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Abstract

Supersymmetry is one of the possible scenarios for physics beyond the standard model.

By introducing a symmetry between bosons and fermions, it might be able to solve

several theoretical problems while providing dark matter candidates. As all supersym-

metric extensions of the standard model are based on strongly coupled gauge theories,

we need non-perturbative methods, to fully investigate them. In this thesis we use

lattice calculations, to investigate the two-dimensional N = (2, 2) super Yang-Mills

theory, which we derive by a dimensional reduction of the four-dimensional N = 1

super Yang-Mills theory.

Unfortunately our lattice formulation breaks supersymmetry explicitly. Thus we

devote the first part of the thesis to present the lattice theory and analyze it thoroughly.

First we have to discretize Majorana fermions, which leads to a real but not necessarily

positive fermion determinant. Second, the classical potential of the scalar fields posses

flat directions. Both problems could thwart our lattice simulations. Fortunately, as we

demonstrate, both of them are absent in our simulations. At last, we show that the

lattice theory posses only one relevant operator, the scalar mass, whose value in the

continuum limit is known.

The second part of the thesis is devoted to the numerical results. Introducing an

additional fine-tuning of the fermion mass, we can reduce the influence of supersym-

metry violating terms. Calculating lattice Ward identities, we show the restoration

of supersymmetry in the chiral and continuum limit. Finally we calculate the low-

lying bound states and extrapolate their masses to the continuum limit. We find two

super-multiplets, as predicted from low energy effective theories. The first is the Farrar-

Gabadadze-Schwetz super-multiplet which decouples from the theory. The second is

the Veneziano-Yankielowicz super-multiplet which becomes massless in the chiral limit.

We are further able to estimate the masses of the excited mesons of the latter. They

are of the same size as the mass of the gluino-glueball.



Zusammenfassung

Supersymmetry ist ein mögliches Konzept, das Physik jenseits des Standardmodells

beschreiben könnte. Durch die Einführung einer Symmetrie zwischen Bosonen und

Fermionen werden einige theoretische Probleme gelöst und Kandidaten für die Dunkle

Materie eingeführt. Da alle supersymmetrischen Erweiterungen des Standardmodells

auf stark gekoppelten Eichtheorien beruhen, benötigen wir nichtperturbative Meth-

oden, um sie vollständig zu untersuchen. In dieser Doktorarbeit nutzen wir Gitter-

rechnungen um die zweidimensionale N = (2, 2) superymmetrische Yang-Mills Theorie

zu untersuchen. Wir erhalten dieses Model durch eine dimensionale Reduktion der

vierdimensionalen N = 1 supersymmetrischen Yang-Mills Theorie.

Unglücklicherweise bricht unser Gitterformalismus die Supersymmetry explizit. Da-

her nutzen wir den ersten Teil der Doktorarbeit, um unsere Gittertheorie vorzustellen

und sorgfältig zu untersuchen. Zuerst müssen wir Majorana Fermionen diskretisieren.

Dies führt zu einer reellen aber nicht notwendigerweise positiven Fermionendeter-

minante. Weiterhin besitzt das klassische Potential der Skalarfelder flache Richtun-

gen. Beide Probleme könnten unsere Simulation unmöglich machen. Glücklicherweise

können wir zeigen, dass beide in unserer Simulation abwesend sind. Zum Schluß zeigen

wir, dass die Gittertheorie nur einen relevanten Operator, die skalare Masse, besitzt,

deren Wert für den Kontinuumslimes bekannt ist.

Im zweiten Teil der Doktorarbeit präsentieren wir die numerischen Resultate. Durch

die Einführung und Feinabstimmung eines zusätzlichen Parameters, die Fermionen-

masse, können wir den Einfluss von Operatoren, die Supersymmetrie brechen, re-

duzieren. Durch die Berechnung von Gitterwardidentitäten können wir die Wieder-

herstellung der Supersymmetrie im chiralen und Kontinuumslimes zeigen. Zum Schluß

bestimmen wir das Spektrum der leichten Bindungszustände. Wir finden zwei Super-

multiplets. Das Erste ist das Farrar-Gabadadze-Schwetz Supermultiplet, welches von

der Theorie entkoppelt. Das Zweite ist das Veneziano-Yankielowicz Supermultiplet,

welches im chiralen Limes masselos ist. Zusätzlich können wir auch die Massen der

angeregten Zustände für das Letztere bestimmen. Sie sind von der gleichen Größenord-

nung wie die Masse des Gluino-Glueballs.
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Chapter 1

Introduction

The two most successful theoretical models describing parts of our universe are the

standard model of particle physics and the general theory of relativity. Both were once

more validated by the detection of the Higgs boson [1, 2] and gravitational waves [3].

Yet we know both theories can not describe physics at all energy and length scales.

The simple explanation is, that both theories fail to include each other. We see this

explicitly by the absence of the gravitational interaction in the standard model. A

step forward would be to unite both theories into a more general one. Unfortunately

we still lack a way to quantize the gravitational force. The difficulty of this task is

seen by a comment from Heisenberg and Pauli, who in 1929 thought it to be straight

forward [4]. Yet several decades later it is still an unsolved problem. Furthermore

the data from astrophysics suggest, that even this unified theory can not describe

everything. Looking into these results [5], we find that the particle content of the

standard model makes up only 4.9% of the energy density of the universe, while the

so called dark matter makes up 26.6%. The remaining 68.5% is the so called dark

energy. The name for the last two comes from the fact, that they do not interact with

photons, hence they emit no light, like any dark object. While both make up 95% of

the universe, we know little about them. Still we have experimental constraints for

dark matter. Astronomical observations found that it will most likely not interact via

the electromagnetic force, the strong force and the weak force. Thus the most easiest

idea was to link it to neutrinos, whose shallow interaction with the rest of the standard

model could explain these properties. Unfortunately the combination of the very low

mass with its fermionic nature rules out this possibility. Thus we need new particles

outside of the standard model.

Over the last decades, there were many proposals for new theories beyond the stan-

dard model, introducing several different candidates for the dark matter particles. The

most promising of them seems to be supersymmetry (for an introduction see [6, 7]). De-

rived by a non-trivial extension of the Poincaré algebra, it solves the Hierarchy problem.

Another nice feature is the unification of electromagnetism, the strong force and the
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1. Introduction

Standard Model Supersymmetric Extension
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ẽ

ν ẽ
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Figure 1.1: Particle content of the Minimal Supersymemtric Standard Model

weak force at high energy scales, as expected by heuristic arguments. Further it de-

livers a plethora of possible dark matter candidates. The only downside is, that the

naive supersymmetric extension of the standard model is not realized in nature. For

this let us look at the particle content of the minimal supersymmetric standard model,

depicted in Figure 1.1. We see that it introduces a new particle for every particle

of the standard model. These must appear because supersymmetry introduces a new

symmetry between bosons and fermions. One property of this symmetry is that it

conserves the electromagnetic charge and the mass. Thus the supersymmetric partner

of the electron, called selectron, should be a boson with negative charge e and a mass

of me ≈ 9.109 × 10−31kg [8]. Since these particles are absent in physical experiments,

supersymmetry can only be realized in nature if it is broken at low energies1, e.g. be-

low 10 TeV. Conceptually this is a well understood property of physical systems. For

example in magnets: below the Curie temperature isotropy is broken and we observe so

called Weiss domains. This is an example of spontaneous symmetry breaking. Another

mechanism would be a soft symmetry breaking, where we break it directly in such a

way, that we restore it at high energies. Interestingly we can use the latter breaking

mechanism to parametrize the former. Anyhow supersymmetric models and theories

received a lot of attention over the last decades and are one of the focus point for the

LHC [9, 10]. Yet we miss experimental verification of all supersymmetric scenarios

considered (see for example the reviews in [8, 11]). Thus we have to take a closer look

how to derive these predictions.

Most of the calculations in supersymmetric theories are done with semi-classical

and perturbative methods. The reason is that due to the increased amount of symme-

try, one finds a high amount of cancellations of quantum corrections, simplifying the

calculations. This is further expressed in the non-renormalization theorems [12, 13].

To illustrate this property let us take a look at the Hierarchy problem. In the standard

1The actual value is not fixed and can be changed inside the model, yet this would have measurable
effects. Thus there exist constraints for this value
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Figure 1.2: One loop contributions to the Higgs mass squared m2
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fermion λ and a scalar S, reproduced from [6].

model, the Higgs is a boson. Thus its mass squared will get corrections proportional

to the scale Λ squared. Here we call Λ the energy after which the standard model is

not sufficient to describe physics anymore. This correction is created by the Feynman

diagram depicted on the left side of Figure 1.2. Since we do not know Λ yet, it could

range from 10 TeV up to the Planck scale2 EP ≈ 1.2209 × 1016 TeV. In contrast the

experimental result for the mass of the Higgs is known mH ≈ 125 GeV [1, 2]. Thus we

need a fine-tuning over several magnitudes for the constants in front of the quantum

corrections to get the correct Higgs mass. In case of fermions, this problem is not as

severe, since the leading correction is proportional to the logarithm of Λ, thus for a

large range of energies the prefactors of the corrections will be of the same order. The

fine-tuning of the parameters to get the right Higgs mass is called Hierarchy problem.

It is purely theoretical in nature because it does not affect the experimental and thus

the physical results of the standard model. We can solve this problem with a super-

symmetric extension of our theory. By introducing a symmetry between bosons and

fermions, we get new corrections for the Higgs mass. We are especially interested in

the Feynman diagram depicted on the right hand side of Figure 1.2. Due to supersym-

metry, it cancels exactly the contribution from the diagram on the left side [6]. Thus

the Hierarchy problem is absent in a supersymmetric model. This kind of cancellation

is common in supersymmetric theories to all orders of perturbation theory, leading to

the aforementioned non-renormalization theorems. Further it simplifies the calculation

leading to many exact results.

This previous discussion hid one very important point, all those argument are only

valid in perturbation theory. While it is usually thought to be sufficient to explain

results for Quantum electrodynamics (QED) at low energies and Quantum chromody-

namics (QCD) at high energies, it can not explain all physical properties. Let us show

this for QED. This theory is the quantum field theory describing the electromagnetic

interaction. Using perturbation theory, one gets very precise predictions, one of the

standard example being the fine structure constant derived from the anomalous mag-

netic dipole moment of the electron [14]. On the other hand this theory should also

be able to describe the hydrogen atom. Looking at the solution for the ground state

2From our current understanding of the universe, this is the highest energy after which the standard
model has to fail.
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1. Introduction

we observe an interesting fact. We can not expand it into a sum of finite elements,

which approximately describes the ground state. Thus we will fail to describe it with

perturbation theory. Such effects are commonplace in quantum field theory and are

called non-perturbative effects. They include the mass generation of mesons and the

confinement found in QCD, which are important properties of the theory.

In this work we try to observe such effects, using lattice simulations. This formu-

lation, introduced by Wilson [15], allows to calculate the non-perturbative effects in

a theory, as very successfully shown in QCD [16, 17]. Unfortunately the extension to

supersymmetric theories is difficult. The reason is supersymmetry itself. Let us assume

we could set up a lattice simulation with a conserved supersymmetry. First we have

to discretize spacetime. Second we have to introduce the lattice action, which admits

a supercharge Q as demanded. Both steps will introduce conflicting properties of this

lattice theory. From the superalgebra we find

{Q,Q} ∝ Pµ , (1.1)

where Pµ is the infinitesimal generator of translation. Thus by applying two successive

supersymmetry transformations we can shift the fields of our theory to any position

in spacetime, without changing the action of the lattice theory. Unfortunately this is

impossible, as the lattice action is only invariant under discrete translations. Thus our

assumption must be wrong and we can not have a conserved supersymmetric charge.

In fact even this statement is wrong for all possible setups. Using a more careful

analysis, it was shown, that there exists formulations for theories with more than

one supercharge, which can conserve a part of the supersymmetry [18–22]. In those

special cases one can combine the supercharges to form a new nilpotent supercharge

Q2 = 0. Still an explicit breaking of supersymmetry via the lattice formulation is

not an unsolvable problem. Usually one faces the same problem for chiral symmetry

in lattice gauge theories. Using so called fine-tuning of parameters one can restore

it in the continuum limit, allowing to study this symmetry with lattice simulations.

Unfortunately in the case of the supersymmetry, the amount of parameters to tune is

usually very large, making the lattice simulation of those theories infeasible.

One exception is the N = 1 Super Yang Mills (SYM) theory in four dimensions.

Tuning the mass of the fermions only, we can recover chiral and supersymmetry in

the continuum [23]. Thus it is the focus of several simulations [24–34]. Physically it

describes the interaction of gluons with their superpartners, Majorana fermions called

gluinos. Both fields transform in the adjoint representation of the gauge group. Thus

it allows for a bound state between both, called gluino-glueball. Further the theory

is asymptotically free and we expect that the gluinos and gluons will form colorless

bound states, like QCD. Additionally it possesses a chiral symmetry U(1)A, which is

6



anomalously broken to the discrete subgroup Z2N via instantons. At low temperatures

this symmetry is then further broken spontaneously to Z2 by the formation of a gluino

condensate. Hence one finds N physically equivalent vacua [35].

One interesting aspect of this theory is its mass spectrum. Due to the supersym-

metry, the bound states of the theory should form super-multiplets. Using low energy

effective theories [36–38], two of them were predicted. The first contains the adjoint

f- and η-meson plus the aforementioned gluino-glueball. The second is formed by a

0+ glueball, a 0− glueball and again the gluino-glueball. Of course, the gluino-glueball

ground state can not be part of both multiplets, thus in one of them lies an excited

state. Since low energy effective theories depend on free parameters, the exact mass

ordering of both multiplets is not known. Yet there exist various arguments in the

literature for the possible orderings [36–39]. This is further complicated by the fact,

that for every state in one multiplet, there exists a state in the other with the exact

same quantum numbers. Therefore, these states can mix which allows for an even more

complex multiplet structure.

While the direct determination of the mass spectrum of the N = 1 SYM theory is

one focus of ongoing lattice simulations [40, 41], we try to resolve it with a different

approach. Instead of simulating the full four-dimensional model, we first apply a

dimensional reduction. This leads to the N = (2, 2) SYM theory in two dimensions.

While its dynamics might differ from the four-dimensional model, the super-multiplet

structure is preserved. This should allow us to get insight into the four-dimensional

model by calculating the mass spectrum of a simpler but related model. The advantage

of this approach is, that in two dimensions, we can simulate larger lattices with a greater

number of configurations, which allows to reduce the error for the mass considerably.

Thus we aim to find a high precision prediction for these masses.

Looking back to our discussion with the supersymmetry on the lattice, we have to

first worry about the fine-tuning. It turns out, the two-dimensional N = (2, 2) SYM

theory has also only one relevant fine-tuning operator, the mass of the scalars. Thus

the simulation is feasible. Further this theory has an extended supersymmetry, which

allows for the aforementioned preserved supersymmetry charge in a lattice simulation.

This allows for another interesting motivation for this lattice study. We can use our

work to compare it to the so called Q-exact formulations. The basis of these is twist-

ing [42], which allows to construct a lattice formulation with one preserved nilpotent

supercharge. In fact there exist three different formulations [43–45]. Unfortunately

all these models suffer from the same problem [46–48]: In lattice perturbation theory,

one expands the link variables as Uµ = 1 + iaAµ + . . ., which allows for an unique

vacuum state. This is possible, because Uµ = 1 is the minimum of the gauge potential.

