for t → −∞. Due to the stronger nonanalyticity in
the single scalar case, the numerically computed flow ceases to exist earlier.

We picked out two particular values for N , namely N = 1 and N = 4. The following
calculations are done with the dimensional version of the flow equation since we chose the
initial condition to be far from criticality, U ′

Λ(ρ) = −0.1 + 0.5ρ, at k = Λ. It is convenient to
use the logarithmic time scale t instead of k. After a few orders of magnitude dimensional
scaling can be observed.

Figure B.2 depicts the evolution of U ′(ρ) for N = 1 and N = 4, from large to small
scales. The approach to convexity is clearly visible. The build-up of the corresponding
nonanalyticity can be monitored over a range of scales, especially for N = 4. As U ′(ρ)
for N = 1 has an edge at ρ0 at k = 0 where U ′′(ρ0) jumps, the flow is numerically much
harder to track and finally breaks down earlier. The reason is as follows: Exponential
convergence of the coefficients is only guaranteed if the function is analytic. For k = Λ, the
convergence of the coefficients in field direction is very fast. Plateaus that build up for higher
order coefficients are on the level of the machine precision. However, for low scales k, the
requirement for exponential convergence is not fulfilled anymore. Thus, we observe a slower
convergence of the coefficients till it breaks down. Although this problem cannot be avoided
completely, there are two possibilities for improvement: On the one hand, one can simply
take more coefficients. This will not cure the problem completely since the convergence
becomes too slow and finally, an unacceptably large number of coefficients is needed. On the
other hand, one can choose the domains in such a way that the nonanalyticity lies close to
the boundary of two neighbouring domains. For that reason, we have used 24 or 16 domains
for N = 1 or N = 4, respectively. The high accuracy of pseudo-spectral methods prevents
the flow to jump over the singularity of the propagator for a long time. Figure B.3 shows
how the flow approaches the singular point. Due to the reasons given above, for N = 4 we
get closer to u′(0) = −1 in comparison to N = 1.

We have shown that pseudo-spectral methods can also be applied to numerically challeng-
ing problems, such as convexity. Let us emphasise that the convergence of the expansion
coefficients is strongly connected to the properties of the solution. Therefore, it is not
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Fig. B.4.: Flow between two criticalities. Left panel: Flow from the tricritical fixed point potential
(blue) to the Wilson-Fisher potential (orange), t ∈ [0,−25]. The fixed point potential
computed from the fixed point equation are depicted as well (black). Right panel: Flow
of the anomalous dimension η, the vacuum expectation value and u′(0). The grey dashed
lines denote the values of the Wilson-Fisher fixed point solution obtained from solving
the fixed point equation.

surprising that the numerical effort increases the closer the singularity is approached. In
contrast to other approaches adjusted to tackle convexity issues [420, 421], we again point
out that pseudo-spectral methods have a striking advantage: The error is controllable by
the convergence pattern of the expansion coefficients, which was especially demonstrated in
the previous subsection. Furthermore, if only IR quantities are of interest, e.g. the vacuum
expectation value, they can be inferred from the flow before convexity becomes challeng-
ing. We obtain ρ0 = 0.183 for N = 1 and ρ0 = 0.130 for N = 4 and the radial mass
m2

R = 2ρ0U
′′(ρ0) = 0.168 for N = 1. It is worth mentioning that the vacuum expectation

value for N = 4 deviates by 2% from the vacuum expectation value derived from the analyti-
cal large N solution. That indicates that the large N limit already is a proper approximation
for the N = 4 case.

Let us make a comment on first order phase transitions. In contrast to continuous phase
transitions, the order parameter, i.e. the vacuum expectation value, jumps. For all quanti-
ties, whose flow depend on the order parameter, for example the anomalous dimension, one
should adapt the domain decomposition in time direction such that the jump is exactly on
the boundary between two domains, as was done in [212].

B.1.3. Flow between two criticalities for N = 1

In the previous section, we have investigated flows far from criticality. However, for d < 4
nontrivial fixed points occur. The first one is the well-known Wilson-Fisher fixed point.
Lowering the dimension further, multicritical fixed points emerge at certain critical dimen-
sions dc,i = 2i/(i − 1) for i ≥ 3. This is discussed in detail in [422–424]. In [153] global
solutions of the first four fixed point potentials for d = 2.4 are given. Now, we take a closer

XI



Appendix B. Solving flows with pseudo-spectral methods

look to the first two fixed points, the Wilson-Fisher fixed point among them, in d = 2.4.
We are interested in a trajectory connecting both (separatrix). Therefore, we start at the
tricritical fixed point with a small deviation constructed from a linear combination of its
relevant eigenperturbations. As initial conditions we use the results of [153].

For approaching the Wilson-Fisher fixed point during the flow, we have to fine-tune the
linear combination of both relevant directions of the tricritical fixed point. The perturbation
is mainly along the second relevant (subleading) direction. The flow strongly depends on
the numerical parameters. This is not surprising since small perturbations in the relevant
direction may lead to large deviations during the flow as already seen for the large N case.
Figure B.4 shows the deformation of the potential u′(ρ̃) from the tricritical fixed point
to the Wilson-Fisher fixed point during the flow. The inner minimum of the tricritical
fixed point potential disappears. In the right panel the anomalous dimension, the vacuum
expectation value and u′(0) are plotted over the logarithmic scale. Whereas all quantities
and the potential itself stay at the tricritical fixed point for many orders of magnitude,
they finally approach the Wilson-Fisher fixed point. This can be seen from the plateaus at
−17 ≳ t ≳ −25. The relevant direction becomes irrelevant at the Wilson-Fisher fixed point.
Finally, the flow carries the critical behaviour of the Wilson-Fisher fixed point although we
have started at the tricritical fixed point. We emphasise that for such flows a very stable
numerical method is indispensable for which pseudo-spectral methods are well suited.

B.2. Quantum mechanics with a bounded potential
In this section we present results on the energies of the ground and first excited states of a
selection of three quantum-mechanical potentials obtained by solving the flow equation for
the derivative of the effective potential. This is specifically suited to test our methods, as
a direct comparison with other methods and the exact answer is possible, and in the FRG
framework, an extension to quantum field theory is straightforward.

In particular, we will focus on potentials that are bounded both from below and above.
Physically, such potentials are interesting, e.g., in the context of Higgs inflation [395]. Tech-
nically, the flows of such potentials necessitate a global resolution - if the flow of only a finite
region in x is considered, one encounters boundary effects that destabilise the flow. To put
the results in perspective, we will compare them with the (numerically) exact values, as well
as values obtained from various analytic approximations.

B.2.1. Models

We will consider three different potentials. As a first example, we will treat

U(x) = 2
π

arctan

x2

. (B.2)
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Fig. B.5.: Flow of the effective potential at vanishing position, which gives the effective ground
state energy at scale k, Ek, for both Callan-Symanzik (left panel) and optimised (right
panel) regulator. The horizontal dashed line indicates the exact value of the ground state
energy, whereas the vertical line indicates the value up to which the numerical integration
could be done. The orange dashed line is the extrapolation of our numerical values, given
in blue. In both cases, the ground state energy is obtained to surprisingly high accuracy.

This potential carries no additional special properties besides the boundedness. We include
it, because one can solve the flow in a large N approximation exactly and explicitly for this
potential. As a second potential, we choose a modified version of the well-known Pöschl-
Teller potential,

U(x) = λ(1 + λ)
2


1− 1

cosh2(λx)


. (B.3)

For this potential, the Schrödinger equation can be solved exactly, and all bound states and
their corresponding energies are known [425]. In this work, we will specify to the case λ = 1.
The Pöschl-Teller potential is also interesting from another point of view: it is reflectionless
for λ ∈ N, so waves are transmitted completely through the well. Lastly, we shall investigate
the influence of nonanalyticities by studying the potential

U(x) = e−1/x2
. (B.4)

All potentials are normalised such that they go to 1 when the argument goes to infinity, and
vanish at their minimum x = 0.

B.2.2. Exact results

Here we present the (partly numerically) exact solutions for the ground state and the first
excited state (if it exists) for all potentials by solving the Schrödinger equation (in natural
units),

− 1
2Ψ′′(x) + U(x)Ψ(x) = EΨ(x) . (B.5)
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Appendix B. Solving flows with pseudo-spectral methods

For the Pöschl-Teller potential with λ = 1, there is only one bound state,

Ψ0(x) = 1
cosh(x) , E0 = 1/2 . (B.6)

For the other potentials, we apply pseudo-spectral methods along the lines of [153] to obtain
the first two bound states. For the potential (B.2), the ground state energy, E0, and the
energy gap, ∆E = E1 − E0, are

E0 = 0.448004 , ∆E = 0.509453 . (B.7)

On the other hand, for the nonanalytic potential (B.4), we get

E0 = 0.356644 , ∆E = 0.542040 . (B.8)

All energies and their corresponding wave functions were determined with an accuracy of at
least 10−20, however there is no need to display more figures in order to discuss all subsequent
results.

B.2.3. WKB approximation

In order to assess the following results, we compare them with the WKB approximation.
The formula for the approximated energy levels reads

 x0

−x0


2(En − U(x)) =


n+ 1

2


π, (B.9)

where x0 is the classical turning point, U(x0) = U(−x0) = En. The index n counts the
energy level. Evaluating (B.9) for each model, we obtain for the first potential, (B.2),

E0 ≈ 0.520 , E1 ≈ 0.955 , ∆E ≈ 0.435 . (B.10)

For the Pöschl-Teller potential, (B.3), the ground state energy is

E0 ≈ 0.582 . (B.11)

Finally for the last potential, (B.4), we have

E0 ≈ 0.405 , E1 ≈ 0.905 , ∆E ≈ 0.500 . (B.12)

It is remarkable that E1 deviates less than 1% from the exact value, whereas E0 is off
by 13% − 16%. This is to be expected, since the WKB approximation works well in the
semiclassical limit λ ≪ 2x0, where λ/2 is the distance between two knots of the wave
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Fig. B.6.: Flow of the derivative of the effective potential at vanishing position, which gives the
effective energy gap at scale k, ∆Ek, for both Callan-Symanzik (left panel) and optimised
(right panel) regulator. The horizontal dashed line indicates the exact value of the energy
gap, whereas the vertical line indicates the value up to which the numerical integration
could be done. The orange dashed line is the extrapolation of our numerical values, given
in blue. The energy gap comes out quite well in both cases.

function. This translates into the condition n≫ 1.