In all of these three models, this is not the case anymore. In fact one finds several

different minima, leading to an ambiguous continuum limit. To solve this problem,

7



1. Introduction

the models proposed in [43, 44] introduce the term µ2tr
(︁
U †U − 1

)︁2
to the Lagrangian,

which forces the gauge field dynamically into a unique vacuum state. However, this

term will break supersymmetry for µ ̸= 0, thus one has to take the limit µ → 0 to

recover supersymmetry. In contrast, by modifying the model proposed in [45], one can

solve this problem without breaking supersymmetry [49]. The restoration of the full

supersymmetry (not only the one connected to the preserved nilpotent supercharge)

for these models was shown in [46, 50–56]. Next the relations between these models

were investigated in [57–60]. A more detailed overview of these models can be found

in the reviews [18–22].

At last our theory is also interesting from a topological view point. As two-

dimensional gauge theories have less dynamical degrees of freedom, the topology of

the (Euclidean) spacetime has a larger influence on the physical results. Thus other

topological setups were scrutinized in [61–63]. The method used for the investigation

was an extension of the Q-exact methods to arbitrary spacetime, by generalizing the

topological twisting [42] to generic Riemann surfaces in two dimensions [61]. The re-

sults reveal a connection of the sign problem, which is absent on the torus, to the U(1)A

anomaly. Using a so called compensator, the authors solved the sign problem for Rie-

mann surfaces with genus unequal to one. Further they looked at Ward-Identities and

the U(1)A anomaly. The latter is intimately related to the zero modes of the Dirac

operator.

This thesis is structured as follows: in chapter 2 we first derive the two-dimensional

theory via the Kaluza-Klein reduction of the four-dimensional mother theory. Since

this introduces three different set of indices, we have gathered their conventions in

appendix A. After arriving at the N = (2, 2) SYM theory, we discuss its symmetries.

Especially how they appear due to the dimensional reduction and how they are related

to different forms of the action. Afterwards we present the expected mass spectrum.

For this we summarize the representation theory of supersymmetry in two-dimensional

quantum fields theories, which shows, that the super-multiplets of the four-dimensional

theory and the two-dimensional consists of the same amount of states. Thus we expect,

that the dimensional reduction of the former will lead to the latter. We end this chapter

with a discussion of the Ward identities, which we will use to show the restoration of

supersymmetry in the continuum limit. In chapter 3 we introduce the lattice formula-

tion. First we have to discuss how to simulate Majorana fermions. Afterwards we give

a more detailed introduction to the problems we face for supersymmetric lattice the-

ories. After presenting these theoretical problems for the implementation we describe

the relevant parts of our simulation. We start with an introduction into the generation

of so called configurations, where we explicitly introduce the RHMC algorithm. After-

wards we introduce the lattice action, by discretizing the continuum action. Next we

discuss our observables, namely the one- and two-point functions. We continue with

8



error suppression techniques, called smearing. Lastly we will discuss the error estima-

tion for our results. In chapter 4 we analyze our lattice setup theoretically. We start

with a discussion of the relevant parameters which must be fine-tuned. We follow this

up with a reproduction of a one-loop calculation [64], applied to our specific lattice

action. Lastly we discuss the two-dimensional pure Yang-Mills theory as a precursor

of our lattice results for the glueball.

In chapter 5 we present our first numerical results. Here we show and discuss the de-

pendency of our lattice simulation from the inverse gauge coupling, the lattice volume,

the scalar mass and the fermion mass. These allow us to fix our simulation parameter

setup, which we use to extrapolate to the correct continuum limit. In chapter 6 we

present our physical results. We start with a discussion of the flat directions and the

sign problem of the theory, which are absent in our simulations. Next we look at the

continuum limit of the critical fermion mass, which confirms our theoretical discussion

of the fine-tuning parameters. We continue with presenting the results for the Ward

Identities in the continuum limit, which show the restoration of supersymmetry in the

continuum limit. Lastly we present our results for the mass spectrum. In chapter 7 we

conclude this thesis.

The compilation of this thesis is solely due to the author. However large parts of the

work was in collaboration with Björn Wellegehausen and Andreas Wipf. We published

different interim results in the proceedings [65, 66]. A publication encompassing all

results is to appear in JHEP and is available as a preprint [67]. The code is based on a

framework mainly developed by Björn Wellegehausen. The simulations were performed

at the HPC-Clusters OMEGA and ARA of the University Jena.
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Chapter 2

Theoretical Background

In this chapter we will discuss the basic properties of the N = (2, 2) Super Yang-

Mills theory in two dimensions in the continuum. We start with a short introduction

to supersymmetry before we present the four-dimensional N = 1 Super Yang-Mills

theory. Next we introduce the Kaluza-Klein reduction which we will apply onto the

four-dimensional model to get the two-dimensional N = (2, 2) Super Yang-Mills the-

ory. For this theory we will discuss the chiral symmetry and supersymmetry for the

different representations of the model. In section 2.5, we will discuss the expected mass

spectrum, which is constrained by the N = (2, 2) supersymmetry. We conclude the

chapter with the derivation of Ward identities.

2.1 Supersymmetry

Symmetries play an important role in physics, ranging from the global spherical sym-

metry of black holes to the gauge symmetry of fields in quantum field theory (QFT).

Its importance can be seen by the fact that states in particle physic are classified by

their transformation under the different symmetries of the standard model of physics.

Two of these classifications are based on spin and mass. They come from the two

Casimir operators of the Poincaré group, which is the symmetry group of Minkowski

spacetime. Its associated Lie algebra is given by

[Pµ, Pν ] = 0

[Mµν , Pρ] = i (ηµρPν − iηνρPµ)

[Mµν ,Mρσ] = i (ηµρMνσ − ηµσMνρ − ηνρMµσ + ηνσMµρ) ,

(2.1)

where Pµ are the generators of translations, Mµν are the generators of the Lorentz

transformations and ηµν is the Minkowski metric. Internal symmetries are symmetries

whose generators commute with the generators Pµ and Mµν . In other words, these

symmetries do not connect particles of different four-momentum or different spin. Ex-
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2.2. Four-dimensional Model

amples are the well known gauge symmetries of QCD and QED. Using QCD as an

example, the complete symmetry group of this theory is locally isomorphic to the di-

rect products of the Poincaré group and the internal symmetry groups of QCD, which

are compact Lie groups. The same is true for all other sectors of the standard model

and the standard model itself. This raised the question, whether this is a coincidence

or a general feature of nature. In 1976 Coleman and Mandula answered this question

in favor of the latter [68]. They assumed several physical constraints but they also

demanded that any symmetry group is a Lie group. By lifting the latter requirement,

Haag, Lopuszański and Sohnius showed that there exists a nontrivial extension of the

Poincaré group called supersymmetry [69].

Supersymmetry is a symmetry between fermions and bosons, which is generated by

the fermionic generator Q. The schematic action of this symmetry is

Q |Fermion⟩ = |Boson⟩ , Q |Boson⟩ = |Fermion⟩ .

Any theory which is invariant under this symmetry is called supersymmetric. As

explained earlier, this symmetry is a nontrivial extension of the Poincaré group with

the schematic Super Poincaré algebra

{Qα,Qb} ∼ Pµ

[Qα, Pµ] = 0

[Mµν ,Qα] ∼ Qα.

(2.2)

From this algebra we conclude, that two states, which lie in the same supermultiplet,

must have the same mass. Furthermore supersymmetry commutes with gauge symme-

tries, therefore all states which lie in a super multiplet will have the same electric and

color charge.

2.2 Four-dimensional Model

We begin our discussion with the four-dimensional N = 1 Super Yang-Mills the-

ory (SYM) which is the supersymmetric extension of the four-dimensional Yang-Mills

theory [70, 71]. The action of this model is given by

S =

∫︂
dx4

(︃
−1

4
F a
MN(x)FMN

a (x) +
i

2
λ
a
(x)ΓM (DMλ)a (x)

)︃
. (2.3)

The gamma matrices ΓM form an irreducible representation of the four-dimensional

Clifford algebra, while FMN is the field strength tensor

FMN = ∂MAN − ∂NAM − ig [AM , AN ] (2.4)

11



2. Theoretical Background

of the gauge fields AM with gauge group SU(Nc)
1. The Majorana fermions λ transform

in the adjoint representation of the gauge group, whose covariant derivative is given

by

DMλ = ∂Mλ− ig [AM , λ] . (2.5)

This action is invariant under the supersymmetry transformation

Qαλβ = (ΓMN)αβ F
MN , Qα

λβ = 0 ,

Qαλβ = 0 , Qα
λβ = −(ΓMN)αβ F

MN ,

QαAM =
1

2
λ
β
(ΓM)β

α, Qα
AM =

1

2
(ΓM)αβ λ

β ,

(2.6)

with [ΓM ,ΓN ] = 4iΓMN . Here we use a Weyl-valued supercharge Q, which also appears

in the superspace formalism of the theory. The reason is, that this form of the super-

symmetry transformation is more suitable to calculate Ward identities in section 2.6.

Beside supersymmetry, this action is also invariant under chiral symmetry

λ→ eiαΓ5λ , Γ5 = iΓ0Γ1Γ2Γ3 . (2.7)

In the quantum theory, instantons break this U(1)A symmetry down to Z2N . We find

N physically equivalent vacua which are related by the discrete chiral rotations

λ→ exp

(︃
i
2nπ

N
Γ5

)︃
λ , n = 0, 1, 2, . . . , N − 1. (2.8)

We can make these different vacua visible in the action by introducing the so called

theta term [72]
Θ

16π2
F̃MNF

MN , F̃MN =
1

2
ϵMNOPF

OP , (2.9)

where we used the four-dimensional total antisymmetric Levi-Civita tensor ϵMNOP to

define the dual field strength tensor F̃MN . Applying the chiral rotations (2.8), we find

Θ → Θ − 2nπ

N
. (2.10)

If we combine this result with the fact, that the theta term is periodic in Θ with a

period of 2π, we retrieve the N physically equivalent vacua. Furthermore the Z2N can

be broken spontaneously to Z2 by a formation of a chiral condensate
⟨︁
λλ
⟩︁
̸= 0. We

find the breaking pattern

U(1)A
instantons−→ Z2N

⟨λ̄λ⟩
−→ Z2 . (2.11)

In lattice simulations for N = 1 SYM, this spontaneous breaking was investigated [32].

1In this work we consider Nc = 2 only.
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2.2. Four-dimensional Model

The result shows that there exists a critical temperature below which the chiral sym-

metry is spontaneously broken, while it is restored above this critical temperature.

Since this theory describes the gauge sector of a supersymmetric standard model

extension, one is interested in the low energy properties. For this energy region, we

expect that the fermions and gauge fields form color neutral bound states. These

states include mesons, glueballs and baryons. In contrast to QCD, we can also have

color neutral bound states consisting of gauge fields and fermions. To get insight

into the dynamics of these particles, Veneziano and Yankielowicz derived a low energy

effective theory for N = 1 SYM [36]. The idea of this approach is, that for low

energies, a different set of degrees of freedom can be used to describe the theory.

Of course this low energy effective theory has to reproduce some quantities of the

theory, most important here are the anomalies of the theory. These anomalies also

form a supermultiplet [38]. The resulting low energy effective action of N = 1 SYM

describes a system with a supermultiplet [36] shown in Table 2.1(a). We will call this

multiplet VY-multiplet. It consists of a scalar meson a-f, a pseudoscalar meson a-η

and a spin 1/2 bound state between a Majorana fermion and a gauge boson, called

gluino-glueball. The “a” in the meson names stands for adjoint. Since we have no

fermion fields in the fundamental representation, we will drop the “a” in those names

in the following. Since one would also expect glueballs in a confining non-abelian

theory, Farrar, Gabadadze and Schwetz [38] improved this model. They added another

super-multiplet which we call FGS-multiplett, depicted in Table 2.1(b). It contains a

scalar glueball, a pseudoscalar glueball as well as a spin 1/2 gluino-glueball. Due to free

parameters in the effective action, the mass-hierarchy of these two multiplets varies in

the literature [36–39]. Therefore a method which allows an explicit calculation of the

masses of the states is desirable.

particle spin name

λγ5λ 0 a-η

λλ 0 a-f
FMNΣMNλ 1

2
gluino-glueball

(a) VY multiplet

particle spin name

FMNFMN 0 0++ glueball
FMNϵMNRSF

RS 0 0−+ glueball
FMNΓMDNλ 1

2
gluino-glueball

(b) FGS multiplet

Table 2.1: Multiplet structure of N = 1 SYM theory as predicted by low energy
effective actions [36, 38].

At low energies the N = 1 SYM theory is strongly coupled. Hence we need non-

perturbative methods. Here we will use Monte-Carlo simulations, which allow a direct

measurement of the masses of bound states. While the main focus of this work are

dimensionally reduced models, there exist already simulations for the four-dimensional

model. As stated in the introduction, the lattice regularisation will break supersymme-
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2. Theoretical Background

try (for a more in depth discussion see section 3.2). Fortunately, in the four-dimensional

N = 1 SYM, the only relevant operator that breaks supersymmetry is the fermion mass

term

mfλλ . (2.12)

To be more precise, it breaks supersymmetry softly. An operator breaks supersymmetry

softly if it breaks supersymmetry explicitly but does not generate unwanted quadratic

divergences. In [73] this was proven for a large amount of operators. Coming back

to the fermion mass term, it was shown that the supersymmetric limit and chiral

limit of the lattice theory are reached for the same fermion mass fine-tuning [23].

Therefore the most natural choice would be to use Ginsparg-Wilson fermions in the

simulations [24–26]. While these fermions implement chiral symmetry on the lattice,

they are computationally very expensive. Another idea is to use Wilson fermions and

recover supersymmetry via fine-tuning of mf. This choice seems to be more efficient.

Using the latter simulation strategy, the DESY-Münster collaboration investigated the

mass spectrum [34]. They observed the formation of the VY-multiplet, consisting of

both fermions and the gluino-glueball. The 0−+ glueball of the FGS-multiplet seems to

be significantly heavier. The mass for the 0++ glueball is within (large) errors the same

as the f-meson. Still, due to mass mixing it is not clear, that the operator for the 0++

glueball projects onto the right state. Therefore the formation of the FGS-multiplet

was not observed yet.

The problem of mixing is a general problem, plaguing also the low energy effective

method. Since for every state in the VY-multiplet there exists a state in the FGS-

multiplet with the same quantum numbers, these states can mix. This mechanism of

a quantum field theory requires appropriate consideration, if one wants to investigate

the mass-hierarchy of the multiplets. Fortunately, as we will see in the results, in the

two-dimensional N = (2, 2) theory, this problem is absent.

2.3 Kaluza-Klein Reduction

In this thesis we will use the Kaluza-Klein (KK) reduction to reduce the four-dimensional

N = 1 SYM theory to the N = (2, 2) SYM theory in two dimensions. The idea stems

from Kaluza who showed that one can unify gravity and electromagnetism by reducing

a five-dimensional gravity theory to four dimensions [74]. One important ingredient

for this is, that the reduced theory does not depend on the fifth coordinate which is

called the cylinder condition. In [75] Klein argued that this scenario is possible if the

length of the fifth dimension is very small, making it undetectable by experiments of

the time.

Nowadays the KK reduction has two interesting applications. One is to take the
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2.3. Kaluza-Klein Reduction

original idea and apply it in quantum field theory, leading to the introduction of extra

dimensions which is a possible scenario for physics beyond the standard model (see [76]

and references therein). The other application is to use the KK reduction to find

lower-dimensional supersymmetry models with extended supersymmetry from known

supersymmetry models in higher dimensions.

2.3.1 Representations of Gamma matrices

The KK reduction of a model is independent of the choice of the gamma matrices but

a specific choice makes the calculation much more convenient. For this calculation we

chose the Majorana representation in Minkowski space

Γµ = 1 ⊗ γµ, Γ2 = iσ1 ⊗ γ5, Γ3 = iσ3 ⊗ γ5, Γ5 = σ2 ⊗ γ5

γ0 = σ2, γ1 = iσ3, γ5 = σ1

C4 = −Γ0 = 1 ⊗ C2, C2 = −γ0,

(2.13)

where the matrices ΓM are the four-dimensional gamma matrices and γµ are the two-

dimensional ones. The Matrices C4 and C2 are the charge conjugation matrices in four

and two dimensions respectively which are defined by the relation

C4ΓMC
−1
4 = −ΓTM and C2γµC

−1
2 = −γTµ . (2.14)

Using these matrices, we define the four-dimensional Majorana spinors λ and the two-

dimensional Majorana spinors χ as those spinors, for which we have

λ = C4λ
T

and χ = C2χ
T . (2.15)

2.3.2 Reduction of the Model

We start the dimensional reduction by decomposing the four-dimensional Majorana

spinor in two-dimensional spinors. For this we use the ansatz

λ =
2∑︂
r=1

er ⊗ χr (2.16)

where χr are spinors and er are vectors in R2. Using (2.15) we get two conditions

χr = C2χr
T and e∗r = er. (2.17)
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We chose for the vectors {e1, e2} the Cartesian basis of R2. This leads to the decom-

position of the four-dimensional Majorana spinor into

λ =

(︄
χ1

χ2

)︄
, (2.18)

where χ1 and χ2 are Majorana fermions as defined in (2.15).

Next we apply the KK reduction from four to two dimensions. Specifically, we im-

plement the dimensional reduction as R4 → R2 × T2. More explicitly we choose to

compactify the directions two and three, giving us the cylinder condition for any pos-

sible field f

∂Mf =

{︄
∂µf for M = 0, 1

0 for M = 2, 3.
(2.19)

The first implication is that the fields A2 and A3 do not transform like a gauge field

under gauge transformations any more but like a scalar field or a Majorana spinor in

the adjoint representation

A2 → g−1A2 g + g−1∂2 g
(2.19)
= g−1A2 g A3 → g−1A3 g. (2.20)

As these fields transform as scalars under the two-dimensional Lorentz symmetry, they

must become scalars in the two-dimensional theory. For this reason we will rename

these fields as A2 = ϕ1 and A3 = ϕ2. Further we use (2.19) to dimensionally reduce

the action. We start with the field strength tensor

FMNF
MN =

⎧⎪⎨⎪⎩
FµνF

µν for M,N = 0, 1

DµϕnD
µϕn for M = 0, 1;N = n+ 1 = 2, 3

−g2 [ϕm, ϕn] [ϕm, ϕn] for M,N = 2, 3,

(2.21)

where we retrieve the two-dimensional Yang-Mills Lagrangian, the kinetic term for the

scalar fields and a potential for the scalar fields. The next term to reduce is the kinetic

term for the Majorana fermions

λΓMDMλ =

{︄
λΓµDµλ for M = 0, 1

−igλΓm+1 [ϕm, λ] for M = m+ 1 = 2, 3,
(2.22)

where we find the two-dimensional kinetic term of the fermions and a Yukawa interac-

tion between the scalar fields and the fermions. We combine these results to get the

16



2.3. Kaluza-Klein Reduction

two-dimensional action

S = VT

∫︂
d2x tr

{︃
−1

4
FµνF

µν +
i

2
λΓµD

µλ− 1

2
DµϕmD

µϕm

+
g

2
λΓ1+m [ϕm, λ] +

g2

4
[ϕm, ϕn] [ϕm, ϕn]

}︃
(2.23)

where VT =
∫︁

dx2dx3 is the volume of the compactified space. We absorb this factor

by rescaling the coupling g →
√
VT g which becomes dimensionful in the process. This

is in accordance with our expectations for two dimensions. The dimensionful coupling

will ensure that the theory is superrenormalizable as we show in section 4.1. Next we

rescale the fields as

Aµ → 1

g
Aµ, χr →

1

g
χr, ϕi →

1

g
ϕi , (2.24)

leading to

S =
1

2g2

∫︂
d2x tr

{︃
−1

2
FµνF

µν + iλ̄ΓµDµλ−DµϕmD
µϕm

+λ̄Γm+1 [ϕm, λ] +
1

2
[ϕm, ϕn] [ϕm, ϕn]

}︃
. (2.25)

This form of the action is called the reducible action of the N = (2, 2) SYM the-

ory in two dimensions, since we still have the four-dimensional representation of the

gamma matrices instead of the natural two-dimensional representation in two dimen-

sions. Along with these four-dimensional gamma matrices, we still have the four-

dimensional Majorana fermions λ. We get the irreducible form by combining (2.13)

and (2.18) with the action (2.25)

S =
1

2g2

∫︂
d2x tr

{︃
− 1

2
FµνF

µν −DµϕmD
µϕm +

1

2
[ϕm, ϕn][ϕm, ϕn]

+ iχ̄rγ
µDµχr − χ̄r(iσ1)

rsγ5[ϕ1, χs] − χ̄r(iσ3)
rsγ5[ϕ2, χs]

}︃
. (2.26)

Another form of this action can be achieved by combining the two Majorana spinors

into a Dirac spinor

ψ =
1√
2

(χ1 + iγ5χ2) , ψ =
1√
2

(χ1 + iχ2γ5) , (2.27)

and the two real scalar fields into a complex scalar field

φ = ϕ1 + iϕ2. (2.28)
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Inserting these into (2.26) we find yet another form of this action

S =
1

g2

∫︂
d2x tr

{︃
−1

4
FµνF

µν +
1

2
(Dµφ)†(Dµφ) − 1

8

[︁
φ†, φ

]︁2
+ i ψ̄γµDµψ − ψ̄P+ [φ, ψ] − ψ̄P−

[︁
φ†, ψ

]︁}︁
, (2.29)

where we introduced the chiral projection operators P± = (1 ± γ5) /2. All three forms

of the action are relevant for this work. The reducible action (2.25) is the starting

point for the lattice formulation. The irreducible action (2.26) will be used to make

the symmetries of the model more transparent. Lastly the formulation with the Dirac

spinor is the starting point to compare our lattice simulations with results from other

groups using Q-exact lattice actions [43–45]. The basic idea of the latter approach is to

retain a nilpotent supersymmetric charge on the lattice, which guarantees the recovery

of the full supersymmetry in the continuum limit. The most basic constraint for this

method is, that one needs an extended supersymmetry. Thus we can not apply it to

the N = 1 SYM model (2.3). Since N = (2, 2) SYM in two dimensions is the most

simple supersymmetric Yang-Mills theory which allows this construction, much effort

is used to investigate this model using the Q-exact method [46–55, 57–60]. For a more

detailed overview of this method, we refer the reader to the reviews [18–22].

2.4 Symmetries

The action, having three different forms (2.25), (2.26) and (2.29), has symmetries which

we will explore here. Since the field content of these forms looks different, symmetries

will look seemingly different. For this reason we will add to the symmetry group the

label χ if it is a symmetry of the irreducible form of the action (2.26) and ψ if it is a

symmetry of the form of the action with a Dirac spinor (2.29). We will not discuss the

symmetries of the reducible model (2.25) since they look almost the same as for the

irreducible model (2.26).

2.4.1 Lorentz symmetry

We started with a four-dimensional quantum field theory, which is invariant under

the four-dimensional Lorentz symmetry. By applying the KK reduction we break this

symmetry explicitly. Namely the fields do not depend on the compactified space (2.19),

prohibiting rotations which relate the compactified space to the uncompactified space.

We are left with the rotation in the compactified space SO(2)χR, called R symmetry,

and the Lorentz symmetry in the uncompactified space SO(1, 1)χL. In the Euclidean
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theory, the Lorentz symmetry will become an SO(2) also. We find the pattern

SO(3, 1) → SO(1, 1)χL × SO(2)χR , Λ4 →

(︄
Λ2 0

0 R

)︄
, (2.30)

where Λd ist the d-dimensional Lorentz transformation. To specify the action of these

symmetries we have to look at the generators of these rotations. We start with the

generator for the two-dimensional Lorentz symmetry

Γ01 =
1

4i
[Γ0,Γ1] =

1

4i
[1 ⊗ γ0, 1 ⊗ γ1] = 1 ⊗ i

2
σ1, (2.31)

where σ1 is the generator for the two-dimensional Lorentz transformation. The gener-

ator for the rotations in the compactified space R2 is the first factor in

Γ23 =
1

4i
[Γ2,Γ3] =

1

4i
[σ1 ⊗ γ5, σ3 ⊗ γ5] = −1

2
σ2 ⊗ 1. (2.32)

The last step is to apply the symmetry transformations on the spinors (2.16). For the

Lorentz symmetry we find

exp

(︃
i

2
ω01Γ01

)︃ 2∑︂
r=1

er ⊗ χr =
2∑︂
r=1

er ⊗ exp

(︃
i

2
ω01γ01

)︃
χr (2.33)

showing that we get the expected result for the Lorentz symmetry from the discussion

beforehand. Next we look at the R symmetry

exp

(︃
i

2
ω23Γ23

)︃ 2∑︂
r=1

er ⊗ χr =
2∑︂
r=1

exp

(︃
i

2
α(σ2)rs

)︃
es ⊗ χr

=
2∑︂
r=1

(R(α))rs e
s ⊗ χr =

2∑︂
r=1

er ⊗ (R(α))sr χ
s (2.34)

where we introduced the parameter α = −2ω23 and the rotation matrix R(α) with the

rotation angle α. The last equal sign is a result of the basis we have chosen for er.

We find that the R symmetry relates the two Majorana flavours. In addition the R

symmetry will also change the scalar fields non-trivially because it comes from the

four-dimensional rotation which connects the gauge fields A2 ≡ ϕ1 and A3 ≡ ϕ2:

A2̃ = (Λ4)
2M AM

(2.30)−→ R(−2α)2,n+1An+1 , A3̃ = (Λ4)
3M AM

(2.30)−→ R(−2α)3,n+1An+1 .

(2.35)
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Consequently, the R symmetry will not affect the gauge fields A0 and A1. We end up

with the symmetry

χr → R(α)r
sχs, ϕi → R(−2α)i

jϕj and Aµ → Aµ. (2.36)

To calculate the action of this symmetry on the Dirac spinor ψ given in (2.27) we use

√
2ψ = (1, 1)

(︄
1 0

0 iγ5

)︄(︄
χ1

χ2

)︄
. (2.37)

Applying (2.36) on the Majorana fermions we find

(1, 1)

(︄
1 0

0 iγ5

)︄(︄
χ1

χ2

)︄
→ (1, 1)

(︄
1 0

0 iγ5

)︄(︄
cos (α) −sin (α)

sin (α) cos (α)

)︄(︄
χ1

χ2

)︄

= (exp (iαγ5) , exp (iαγ5))

(︄
1 0

0 iγ5

)︄(︄
χ1

χ2

)︄
=exp (iαγ5)

√
2ψ .

(2.38)

For the complex scalar field φ we have to replace γ5 in the matrix of (2.38) with the

identity, the Majorana fermions with the scalar fields and α with −2α. After this

calculation, we find another form of the symmetry

ψ → exp (iαγ5)ψ φ→ exp (−2iα)φ and Aµ → Aµ . (2.39)

We identify this symmetry as the chiral symmetry U(1)ψA for the Dirac spinor. This

shows, that the chiral symmetry for the Majorana fermions is not equivalent to the

chiral symmetry for the Dirac spinors. Therefore we will now look at the chiral sym-

metry of the Majorana fermions and its action on the Dirac fermion. We start with

the action of the chiral symmetry on the Majorana fermions χr. Using the Majorana

representation (2.13) we find

exp (iαΓ5)
(2.13)
= exp (iασ2 ⊗ γ5) = cos (α) 1 ⊗ 1 + i sin (α)σ2 ⊗ γ5 , (2.40)

which we use to represent the action of the chiral symmetry in matrix form for the

vector of χr spinors (︄
χ1

χ2

)︄
→

(︄
cos (α) sin (α) γ5

−sin (α) γ5 cos (α)

)︄(︄
χ1

χ2

)︄
. (2.41)
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To calculate the action on the Dirac spinor ψ, we have to use the replacement

sin (α) → −sin (α) γ5 in (2.38) which results in

ψ → exp (iα)ψ . (2.42)

This shows that the chiral symmetry of the reducible model U(1)χA becomes U(1)ψF.

Thus we find two different chiral symmetries. As we use Wilson fermions in our lat-

tice formulation, we have to break one of them in our simulations. We have chosen

to break the chiral symmetry for the Majorana fermions, as in the four-dimensional

mother theory. Therefore we use a lattice formulation which does not break the chiral

symmetry of the Dirac fermions. Further we should have no doublers in our simula-

tion. According to the Nielsen-Ninomiya no-go theorem [77–79] this is not possible.

Indeed we violate this theorem even for the Dirac fermions. The symmetry U(1)ψF is

responsible for the conservation of the fermion number. This number is supposed to be

conserved in the proof of the no-go theorem. Since we break this symmetry explicitly,

the Nielsen-Ninomiya no-go theorem is not applicable and we can have chiral Dirac

fermions on the lattice.

The same analysis for the Q-exact formalism was done in [80]. They found that their

approach also violates the U(1)ψF symmetry while keeping the chiral symmetry unbroken

for ψ. In contrast to our formalism, they still have an unbroken supersymmetry.

2.4.2 Two-dimensional Supersymmetry

As already stated in the previous section, we have derived the N = (2, 2) SYM theory

in two dimensions from the N = 1 SYM theory in four dimensions. What we did not

explain yet is the transition from N = 1 to N = (2, 2) in the KK reduction. For this

we make the same ansatz for the supersymmetry charge as for the Majorana fermions

Q =
2∑︂
r=1

er ⊗ qr. (2.43)

Since the charge is a Majorana spinor we find the same decomposition conditions as for

the fermions and again we choose the same basis for er. Next we have to introduce the

supersymmetry transformation of the scalar fields. Since we did a simple relabeling,

we must use the same transformations for the scalar fields as for the gauge fields in

(2.6). We end up with

Qαϕi =
1

2
λ
β
(Γi+1)β

α and Qα
ϕi =

1

2
(Γi+1)

α
βλ

β. (2.44)

Applying the decomposition on (2.6) and (2.44), we can project onto two different

Majorana supersymmetry charges
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q1χ1 = γµνF
µν + iγµγ5D

µϕ2 q2χ1 = iγµγ5D
µϕ1 + i [ϕ1, ϕ2]

q1χ2 = iγµγ5D
µϕ1 − i [ϕ1, ϕ2] q2χ2 = γµνF

µν − iγµγ5D
µϕ2

q1Aµ =
1

2
χ1γµ q2Aµ =

1

2
χ2γµ

q1ϕ1 =
i

2
χ2γ5 q2ϕ1 =

i

2
χ1γ5

q1ϕ2 =
i

2
χ1γ5 q2ϕ2 = − i

2
χ2γ5.

(2.45)

The R symmetry introduced in the previous chapter is a symmetry which rotates

the two different super charges into each other (see for example [7]). Applying this

symmetry, we checked that this is the case, justifying the name R symmetry. A further

decomposition of the two charges into two left-handed and two right-handed Majorana-

Weyl charges is straight forward, explaining the name N = (2, 2) SYM theory (for

details, see the next section).

2.5 Expected Mass Spectrum

In section 2.2 we already discussed the mass spectrum of the four-dimensional mother-

theory. Here we want to do the same for the two-dimensional model. First we start

with the irreducible representations of supersymmetry in two dimensions. This will tell

us about the structure of the super-multiplet. Applying the dimensional reduction to

the states of the four-dimensional multiplet, we find states which should fit into this

structure.