B.2.4. One-loop approximation

As a further step to put subsequent results in perspective, we perform a one-loop calculation.
The one-loop effective potential reads

U1l(x) = Ucl(x) + 1
2

U ′′

cl(x) , (B.13)

which can for example be obtained directly from the flow equation by setting the potential
on the right-hand side equal to the classical potential Ucl. The ground state energy is given
by the value of the effective potential at its minimum (here in all cases x = 0), whereas the
energy gap is the square root of the curvature of it, also evaluated at the minimum. One
thus obtains for the first potential, (B.2),

E0 = 1√
π
≈ 0.564 , ∆E = 2√

π
≈ 1.128 . (B.14)

The ground state energy comes out more or less well for such a simple calculation, but the
one-loop result predicts that there are no further bound states, as the energy gap is too
large.

For the Pöschl-Teller potential, the one-loop result is

E0 = 1√
2
≈ 0.707 , ∆E =


2

1−
√

2

≈ 0.910i . (B.15)
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U(x) = 2/π arctan (x2)
exact CS opt

E0 0.448004 0.445 0.447
∆E 0.509453 0.477 0.558

U(x) = 1− 1/ cosh2(x)
exact CS opt

E0 1/2 0.496 0.499
∆E - 0.464 0.585

U(x) = exp(−1/x2)
exact CS opt

E0 0.356644 0.355 0.356
∆E 0.542040 0.515 0.570

Tab. B.1.: Overview of exact results from solving the Schrödinger equation and results obtained
from the flow of the potential for all three potentials. CS and opt indicate that the
Callan-Symanzik and the optimised regulator were employed, respectively.

The convexity of the effective potential is not caught by a one-loop calculation, and accord-
ingly, the energy gap is imaginary. This phenomenon is well-known to be an artifact of the
loop expansion, and extensively discussed in e.g. [426, 427]. The ground state energy is off
by about 40%.

Finally, for the nonanalytic potential (B.4), no meaningful one-loop analysis can be done.
In fact, any order in perturbation theory fails to produce anything nonzero for the energy
levels because of the nonanalyticity.

B.2.5. Flow of the effective potential

This section is devoted to the numerical study of the actual flow equation for the effective
potential. All investigations are done within LPA where Z ≡ 1. Note, that in quantum
mechanics no renormalisation is needed. Therefore, the initial condition can be put at
k = Λ → ∞. To cover the whole interval k ∈ [0,∞) the time direction is compactified. As
in the previous section, for reasons of numerical stability, we actually use the flow equation
for the derivative of the effective potential U ′(ρ) = ∂ρU(ρ), and obtain the ground state
energy by an additional integration. The flow equation reads

∂kU
′(ρ) = −AkB 3U ′′(ρ) + 2ρU ′′′(ρ)

(k2 + U ′(ρ) + 2ρU ′′(ρ))C , (B.16)

where A = 1/π, B = C = 2 for the linear optimised regulator (R(p2) = (k2 − p2)θ(k2 − p2))
and A = 1/4, B = 1 and C = 3/2 for the Callan-Symanzik cutoff (R(p2) = k2).

We will first point out some expectations on the outcome of the flow, followed by the dis-
cussion of the actual results of the flow. An overview of all results can be found in Table B.1.
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B.2. Quantum mechanics with a bounded potential

Fig. B.7.: Flow of the derivative of the effective potential for the Callan-Symanzik regulator. One
can see that the nonanalyticity of the classical potential quickly smooths out. Convexity
problems for small scales arise for large values of the position, in contrast to conventional
unbounded potentials.

Expectations - The effective potential needs to be convex at k = 0 (except in particular
cases, see the discussion in the next subsection). It is immediately clear that any bounded
function that is not constant cannot be convex. It follows that if we could integrate the flow
equations down to k = 0, we would end up with a constant potential, and the constant is
exactly the ground state energy. One can prove this by considering an alternative definition
of the effective potential [428],

U(x̄) = inf
Ψ:⟨x⟩=x̄

⟨H⟩ , (B.17)

that is, the effective potential at a point x̄ is given by the infimum of the Hamiltonian over
all states with position expectation value x̄. Exhaustive discussions of the effective potential
in quantum field theory can be found in e.g. [428–431]. Our naïve expectation on the flow is
therefore that we can hope to find the ground state energy, but probably not the energy of
the first excited state. Surprisingly, it turns out that one can extract some estimate of the
excited state energy from the flow.

Numerical results - As exemplary case, we display the numerical results from solving the
flow equation for the nonanalytical potential (B.4). The other two potentials pose no further
challenge and show the same qualitative behaviour.

In Figure B.5, the effective potential at x = 0 as a function of the scale k is depicted,
for both the Callan-Symanzik and the optimised regulator. It corresponds to the effective
ground state energy at scale k. The horizontal dashed line indicates the exact value obtained
from the Schrödinger equation. For technical reasons, we cannot integrate down to k = 0,
but only to a finite value, indicated by the vertical dashed line. From thereon, we extrapolate
linearly to get an estimate of the true ground state energy. For both regulators, we get very
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precise estimates for the ground state energy. Generically, the optimised regulator gives
slightly superior results for E0.

Next, we shall discuss the results on the energy gap. As argued above, in principle we
should not expect to get any meaningful estimate from the effective potential. There is
however a loophole in the above argument: it is based on the effective potential at scale
k = 0, when all fluctuations are integrated out. When we consider the flow of the effective
potential, we can extract further information, as the scale k is roughly the (inverse) scale of
a finite box that the system lives in, giving an effective cutoff to physics. In this sense, we
can indeed extract information on the energy gap, roughly when the scale is large enough
to resolve the wave function of the first excited state, but small enough not to be too much
influenced by the next-higher states. Bearing this in mind, we shall discuss the first derivative
of the flowing potential, again at vanishing position, which gives the effective energy gap at
scale k [432],

∆E =

U ′(ρ) |ρ=0 , (B.18)

It is shown in Figure B.6, again for both regulators. Remarkably, in both cases again, we
get a quite good estimate of the true energy gap, however the finer details are more com-
plicated. For the Callan-Symanzik regulator, we can already see the influence of convexity,
as the derivative of the effective potential bends towards zero. This is not the case for the
optimised regulator yet. Correspondingly, the optimised regulator overestimates the energy
gap, whereas the estimate from the Callan-Symanzik regulator is below the true value. This
behaviour is also observed for the other potentials, and influences the prediction of the num-
ber of bound states. In this respect, the optimised regulator erroneously predicts only one
bound state for the potential (B.2). On the other hand, the Callan-Symanzik regulator pre-
dicts a second bound state for the Pöschl-Teller potential (B.3). Either way, any prediction
for the energy gap from the flow should be taken with a grain of salt, as convexity has to
set in at some point, and also the extrapolation introduces further errors. Presumably one
should read off the energy gap at some finite value of the scale, at which the first excited
state is completely resolved, however we found no a priori argument on how to set this scale.

In Figure B.7, we depict the actual flow of the derivative of the effective potential, obtained
with the Callan-Symanzik regulator. One can see that the nonanalyticity of the classical
potential is smoothed out quickly. For small scales k, one can also see the tendency of the
derivative of the effective potential to flow to zero, as it must due to convexity. In contrast
to unbounded potentials, where convexity is numerically challenging near the origin, the
numerical problems here arise for large values of the position, which makes it increasingly
difficult to resolve the flow.
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Fig. B.8.: Comparison of the classical potential (B.2) and the corresponding effective potential
(B.19) in the large N limit. In contrast to finite N , we do not observe convexity of the
effective potential, but only that the ρ-derivative is nonnegative.

B.2.6. Large N approximation

As a final point, we shall study the potential (B.2) in the limit of infinitely many dimensions,
similar to a large N approximation in the O(N) model. In this case, the flow equation can
be solved implicitly by the method of characteristics [418]. In the case of the potential (B.2),
the implicit relation x = x(U) can be inverted, delivering the full effective potential. It is
given by

U(x) =
−πx2 +


16π(1 + x4)− π2

8π(1 + x4)

+ 2
π


arctan(x2) + arctan


π

16(1 + x4)− π


.

(B.19)

Notably, the largeN effective potential is not convex. This seeming paradox has the following
reason. Convexity is tied to the condition that the propagator avoids a singularity for
negative U ′′(x) which appears in the equivalent of the radial mode propagator. In the large
N approximation, however, only the equivalent of the Goldstone mode propagator survives,
and for it to be finite, it is enough that U ′(ρ) ≡ U ′(x)/x is nonnegative. This is indeed the
case for the solution given above. A plot of both the classical and the effective potential is
given in Figure B.8.
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Appendix C.

Gauge and parameterisation dependent
flow equations

In this appendix, we display the gauge and parameterisation dependent flow equations of
section 4.2.1 for general regulators R(∆) and in dimension d = 4. For simplicity, we denote
∂t-derivatives by an overdot, and introduce the anomalous dimension η = (ġ − 2g)/g, and
refer to terms linear in η as “η-terms”. Let us start with the contribution from the TT-mode:

STT = 5
2Q2


Ṙ− ηR

∆ + R− 2λ(1− τ)



− 5
12R


Q1


Ṙ− ηR

∆ + R− 2λ(1− τ)


+ (4− 3τ)Q2


Ṙ− ηR

(∆ + R− 2λ(1− τ))2


,

(C.1)

where the Q functionals are defined in terms of Mellin transforms [35]. For the transverse
vector, and without field redefinition, let us define

GT
n =


−(Ṙ− ηR)


2λ(1− τ)− 1

α
(R + 2∆)


− 2(λ̇+ 2λ)(1− τ)R


×

(∆ + R)


∆ + R

α
+ 2λ(1− τ)

−n

.