The derivation of the super-multiplet follows closely [81], where we only focus on

the case of N = (2, 2). In two dimensions, we can split the particles in two categories,

left- and right-moving particles. Therefore it is natural to introduce new coordinates

z = x1 + ix2 , z = x1 − ix2 , (2.46)

called light-cone coordinates. The advantage of these coordinates is that under Lorentz

transformations with ω = ω01 we find

δz = ωz δz = −ωz . (2.47)

Vectors Vµ in these coordinates take the form

Vz =
1

2
(V0 + V1) , Vz =

1

2
(V0 − V1) . (2.48)

Next we have to concern ourselves with the possible types of spinors found in two-
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2.5. Expected Mass Spectrum

dimensional Minkowski spacetime. It turns out, that we can have Dirac, Majorana,

Weyl and Majorana-Weyl spinors. We can further classify a spinor as left- or right-

moving. For a left-moving spinor ψ+ we have ∂ z ψ+ = 0 while for a right-moving

spinor ψ− we have ∂zψ− = 0.

This richness of different types of spinors is also seen for super charges. Let us start

with a complex Q. We can decompose this spinor into two Weyl spinors QW,+ and

QW,−. They differ by their eigenvalues for γ5. We can further decompose every complex

Weyl spinor into two real Majorana-Weyl spinors. These are the real and imaginary

part of the Weyl spinor. Analogous we can decompose a Majorana spinor into two

Majorana-Weyl spinors. Hence the most fundamental supercharge is of Majorana-Weyl

type. This allows to label all supersymmetry algebras as (L,R), where L and R count

the amount of left-handed and right-handed Majorana-Weyl spinors respectively. We

will use Q+ for left-handed Majorana-Weyl spinors and Q− for right-handed Majorana-

Weyl spinors.

Introducing M = M01, the two-dimensional Poincaré algebra in light-cone coordi-

nates is given as

[Pz,M ] = −Pz , [Pz,M ] = Pz . (2.49)

The N = (2, 2) algebra for Majorana-Weyl supercharges without central charges reads

{︁
Qi

+,Q
j
+

}︁
= 2iδijPz ,

[︁
Qi

+,M
]︁

= −1

2
Qi

+ ,
[︁
Qi

+, Pz
]︁

= 0{︁
Qi

−,Q
j
−
}︁

= 2iδijPz ,
[︁
Qi

−,M
]︁

=
1

2
Qi

− ,
[︁
Qi

−, Pz
]︁

= 0{︁
Qi

+,Q
j
−
}︁

= 0 ,
[︁
Qi

+, Pz
]︁

=
[︁
Qi

−, Pz
]︁

= 0 .

(2.50)

The indices i, j differentiate between the two different left- and right-handed Majorana-

Weyl supercharges, while the third row shows that the (2, 2) supersymmetry algebra

is just the sum of the (2, 0) and (0, 2) supersymmetry algebras.

In two dimensions particles are either right-moving or left-moving particles. This

is a Lorentz invariant statement, which follows from (2.47). Consequently there is no

rest frame for a particle if that particle has a non-zero momentum in any frame. This

is in stark contrast to the four-dimensional case. Here one uses the rest frame to derive

the multiplet structure of massive states. Hence we expect a different picture in two

dimensions.

A left-moving particle can be described by fields with the form exp (−ik (x0 + x1))

and the right handed particles with the form exp (−ik (x0 − x1)). Therefore we find for

the left-moving particles Pz = −ik and Pz = 0 and for right-moving particles Pz = 0

and Pz = −ik. Since the supercharges commute with the operators Pz and Pz, all states

in a super-multiplet are either left- or right-moving. Here we exclude the combination

Pz = 0 and Pz = 0, because for this momentum configuration no physical states are
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2. Theoretical Background

propagated. Thus they will decouple from the theory. A similar example are states

of the two-dimensional QED. In this theory, the gauge condition and the equation of

motion reduce the physical degrees of freedom to zero. Hence it does not admit any

dynamics.

We will now consider a left-moving particle in our theory. The (2, 2) algebra takes

the form

Qi
+Q

j
+ = δijk ,

[︁
Qi

+,M
]︁

= −1

2
Qi

+

Qi
−Q

j
− = 0 ,

[︁
Qi

−,M
]︁

=
1

2
Qi

− .
(2.51)

Now we consider a state |s⟩ with M |s⟩ = s |s⟩. From (2.51) we conclude that the state

Qi
− |s⟩ will have norm zero. Since any physical state must have a positive norm, this

state can not be part of the physical spectrum. Therefore we must have Qi
− |s⟩ ≡ 0.

Consequently, the number of states in the multiplet is reduced and they form an ir-

reducible representation of the (2, 0) algebra. Out of the two Majorana-Weyl super-

charges Qi
+, we form two complex Weyl supercharges

QW,+ =
1

2

(︁
Q1

+ − iQ2
+

)︁
QW,+ =

1

2

(︁
Q1

+ + iQ2
+

)︁
, (2.52)

which leads to a different algebra for the charges (the commutators with Pz, Pz and M

do not change, because the new Weyl supercharges are just linear combinations of the

Majorana-Weyl supercharges)

Q2
W,+ = Q2

W,+ = 0 ,
{︁
QW,+QW,+

}︁
= k Q∗

W,+ = QW,+ . (2.53)

This is an algebra for fermionic creation and annihilation operators. For those we

can build the state space by choosing the vacuum state as QW,+ |s⟩ = 0. Thus the

super-multiplet is formed by the states

|s⟩ , QW,+ |s⟩ (2.54)

together with their complex conjugates. For s = −1/2 we find a super-multiplet

with two real spin 0 fields and a complex Weyl spinor with spin 1/2. The irreducible

representation for a right-moving particle can be derived analogously, leading to the

same particle content of the super-multiplet. Comparing this result with the four-

dimensional N = 1 SYM theory we find the same particle content for the super-

multiplets. Therefore the straight forward application of the KK reduction on the

four-dimensional particles will result in two independent and complete super-multiplets.

Using the equation of motion (this is possible, because the states in the super-

multiplets are on-shell states) we find two different multiplets given in Table 2.2. The

dimensional reduction of the gluino-glueball states leads to a complicated structure. In
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2.5. Expected Mass Spectrum

our simulation we refrained from calculating the whole structure. Instead we looked

at the components of these operators. The reason is, that this allows to improve

the signal to noise ratio for all components independently. For the dimensionally

reduced VY multiplet (upper super-multiplet in Table 2.2), the correlator for the gluino-

glue/scalarball state splits in the correlator for the gluino-glueball Ogg = FµνΓ
µνλ, the

scalar-glueball Ogs = [ϕ1, ϕ2] Γµνλ and a cross correlator ⟨Ogg(x)Ogs(y)⟩. Since all

these states are gauge and Lorentz invariant, we expect to observe them on the lattice.

We will use their correlation function to derive their masses. This leaves us with a

set of three mass spectra. The mass spectrum of the gluino-glue/scalarball particle

will be formed out of these three spectra. Here one has to be careful. Since the full

correlation function is the sum of these three different correlation function, one could

observe cancellation effects. Therefore the mass spectrum of the gluino-glue/scalarball

particle could be smaller than the raw sum of the these three spectra.

particle spin name

λΓ5λ 0 η

λλ 0 f
FµνΓ

µνλ+ 2i[ϕ1, ϕ2]Γ
23λ 1

2
gluino-glue/scalarball

particle spin name

[ϕ1, ϕ2]Fµν 0 glue-scalarball
FµνF

µν − 2DµϕmD
µϕm − 2[ϕ1, ϕ2]

2 0 0++-glueball, scalarball
FµνΓ

µDνλ−Dµϕm (iΓµ [ϕm, λ] + Γm+1Dµλ) 1
2

gluino-glue/scalarball−[ϕm, ϕn]Γm+1 [ϕn, λ]

Table 2.2: Two dimensional reduced super-multiplets for the N = (2, 2) theory. In
the main body of the text we will call FµνΓ

µνλ the gluino-glueball and [ϕ1, ϕ2]Γ
23λ the

gluino-scalarball.

The masses of these super-multiplets are not known. Still there are theoretical

predictions [82, 83] and numerical results based on the discretized light cone quantisa-

tion [84, 85] which point to a massless state in the theory. As shown earlier, this will not

change the particle content of the super-multiplet in contrast to the four-dimensional

theory. On the other hand, the existence of a massless state could obfuscate the ex-

istence of spontaneous supersymmetry breaking [86, 87]. The existence of dynamical

supersymmetry breaking has been conjectured in [88]. To investigate whether super-

symmetry is broken or unbroken, one can employ anti-periodic boundary conditions

for the fermions and measure the ground state energy [54]. For the Q-exact formalism,

no spontaneous breaking of supersymmetry was observed [56].
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2. Theoretical Background

2.6 Ward Identities

Ward identities are useful relations between expectation values based purely on sym-

metry. Thus they allow to check, whether the theory has a certain symmetry. This is

important, as our lattice formulation will break supersymmetry explicitly. Hence the

Ward identities are violated in our results. Still, as we aim to restore supersymmetry

in the continuum limit (see section 4.1), Ward identities must also be fulfilled in this

limit. Thus they provide a check for the restoration of the supersymmetry.

The basic concept of Ward identities is the observation that

⟨QO⟩ = 0, (2.55)

where O is an arbitrary operator (a more detailed analysis is done in section 4.3). For

example if we choose O = Aµ we find

0 = ⟨QAµ⟩ = ⟨1

2
λ
β
(Γµ)β

α⟩ = ⟨λβ⟩1

2
(Γµ)β

α, (2.56)

which requires that the expectation value of a single Majorana field must vanish, as

expected from Lorentz symmetry. Accordingly we can recover many useful constraints

for the expectation values.

Here we want to focus on the bosonic Ward identity which is derived from the operator

Oα(x) = trc

{︂
λβ(x)

(︁
ΓMN

)︁β
α
FMN(x)

}︂
. (2.57)

After this calculation we will derive three additional Ward identities which we get by

restricting the sum over M and N to special cases. Since the operator consists of

a Majorana fermion and a field strength tensor, we will get a relation between two

expectation values. We start with applying the supersymmetry transformation on the

fermionic part of the operator

trc

{︂(︁
Qα

λβ(x)
)︁

(ΓMN)βαFMN(x)
}︂

= trc

{︂
−
(︁
ΓRS

)︁α
β

(︁
ΓMN

)︁β
α
FRS(x)FMN(x)

}︂
= trc

{︁
−
(︁
ηRMηSN − ηRNηSM

)︁
FRS(x)FMN(x)

}︁
= trc

{︁
−2FMN(x)FMN(x)

}︁
,

(2.58)

where we used that the gamma matrices and their antisymmetrized products form a

complete basis in spinor space. Next we apply the supersymmetry transformation on
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2.6. Ward Identities

the bosonic part of the operator

trc

{︂
λβ(x)(ΓMN)βα

(︁
Qα

FMN(x)
)︁}︂

= trc

{︂
λβ(x)(ΓMN)βα

(︁
DMQα

AN(x) −DNQ
α
AM(x)

)︁}︂
= trc

{︂
λβ(x)(ΓMN)βαDM(ΓN)αγλ

γ(x)
}︂

= trc

{︃
λβ(x)

1

2i

(︁
ΓMΓN − ηMN

)︁β
α
(ΓN)αγDMλ

γ(x)

}︃
= trc

{︃
−3

2
iλα(x)

(︁
ΓM
)︁α

γ
DMλ

γ(x)

}︃
(2.59)

where we made use of the Clifford algebra to rewrite ΓMN . Combining these transfor-

mations leads to the bosonic Ward identity

⟨SB⟩ = ⟨1

4
FMN(x)FMN(x)⟩ = −3

8
⟨ i

2
λ(x) /Dλ(x)⟩ = −3

8
⟨SF ⟩, (2.60)

where we suppressed the color and spin trace. This is an on shell result for this theory.

In [20] we see the same result for the off shell formulation, where one has to replace

the factor 3
8

with one half. The right hand side of this equation is proportional to the

expectation value of the fermionic part of the action. We are able to calculate this

term explicitly leading to the final version of this identity

⟨SB⟩ =
3

2

(︁
N2
c − 1

)︁
V =

9

2
V, (2.61)

where we have given the explicit result for the gauge group SU(2).

To derive the bosonic Ward identity we used an operator which involved a sum over

the spacetime indices M and N . Explicitly written it reads

Oα(x) = trc

{︄
3∑︂

M,N=0

λβ(x)
(︁
ΓMN

)︁β
α
FMN(x)

}︄
. (2.62)

By replacing the sum over M and N by partial sums we get projections onto summands

of the bosonic Ward identity which are part of their own distinctive Ward identity. This

is in accordance with the KK reduction of the action. We have chosen the replacements

for {N,M} being {n,m} for W1, {ν, µ} for W2 and finally {m,µ} for W3. These Ward

identities read

W1 =
1

2

⟨︁
[ϕ1, ϕ2]

2 ⟩︁− i

8

⟨︁
λ̄Γ2 [ϕ1, λ] + λ̄Γ3 [ϕ2, λ]

⟩︁
= 0 ,

W2 =
1

4

⟨︁
FµνF

µν
⟩︁

+
i

8

⟨︁
λ̄Γ2 [ϕ1, λ] + λ̄Γ3 [ϕ2, λ]

⟩︁
=

3

2
,

W3 =
1

2

⟨︁
Dµϕ

mDµϕm
⟩︁

= 3.

(2.63)
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The first Ward identity relates the scalar potential to the Yukawa term, while the

second Ward identity does the same for the gauge potential. The sum of both would

relate the scalar potential to the potential of the gauge fields. Finally the third Ward

identity fixes the expectation value of the kinetic term of the scalars. In total we

derived four different Ward identities. Because of the sum rule W1 + W2 + W3 = WB,

only three of them are independent of the others.
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Chapter 3

Lattice Formulation

In this chapter we will introduce concepts, methods and algorithms of lattice gauge

theories. Of course we can not cover all details of this broad topic, thus we refer the

interested reader to the textbook introductions like [89–91]. These books will also serve

as the basis for most of the discussed topics in this section.

In this work, we want to investigate non-perturbative properties of the N = (2, 2)

SYM theory in two dimensions, hence we make use of lattice calculations. These are

based on the path integral formalism introduced by Feynman [92] and suggested in the

work of Dirac [93]. The basic idea is to discretize the spacetime, which introduces the

lattice spacing a, which we assume is constant in all directions. Defining our quantum

field theory on this grid ensures it is well-defined. The reason is that the lattice spacing

introduces a natural cut-off for the momentum, preventing the emergence of ultraviolet

divergences. Afterwards we look at the limit a → 0 to get the continuum physics. A

detailed introduction into the topic is given for example in [94–96].

While the path integral formalism was originally developed as an analytical tool, we

will use it to calculate physical observables on the computer. Starting with the work of

Wilson [15], lattice calculations developed into one of the standard methods for non-

perturbative calculations, providing predictions and insight into the non-perturbative

features of strongly coupled theories. The standard example and most investigated

theory is QCD.

Lattice calculations allow for a plethora of different algorithms, fermion types and

error reduction techniques. These differ in computation time and physical properties.

Thus we have to choose a sensible compromise between both. Another non-negligible

part is the time used to implement the different algorithms. To alleviate this influ-

ence, we base our code on a C++ framework, which is mainly developed by Björn

Wellegehausen.

In this chapter we will first discuss the analytical continuation of the two-dimensional

N = (2, 2) SYM theory from Minkowski spacetime into Euclidean spacetime. After-

wards we discuss the failure of preserving supersymmetry on the lattice, as a result
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3. Lattice Formulation

of general features of the lattice. The main part of this chapter focuses on the lattice

formulations we use. Here we start with an introduction of the rational Hybrid Monte

Carlo algorithm, which is followed by the discretization of the action. Thereafter we

introduce the one- and two-point functions which are the only observables calculated

in this work. We conclude the chapter with an introduction of the smearing techniques

we used and a presentation of the error estimation for our results.

3.1 Euclidean formulation

Quantum field theories are theories which unify quantum theory and special relativity.

Thus they are usually formulated for the Minkowski spacetime. In contrast we have an

Euclidean spacetime for lattice simulations. While we are able to formulate quantum

field theories for this spacetime, they will differ from those in Minkowski spacetime.

This is for example visible in the possible matter content. While four-dimensional

Minkowski spacetime admits Majorana fermions, the four-dimensional Euclidean space-

time does not [97]. This seems to imply, that we can not have a four-dimensional

quantum field theory defined on the lattice with Majorana fermions.

Fortunately this is not a problem for our simulations because we are interested in

results for the quantum field theory with Minkowski spacetime anyway. To get these,

we apply the Wick rotation [98]. The main idea is to calculate an analytical contin-

uation of the theory, where we extend the time coordinate into the imaginary plane.

Restricting ourselves to purely imaginary time only, we recover an Euclidean metric.

Note that the resulting theory itself must not be a genuine quantum field theory, al-

lowing for a larger class of theories. While the idea is simple, the actual continuation

of a general quantum field theory is non-trivial. For example, it is not clear that re-

sults, calculated in the Euclidean spacetime, will hold in the Minkowski spacetime.

In [99, 100], Osterwald and Schrader showed that this analytical continuation is possi-

ble for Euclidean correlators in a theory with Dirac fermions, if these correlators obey

a set of conditions. An analogue analysis for a theory with Majorana fermions was

done in [101–103]. The results showed that we can leave the action unchanged, if we

enforce the Majorana condition λ = λTC while breaking the reality condition λ = λ†

in the Euclidean spacetime. Hence the resulting theory is not a genuine quantum field

theory, as expected.

Applying the Wick rotation we get an overall negative sign for the action, leading

to

S =

∫︂
d4xL, L = tr

(︃
1

4
FMNF

MN +
1

2
λΓMDMλ

)︃
(3.1)

where we introduced the four-dimensional Euclidean gamma matrices ΓM .
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Analogous to Minkowski spacetime, we may choose the representation

Γµ = 1 ⊗ γµ, Γ2 = σ1 ⊗ γ5, Γ3 = σ3 ⊗ γ5, Γ5 = −σ2 ⊗ γ5, (3.2)

with the two-dimensional Euclidean gamma matrcies γµ. The KK reduction is analo-

gous to section 2.3, resulting in

L =
1

2g2
tr

{︃
1

2
F 2
µν +

(︁
Dµϕm

)︁2 − 1

2
[ϕm, ϕn]2 + λ̄ΓµDµλ− iλ̄Γm+1 [ϕm, λ]

}︃
. (3.3)

Again introducing the Dirac fermion ψ and the complex scalar ϕ we get the form

L =
1

g2
tr

{︃
1

4
F 2
µν +

1

2
(Dµφ)†(Dµφ) +

1

8

[︁
φ†, φ

]︁2
+ ψ̄γµDµψ + i ψ̄P+[φ, ψ] + i ψ̄P−[φ†, ψ]

}︁
. (3.4)

In the simulation we discretize the form (3.3) of the action, breaking the chiral sym-

metry of the reducible model.

3.2 Supersymmetry on the lattice

Supersymmetry is a non-trivial extension of the Poincaré algebra as discussed in

section 2.1. Especially the relation

{Qα,Qβ} ∼ Pµ (3.5)

is important for lattice calculations. Assuming we have a lattice formulation which is

invariant under supersymmetry transformations, we could create infinitesimal transla-

tions on the lattice by applying two successive supersymmetry transformations. These

will not leave the lattice theory invariant due to the discretized spacetime. Therefore

our assumption must be wrong and supersymmetry must be broken on the lattice.

Another way to show that supersymmetry must be broken on the lattice makes use

of the Leibniz rule. In the continuum we have

∂ (f · g) = ∂f · g + f · ∂g (3.6)

which on the lattice becomes

∂ (f(x) · g(x)) =
f(x+ a) · g(x+ a) − f(x) · g(x)

a

= ∂f · g + f · ∂g +
(f(x+ a) − f(x)) · (g(x+ a) − g(x))

a
.

(3.7)
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Here we used the forward lattice derivative

∂f(x) =
f(x+ a) − f(x)

a
. (3.8)

In the limit a → 0 we recover the Leibniz rule but for fixed lattice spacing, we get

an extra term. Now we apply a supersymmetry transformation on the lattice action

S =
∫︁
L to find

S →
∫︂ (︂

L +
∑︂

O1
i ∂MO2

i

)︂
(3.9)

where O1
i and O2

i are theory dependent terms consisting of the fields. In the continuum,

we can rewrite the sum as the total derivative ∂MSM , where SM is the supercurrent.

In contrast, on the lattice we are in general not able to do the same as the Leibniz rule

is violated. Thus supersymmetry must be broken on the lattice.

A more careful analysis shows that both argument holds in general only for theories

with one supersymmetry generator. For theories with more than one supersymmetry

generator, there are lattice formulations which keep one of the generators conserved on

the lattice [18–22]. Note that we refrained from these lattice formulations and used a

more traditional lattice setup without any conserved supercharges.

Fortunately, the absence of supersymmetry in our lattice formulation will not be an

insurmountable problem. Lets look for example at the chiral symmetry. The Nielsen-

Ninomiya theorem states, that Wilson fermions do not allow for chiral symmetry on

the lattice. Yet one can use them to simulate theories which possess this symmetry.

This is possible because we are not interested in the lattice theory but its continuum

limit, called the target theory. As we will discuss in section 4.1, our lattice formulation

allows for a continuum limit, where we restore the full supersymmetry via fine-tuning

of parameters. In principle this is possible for all supersymmetric theories, but in

practice the large amount of fine-tuning parameters makes this strategy infeasible.

Two exceptions are N = 1 SYM in four dimensions and N = (2, 2) in two dimensions,

which have only one relevant parameter.

3.3 Rational Hybrid Monte Carlo algorithm

The simulation of gauge theories on the lattice depends on the fact, that the Euclidean

path integral is defined as

Z =

∫︂ ∏︂
i

Dfi e−SE[fi] , (3.10)
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3.3. Rational Hybrid Monte Carlo algorithm

where fi represents any fields given in the model and SE [fi] the Euclidean action of

the lattice theory. The measure Dfi is defined as

Dfi =
∏︂
x∈Λ

dfi(x), (3.11)

where Λ is the set of lattice points. The expectation values of the theory are given by

⟨O⟩ =

∫︂ ∏︂
i

Dfi O (fi)
e−SE[fi]

Z
. (3.12)

Discretizing the spacetime we have to solve a |Λ| · |f | dimensional integral, where |Λ|
is the number of lattice points and |f | is the number of fields involved. For present-

day lattice simulations |Λ| is of the order 106 − 108 showing that a direct numerical

integration is not possible. To solve this problem, we realize that we can interpret

ρ [fi] = e−SE[fi]

Z
as a probability distribution for real SE [fi]. This allows us to use

the methods known from stochastic mechanics. Especially we can use Monte Carlo

Methods, rewriting the expectation value as

⟨O⟩ = lim
N→∞

1

N

N∑︂
i=1

O (Ci) ρ [fi (Ci)] , (3.13)

where we introduced configurations Ci. A configuration is a set of fields values fi and is

distributed according to ρ [fi (Ci)]. The task for lattice calculations is to generate these

configurations in an efficient algorithm. Note that ρ [fi] does not have to be real or

positive, leading to the famous sign problem [104, 105]. In this case, we can not make

use of (3.13). While there are solutions to solve or mitigate this problem, there is no

general efficient algorithm to simulate theories with a sign problem. In the following

we assume that we have no sign problem.

The general strategy to generate the configurations is called the Markov chain

Monte Carlo method which is explained in detail in [89–91]. The basic idea is that

we create our configurations successively, thus we can order them as C0, C1, C2,. . . .

This allows to introduce the so-called Monte Carlo time which is just the index of the

configurations. Now we recall that a configuration is just a set of the field values fi.

Therefore we can describe each set by a vector c⃗ in a high-dimensional vector space V .

Introducing the Monte Carlo time for these vectors, we can replace the configurations

Ct with the variable c⃗(t), which describes a trajectory in the space V . Now let us focus

how this trajectory is formed. In our simulations we demand that if we have the given

configuration c⃗(t) then c⃗(t + 1) must be chosen randomly. This process is called a

stochastic process. To get a Markov chain (of first order), we demand that the random

selection of a new configuration depends only on the current configuration. For further
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analysis we introduce the two configurations a⃗, b⃗ ∈ V . We use them to define the

transition probability Tab, which is defined as the probability that we get c⃗(t+ 1) = b⃗,

if we start with c⃗(t) = a⃗. This new quantity must meet two constraints

0 ≤ Tab ≤ 1,
∑︂
b

Tab = 1, (3.14)

which guarantee this probability is well-defined. To discuss this randomness further

we introduce the stochastic vector p⃗(t), whose entry pa(t) is equal to the probability

that c⃗(t) = a⃗. Again to have a well defined probability we must demand

0 ≤ pa(t) ≤ 1
∑︂
a

pa(t) = 1. (3.15)

Now we can use these vectors to analyse our stochastic process. Using the transition

probabilities we find

pb(t+ 1) =
∑︂
a

pa(t)Tab. (3.16)

This allows us to interpret Tab as a matrix. Further a summation over b shows, that T

maps stochastic vectors into stochastic vectors. Lastly we introduce the so-called fixed

point F⃗ , which is defined as

F⃗ = F⃗ T. (3.17)

One can show that if we require the so-called detailed-balance condition∑︂
b

pbTba =
∑︂
a

paTab, (3.18)

the vector p⃗(t) approaches a unique fixed point, whose entries are just ρ [fi]. Hence the

Markov chain with the detailed balance condition will guarantee the right result for an

infinite long trajectory through V . Of course in practice this is not possible. In this case

one tries to estimate the so-called thermalisation time after which one approximately

has reached the fixed point solution. Discarding this region of the Monte Carlo time, we

try to generate enough configurations to get a good estimate of the expectation values.

Interestingly the detailed-balance condition allows for a plethora of different Tab, which

lead to the different algorithms like Metropolis and the heath bath algorithm. Here we

want to focus on the Hybrid Monte Carlo (HMC) algorithm [106], described in detail

in [89–91]. The basic idea is to use molecular dynamics to create a new configuration.

For this we introduce for every vector1 x a conjugate momentum p, which we use to

define the Hamiltonian

H(x, p) =
p2

2
+ S(x), (3.19)

1For the sake of simplicity we replaced all field variables fi(x) with a vector x, whose entries are
the values fi(x).
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3.3. Rational Hybrid Monte Carlo algorithm

where S(x) is the lattice action. This allows to evolve this system in a fictitious time

tf. On the lattice we achieve this by integrating over

∂x

∂tf
=
∂H

∂p
,

∂p

∂tf
= −∂H

∂x
(3.20)

using different numerical algorithms. Since these introduce numerical errors, we have

to introduce a second step after the integration, the so-called acceptance step. Calling

the initial variables xi and pi and the variables after the integration xf and pf, we define

the probability to accept a new configuration

A (xi, pi|xf, pf) = min {1, exp (H(xi, pi) −H(xf, pf))} . (3.21)

We see that, if we could integrate without numerical errors, we would always accept

the new configuration. Further the initial momenta pi must be drawn randomly from

a Gauss distribution. This is important to fulfill the detailed-balance condition, de-

manded earlier.

Having discussed the basic HMC algorithm, will now discuss its application to

theories with fermions. Let us look for example at a gauge theory with the partition

function

Z =

∫︂
DλDλDUexp

{︁
−S [U ] − λD [U ]λ

}︁
(3.22)

where λ are Dirac fermions, D [U ] is the lattice Dirac operator and U are link variables,

which are parallel transporters along the links of the lattice. Using the analytical

solution for the Berezin integral [107], we are left with an integral over the link variables

Z =

∫︂
DU det (D [U ]) exp {−S [U ]} . (3.23)

Since the calculation of the determinant of the lattice Dirac operator is computationally

costly, we will use pseudofermions [108]. For this technique, we have to introduce the

positive operator M = DD†. Using the Γ5-hermiticity of the Dirac operator

D† = Γ5DΓ5 (3.24)

and ignoring a potentially negative sign we find

det (D) = det
(︁
DD†)︁ 1

2 = det (M)
1
2 . (3.25)

Introducing Npf complex valued bosonic fields ϕ, we can rewrite the determinant of the
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Dirac operator as an exponential

Z =

∫︂
DUDϕ exp

⎧⎨⎩−S [U ] −
Npf∑︂
i=1

ϕ†
iM [U ]−q ϕi

⎫⎬⎭ , (3.26)

where q = 1/2Npf. In section 6.2, we will explicitly show, that det (D) is always

positive in our simulations, justifying this approach. Still, the exact calculation of the

inverse of M is equally computational challenging as the calculation of the determinant.

Hence the different Hybrid Monte Carlo algorithms use different approximations for

the inverse of the Dirac operator. The polynomial HMC [109–111] uses a polynomial

approximation while the rational HMC uses a rational approximation [112–115] given

by

r(M) = M−q ≃ α0 +

NR∑︂
r=1

αr (M + βr1)−1 , (3.27)

where NR allows to set the accuracy of the approximation. The coefficients αr and βr

can be calculated with the Remez algorithm [116–119] at the start of the simulation.

At last one has to calculate the evolution of the pseudo fermions via the molecular

dynamics. Here one has to solve

yr = (M + βr1)−1 ϕj, (3.28)

which is still computationally challenging. This can be reduced by using a multishift

conjugate gradient solver [120, 121] which solves (3.28) for all βr simultaneously. Fur-

ther we make use of the results presented in [122, 123]. There the authors modified the

molecular dynamics part of the algorithms further. Introducing different discretizations

for the fictitious time in the bosonic and fermionic parts of the action, they reduced

the amount of inversions of M while keeping the same numerical accuracy.

3.4 Discretization of the Action

One of the most important parts of any lattice simulation is the discretization of the

action. Here we have different choices for the gauge action, the Dirac Operator and

the covariant derivative of the scalars. All of them have different advantages and

disadvantages. While we can not show that our choices are optimal, we think that

they are sensible. We want to remind the reader, that we will discretize the action of

the reducible model given in (3.3).
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3.4.1 Bosons

In our simulation we use the tree-level Lüscher-Weisz action [124]

ŜG = β

{︄
c0
∑︂
p

tr (1 −ℜUp) + c1
∑︂
r

tr (1 −ℜUr)

}︄
(3.29)

where c0 = 5
3

and c1 = − 1
12

. This action involves a sum over all positive oriented

plaquettes Up (x) and all positive oriented rectangles of size 2×1 called Ur (x). For the

scalar sector of the action we expand the scalar fields in Lie-group elements ϕi = ϕai Ta,

where we use the conventions

[Ta, Tb] = ifabcT
c, tr (TaTb) = δab. (3.30)

We get

ŜS = β

{︄∑︂
x,i

(︃
m2

s

β
+ d

)︃
ϕ2
i (x) −

∑︂
x,µ,i

ϕi(x+ µ⃗)UA
µ (x)ϕi(x)

+
1

4

∑︂
x,i,j

ϕai (x)ϕbj(x)ϕci(x)ϕdj (x)fabefcde

}︄
,

(3.31)

where µ⃗ is the unit vector in µ direction on the lattice, UA are the link variables in the

adjoint representation

(︁
UA
µ

)︁ab
= tr

(︁
T aU−1

µ T bUµ
)︁

(3.32)

and m2
s is the scalar mass term, which we will discuss in detail in sections 4.1 and 4.2.