(C.2)

With that, we have

ST = 3
2Q2


GT

1


+R

1
4Q1


GT

1


+ 3

2(1− α(1− τ))Q3

GT

2


− 3

4λ(1− τ)Q2

GT

2


. (C.3)

On the other hand, the contribution with field redefinition reads,

ST
fr = 3

2Q2


Ṙ− ηR

∆ + R− 2αλ(1− τ)



+R


1
8Q1


Ṙ− ηR

∆ + R− 2αλ(1− τ)


+ 3

8(1− 2α(1− τ))Q2


Ṙ− ηR

(∆ + R− 2αλ(1− τ))2


.

(C.4)
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For the scalar contribution, we first define

πσ = − 3
4α


4αλ(1− τ)(∆ + R)2 + (α− 3)(∆ + R)3


, (C.5)

πh = − 1
16α


−4αλ(1 + τ) + (3α− β2)(∆ + R)


, (C.6)

πx = − 3
8α(α− β)(∆ + R)2 , (C.7)

ρσ = − 3
4α


4α(λ̇+ (2− η)λ)(1− τ)(2∆ + R)R

+ 8αλ(1− τ)(∆ + R)Ṙ

+ 3(α− 3)(∆ + R)2Ṙ

−(α− 3)(3∆2 + 3∆R + R2)ηR

, (C.8)

ρh = − 1
16α(3α− β2)(Ṙ− ηR) , (C.9)

ρx = − 3
8α(α− β)(2Ṙ(∆ + R)− ηR(2∆ + R)) . (C.10)

The contribution is

Sσh = 1
2Q2


πσρh + πhρσ − 2πxρx

πσπh − (πx)2


+R


1
12Q1


πσρh + πhρσ − 2πxρx

πσπh − (πx)2



− 3
4α(6− α(4− 3τ))Q4


ρh

πσπh − (πx)2


+ λ(1− τ)Q3


ρh

πσπh − (πx)2



− α− β
4α Q3


ρx

πσπh − (πx)2


+ 3

4α(6− α(4− 3τ))Q4

πh

πσρh + πhρσ − 2πxρx



πσπh − (πx)2

2


+ λ(1− τ)Q3

πh

πσρh + πhρσ − 2πxρx



πσπh − (πx)2

2

+ τ

32Q2

πσ

πσρh + πhρσ − 2πxρx



πσπh − (πx)2

2


+α− β16α Q2

πx

πσρh + πhρσ − 2πxρx



πσπh − (πx)2

2

− τ

32Q2


ρσ

πσπh − (πx)2

 .

(C.11)
With field redefinition, define

πσfr = − 3
4α (4αλ(1− τ) + (α− 3)(∆ + R)) , (C.12)

πh
fr = − 1

16α

−4αλ(1 + τ) + (3α− β2)(∆ + R)


, (C.13)

πx
fr = − 3

8α(α− β)(∆ + R) , (C.14)

ρσfr = 3
4α(3− α)(Ṙ− ηR) , (C.15)

ρh
fr = − 1

16α(3α− β2)(Ṙ− ηR) , (C.16)
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ρx
fr = − 3

8α(α− β)(Ṙ− ηR) . (C.17)

Then, the scalar contribution is

Sσh
fr = 1

2Q2


πσfrρ

h
fr+ πh

frρ
σ
fr − 2πx

frρ
x
fr

πσfrπ
h
fr − (πx

fr)
2


+R


1
12Q1


πσfrρ

h
fr + πh

frρ
σ
fr − 2πx

frρ
x
fr

πσfrπ
h
fr − (πx

fr)
2



+ τ

32Q2

πσfr

πσfrρ

h
fr + πh

frρ
σ
fr − 2πx

frρ
x
fr



πσfrπ

h
fr − (πx

fr)
2
2

− τ

32Q2


ρσfr

πσfrπ
h
fr − (πx

fr)
2



+ 3
8α(1− α(1− τ))

Q2

πh
fr


πσfrρ

h
fr + πh

frρ
σ
fr − 2πx

frρ
x
fr



πσfrπ

h
fr − (πx

fr)
2
2

−Q2


ρh

fr

πσfrπ
h
fr − (πx

fr)
2


+α− β16α

Q2

πx
fr


πσfrρ

h
fr + πh

frρ
σ
fr − 2πx

frρ
x
fr



πσfrπ

h
fr − (πx

fr)
2
2

−Q2


ρx

fr

πσfrπ
h
fr − (πx

fr)
2


 .

(C.18)
Further, the ghost contribution reads without field redefinition,

Sgh = −5Q2


Ṙ

∆ + R


−R


7
12Q1


Ṙ

∆ + R


+ 3

4Q2


Ṙ

(∆ + R)2


+ 4

3− βQ3


Ṙ

(∆ + R)3


.

(C.19)
With field redefinition, it is

Sgh
fr = −4Q2


Ṙ

∆ + R


−R


5
12Q1


Ṙ

∆ + R


+


3
4 + 1

3− β


Q2


Ṙ

(∆ + R)2


. (C.20)

Finally, the contribution of the Jacobian for the case without field redefinition is

SJac = 1
2 S

gh

β=0

+Q2


Ṙ

∆ + R


+ 1

6RQ1


Ṙ

(∆ + R)2


. (C.21)

With field redefinition, all Jacobians cancel, at least to linear order in background curvature
that we consider here [37].
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Appendix D.

Basis for correlation functions

Here, we specify a basis for all fluctuation correlation functions with up to three fluctuation
fields, including up to two background derivatives or one background curvature. The one-
point correlator has 3 independent monomials,

Γ(1) ∼ a1h+ a2h R̄ + a3hµνS̄
µν . (D.1)

For the two-point function, there are 2 invariants with neither derivatives nor curvature,

Γ(2)
λ ∼ b1h

2 + b2hµνh
µν , (D.2)

4 invariants with 2 derivatives,

Γ(2)
D ∼ b3h ∆̄h+ b4hµν∆̄hµν + b5hD̄

µD̄νhµν + b6D̄
µhµρD̄

νhν
ρ , (D.3)

and 5 invariants with a single background curvature,

Γ(2)
R ∼ b7hµνC̄

µρνσhρσ + b8hµνS̄
µρhρ

ν + b9hµνS
µνh+ b10hµνR̄ h

µν + b11h R̄ h . (D.4)

The three-point correlator can be spanned by 3 terms without any derivatives or curvature,

Γ(3)
λ ∼ c1h

3 + c2hµνh
µνh+ c3hµ

νhν
ρhρ

µ , (D.5)

14 terms with 2 derivatives,

Γ(3)
D ∼ c4h

2 ∆̄h+ c5h
2D̄µD̄νh

µν + c6hh
µνD̄µD̄νh+ c7hµ

ρhµσD̄(ρD̄σ)h

+ c8h

D̄ρhµ

ρ

D̄σh

µσ + c9hhµ
ρD̄(ρD̄σ)h

µσ + c10hhµν∆̄hµν

+ c11hµνh
µν∆̄h+ c12hµ

ρhρ
ν∆̄hν

µ + c13hµνhρσD̄
µD̄νhρσ + c14hµνh

µνD̄ρD̄σh
ρσ

+ c15h
ρνhσνD̄(µD̄ρ)h

µσ + c16hνσ

D̄µh

µν

D̄ρh

ρσ + c17h
µνhρσD̄(µD̄ρ)hνσ ,

(D.6)
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Appendix D. Basis for correlation functions

and 9 invariants with a background curvature,

Γ(3)
R ∼ c18C̄

µνρσhνσhµτhρ
τ + c19C̄

µνρσhhµρhνσ + c20S̄
µνhν

ρhρ
σhσµ + c21S̄

µνhµνh
ρσhρσ

+ c22S̄
µνhν

ρhρ
µh+ c23S̄

µνhµνh
2 + c24R̄ hµ

νhν
ρhρ

µ + c25R̄ hµνh
µνh+ c26R̄ h

3 .
(D.7)
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Appendix E.

General inverse and determinant of the
metric

In this appendix we present the full formulas for the general inverse and determinant of the
full metric, for the most general parameterisation which doesn’t include derivatives. The
starting point is (4.108), with inverse (4.109). The coefficients of the inverse read

B0 = 1
216 /∆


216A2

0 (A2h2 +A3h3) + 9A0

−12A2

1h2 − 12A1

2A2h3 +A3


h2

2 − 4h4


+4A2A3h2h3 + 6A2
2


h2

2 + 4h4


+A2
3


−3h3

2 + 24h4h2 + 8h2
3


+ 216A2A2

3h
2
4 + 2h3


4A3

3h
2
3 + 9A1


(A3h2 + 2A1) 2 − 2A2

2h2


−6A2h3

A3 (A3h2 + 6A1)− 2A2

2


− 18h4


3A2


(A3h2 + 2A1) 2 − 2A2

2h2


+4A3h3

A2

2 −A3 (A3h2 + 2A1)


+ 216A3
0


, (E.1)

B1 = 1
72 /∆


− 72A3

3h
2
4 + h2


4A3

3h
2
3 + 9A1


(A3h2 + 2A1) 2 − 2A2

2h2


−6A2h3

A3 (A3h2 + 6A1)− 2A2

2


− 18h4 (2A1 −A3h2)×

A3 (A3h2 + 2A1)− 2A2
2


− 12A0


−h3


A2

3h2 + 2A2
2


+2A1 (3A2h2 +A3h3) + 12A2A3h4)− 72A2

0A1

, (E.2)