Further we used the forward difference

Df
µϕi(x) = ϕi(x+ µ⃗) − UA

µ (x)ϕi(x) (3.33)

for the kinetic term of the scalar fields.

3.4.2 Fermions

As shown in the previous section, after solving the Berezin integral, we got rid of the

fermion fields in the partition function. Yet there are several different lattice fermion

types. We can discern them by their Dirac operator. Since we want to simulate a

supersymmetric theory, we have to keep the number of fermionic and bosonic degrees

of freedom the same. Otherwise we would break the supersymmetry further. Therefore
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we have chosen the doubler free Wilson fermions. This leads to the fermion action

ŜF =
α

2
λ
(︂
DW

[︁
UA
]︁

+mf + ΓEa ϕ
i
af̂ i

)︂
λ =

α

2
λ
(︁
D
[︁
UA
]︁)︁
λ, (3.34)

where DW

[︁
UA
]︁

is the usual Wilson Dirac operator and mf is the fermion mass. The

matrices
(︂
f̂ i

)︂
jk

= fijk are formed from the structure constants of the gauge group.

They appear due to the Yukawa interactions. We proceed by integrating out the

fermions. Since we have Majorana fermions we get the Pfaffian

∫︂
DλDλ e−SF = Pf

(︁
CD

[︁
UA
]︁)︁
, (3.35)

where C is the charge conjugation matrix. Using the properties of the Dirac operator,

one can show that all eigenvalues come in complex conjugated pairs and are double de-

generated [27], meaning that the determinant is positive. Further Pf2 (CD) = Det (CD)

and so we have a real but not necessary positive Pfaffian. This is a potential short-

coming for the lattice theory because we could have a sign problem. Simulations in the

four-dimensional N = 1 SYM theory found that this sign problem is mild in the inter-

esting region of the lattice theory [28, 30]. Since this could change in the dimensionally

reduced theory, we have to monitor the sign in our lattice simulation.

3.5 One- and two-point functions

As written in section 3.3 we want to calculate expectation values. In this work these

will be one- and two-point functions. Let us start with one-point functions. Given an

observable O(x) defined at a lattice point x, a one-point function is the expectation

value

⟨O(x)⟩ . (3.36)

Since the lattice action is invariant under discrete translations, this observable can not

be dependent on a lattice point. This allows to increase the statistics, by averaging

over the whole lattice

⟨O(x)⟩ = ⟨O⟩ =
1

|Λ|
∑︂
x∈Λ

⟨O(x)⟩ . (3.37)

Two point functions allow for more variation. They are defined as

C (x, y) = ⟨O1 (x)SO2 (y)⟩ , (3.38)
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3.5. One- and two-point functions

where S is an arbitrary constant matrix. The most common setup in our lattice

simulations will be O1 = O2 and S = 1. Still our theory allows for gauge invariant

fermionic operators Oi, for which we can choose the gamma matrices for S. An example

for this is the gluino-glueball. In all these cases, we will do a zero momentum projection

in the spatial direction. We use it, to calculate correlation functions depending on the

time alone

Oi (x0 = t) =
1

Ns

∑︂
s

Oi (t, x1 = s) , C (t) =
1

Nt

∑︂
τ

⟨O1 (τ + t)SO2 (τ)⟩ . (3.39)

Again we make use of the translation invariance, by averaging over all possible values

of the time τ . Next we have to introduce the connected two point function

Cc (t) =
∑︂
τ

⟨O1 (τ + t)SO2 (τ)⟩ −
∑︂
τ

⟨O1 (τ + t)⟩ S ⟨O2 (τ)⟩ . (3.40)

For simplicity we choose now O1 = O2 and S = 1. In this case we find in the asymptotic

behavior [125]

lim
β→∞

Cc (t) =
∑︂
i

Ci e−mit, (3.41)

where Ci = |⟨0| O1 |i⟩|2 is the overlap of the operator O1 with state |i⟩ and mi is the

mass of state |i⟩. Thus we can use two-point functions to derive the mass of states on

the lattice. Lastly we have to look at the special case of fermions. Since we want to

integrate them out, we have to take special care for observables which include them.

Once again we use the Berezin integral which translates into the Wick theorem [126]

for fermions. In our simulations we have correlation functions containing at most four

fermion fields. Introducing an arbitrary gamma Matrix Γ we find

⟨λ(x)Γλ(x)⟩c =⟨tr
(︁
ΓD−1(x, x)

)︁
⟩

⟨λ(x)Γλ(x)λ(y)Γλ(y)⟩c = − ⟨tr
(︁
ΓD−1(x, y)ΓD−1(y, x)

)︁
⟩

+ ⟨tr
(︁
ΓD−1(x, x)

)︁
tr
(︁
ΓD−1(y, y)

)︁
⟩

− ⟨tr
(︁
ΓD−1(x, x)

)︁
⟩⟨tr

(︁
ΓD−1(y, y)

)︁
⟩.

(3.42)

In case of the four fermion term, we will call the first term on the right hand side the

connected part and the two other terms the disconnected part. This is motivated by

a diagrammatic interpretation of these contributions. Furthermore these results show

that we have to perform inversions of the Dirac operator again. Albeit we can use very

efficient algorithms to calculate the inverse of the Dirac operator, this inversion is still

the bottleneck of our computations. In our case we use the following setup. For the

inversion of the Dirac operator we use the incremental eigCG algorithm of Stathopoulos

and Orginos [127]. For D−1(x, y) and D−1(x, x) we use two different strategies. We
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calculate the former with the so called point sources. These are defined at a random

lattice point yps, for which we invert D
a bps
αβps

(x, yps) for all possible combinations of bps

and βps, which are the color and spin degrees of freedom of the fermion field at the

lattice point yps. Thus we have reduced the inversion of the whole Dirac operator to the

calculation of columns of the inverse Dirac operator. While this approach reduces the

computational cost, it is still too costly for D−1(x, x). In this case we try to estimate

the inverse of the Dirac operator over the whole lattice by using the so called stochastic

estimators, introduced in [128–130]. To be more specific about the simulation setup,

we use eight point sources and 1000 stochastic estimators.

3.6 Smearing

3.6.1 Low-Pass Filter

The goal of lattice simulations is to calculate expectation values of stochastic variables.

These are determined by their probability distribution. In a lattice calculation, we can

only get estimates of these, due to the finite number of configurations. The difference

between both is a stochastic variable itself, whose mean is zero. Its variance is usually

linearly dependent on the variance of the original stochastic variable and inversely

proportional to the square root of the number of configurations, used to calculate the

estimate. While we can influence the latter, the former is fixed. Therefore, to get a

better estimate of the mean value for a given stochastic variable, we can only increase

the amount of configurations created in our simulation. Even this strategy is infeasible

in the long run, as the computational cost always increase by a factor of 100 for one

digit more precision. Thus there are observables (described by stochastic variables),

for which we need a different strategy. In these cases we try to replace the original

stochastic variable with a new one, which has the same expectation value but a much

smaller variance.

To construct these replacements, let us recall (3.41). Here we saw, that we can

extract the mass of any state, as long as our observable has a non-zero overlap with

the state in question, meaning the same quantum numbers. Further, we observe that

the states with high mass decay quickly. Since we can only identify states whose

contribution is visible for several time points t in the correlation function, we can

not distinguish them from noise (statistical fluctuations). This realisation leads to a

strategy to improve our results. If we construct observables which have less or no

overlap with high energy states, we can improve the signal to noise ratio for the low

energy states of the theory.

For scalar fields we use a quite common idea, the low pass filter, for example outlined
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in [131]. Using the Laplacian we define a new scalar field

ϕ̃(x) = ϕ(x) + ∆ϕ(x). (3.43)

To investigate the spectral properties of ϕ̃ we perform a Fourier transform of this

equation and rearrange the terms to get

ϕ̃(p)

1 + p2
= ϕ(p). (3.44)

We see that in the scalar field ϕ̃, contributions from large momenta will be suppressed.

Since these corresponds to high energies, we achieve the desired effect. One can redo

this process several times to improve the result further. Another idea is to introduce

a tunable prefactor for the Laplacian, which allows to control the strength of the

suppression of the high modes.

On the lattice we have to use a discretized version

ϕi+1(x) = ϕi(x) + ϵ
∑︂
µ

(ϕi(x+ µ⃗) + ϕi(x− µ⃗) − 2ϕi(x)) , (3.45)

where we introduced the scalar field ϕi which we get after i applications of our algorithm

and ϵ is the tunable prefactor of the Laplacian. We see that ϕ1(x) has only contribu-

tions from the nearest neighbors, while we get contributions from the next to nearest

neighbors for ϕ2(x). The reason is that the sum for ϕ1(x + µ⃗) contains ϕ0(x + 2µ⃗).

Thus, every application of (3.45) will increase the number of contributing original

scalar fields ϕ0. Algorithms of this kind are called smearing, as we “smear” the scalar

field over the neighboring lattice patch. Subsequently an application of formula (3.45)

is called a smearing step and ϵ smearing parameter. Lastly we introduce the smearing

level S which is the product of the smearing parameter and the amount of smearing

steps. For small ϵ, we can use the Taylor expansion, to show that the physical prop-

erties of the resulting smeared scalar field only depend on the smearing level and not

on the specific combination of smearing steps and smearing parameter. In our simula-

tions, we got mixed results for this technique. While we saw the improvement of the

signal to noise ration on small lattices, on larger lattices it seemed absent. Since the

small lattices are plagued by large finite volume lattice artifacts, we would like to find

a better smearing algorithm, which also improves the signal-to-noise ratio for the large

lattices.

41



3. Lattice Formulation

3.6.2 APE Smearing

Having introduced smearing for the scalar fields, we want to use smearing also for

the link variables. Unfortunately, they live on the links of the lattice, making the

formula (3.45) not applicable. This problem was solved by the APE collaboration [131].

They introduced the smearing step

U i+1
µ (x) = (1 − s)U i

µ(x) +
s

6

∑︂
ν ̸=µ

Ci
µν(x) (3.46)

with

Ci
µν = U i

ν(x)U i
µ(x+ ν⃗)U i

ν

†
(x+ µ⃗) + U i

ν

†
(x− ν⃗)U i

µ(x− ν⃗)U i
ν(x− ν⃗ + µ⃗) (3.47)

and the real smearing parameter s. As they have shown, this smearing works like a

low pass filter for the link variables. Unfortunately this smearing procedure does not

always projects SU(N) link variables back to SU(N) link variables. In the case of SU(2)

we do not encounter this problem, while it would be present for SU(3).

3.6.3 Stout Smearing

Another smearing algorithm for link variables is Stout smearing [132]. The smearing

step is defined by

U i+1
µ (x) = eiQ

i
µ(x)U i

µ(x)

Qi
µ(x) =

i

2

(︃
Ωi
µ

†
(x) − Ωi

µ(x) − 1

3
tr
[︂
Ωi
µ

†
(x) − Ωi

µ(x)
]︂)︃

Ωi
µ(x) =

(︄∑︂
ν ̸=µ

ρµνC
i
µν(x)

)︄
U i
µ

†
(x),

(3.48)

where the Ci
µν are the same as for the APE smearing, and ρµν are weights, the equivalent

of the smearing parameter. In this work we have chosen

ρµν =

{︄
s, for µ = ν = 1

0, else.
(3.49)

The main advantage of this smearing compared to APE smearing is that it is differ-

entiable, making it applicable in the HMC algorithm. In our simulations we apply

the Stout smearing for observables only, ranging from very low to very high smearing

levels.
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3.6.4 Jacobi Smearing

For fermions the idea of improving the measurement comes from another direction.

Till now, we represented fermions as point-like objects on the lattice, in contrast to

the continuum, where we expect them to have a spatial distribution. Hence we should

be able to improve our overlap with the fermion state in question, by providing a more

realistic spatial distribution of the fermions. For this we introduce a smeared fermion

λ̃(t, s0) =
∑︂
s

S (t, s0, s)λ(t, s), (3.50)

where S is a smearing function. There are several different possibilities to chose S,

some are not even gauge-invariant. Here we have chosen Jacobi smearing [133, 134].

In this case, we have the gauge covariant smearing function

S (t, s0, s) = ι
(︂
Uµ (t, s) δs0,s+1 + Uµ (t, s− 1)† δs0,s−1

)︂
, (3.51)

where ι is a smearing parameter again. Analogue to the scalar and gauge field smearing,

we can apply this smearing successively to improve the result. We make us of this in

our simulations, where we apply five smearing steps with a smearing parameter of 0.2.

This setup was the best, to improve the signal to noise ratio of the meson correlation

functions.

3.7 Error estimation

At last we have to discuss, how we estimate the errors of our observables. Since we use

Monte Carlo methods, we can imagine our simulation as a measurement. The value

of an observable on a single configuration can be seen as a sample. Then, the error

of the observable would be estimated using the usual standard error. Unfortunately

this approach will most likely fail. The reason are the Markov chains. Since we use

an old configuration to generate a new configuration, we can not claim, that both are

stochastically independent. This is not even possible for the configurations Ci and Cj for

|i− j| > 1. We can measure this dependence with the so called autocorrelation. Fortu-

nately for lattice simulations, it decreases with increasing distance |i− j|. In practice,

a calculation of the autocorrelation time is too computationally expensive, especially

as the autocorrelation time also depends on the simulation parameters. Fortunately,

we can use an alternative, the so-called binning techniques. They allow to give good

estimates for the observable and the errors of our observables. In our simulations we

use the Jackknife resampling method [135–137]. In the following we follow [90]. First

we partition the data into Nb equal sized bins of size B. On the i-th bin we calculate

the expectation value of the observable called
⟨︂
Oi
˜
⟩︂

. Calculating their variance, we
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can interpret them as stochastically independent, if it is proportional to 1/B. These

new Nb expectation values form the new data set for the Jackknife resampling. Using

these, we calculate a new set of expectation values again

O =
1

Nb

Nb∑︂
i=1

⟨︂
Oi
˜
⟩︂
, On =

1

Nb − 1

Nb∑︂
i=1,i ̸=n

⟨︂
Oi
˜
⟩︂
. (3.52)

The idea of resampling is visible in the second formula. We create new data sets by

omitting the n-th member of the set of expectation values. After calculating the mean

On on every new set, we can estimate the variance for our expectation value O

σ2
O =

N − 1

N

N∑︂
n=1

(︁
On −O

)︁2
. (3.53)

As the final result we quote ⟨O⟩ = O ± σO. A special case in our results are func-

tional fits, which connect different simulation setups, e.g. different β,ms,mf,. . . . For

these we usually employ data from simulations with a small amount of configurations.

To apply the Jackknife method, we would have to increase the number of configurations

of these simulations by a factor of twenty, which is computationally expensive. Hence

we refrained from resampling in this case and only quote the errors of the functional

fits. Note that we still apply the Jackknife resampling for the fits of a single simulation

(fixed β,ms,mf,. . . ), especially for the fits to the correlation functions.
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Chapter 4

Lattice Calculations

In the last chapter we presented the lattice formulation of our theory. Here we will

analyze it theoretically. First we have to ensure that we extrapolate to the right

continuum limit. For this we make use of two approaches. The first is a general analysis

of the theory, identifying the relevant fine-tuning parameters. The second is a one-loop

calculation, which also allows for a better understanding of the physical implications

of our lattice setup. Furthermore the latter allows to calculate the correct fine-tuning

value of the scalar mass term in the continuum limit. Another problem is the breaking

of supersymmetry by the lattice regularization. As the Ward identities presented in

section 2.6 are based on unbroken symmetries, we have to introduce modifications,

leading to lattice Ward identities. Lastly we make a detour to the two-dimensional

pure gauge theory. This is necessary to interpret our results for the glueball correlation

function.

4.1 Fine-tuning of the lattice theory

In the chosen lattice formalism we break supersymmetry and chiral symmetry explicitly.

Fortunately we are only interested in the target theory (the continuum limit of the

lattice theory), in our case the N = (2, 2) SYM theory. Thus we do not have to

preserve these symmetries on the lattice, if we restore them in the continuum limit.

The only open question is how to achieve this. Since we simulate a quantum field

theory, we have to consider quantum corrections. We will include them by looking

at the effective action of the theory, which can be calculated from the classical action

of the theory, by including all quantum effects. An introduction into this topic can

be found in [138]. In our analysis, we follow the work of Sugino [80]. In general, the

effective action of the lattice theory depends on the lattice volume and lattice spacing.

Thus it allows to perform the continuum limit directly, which results in a specific target

theory. Comparing it to the desired continuum theory, we can check the continuum

limit. Unfortunately we are not able the calculate the effective action for most lattice
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theories (otherwise lattice simulations would be unnecessary). Our simulation falls also

into this category. Therefore we have to use approximations, like the loop expansion,

to analyze the continuum limit of our lattice simulations.

Before we actually analyze our theory, we will introduce the concept of fine-tuning.

For this we look at the most common example, lattice QCD with Wilson fermions. In

this case one introduces a mass term which explicitly breaks chiral symmetry. While

this term will vanish in the continuum limit (V → ∞, a → 0), it has severe con-

sequences for the effective action of the lattice theory. Due to the absence of chiral

symmetry, we get new possible terms in the effective action, breaking chiral symmetry

explicitly.1 One of these is mqλλ, which introduces an additional mass term for the

fermions. Since we are still discussing a lattice theory, mq will depend on the lattice

spacing and lattice volume. Thus we can distinguish two cases. The first is that this

additional mass vanishes in the continuum limit. In this case we will call this operator

irrelevant. In all other cases, it is relevant2. In a lattice theory, almost all operators

are irrelevant and we usually ignore them3 because they will not contribute in the con-

tinuum limit. Thus they will not change the target theory in contrast to the relevant

operators. Let us keep the example of lattice QCD. In this case mqλλ is relevant, re-

sulting in a target theory with broken chiral symmetry. To get a different result we have

to perform a so called fine-tuning. The idea behind it is quite simple. By adding mfλλ

to the action and requiring mq + mf = 0 for all lattice spacings and lattice volumes,

we get rid of the operator proportional to λλ in the effective action. Thus such a term

will be also absent in the target theory. Since in QCD the only relevant operator is the

fermion mass term, we restore chiral symmetry in the continuum limit. Unfortunately,

while the basic idea is quite simple, the practical implementation is often not. As we

usually can not calculate the effective action analytically, we have to search the point

mq +mf = 0 in the whole parameter space of mf, hence the name fine-tuning.

As stated above, the analytical calculation of the effective action is often not possi-

ble. Still one can analyze its structure, identifying the relevant operators. For this we

make use of the limit V → ∞. In this limit, all operators with mass dimension d > d0

will vanish. The reason is that after integrating over spacetime and multiplying with a

monomial of the gauge coupling, their contribution will be proportional to Ld0−d, with

LD = V , where D is the spacetime dimension. Thus all relevant operators have mass

dimension d ≤ d0. The value of d0 depends on our action and D. In our case it is the

action of the N = (2, 2) SYM theory in two dimensions, given in (2.25). The mass

1Note that the emergence of such terms is also possible if the symmetry of the classical action is
not broken. In this case quantum corrections break the symmetry, leading to the so called anomalous
symmetries. Here we will ignore this case as it is not relevant for our model.

2In principle one has three kind of operators: irrelevant, marginal and relevant. Since we have to
handle the last two in the same manner, we grouped them together in this work.

3Although the irrelevant operators play an important role in the Symanzik improvement program.
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4.1. Fine-tuning of the lattice theory

dimensions (denoted by [·]) of the fields and the gauge coupling are

[Aµ] = 1, [λ] = 1.5, [ϕ] = 1, [g] = 1. (4.1)

These values differ from the usual values one gets by looking at the two-dimensional

kinetic terms. The difference comes from a rescaling of the fields using the dimensionful

coupling constant. We choose this convention, as it will simplify the discussion of

the loop expansion of the effective action. In principle one could also use the mass

dimensions, given by the standard kinetic terms of the fields. In this case, we would

have to make use of the Feynman rules and diagrams, to conclude our results of the

loop expansion. While we did not check this approach thoroughly, it seems to agree

with the results presented below.

The determination of d0 is best explained by an example. Let us look at a term

of the form gc2
∫︁

dx2O. It will scale as L2−c−dO , with dO = [O], thus d0 = 2 − c.

Having establish all necessary ingredients, we will now look at the loop expansion

of the effective action. First we recall that apart from the fields we can also have

derivatives in the terms of the effective action. This allows us to write the effective

action in the loop expansion

S =
1

g22

∫︂
d2xL0 +

∫︂
d2x∂r1µ A

s1
µ ϕ

t1λu1 + g22

∫︂
d2x∂r2µ A

s2
µ ϕ

t2λu2 + · · · (4.2)

where we wrote all operators without regard of their actual structure but just the

amount of fields and derivatives appearing. Following our discussion above, we find

the constraints

r1 + s1 + t1 + 1.5 · u1 ≤ 2

r2 + s2 + t2 + 1.5 · u2 ≤ 0.
(4.3)

The second line, corresponding to two-loop order, can only be met by the identity

operator. Since a constant shift does not affect the physics of the theory, we ignore it.

For higher loop orders of the effective action, relevant operators must have a negative

mass dimension, which is impossible. Thus we have only to fine-tune terms appearing

at the one-loop order. Theories with this property are super-renormalizable. Since

the effective action must have the quantum numbers 0++, this must be also true for

the extra terms appearing in the loop expansion. This leads to the constrain that u1

and u2 are multiple of two, since we need an even amount of fermions to construct

a scalar operator. In Table 4.1 we give all relevant operators up to mass dimension

two. Additionally we depict that λλ is a mass dimension three operator, hence it is

irrelevant and we restore chiral symmetry in the continuum limit without fine-tuning.
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mass dimension operators

0 1
1 ϕi, Aµ
2 ϕiϕj, AµAν , ϕiAµ, ∂µϕi, ∂µAν
3 λλ

Table 4.1: All relevant operators which can appear in the effective action of the lattice
theory up to mass dimension two. Further we give the mass dimension for λλ.

Next we have to find the structure of the relevant operators. First we have tr (ϕ) = 0,

tr (Dµϕ) = ∂µtr (ϕ) = 0 and tr (Fµν) = 0. Further, using gauge invariance, all other

terms which feature gauge fields must vanish. Therefore only the term with two scalar

fields can be present. We can write down the general form as

trc
{︁
ϕiϕjMij

}︁
(4.4)

where Mij is a tensor which keeps the operator invariant under R symmetry. Since

this is a SO(2) symmetry, δij and ϵij are the only two independent tensors, from which

we can build any invariant tensor. As Mij is a rank two tensor, it must be a linear

combination of both. Here we choose the two simplest cases: Mij = δij and Mij = ϵij.

The first leads to the scalar mass term

trc
(︁
ϕiϕ

i
)︁
, (4.5)

while the second leads to a commutator

trc ([ϕ1, ϕ2]) = 0 (4.6)

which vanishes under the color trace. We are left with only one relevant operator.

Hence we must introduce the fine-tuning term

m2
sϕiϕ

i (4.7)

into the action for the fine-tuning. We will call m2
s the scalar mass. We further

introduce a mass term for the fermions

mfλλ (4.8)

into the action, for which we call mf the fermion mass. While we saw that a λλ term will

vanish in the continuum limit, it will be present for a finite lattice spacing and lattice

volume. Therefore we can use the fermion mass mf to get rid of this term, reaching the

chiral limit of the lattice theory. The reason for this additional fine-tuning is, that the
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4.2. One-loop calculation

chiral symmetry plays an important role in the four-dimensional mother theory [23].

Thus we think that this importance will also be visible in the dimensional reduced

model. Therefore this additional fine-tuning should improve our results for the target

theory.

4.2 One-loop calculation

To get a better physical understanding of our simulated theory, we will look at the one-

loop calculation of the effective action. Here we follow Suzuki and Taniguchi [64]. In

this work the same calculation was done for a similar model, where the KK reduction is

applied in the lattice theory instead of the continuum theory. Thus the scalar fields of

their model are encapsulated in the link variables U2 and U3. Since these variables are

compact by construction, this theory should not suffer from the flat directions in the

potential. Therefore both approaches to simulate this model will differ in the dynamics

of the scalar sector, which could lead to different effects in the one-loop corrections to

the theory. Especially the calculated scalar mass could differ. Note that Suzuki and

Taniguchi claim, that a one-loop calculation is sufficient to calculate the scalar mass

term in the continuum limit. This is in agreement with our discussion in the previous

section.

In [64] Suzuki and Taniguchi did not only do the calculation for the lattice model

but also for the continuum model. While they calculated two contributions to the

effective action, we will focus here on the following one-loop contribution

1

L

{︄
−
∑︂
p ̸=0

1

p2f
+
∑︂
p ̸=0

1

p2b

}︄
trc
{︁

Φ2 + Ψ2
}︁

Φab = gfabcϕ
c
1 Ψab = gfabcϕ

c
2,

(4.9)

where Φ and Ψ are related to the vacuum expectation values ϕ1 and ϕ2, introduced

later. Further we introduced the momenta of the fermionic degrees of freedom pf and

the momenta of the bosonic degrees of freedom pb. The calculation of this result was

done on a finite torus to regularize zero modes. Hence for the result of the full theory,

one has to look at the infinite volume limit, introducing infinitely many momenta.

Thus we need to regularize them. Choosing the same renormalization scheme for

fermionic and bosonic momenta, we see a perfect cancellation at one-loop order. Any

other choice would lead to a non-vanishing term, breaking the supersymmetry, which

is clear, as we treat fermions and bosons differently. Here we see one of the advantages

of supersymmetric theories, the cancellation of most quantum corrections, which leads

to non-renormalization theorems [12, 13].
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Now we want to calculate the same one-loop result for the lattice theory. First we

have to expand the fields

Aaµ(x) =
∑︂
p

1

L
eipxÃ

a

µ(p), ϕai (x) = ϕai +
∑︂
p

1

L
eipxϕ̃

a

i (p), λaµ(x) =
∑︂
p

1

L
eipxλ̃

a

i (p),

(4.10)

where the tilde symbols the fluctuations around the vacuum expectation values. Since

we are doing calculations in a gauge theory, we have to fix the gauge. This allows that

the scalar fields pick up a vacuum expectation value, while Lorentz symmetry prevents

it in the case of the vector and spinor fields. We introduce the gauge fixing term

Sgf = −a2
∑︂
x∈Λ

1∑︂
µ,ν=0

λ0tr
{︁
∂ bµAµ (x) ∂ bνAν (x)

}︁
(4.11)

into the action, where ∂ bµ is the backwards difference operator. Further we have to

expand the link fields on the lattice

Uµ(x) = eaAµ , (4.12)

to recover the gauge fields. Lastly we have to mention, that we do the calculation

for the standard Wilson action for the gauge fields instead of the Symanzik improved

action used in the simulation. The reason is that the calculation will be simpler while

leading to the same result. The improved action is reducing the lattice artifacts from

discretizing, getting closer to the continuum limit. Hence the effective action of the

target theory will be the same as for the lattice theory with the Wilson action. Now

we insert the expansion into our lattice action and keep only the terms quadratic in

the fluctuation fields. This leads to the result

S + Sgf =
1

2

∑︂
p

{︃
Ãµ (−p)

[︃
δµνˆ︁p 2 − (1 − λ0)

1

a2
(︁
eiapµ − 1

)︁ (︁
1 − e−iapν

)︁
− δµνΦ

2

]︃
Ãν (p)

+ ϕ̃1 (−p) ˆ︁p 2ϕ̃1 (p) + ϕ̃2 (−p)
(︁ˆ︁p 2 − Φ2

)︁
ϕ̃2 (p)

+ Ãµ (−p) 1

a

(︁
eipµa − 1

)︁
Φϕ̃1 (p) + ϕ̃1 (−p) 1

a

(︁
1 − e−ipµa

)︁
ΦÃµ (p)

+2λ̃ (−p) (DW (p) +mf − iΦ + γ5Ψ) λ̃ (p)
}︂

+ · · · (4.13)

where we neglected Ψ and introduced the lattice momenta

ˆ︁pµ =
2

a
sin

(︃
1

2
apµ

)︃
p̊µ =

1

a
sin (apµ) (4.14)
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and the Fourier transform of the free Wilson Dirac operator DW (p)

DW (p) = iΓµp̊µ +
1

2
aˆ︁p 2. (4.15)

After the gaussian integration over the fluctuations we end up with

2

L2

∑︂
p ̸=0

(︄
1ˆ︁p 2 −

1 + 1
2
a2ˆ︁p 2

p̊2 + a2

4

(︁ˆ︁p 2
)︁2
)︄
Ncϕ1ϕ1 ≡ m2

olNcϕ1ϕ1. (4.16)

We see that we retrieved a term similar to (4.9), which does not vanish this time. The

reason is that we have introduced Wilson fermions, which lead to different momenta

for the fermions and the bosons. Unfortunately, this momentum difference is neces-

sary to get rid of the doublers, which would introduce different amounts of fermionic

and bosonic degrees of freedom, breaking supersymmetry as well. Another interesting

aspect is that we recover the exact same result as in [64]. Comparing their expansion

of S + Sgf with ours, we see that one term is absent. On the other hand they have to

introduce an extra term originating from the Jacobian. This is a result of their lattice

formulation. Since their scalar fields are encapsulated in two link variables, they have

to introduce a shift of the integration variables. Interestingly the associated Jacobian

cancels exactly the term, which was absent in our lattice from the start. Hence we

get the same result. Introducing the scalar mass term m2
sϕ

2 into the action will not

change the one-loop calculation. Hence for m2
s = −m2

ol, at one-loop, our lattice action

will have the same effective action as the continuum result.

At last we have to calculate the value of m2
s . Assuming the continuum limit

V → ∞, a→ 0, one can replace the sum in (4.16) with an integral over continuous

momenta from −π to π, which converges to the final result [64]

m2
s = 0.65948225(8). (4.17)

4.3 Ward Identities on the Lattice

The Ward identities derived in section 2.6 are based on the supersymmetry of the

continuum action. Unfortunately the lattice regularization breaks this symmetry (see

section 3.2), thus they will not hold anymore. In this chapter, we will derive similar

quantities on the lattice, called lattice Ward identities. They serve as a signal for the

restoration of supersymmetry. For their derivation, we will proceed as follows. First we

introduce a new transformation for the lattice fields, which becomes the supersymmetry

transformation in the continuum. Next we discuss the impact of the broken symmetry

on the derivation of the Ward identities, leading to a modification stemming from the

lattice regularization. Finally by combining both, we can get the aforementioned lattice
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Ward identities.

We start with the would-be supersymmetry transformation on the lattice. If the

only requirement for them would be, that it will become the supersymmetry transfor-

mation in the continuum limit, we could choose from a plethora of possible possibilities.

To reduce this set, we impose two additional constraints, leading to our three final re-

quirements:

1. The transformations become the continuum supersymmetry transformations in

the continuum limit.

2. The transformations commute with the gauge transformations.

3. The transformation of the covariant derivative is the lattice equivalent of the

continuum counterpart.