B2 = 1
216 /∆


− 18A0


−3 (A3h2 + 2A1) 2 + 6A2 (A2h2 + 2A0) + 4A2A3h3


− 36h4


−3A3A2 (A3h2 + 4A1) + 2A2

3 (A3h3 + 3A0) + 6A3
2

 
, (E.3)

B3 = 1
36 /∆


− 4A3

3h
2
3 − 18A3h4


A3 (A3h2 + 2A1)− 2A2

2


− 9


4A3A2

1h2 +A1

h2

A2

3h2 − 2A2
2


− 8A0A2


+ 4A3

1 + 4A2
0A3


+ 6h3


A3A2 (A3h2 + 6A1)− 2A3

2 − 4A0A2
3

 
, (E.4)

XXV



Appendix E. General inverse and determinant of the metric

where we already used the ratio of determinants

/∆ ≡ det g
det ḡ = A3

0 (A2h2 +A3h3) + 1
24A

2
0


−12A2

1h2 − 12A1

2A2h3 +A3


h2

2 − 8h4


+4A2A3h2h3 + 6A2
2


h2

2 + 8h4


+A2
3


−3h3

2 + 36h4h2 + 8h2
3


+ 1

108A0

432A2A2

3h
2
4 − 18h4


3A2


A2

3h
2
2 − 2


A2

2 − 2A1A3

h2 + 8A2

1


+A3h3


2A2

2 −A3 (3A3h2 + 10A1)


+ h3

4A3

3h
2
3 + 9A1


(A3h2 + 2A1) 2 − 2A2

2h2


−6A2h3

A3 (A3h2 + 6A1)− 2A2

2


+ 1

36h4

36A4

3h
2
4 +A1


4A3

3h
2
3 + 9A1


(A3h2 + 2A1) 2 − 2A2

2h2


−6A2h3

A3 (A3h2 + 6A1)− 2A2

2


+ 6h4


−3A3A2

2 (A3h2 + 8A1)

+2A3
3A2h3 + 6A1A2

3 (A3h2 + 2A1) + 6A4
2


+A4

0 .

(E.5)
Let us also show how to calculate the n-th power of hTL for n ≥ 4. For this, we make the
ansatz 

h
TL
n

= an14 + bnh
TL + cn


h

TL
2

+ dn

h

TL
3
. (E.6)

From the CHT, we get the initial conditions

a4 = −h4 , b4 = 1
3h3 , c4 = 1

2h2 , d4 = 0 . (E.7)

Multiplying (E.6) by hTL and using the CHT, we get the recursion relations

an+1 = −h4dn ,

bn+1 = an + 1
3h3dn ,

cn+1 = bn + 1
2h2dn ,

dn+1 = cn .

(E.8)

This recursion relation can be solved by Mathematica, but the result contains RootSum
expressions and is not very enlightning, thus we shall not present it here. For the special
case of an exponential parameterisation, one can transform this set of recursion relations
into a set of differential equations in a fiducial variable x by introducing the functions

A(x) =
∞
n=4

an
n!x

n , B(x) =
∞
n=4

bn
n!x

n , C(x) =
∞
n=4

cn
n!x

n , D(x) =
∞
n=4

dn
n!x

n . (E.9)
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The metric in exponential parameterisation then reads

gexp = ḡ eh1/4

14(1 + A(1)) + h

TL (1 +B(1)) +

h

TL
2 1

2 + C(1)


+

h

TL
3 1

6 +D(1)


.

(E.10)
This emphasises again the usefulness of our choice of invariants, since the trace factors out.
To obtain the functions A,B,C,D, (E.8) is multiplied with xn

n! and summed over n from 4
to ∞, and the resulting set of differential equations reads

A′(x) = h4


x3

6 −D(x)

,

B′(x) = A(x) + 1
3h3


x3

6 +D(x)

,

C ′(x) = B(x) + 1
2h2


x3

6 +D(x)

,

D′(x) = C(x) .

(E.11)

The initial conditions at x = 0 follow from the initial conditions of the recursion and the
definition of the functions. Again, this system can be solved explicitly with Mathematica.
For this, we introduce the polynomial

p(x) = 6h4 − 2h3x− 3h2x
2 + 6x4 , (E.12)

which is related to the CHT, i.e. the characteristic polynomial of h. The operator RS (for
RootSum) then maps a function to the sum of the values of the function at the roots of the
polynomial p,

RS[f(x)] =


xi:p(xi)=0
f(xi) . (E.13)

With the abbreviation
ρn = RS


exxn

−h3 − 3h2x+ 12x3


, (E.14)

the solution to the differential equations at the relevant point is

A(1) = RS


1
12x4 (−h3 + 12x3 − 3h2x)


h4e

−x (x(x(x+ 3) + 6)− 6ex + 6)×
2

2h2

3ρ0 − 9ρ3x
3 + 9h4 (ρ2 + x (ρ1 + ρ0x)) + 3h3 (2ρ3 + x (ρ2 + ρ1x))


−9h2

2ρ1x+ 3h2 (−6h4ρ0 + 2h3 (ρ0x− ρ1) + 3x (2ρ3 + x (ρ2 + 2ρ1x)))


,

(E.15)

B(1) = RS


1
12x4 (−h3 + 12x3 − 3h2x)


e−x (x(x(x+ 3) + 6)− 6ex + 6)×

3h2

h4

ρ0

6x3 − 2h3


+ 6 (ρ3 + x (ρ2 + ρ1x))


− h3ρ2x

2
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+ 2

9h4


h4 (ρ1 + ρ0x)− x2 (ρ3 + ρ2x)


+ 3h3


h4

ρ2 + ρ0x

2

− ρ3x

3


−h2
3x (ρ2 + ρ1x)


− 9h4h

2
2 (ρ1 + ρ0x)


, (E.16)

C(1) = RS

− 1

24x4 (−h3 + 12x3 − 3h2x)

e−x (x(x(x+ 3) + 6)− 6ex + 6)×

9h2
2ρ2x

2 + 4

3h3


x2 (ρ3 + ρ2x)− h4 (ρ1 + ρ0x)


+ h2

3ρ1x

+9h4 (x (ρ3 + x (ρ2 + ρ1x))− h4ρ0))

+6h2

3ρ3x

3 − 3h4

ρ2 + ρ0x

2 + 2ρ1x


+ h3x (ρ2 + ρ1x)


, (E.17)

D(1) = RS

− 1

4x4 (−h3 + 12x3 − 3h2x)

e−x (x(x(x+ 3) + 6)− 6ex + 6)×

h4

ρ0

−4h3 + 6x3 − 6h2x


+ 6


ρ3 + ρ1


x2 − h2


+ ρ2x


+x (3h2x (ρ3 + ρ2x) + 2h3 (ρ3 + x (ρ2 + ρ1x)))))] . (E.18)

For the special case where we neglect the invariants h3 and h4, we find A = B = O(h3, h4)
and

C(1) = −
4 + h2 − 4 cosh


h2
2

2h2
+O(h3, h4) , (E.19)

D(1) = −1
6 −

2
h2

+
2
√

2 sinh


h2
2

h
3/2
2

+O(h3, h4) . (E.20)
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Appendix F.

Inversion of tensors

A generic task in FRG studies is the calculation of the inverse of the second variational
derivative of the effective action. Here, we want to outline an algorithm to construct the
inverse for a general Hessian. For this, we use de Witt’s condensed notation, where an
abstract index A labels a number of spacetime and internal indices as well as a spacetime
point. The ideas presented here a based on unpublished work together with Stefan Lippoldt.

The regularised Hessian is 
Γ(2) + R

A
B
, (F.1)

and we want to solve
GA

B


Γ(2) + R

B
C

= δAC , (F.2)

where δ denotes the generalised identity operator. For example, if A = µ, we have the
standard Kronecker delta. By contrast, for a symmetric 2-tensor

δAB = δµνρσ = 1
2

δµρ δ

ν
σ + δµσδ

ν
ρ


. (F.3)

Typically, we are interested in solutions to (F.2) only up to truncated operators T ,

GA
B


Γ(2) + R

B
C

= δAC +O(T ) . (F.4)

This can for example be a certain power in background curvature, or a maximal number of
derivatives on the field strength. For the algorithm that we will show now to work, we need
the set of operators that are included to be finite. Otherwise, clearly the propagator cannot
be calculated on a finite computer.

The calculation of the propagator involves two conceptual steps. We first have to find the
complete basis of the operators that we want to resolve. With this, we can make an ansatz
for the propagator as a linear combination of these operators. Second, we have to calculate
the expansion coefficients.

The algorithm implements these two steps: we will first iteratively construct the basis,
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Appendix F. Inversion of tensors

and then solve for the coefficients. For the first step, define

GA
0 B = δAB . (F.5)

We construct the n-th iteration Gn by taking a general linear combination of all operators
that are produced by the multiplication of Gn−1 with Γ(2) + R. Clearly, operators that are
truncated will not be taken into account. After a finite number of steps, no new operators
will be generated if the basis of the resolved operators is finite, and we thus have an ansatz for
the propagator, GN . It is important that really only different tensor structures in the sense
of indexed objects are included, i.e. ∆DµDν and DµDν are not different tensor structures.

To calculate the coefficients, we can use the command SolveCoefficients of the xTras

package which is part of the xAct suite for Mathematica. For this, we calculate the product
of GN and the regularised Hessian, span everything in the tensor basis, and then solve
the system of equations by demanding (F.4). The latter step is automatically done by
SolveCoefficients, which combines the reformulation to a system of linear equations with the
Solve routine of Mathematica.

Let us illustrate this algorithm by the following example. Consider the Hessian


Γ(2) + R

A
B

= (∆ + R(∆)) δµν + aDµDν + bRµ
ν , (F.6)

where a and b are constants. For convenience, we introduce ∆R = ∆ + R(∆). We want
to calculate the inverse of this operator up to linear order in the curvature, neglecting also
derivatives on the curvature. The first iteration gives us the linear combination of operators
that appear in the Hessian itself, the second iteration adds two further tensor structures, the
third adds a final one. No further structures are then generated, thus the propagator can be
parameterised as

Gµ
ν = g0(∆)δµν +Dµg1(∆)Dν + g2(∆)Rµ

ν + g3(∆)RαβDµDαDβDν

+ g4(∆)Rµ
ρD

ρDν + g5(∆)Rρ
νD

µDρ +O(R2, DR) .
(F.7)

Multiplying this ansatz with the Hessian, and sorting everything in a standard form, we
arrive at

Gµ
ν


Γ(2) + R

ν
ρ

= [g0(∆)∆R] δµρ

+Dµ [a g0(∆) + g1(∆)∆aR] Dρ

+Rµ
ρ [b g0(∆) + g2(∆)∆R]

+ [a (g2(∆)− g′
0(∆)) + g4(∆)∆aR] Rµ

νD
νDρ

+ [−g1(∆) (∆′
R − b) + g5(∆)∆R] Rν

ρD
µDν

+ [g3(∆)∆aR + a g5(∆)] RαβDµDαDβDρ

+O(R2, DR) .

(F.8)
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Here, ∆aR = ∆R − a∆ and ∆′
R = 1 + R′(∆). We hence find

g0(∆) = 1
∆R

,

g1(∆) = − a

∆R∆aR

,

g2(∆) = − b

∆2
R

,

g3(∆) = a2

∆2
R∆2

aR

(1− b+ R′(∆)) ,

g4(∆) = g5(∆) = − a

∆2
R∆aR

(1− b+ R′(∆)) .

(F.9)

A similar application interesting in the context of f(R) gravity is the full inverse with
constant curvature, where S = C = 0, i.e. there is only a (covariantly constant) nontrivial
Ricci scalar, but zero tracefree Ricci tensor and Weyl tensor. The general Hessian reads


Γ(2) + R

A
B

= A(∆, R)δµν +DµB(∆, R)Dν . (F.10)

Here, R as an argument indicates the Ricci scalar, and we suppress the dependence on the
regulator in the discussion. In the absence of curvature tensors with indices, the two tensor
structures present in the Hessian form a basis, thus

Gµ
ν = g0(∆, R)δµν +Dµg1(∆, R)Dν . (F.11)

Calculating the product and neglecting derivatives of R yields

Gµ
ν


Γ(2) + R

ν
ρ

= g0(∆, R)A(∆, R)δµρ

+Dµ

g0

∆− R

4 , R

B(∆, R) + g1(∆, R)


A

∆− R

4 , R

−∆B(∆, R)


Dρ

+O(S,C,DR) .
(F.12)

This gives the coefficients

g0(∆, R) = 1
A(∆, R) ,

g1(∆, R) = − B(∆, R)
A

∆− R

4 , R
 
A

∆− R

4 , R

−∆B(∆, R)

 . (F.13)

To calculate the product, we used the standard commutation relations

[Dµ,∆]σ = RµνD
νσ = R

4 Dµσ +O(S) , (F.14)

[Dµ,∆]ξµ = −RµνD
µξν − 1

2ξ
µDµR = −R4 Dµξ

µ +O(S,DR) , (F.15)
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the Baker-Campbell-Hausdorf formula,

es∆Dµe
−s∆ =

∞
n=0

1
n! [Dµ, (−s∆)]n , (F.16)

where [X, Y ]n = [[X, Y ], Y ]n−1 and [X, Y ]0 = X, and the Laplace transform

f(∆) =
 ∞

0
ds f̃(s) e−s∆ . (F.17)

For example, the shift in the first arguments arises from

g0(∆, R)Dµσ =
 ∞

0
ds g̃0(s, R)e−s∆Dµσ

=
 ∞

0
ds g̃0(s, R)

∞
n=0

1
n! [Dµ, s∆]ne−s∆σ

=
 ∞

0
ds g̃0(s, R)

∞
n=0

1
n!


sR

4

n
Dµe

−s∆σ

= Dµ
 ∞

0
ds g̃0(s, R)e−s


∆−R

4


σ

= Dµg0

∆− R

4 , R

σ .

(F.18)

Here, we again neglected terms of order S and DR. Incidentally, it is easy to generalise this
last calculation to a general manifold with constant curvature,

g0(∆, R)Dµσ = Dα

 ∞

0
ds g̃0(s, R)


e−s(∆1−Ric)

α
µ
σ . (F.19)

To bring this into a useful form, one again has to employ the CHT.
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Appendix G.

Functional truncations in pure U(1)
gauge theory

This appendix treats a functional truncation of a pure U(1) gauge theory. We will calculate
the β function of the most general function V of the field strength tensor in the limit
of constant field strength tensors. With this, we illustrate the broad applicability of the
methods of section 4.4.

The truncation we study reads

Γ =


d4xV (F ,G) ≡


d4xV
1

4FµνF
µν ,

1
4FµνF̃

µν

. (G.1)

Here, F̃ is the dual field strength tensor,

F̃µν = 1
2ϵµνρσF

ρσ . (G.2)

In the following, we will only consider the contribution of the transverse gauge field AT
µ , with

∂µAT
µ = 0 . (G.3)

The longitudinal and the ghost modes decouple, and together substract a total contribution
of one free scalar mode, which we will suppress in the discussion. In the following, we
sketch the full calculation by neglecting the dependence on G. The full calculation with
both invariants can be done similarly, all necessary intermediate results will be given. The
regulator for the transverse part is chosen as

∆S = 1
4


d4xFµν

R(p2)
p2 F µν . (G.4)

The second variation of the action (G.1) reads

Γ(2)
µν = V ′(F)


ηµνp

2 − pµpν


+ V ′′(F)FµαpαFνβpβ , (G.5)
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where η is the Minkowski metric and p the momentum vector. The propagator G can now
be obtained by

Gµν

Γ(2) + ∆S(2)


νρ

= δµρ −
pµpρ
p2 , (G.6)

paying proper attention to the transversality of AT
µ . From this, we find the transverse

propagator

Gµν = 1
p2V ′(F) + R(p2)


ηµνp2 − pµpν


− V ′′(F)
p2V ′(F) (p2V ′(F) + PV ′′(F) + R(p2))F

µαpαF
νβpβ .

(G.7)

Here, we introduced the scalar quantity

P = F µαFµβpαp
β . (G.8)

With this, it is very straightforward to calculate the flow. The result reads

1
2 STr [G · ∂tR] = 1

2

 d4p

(2π)4
p3

p2V ′(F) + R(p2)


3− P V ′′(F)

p2V ′(F) + PV ′′(F) + R(p2)


∂tR(p2) .

(G.9)
Now, we have to make sense out of this, since P also contains the loop momentum p. For
this, we will assume that we can expand the integrand in P in a Taylor series, manipulate
the resulting expression, and resum it15. We thus have to calculate


ddp g(p)Pn (G.10)

for a general function g(p). Using the definition of P , we can boil this down to the task of
determining 

ddp g(p) pµ1 · · · pµ2n . (G.11)

By Lorentz invariance, the tensor structure must be proportional to the product of n fully
symmetrised metrics, i.e.


ddp g(p) pµ1 · · · pµ2n = αnη(µ1µ2 · · · ηµ2n−1µ2n)


ddp g(p) p2n . (G.12)

Multiplying this equation with n fully symmetrised metrics, one can determine the constants
αn. They come out to be

αn = (2n− 1)!!(d− 2)!!
(d+ 2(n− 1))!! . (G.13)

The next step is the evaluation of the tensor contractions. For this, let T µν be an arbitrary

15Alternatively, if the eigenvalues of the matrix are known, one can also perform the angular integration
over the loop momentum.
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tensor. Then,

T µ1µ2 · · ·T µ2n−1µ2nη(µ1µ2 · · · ηµ2n−1µ2n) = 2n
(2n− 1)!!Bn


0!
2 τ1,

1!
2 τ2, . . . ,

(n− 1)!
2 τn


. (G.14)

Here, Bn are the complete Bell polynomials, and by τn we mean the traces of the covariant
n-cycles of T , tr ((T .µηµ.)n). Combining these results, we arrive at


ddp g(p) (pµpνT µν)n = 2n(d− 2)!!

(d+ 2(n− 1))!!)Bn


ddp g(p) p2n = 1

d
2


n

Bn


ddp g(p) p2n ,

(G.15)
where we suppress the arguments of Bn which are the same as above, and (x)n = Γ(x +
n)/Γ(x) is the Pochhammer symbol. To evaluate the Bell polynomials, we can use their
exponential generating function,

exp
 ∞
n=1

an
n!x

n


=

∞
n=0

Bn(a1, . . . , an)
n! xn . (G.16)

With the arguments as above, it turns out that the left-hand side evaluates to

exp
 ∞
n=1

an
n!x

n


= exp


1
2 tr

∞
n=1

1
n

(xT )n


= exp

−1

2 tr ln (1− xT )


= [det (1− xT )]−1/2 .

(G.17)
The complete Bell polynomials are thus proportional to the coefficients of the Taylor series
of this expression in x around zero. Without loss of generality, we can assume that T is
traceless16. In four dimensions, we have

det (1− xT ) = 1− 1
2τ2x

2 − 1
3τ3x

3 + (detT )x4 . (G.18)

If we neglect the dependence on the determinant, the Taylor series can be calculated explic-
itly. A lengthy calculation gives the result

1
1− τ2

2 x
2 − τ3

3 x
3

=
∞
n=0


τ2
2

n/2
in

n−3µ
2


!
π

√
2τ3

3iτ 3/2
2

µ
xn×

3F
reg
2


2 + µ− n

6 ,
4 + µ− n

6 ,
7µ− n

6 ;µ+ 1
2 ,

1 + µ− n
2

6τ 2
3

τ 3
2


,

(G.19)
where µ = n mod 2 and 3F

reg
2 is the regularised generalised hypergeometric function.

To apply this knowledge to the case of the four-dimensional U(1) gauge theory, we further

16If it is not traceless, decompose it into trace and traceless part. In the scalar P, only the traceless part
has nontrivial angular dependence.
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Appendix G. Functional truncations in pure U(1) gauge theory

need the identities [433]

F µαF̃ ν
α = F̃ µαF ν

α = Gηµν , (G.20)

F̃ µαF̃ ν
α = F µαF ν

α − 2Fηµν , (G.21)

from which we can derive

F ρ
µF

µ
αF

αν = −2FF ρν − GF̃ ρν . (G.22)

With this, we can calculate the coefficients of the n-th power of the field strength tensor,

(F n)µν = anη
µν + bnF

µν + cnF̃
µν + dn(F 2)µν . (G.23)

Multiplying by another field strength tensor, we can derive a recursion for the coefficients
an to dn. At the end, we are interested in the trace of F n, i.e.

ηµν(F n)µν = 4an − 4Fdn . (G.24)

For odd n, they clearly vanish due to the antisymmetry of F . For even n = 2k, we get

ηµν(F n)µν = 2

−F −

√
F2 + G2

k
+

−F +

√
F2 + G2

k
= 2(−2F)k +O(G) . (G.25)

In the case of T = −F 2, we can evaluate (G.17) exactly, giving

exp
 ∞
n=1

an
n!x

n


= 1

1− 2Fx− G2x2 =
∞
n=0

(F+
√

F2+G2)n+1
−(F−

√
F2+G2)n+1

2
√

F2+G2 xn , (G.26)

and thus we can read off the complete Bell polynomials.
Now, we are finally in the position to write the flow (G.9) into a form which we can

evaluate. Expanding it in P , and using all the results just obtained, finally resumming the
series yiels

1
2 STr [G · ∂tR] = 1

16π2

 ∞

0
dp

 2p3

p2V ′(F) + R(p2) +
p ln


1 + 2p2FV ′′(F)

p2V ′(F)+R(p2)


2FV ′′(F)

 ∂tR(p2) .

(G.27)
Rather miraculously, the whole calculation can be done with both invariants until the very
end. The resulting expression is lengthy, and we won’t report it here.
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Appendix H.

Clifford algebra

Here, we will fix our conventions on the Clifford algebra used in the nonsupersymmetric
Gross-Neveu-Yukawa model in section 5.2. We stick to the spin-base invariant formulation
[434–436]. Dirac conjugation is given by

ψ̄ = ψ†h , (H.1)

with an antihermitian spin metric h. In this convention, the product ψ̄ψ is real. Furthermore,
we want the kinetic term of the fermions to be real. This implies

γ†
µ = hγµ(h†)−1 ≡ −hγµh−1 . (H.2)

Finally, the actual Clifford algebra is taken as

{γµ, γν} = 2ηµν . (H.3)

With this, one can list all possible products of Dirac matrices (γ̄ = γ0γ1γ2, [γµ, γν ] = 2Σµν):

γµγν = ηµν1+ Σµν ,

γρΣµν = ηµργν − ηνργµ + ϵρµν γ̄ ,

γµγ̄ = 1
2ϵµνρΣ

νρ ,

Σµνγρ = ηνργµ − ηµργν + ϵµνργ̄ ,

Σµν γ̄ = −ϵµνργρ ,

ΣµνΣαβ = Σαµηβν + Σβνηαµ − Σανηβµ − Σβµηαν − (ηµαηνβ − ηµβηνα)1 ,

γ̄ Σµν = −ϵµνργρ ,

γ̄ γµ = 1
2ϵµνρΣ

νρ ,

γ̄ γ̄ = −1 .

(H.4)

Notice that in these conventions, no explicit factors of i appear.
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Appendix I.

Supersymmetric quantum mechanics

In this appendix, we present results on supersymmetric quantum mechanics, in particular
spontaneous breaking of supersymmetry. The results are published in [156].

In order to derive the flow equations for supersymmetric quantum mechanics, we employ
the superfield formalism [437]. For more details we refer the reader to [380]. The Euclidean
superfield, expanded in terms of the anticommuting Grassmann variables θ and θ̄, reads

Φ = χ+ θ̄ψ + ψ̄θ + θ̄θF . (I.1)

Both the superfield and the Grassmann variables θ, θ̄ have mass dimension −1/2. Next, we
introduce the superpotential and expand it in powers of the Grassmann variables,

W (Φ) = W (χ) +

θ̄ψ + ψ̄θ


W ′(χ) + θ̄θ


FW ′(χ)−W ′′(χ)ψ̄ψ


. (I.2)

The one-dimensional equivalent of the super-Poincaré algebra contains only translations of
Euclidean time and is generated by one pair of conserved nilpotent fermionic supercharges
Q = i∂θ̄ + θ∂τ and Q̄ = i∂θ + θ̄∂τ . The anticommutator of them is the super-Hamiltonian
H,

{Q, Q̄} = 2H, [H,Q] = [H, Q̄] = 0 . (I.3)

Supersymmetry variations are generated by δϵ = ϵ̄Q − ϵQ̄. We may easily read off the
following transformation rules of the component fields

δχ = iϵ̄ψ − iψ̄ϵ , δψ = (χ̇− iF )ϵ , δψ̄ = ϵ̄(χ̇+ iF ) , δF = −ϵ̄ψ̇ − ˙̄ψϵ , (I.4)

by acting with the supersymmetry variations on the superfield:

δϵΦ = ϵ̄

iψ + iθF + θχ̇− θ̄θψ̇


−


iψ̄ + iθ̄F − θ̄χ̇+ θ̄θ ˙̄ψ

ϵ. (I.5)

Here and in the following, a dot denotes differentiation w.r.t. τ , the quantum-mechanical time
variable. In order to obtain a supersymmetric action, we further need the supercovariant
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derivatives D = i∂θ̄ − θ∂τ and D̄ = i∂θ − θ̄∂τ .
The anticommutation relations they satisfy are almost identical to those of the super-

charges,

{D,D} = {D̄, D̄} = 0 and {D, D̄} = −2H . (I.6)

They further anticommute with the supercharges. With these definitions, one can write
down the supersymmetric Euclidean off-shell action within the superfield formalism:

S[χ, F, ψ̄, ψ] =


dτdθdθ̄

−1

2ΦKΦ + iW (Φ)


=


dτ
1
2 χ̇

2 − iψ̄ψ̇ + iFW ′(χ)− iψ̄W ′′(χ)ψ + 1
2F

2

,

(I.7)

where we introduced the kinetic operator

K = 1
2

D̄D − DD̄


. (I.8)

Eliminating the auxiliary field F by its equation of motion, F = −iW ′, we obtain the on-shell
action

Son[χ, ψ, ψ̄] =


dτ
1
2 χ̇

2 − iψ̄ψ̇ + 1
2W

′2(χ)− iW ′′(χ)ψ̄ψ

. (I.9)

From (I.9) we read off the bosonic potential V (χ) = 1
2W

′2(χ) and the Yukawa termW ′′(χ)ψ̄ψ.
If supersymmetry is unbroken, the ground state energy vanishes.

Let us assume the superpotential W (χ) to be a polynomial in the scalar field. Then, the
global properties of the superpotentialW (χ) ∼ χn for large χ determine whether spontaneous
breaking of supersymmetry occurs or not. If n is even, supersymmetry will be intact on all
scales. This is realised, e.g., for quartic classical superpotentials

W (χ) = eχ+ m

2 χ
2 + g

3χ
3 + a

4χ
4 , (I.10)

which we will consider in section I.2.2. W (χ) represents the microscopic superpotential, i.e.
the initial potential of our quantum system before fluctuations are taken into account. If n is
odd, the effective potential exhibits a ground state with positive energy and supersymmetry
is spontaneously broken, even if we may start with a microscopic potential with vanishing
ground state energy. This applies, e.g., to cubic classical superpotentials of the form

W (χ) = eχ+ g

3χ
3, e < 0, g > 0 , (I.11)

which will be discussed in detail in section I.3.
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Appendix I. Supersymmetric quantum mechanics

I.1. Flow equation in superspace
The flow equation in superspace reads

∂tΓ = 1
2 STr (G∂tR) = 1

2


dz dz′ G(z, z′)∂tR(z′, z), G = (Γ(2) + R)−1 , (I.12)

where z = (τ, θ, θ̄) denotes the coordinates in superspace. Therein the second functional
derivative with respect to the superfield Γ(2) is given by

Γ(2)(z, z′) =
−→
δ

δΦ(z)Γ
←−
δ

δΦ(z′) . (I.13)

Note that the supertrace as well as the right and left derivatives take care of the minus signs
for anticommuting variables.

I.1.1. Supercovariant derivative expansion in NNLO

We employ the expansion of Γ in powers of the supercovariant derivatives D and D̄ with
mass dimension 1/2. Unfortunately, a systematic and consistent expansion scheme of Γ
does not guarantee convergence. One goal of the present calculation is to demonstrate the
convergence of the supercovariant derivative expansion at NNLO to numerically known values
of observables. We will derive the flow equation in the off-shell formulation with a manifestly
supersymmetric regulator such that in each order of the supercovariant derivative expansion
the flow preserves supersymmetry.

To this order, the most general ansatz for the scale dependent effective action reads

Γ[Φ] =


dz

iW (Φ)− 1

2Z(Φ)KZ(Φ) + i
4Y1(Φ)K2Φ + i

4Y2(Φ)(KΦ)(KΦ)

, (I.14)

with the scale and field dependent functions W,Z, Y1 and Y2 and the kinetic operator K
introduced in (I.8). A contribution to Γ where the derivatives act on three superfields,
Y3(D̄Φ)(DΦ)(KΦ), is already included in our truncation, since


dz A(Φ)K2Φ =


dz


A′(Φ)(KΦ)(KΦ) + A′′(Φ)(D̄Φ)(DΦ)(KΦ)


. (I.15)

Terms with D, D̄ acting on four superfields do not exist since (D̄ΦDΦ)2 = 0. In component
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I.1. Flow equation in superspace

fields the action (I.14) takes the form17

Γ[Φ] =


dτ
1
2Z

′2χ̇2 − iZ ′2ψ̄ψ̇ − i
2 (Y ′

1 + Y2) ˙̄ψψ̇ − i

W ′′ + Z ′Z ′′χ̇− 1

2Y
′′

1 χ̈−
1
4Y

′′′
1 χ̇

2

ψ̄ψ

+


iW ′ − Z ′Z ′′ψ̄ψ − i
2 (Y ′

1 + Y2) χ̈−
i
4Y

′′
1 χ̇

2 + 1
2Y

′
2


ψ̄ψ̇ − ˙̄ψψ


F

+
1

2Z
′2 − i

4Y
′′

2 ψ̄ψ

F 2 + i

4Y
′

2F
3

,

(I.16)
where the terms are ordered according to increasing powers of the auxiliary field F .

I.1.2. Supersymmetric regulator functional

The flow of Γ is regularised by adding a suitable regulator functional ∆S to the action.
Given a supersymmetric truncation Γ and a supersymmetric initial condition, we only need a
supersymmetric regulator in order to construct a manifestly supersymmetric flow. Following
[378–380], the most general off-shell supersymmetric cutoff action quadratic in the superfields
can be written as

∆S = 1
2


dzΦR(D, D̄)Φ . (I.17)

As D and D̄ satisfy the anticommutation relation (I.6), it can be written as

∆S = 1
2


dzΦ


ir1(−∂2

τ )− Z ′2(Φ̄) r2(−∂2
τ )K


Φ , (I.18)

where Z ′ is evaluated at the background field Φ̄ = χ̄. The flow equations are derived and
shown explicitly in [156], and we will not reproduce them here, as not so much can be learned
from their explicit form.

The regulator function r1 with mass dimension 1 acts like an additional momentum de-
pendent mass and ensures a gap ∼ k for the IR modes. Note that we do not spectrally adjust
this regulator function by multiplying it with the wave function renormalisation as has been
done in [380]. The latter approach would actually slow down the flow of the higher order
operators Z, Y1, Y2. The dimensionless regulator function r2 can be viewed as a deformation
of the momentum dependence of the kinetic term. The term q2r2(q2/k2) represents the su-
persymmetric analogue of the corresponding regulator function r(q2/k2) in scalar field theory
[215]. Here, a spectral adjustment via the inclusion of the wave function renormalisation
Z ′(Φ̄) is helpful in order to provide a simple form for the flow of Γ [226]. We did check the
influence of the spectral adjustment on the flow of Γ carefully.

17From now on, we suppress the explicit field dependence.
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Appendix I. Supersymmetric quantum mechanics

I.2. Effective potential and first excited energy
The low lying energies can be extracted from the bosonic on-shell effective potential Veff =
Vk=0. In order to compute V , we set the fermionic fields to zero in the truncated effective
average action (I.16).

I.2.1. On-shell effective potential

At a given scale, the auxiliary field F fulfills the equation of motion

F = − 2i
3Y

Z ′4 + 3
4 (4W ′ − 2Xχ̈− (X ′ − Y )χ̇2)Y − Z ′2

 , (I.19)

and hence becomes dynamical, in contrast to the situation in the NLO approximation. Next,
we eliminate the auxiliary field in the bosonic action by its equation of motion. To calculate
the effective potential Veff, it is sufficient to consider Γ for constant χ in which case

V (χ) = 2
27Y 2

√
3W ′Y + Z ′4 − Z ′2

 
6W ′Y + Z ′4 − Z ′2√3W ′Y + Z ′4


. (I.20)

We determine the energy of the first excited state E1 from the propagator G at vanishing
k, where the regulator R vanishes. Supersymmetry is unbroken if the potential V in (I.20)
vanishes at its minimum χmin, which is the case if W ′(χmin) = 0. Actually, in the strong
coupling regime there exists a second solution for which [4W ′(Y +Z ′4)](χmin) = 0. However,
we believe this solution to be unphysical, see subsection I.2.2.

For a constant χmin, the auxiliary field F in (I.19) vanishes if W ′(χmin) = 0. Thus, we
determine the excited energies E1 by considering the propagator for constant fields χ and
W ′ = F = 0. After an integration over the Grassmann variables, we obtain

G(q, θ, θ′)|θ̄θ θ̄′θ′ = Z ′2q2

Z ′4q2 + (W ′′ + 1/2Xq2)2 . (I.21)

The square of the excited energy E2
1 is then given by the pole of the propagator at the

minimum of the effective potential:

lim
k→0


Z ′4q2

0 +

W ′′ + 1

2Xq
2
0

2 
χmin

= 0 with q2
0 = (iE1)2 . (I.22)

This equation possesses the two solutions

E2
1 = lim

k→0

2
X2


Z ′4 +XW ′′ ± Z ′2√Z ′4 + 2XW ′′

 
χmin

, (I.23)

where the solution with the negative sign is the correct one, since it reduces to the known
limiting value E1 = |W ′′(χmin)| in the LPA approximation with Z ′ = 1 and X = 0. The
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I.2. Effective potential and first excited energy

Fig. I.1.: Energy gap E1(g) and relative error etrunc for classical superpotentials of the form
W ′

Λ(χ) = 1 + χ + gχ2 + χ3 and various g. For convex initial potentials (g <
√

3) we
achieve a nice convergence as well as a relative error of 1% in NNLO. For couplings larger
than g ≈ 2, where the classical potential becomes nonconvex, we observe significant devi-
ations from the exact results.

other solution with positive sign diverges in this limit.
Note that if supersymmetry is spontaneously broken, W ′(χmin) ̸= 0 and the corresponding

auxiliary field F does not vanish. Then the first excited energy E1 is extracted from the pole
of the general propagator, i.e. of

lim
k→0

G(q, θ, θ′)|θ̄θ θ̄′θ′ (I.24)

at the (constant) minimum χmin of the potential, where F has to be replaced by its equation
of motion (I.19).

I.2.2. Numerical results

To obtain numerical results, we specify the regulator functions and choose r2(q2, k) = 0 and
the Callan-Symanzik regulator r1(q2, k) = k. Then there is no dependence on the background
field. We stress that the right hand side of the flow equations only depends via W ′′ and W ′′′

on the superpotential. The corresponding microscopic action in the UV is given by (I.9) and
we focus on quartic superpotentials of the form (I.10). Thus, the initial conditions for the
flow at k = Λ read

W ′
Λ(χ) = e+mχ+ gχ2 + aχ3 , Z ′

Λ(χ) = 1 , YΛ(χ) = XΛ(χ) = 0 . (I.25)

In supersymmetric quantum mechanics the fluctuations in the UV are suppressed and the
flow freezes out for k → Λ→∞. Hence the initial conditions are stable for large UV cutoffs.
Indeed, plugging (I.25) into the flow equations yields

∂kW
′

Λ

= O

Λ−2


, ∂kZ

′

Λ

= O

Λ−4


, ∂kX


Λ

= O

Λ−5


, ∂kY


Λ

= O

Λ−6


. (I.26)
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Appendix I. Supersymmetric quantum mechanics

g ELPA
1 ENLO

1 ENNLO
1 Eex

1

0.0 2.202 2.086 2.038 2.022
0.2 2.136 2.028 1.986 1.970
0.4 2.061 1.957 1.920 1.905
0.6 1.978 1.876 1.842 1.827
0.8 1.889 1.784 1.752 1.738
1.0 1.797 1.687 1.653 1.639
1.2 1.709 1.584 1.547 1.534
1.4 1.632 1.486 1.440 1.426
1.6 1.583 1.398 1.337 1.323
1.8 1.590 1.339 1.250 1.235
2.0 1.702 1.337 1.199 1.173
2.2 2.005 1.442 1.216 1.153
2.4 2.627 1.764 1.378 1.183
2.6 3.661 2.525 1.895 1.254
2.8 4.988 3.961 3.195 1.343

Tab. I.1.: Energy ENNLO
1 of the first excited state, calculated according to (I.23) for r1 = k, e =

m = a = 1 and various g. For comparison, also the results ELPA
1 obtained in LPA,

ENLO
1 derived in NLO as well as the exact values Eex

1 from numerically diagonalising
the Hamiltonian are given. Here, ELPA

1 , ENLO
1 and ENNLO

1 were derived by solving the
respective partial differential equations numerically.

For W ′
Λ in (I.25) supersymmetry remains unbroken at all scales. Note that the initial super-

potential WΛ is nonconvex if g2 > 3ma. Besides, we may shift the field χ→ χ− g/(3a) such
that the quadratic term of W ′

Λ vanishes.
We solved the set of the four coupled partial differential equations for W ′, Z ′, X, Y numer-

ically with pseudo-spectral methods. Besides, we repeated the calculations with the implicit
Runge-Kutta method of NDSolve of Mathematica 9. In the latter case, we have chosen
χ ∈ (−100, 100) and kept the four functions at their classical values at the boundary for all
scales, as the flows vanish for |χ| → ∞. With both methods we obtained the same results
to three or four significant digits.

Table I.1 displays the energy gap E1(g) for e = a = m = 1 and various values of the
coupling g. We also listed the resulting energies obtained by solving the PDEs in LPA as
well as NLO.

Figure I.1 shows the first excited energies E1 (left figure) and the relative deviation from
the exact values etrunc = (E1 − Eex

1 )/Eex
1 (right figure) as a function of the coupling g.

Obviously, an inclusion of terms of fourth order in the derivative expansion improves the
results for the energy gap considerably. We obtain a relative error of < 1% for couplings
g <
√

3. For couplings
√

3 < g < 2.3 the relative deviations from the exact results lie within
a 10% error.

Note that for couplings larger than g ≈ 2 the error increases exponentially and the superco-
variant derivative approximation breaks down. The breakdown of the NNLO approximation
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I.2. Effective potential and first excited energy

Fig. I.2.: Flow of the effective average potential V (ϕ) as obtained by solving the system of PDEs
numerically in NNLO in the derivative expansion with initial conditions (I.25), where
e = m = a = 1 and g = 0 (left panel) and g = 1.8 (right panel).

for couplings g ≳ 2 is also indicated by the structure of the effective average potential. In
this regime, V (χ) becomes complex for all scales smaller than a k0 > 0 for field values close
to the local minimum of W ′

Λ. This is due to the expression
√

3W ′Y + Z ′4 appearing in (I.20)
which becomes complex near the local minimum of W ′

Λ for nonconvex initial potentials, ow-
ing to an increasingly negative Y ; see also Figure I.3 and Figure I.4. Another sign of the
breakdown is given by the appearance of a further mass at g ≈ 1.7, splitting in two masses
for even larger couplings g. This is due to the formation of one/two further minima of the
effective potential, where 4W ′Y + Z ′4|χmin

= 0 holds. Here, the fourth order correction Y

is of the same order as the leading and next-to-leading order terms W ′ and Z ′ indicating
the invalidity of the truncation. The corresponding masses become parametrically large.
These large masses in the strong coupling regime are probably an artifact of the regularisa-
tion and have no physical significance. Similar artifacts have already been encountered in
O(N)-symmetric Wess-Zumino models [383].

We thus observe a very good convergence of the derivative expansion in case of the local
barrier of the classical potential being small. However, as the nonconvexity of VΛ increases,
tunneling events are exponentially suppressed and are no longer captured by the flow equa-
tions in the derivative expansion. Here, the inclusion of nonlocal operators should lead to a
better convergence behaviour in the strong coupling regime.

The flow of the bosonic potential V (χ) for g = 0 and g = 1.8 is depicted in Figure I.2.
Apparently, nonconvexities appearing in the classical potential diminish as more and more
long range quantum fluctuations are taken into account such that the effective potentials
in Figure I.2 become convex18. Furthermore, Figure I.3 and Figure I.4 show the flow of
W ′, Z ′, X and Y for g = 1.8. From (I.26) we infer the following deviation of the solutions at

18However, note that the structure of the flow equation forces rather the superpotential than the scalar
potential to become convex in the IR. Since the scalar potential is a complicated function of W ′, Z, Y ,
i.e. of the form (I.20), the flow equation does not immediately imply Vk→0 to be convex.
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Appendix I. Supersymmetric quantum mechanics

Fig. I.3.: The superpotential W ′(ϕ) and the wave function renormalisation Z ′(ϕ) for different scales
k. Starting in the UV at k = Λ = 104 (blue, dashed line) the flow evolves to the IR at
k = 0 (red solid line). The intermediate scales are k = 5, 2, 1, 0.5, 0.1, 0.02.

k = 0 from their classical values for large values of |χ|:

W ′
0 −W ′

Λ ∼
1

2χ, Z ′
0 − Z ′

Λ ∼
1

12χ4 , X0 −XΛ ∼
1

18χ6 , Y0 − YΛ ∼ −
1

9χ7 . (I.27)

As expected, the higher order operators show a faster decay for large field values, see Fig-
ure I.3 and Figure I.4.

I.3. Supersymmetry breaking
If we choose the classical superpotential to be a polynomial of the form W ′

Λ(χ) ∼ O (χn) with
leading power n even, we expect spontaneous supersymmetry breaking to occur during the
flow towards the IR [379, 438, 439]. It is known that spontaneous supersymmetry breaking
is an IR effect, where the ground state is lifted to E0 > 0 [440].

I.3.1. Problems with the expansion in powers of F

In order to study breaking of supersymmetry within the FRG framework we focus on the Z2

symmetric even function

W ′
Λ(χ) = e+ gχ2, e < 0, g > 0 . (I.28)

Then the RG flow preserves the symmetry and W ′(χ) will remain Z2-symmetric for all scales.
For unbroken supersymmetry we employed an expansion in the auxiliary field around

F = 0 to derive the flow equations in terms of the scalar fields χ. However, this expansion
point is inappropriate when supersymmetry is broken in which case the vacuum expectation
value of the average field F does not vanish. The problem with expanding around F = 0
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Fig. I.4.: The flow of the fourth order couplings X(ϕ), Y (ϕ) for different scales k. Starting in the
UV at k = Λ = 104 (blue, dashed line) the flow evolves to the IR at k = 0 (red solid line).
The intermediate scales are k = 5, 2, 1, 0.5, 0.1, 0.02

can be seen already in the LPA where W ′′(χ) represents a ”mass term” in the denominator
of the flow equation. Hence, the regulator r1 does not regularise since W ′′(χ) = W ′′(χ) + k

will vanish for some value(s) of χ. This means that the RG equation detects the massless
fermionic excitation - the Goldstino mode - associated with the spontaneous breaking of
supersymmetry. This mode mediates between the two degenerate ground states at E0 > 0,
one in the bosonic and one in the fermionic sector [438]. Hence, at the minimum of V (χ)
the denominator in the flow equation simply contains the squared Goldstino mass m2

G =
W ′′(0)2 = 0. Thus, the flow of the superpotential diverges in the IR limit at the origin.
This apparently leads to infinitely large excited energies, since E1 = W ′(0)W (3)(0) > 0 for
broken supersymmetry. We find that this divergence occurs independently of the choice of
the regulator r2 and of the order of truncation19.

Thus, we are lead to Taylor-expand in powers of F −F0 with finite F0. We shall do this in
NLO in the derivative expansion. First we consider the equation of motion for the auxiliary
field in NLO, given by

F = −iW ′(χ)/Z ′(χ)2 . (I.29)

If supersymmetry is spontaneously broken, W ′(χ) > 0 for all χ. Again we observe that F
assumes a finite vacuum expectation value implying a breakdown of the flow equation when
W ′ ceases to have a zero. Now we expand around a nonzero auxiliary field - determined by
its equation of motion - and rewrite the left-hand side of the flow equation as

Flow = iF∂tW ′ + 1
2(∂tZ ′2)F 2 +O(F 3)

19Of course, this IR problem represents a low dimensional issue as the divergences diminish with increasing
dimension d, see [378, 379, 441].
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Appendix I. Supersymmetric quantum mechanics
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Fig. I.5.: Ground state energy E0 and its relative error etrunc for initial potentials of the form
WΛ = −0.1 + g

3ϕ3 as a function of g obtained via a polynomial expansion of W ′(ϕ) up
to ϕ12. The brackets encode the projection scheme, i.e. (i, j) corresponds to a projection
onto (F − F0)i and (F − F0)j .

= W ′ (Z ′∂tW
′ −W ′∂tZ

′)
Z ′3 + i


∂tW

′ − 2W ′∂tZ
′

Z ′


(F − F0) + Z ′∂t(Z ′)(F − F0)2 + . . .

with F0(χ) = −iW ′(χ)/Z ′(χ)2 . (I.30)

Obviously the term O(F 3) will contribute to all orders around this new expansion point.
Unfortunately, there is no unique projection onto the flows of W ′ and Z ′. We may project
onto the constant, the linear or the quadratic term in (F − F0). Hence, the system is
overdetermined. Note that higher order terms contain no information about the flows of
W ′ and Z ′. Solving all three equations using an expansion of the right-hand side of the
flow equation yields no consistent solution, since higher derivative operators contribute to
these lower orders as well. To obtain a maximally self-consistent truncation it is therefore
necessary to minimise these contributions. Assuming a nice convergence behaviour of the
derivative expansion, it is sensible to project onto the lowest orders in (F − F0).

I.3.2. Numerical results

In order to solve the flow equations for W ′ and Z ′ we now limit our discussion to the
approximation of a uniform wave function renormalisation by setting Z ′(χ) = Z ′. This
corresponds to neglecting the field and momentum dependence of Z ′. To analyse the flow
of the effective average potential we proceed in two steps. First we start with a classical
potential of the form (I.11) in the UV at k = Λ. Down to some scale k0 > 0, W ′ will have
a zero. In this regime k ∈ (k0,Λ) we employ the flow equations obtained by an expansion
around F = 0. Starting with k0 down to the IR limit k = 0 the scale dependence of W ′, Z ′

is determined by the flow equations derived via an expansion around F0 ̸= 0. As regulator
functions we choose r1 = 0 and r2 = (k2/p2 − 1) θ(k2 − p2). To calculate the ground state
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energies E0 we expand W ′ in a Taylor series around χ = 0 up to some order and solve the
system of coupled ODEs numerically. This is a sensible approach when W ′ becomes flat in
the IR, because due to supersymmetry the physics happens at vanishing field, in contrast to
for example O(N) models [382, 383], where the situation is exactly opposite: in the unbroken
regime, the derivative of the potential is positive, whereas in the broken phase, one has a
zero. As in the case of unbroken supersymmetry, we compare our results for E0 with the
ones obtained by numerically diagonalising the Hamiltonian of the system.

Figure I.5 displays the ground state energies as well as the relative error etrunc in LPA
and NLO as obtained via two different projection methods. Here, (i, j) corresponds to a
projection onto (F − F0)i and (F − F0)j.

Apparently, the results are significantly improved by including a constant wave function
renormalisation. In particular, this applies to large couplings g, where the relative error is
approximately 4%. Contrary to unbroken supersymmetry, the relative error increases with
decreasing g. This originates from the fact that for decreasing g the minima of the potential
drift apart and tunneling effects become effective, see [442].

In NLO, a (0, 2)-projection shows a smaller relative error than the (0, 1)-projection up to
some gmax ≈ 3.6, since the flow of Z ′ slows down when including the higher order term
(F − F0)2 resulting in a higher ground state energy E0 = V (0) = W ′(0)/Z ′(0)2. However,
for large g > gmax the (0, 1)-projection leads to superior results. This may be due to a larger
truncation error in (F −F0)2 compared to (F −F0)1 with increasing coupling g, originating
from the missing higher order terms X, Y which are of importance there.
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