These are inspired from an analogous discussion in the four-dimensional mother

theory [23, 29, 139–141]. All three requirements are met with the transformations

Qα
Uµ(x) = Uµ(x)

a

2
(Γµ)αβλ

β(x+ µ⃗)

Qα
U †
µ(x) = −a

2
(Γµ)αβλ

β(x+ µ⃗)U †
µ(x)

Qα
λβ = 0

Qα
λβ = −(Γµν)αβGµν

Qα
ϕi =

1

2
Γi+1

α
βλ

β,

(4.18)

where all fields but the link variable Uµ are dimensionful and Gµν is the lattice equiv-

alent of the field strength tensor Fµν . In our work, we have chosen to use the clover

plaquette PC
µν

PC
µν =

−i

8
(Qµν (x) −Qνµ (x)) (4.19)

Qµν (x) = Pµν (x) + Pν,−µ (x) + P−µ,−ν (x) + P−ν,µ (x) , (4.20)

where Pµν (x) is a plaquette with the two corners x and x + µ⃗ + ν⃗. Expanding this

operator in terms of gauge fields shows that PC
µν = a2Gµν . Note that while other choices

are possible they will make no difference in the continuum limit.

We want to prove that these transformations meet the requirements. We start with

the continuum limit of the transformations. In this limit, Gµν becomes Fµν , thus the

fermions transform correctly. Further, the scalar field already transforms as in the

continuum. Thus we are left with the link variables Uµ, which encapsulate the gauge

fields Aµ. Using the expansion Uµ = eaAµ = 1 + aAµ + O(a2) we get for the left hand
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side

Qα
Uµ(x) = Qα (︁

1 + aAµ(x) +O(a2)
)︁

= aQα
Aµ(x) +O(a2) (4.21)

and for the right hand side

Uµ
a

2
(Γµ)αβλ

β(x+ µ⃗) =
(︁
1 + aAµ(x) +O(a2)

)︁ a
2

(Γµ)αβλ
β(x+ µ⃗)

=
a

2
(Γµ)αβλ

β(x+ µ⃗) +O(a2)

=
a

2
(Γµ)αβ

(︁
λβ(x) + a∂µλ

β(x) +O(a2)
)︁

+O(a2)

=
a

2
(Γµ)αβλ

β(x) +O(a2),

(4.22)

where we used the Taylor expansion of the fermion field from the second to the third

line. Comparing the leading terms, we see that we recover the continuum transforma-

tion for the gauge fields.

The second requirement is a defining property of our lattice supercharge. If Ω(x)

is a gauge transformation, we simply have QΩ(x) = Ω(x)Q. Unfortunately this is

not enough, as we still have to prove, that this property is compatible with the actual

gauge transformations of the fields. Fortunately as all of them transform in the adjoint

representation, this is straight forward.

For the third requirement we have to calculate the continuum transformation of the

covariant derivative

Qα
Dµλ(x) =DµQ

α
λ(x) − i

[︁
Qα

Aµ(x), λ(x)
]︁
− i
[︁
Aµ(x),Qα

λ(x)
]︁

= − i

[︃
1

2
(Γµ)αβλ

β(x), λ(x)

]︃ (4.23)

We calculate the lattice analogue using (4.18)

Qα
Uab
µ,adj(x)λβb (x+ µ⃗) =Qα

Tr
[︁
σaUµ(x)σbU †

µ(x)
]︁
λβb (x+ µ⃗)

= tr
[︂
σaUµ(x)

a

2
(Γµ)αγλ

γ(x+ µ⃗)σbU †
µ(x)

+ σaUµ(x)σb
(︂
−a

2

)︂
(Γµ)αγλ

γ(x+ µ⃗)U †
µ(x)

]︂
λβb (x+ µ⃗)

= tr
[︂
σaUµ(x)

a

2
(Γµ)αγ

[︁
λγ(x+ µ⃗), σb

]︁
U †
µ(x)

]︂
λβb (x+ µ⃗)

=Uad
µ,adj(x)ifdcb

a

2
(Γµ)αγλ

γ,c(x+ µ⃗)λβ,b(x+ µ⃗)

(4.24)

This term is one possible choice to discretize the continuum result, showing that we

meet requirement three. A different choice for the lattice supersymmetry transforma-

tions would result into additional O(a2) terms appearing, showing that our transforma-

tions are optimized for this operator. The other advantage is that the transformations
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of the scalar fields and the fermion fields are straight forward as shown earlier.

Having defined the lattice supersymmetry transformations we have to analyze the

influence of the lattice regularization on the Ward identities. For this we recall the

continuum form

⟨QO⟩ = 0. (4.25)

To get the equivalent equation for the lattice we have to look at the derivation of this

equation. One starts with the expectation value of the operator

⟨O⟩ =

∫︂ ∏︂
i

DfiO[fi]e
−S[fi] (4.26)

where fi are the different fields involved. This expression must be invariant under all

supersymmetry transformations of the fields. We chose an infinitesimal supersymmetry

transformation which we can linearize as

fi → f̃ i = fi + ϵQ. (4.27)

Applying this transformation to the expectation value we find∫︂ ∏︂
i

DfiO[fi]e
−S[fi] →

∫︂ ∏︂
i

Df̃ iO[f̃ i]e
−S[f̃ i]

(4.28)

=

∫︂ ∏︂
i

DfiO[fi]e
−S[fi] + ϵ

∫︂ ∏︂
i

Dfi
[︁
JO +

(︁
QS[fi]

)︁
O + QO

]︁
e−S[fi] +O(ϵ2)

(4.29)

where J is the contribution from the Jacobian, resulting from the transformation of

the fields. Since this relation holds for arbitrary small transformations and therefore

arbitrary small values of ϵ, the term of the order ϵ must vanish identical if we have

a supersymmetric theory. In the continuum the measure and the action are invariant

under infinitesimal transformations, hence the contribution from the Jacobian and the

action are absent and we recover (4.25). On the lattice we will have a different action,

leading to a non-vanishing contribution from the action in the Ward identity. Therefore

the lattice Ward identity reads

⟨QO⟩ + ⟨OQS⟩ = 0. (4.30)

Note that the same line of reasoning can be used to derive Dyson-Schwinger equations.

Lastly we have to combine these new identities with the would-be supersymmetry

transformations. In our case we use the same operators for O as in section 2.6. In

general, we will recover the continuum Ward identities, which pick up extra terms,
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which we call lattice corrections. Most of those have to vanish in the continuum limit.

Again we will call these irrelevant, while we call all others relevant. Here we are

interested in the latter, since they will modify our results non-trivially.

We start the calculation of the transformation of the action with the kinetic term

of the scalar fields (3.33). Here we will only transform the forward difference operator

since we can interchange the transformed operator and the untransformed operator.

We get

Qα
(Uµ,adj(x)ϕi(x+ µ⃗) − ϕi(x))

= Uµ,adj(x)
[︂a

2
(Γµ)αγλ

γ(x+ µ⃗), ϕi(x+ µ⃗)
]︂

+
−→
Dµ

(︃
1

2
(γi+1)

α
γλ

γ(x)

)︃
(4.31)

which is one of the possible lattice formulations of the transformed continuum covariant

derivative. The potential term [ϕ1, ϕ2]
2 and the Yukawa terms λΓ1+i [ϕi, λ] transform as

the continuum counter parts. The next operator which is also present in the continuum

is F 2
µν . On the lattice it is associated with the plaquette variable trPµν . Applying the

transformation we find

Qα
trPµν = tr

{︂−→
Dµ

a

2
(Γν)

α
γλ

γ(x+ ν⃗)P−ν,µ(x+ ν⃗)

−
−→
D ν

a

2
(Γµ)αγλ

γ(x+ µ⃗)Pν,−µ(x+ µ⃗)
}︂
. (4.32)

To get the complete transformation of the Yang-Mills action, we have to evaluate the

expression tr (1 −ℜUµν). Therefore we have to redo the calculation for the adjoint of

the plaquette

Qα
trP †

µν = tr
{︂
−
−→
Dµ

a

2
(Γν)

α
γλ

γ(x+ ν⃗)Pµ,−ν(x+ ν⃗)

+
−→
D ν

a

2
(Γµ)αγλ

γ(x+ µ⃗)P−µ,ν(x+ µ⃗)
}︂
. (4.33)

Expanding the plaquette Pµν ≈ exp (ia2Fµν + O(a3)), we recover the right continuum

expression for the supersymmetry transformation of the Yang-Mills term. We proceed

to calculate the transformation of the kinetic term for the fermions

Qα

(︄
λ
β
(x)

(︃
−1

2

)︃∑︂
µ

{︃
(r − (Γµ)β

γ)Uµ,adj(x)λγ(x+ µ⃗)

+ (r + (Γµ)β
γ)U †

µ,adj(x− µ⃗)λγ(x− µ⃗)

}︃)︄
= (Γµν)

αβGµνDWλβ + O (a) .

(4.34)

where DW is the Wilson Dirac operator.
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The last terms to calculate are the mass terms

Qα
λ
β
(mf + dr)λβ = −(ΓMN)αβGMN(mf + dr)λβ (4.35)

Qα
m2

sϕ
2 = (Γi+1)

α
βλ

βm2
sϕ

i . (4.36)

Having derived all lattice transformations we proceed by expanding the link variables

Uµ(x) = eaAµ and applying the Taylor expansion f(x+ µ⃗) = f(x) + a∂µf(x) + · · · to

all fields. Finally we will only focus on the leading terms while representing all sub-

leading terms (contributions of order O(a)) with XS. We get the transformation of the

Lagrangian

Q
αLlat =

β

2

{︂
∂µsµ

α − 2mf (ΓMN)αβFMNλβ

}︂
+ 2m2

s (Γm+1)
α
βλ

βϕm +XS

=
β

2

{︁
∂µs

α
µ −mf χ

α
f

}︁
+m2

s χ
α
s +XS,

(4.37)

where all quantities are dimensionful, sµ is the supercurrent

sµ =F µν (DνΓµ −DµΓν)λ+ [ϕ1, ϕ2] ([Γ2λ, ϕ2] + [ϕ1,Γ3λ])

+Dµϕi (DµΓi+1λ+ [Γµλ, ϕi]) + FMNΓMN /Dλ+ FMNΓMNΓi+1

[︁
ϕi, λ

]︁ (4.38)

and χf and χs are the contributions coming from the fermion and the scalar mass term

respectively

χαf = 2 tr
(︁
ΓαβMNF

MNλβ
)︁

and χαs = 2 tr
(︁
Γαβm+1λβϕ

m
)︁
. (4.39)

The contribution of the supercurrent will vanish after the summation over all lattice

sites. This result is a tree-level result, since we did not incorporate quantum effects yet.

This is visible in the fact, that we would restore supersymmetry for m2
s = 0 in stark

contrast to our previous result. To avoid a thorough calculation of the quantum effects,

we use these previous results. At finite lattice size and lattice spacing a fermion mass

will be created, which we will incorporate. At one-loop a scalar mass will be created,

for which we have to correct for. Its appearance shows, that XS can contribute beyond

tree-level even if this term is original of order O(a). We get the final result

Q̄
αLlat =

β

2
∂µsµ

α + Θ +XS, (4.40)

where we introduce the abbreviation

Θ =
(︁
m2

s − (mc
s)

2)︁χs −
β

2
(mf −mc

f )χf. (4.41)

The term XS is complicated and could introduce various different quantum cor-
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4.4. Glueballs in two-dimensional pure Yang-Mills theory

rections into the Ward identities. Fortunately, our Ward identities are based on the

action. Here we know the relevant quantum correction already, which is just the scalar

mass term. More specific it must appear in the Ward identity W3 since it contains the

kinetic term for the scalar fields. Introducing another abbreviation

Υ =
i

8

(︁
Γ2 [ϕ1, λ] + Γ3 [ϕ2, λ]

)︁
, (4.42)

we get the final set of lattice Ward identities we will use

WB =βV −1⟨SB⟩ +m2
s⟨trϕ2⟩ + β⟨tr λ̄ΓMNFMN Θ⟩ → 9

2
,

W3 =
β

2
⟨trDµϕ

aDµϕa⟩ +m2
s⟨trϕ2⟩ + 2β

⟨︁
tr λ̄ΓµmDµϕm Θ

⟩︁
→ 3 ,

W2 =
β

4
⟨trFµνF µν⟩ + β⟨tr λ̄Υ

⟩︁
+ β⟨tr λ̄ΓµνFµνΘ⟩ → 3

2
,

W1 =
β

2
⟨tr [ϕ1, ϕ2]

2⟩ − β⟨tr λ̄Υ⟩ + β⟨tr λ̄Γmn [ϕm, ϕn] Θ⟩ → 0 .

(4.43)

The limit shows, that we ignored irrelevant operators which can also appear at

finite lattice size and lattice spacing. Hence our Ward identities will reach the correct

values in the continuum limit only.

4.4 Glueballs in two-dimensional pure Yang-Mills

theory

In this section we will anticipate the result of the correlation function for the glueball.

It shows no correlation for time distances larger than one. To understand this property

we will compare it to the glueball correlator of the two-dimensional pure Yang-Mills

theory. This theory can be solved analytically. Here we will focus on the analytical

results for Wilson loops presented in [142] and the analytical solution to the lattice

prescription by Migdal [143]. An introduction to the latter can be found in appendix B.

In the two-dimensional lattice pure Yang Mills theory, the only gauge invariant

objects are Wilson Loops

W =
1

N
tr

(︄
P
∏︂
i∈γ

U(xi)µi

)︄
(4.44)

where N is the dimension of the representation of the loop, P is the path ordering

operator and γ is a closed planar path on the lattice. The analogous object in the
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continuum is

W =
1

N
tr

⎛⎝P exp

⎡⎣ig

1∫︂
0

dsγ̇µ(s)Aµ(γ(s))

⎤⎦⎞⎠ . (4.45)

It was shown in [142], that Wilson loops obey an area law in the continuum

⟨W ⟩ = exp

(︃
−g

2C

2
A

)︃
(4.46)

where C is the Casimir constant

C1 = δabTaTb (4.47)

and A is the area enclosed by the loop. In appendix B, we recovered an analogous

result for the Wilson loops in the lattice theory

⟨W ⟩ = e−1.5A. (4.48)

Thus both theories agree as expected. Now we want to focus on the glueball correlation

function. Again we start with the continuum case. For this we choose the axial gauge

given in [142]

A0 (x1, x2) = 0 (4.49)

A1 (0, x2) = 0 (4.50)

which allows for a convenient transformation of the measure∏︂
x

dAµ(x)δ(A1 (x1, x2))δ(A2(0, x+ 2)) = K
∏︂
x

dF01(x). (4.51)

The variable K is a constant which will cancel when we calculate expectations values.

Due to this trivial Jacobian, we are able to calculate the glueball correlation function

analytically

⟨︁
F 2
01(x)F 2

01(0)
⟩︁

=
K

Z

∫︂ ∏︂
x′

dF01(x
′)F 2

01(x)F 2
01(0)e−

1
4
F 2
01 . (4.52)

Since we have no derivatives of F01 in the action, we have no interaction between the

different F01 living on different positions in spacetime. Therefore these fields decouple

and we find ⟨︁
F 2
01(x)F 2

01(0)
⟩︁

=
⟨︁
F 2
01(x)

⟩︁ ⟨︁
F 2
01(0)

⟩︁
(4.53)
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and subsequently

⟨︁
F 2
01(x)F 2

01(0)
⟩︁
c

=
⟨︁
F 2
01(x)F 2

01(0)
⟩︁
−
⟨︁
F 2
01(x)

⟩︁ ⟨︁
F 2
01(0)

⟩︁
= 0. (4.54)

In section 3.5 we showed that the connected correlation function is proportional to∑︁
n

cne
−mnt. Hence we find that mn must be infinite. As this value is the mass of

the state, the glueball must be infinitely heavy. This is supported by the fact that

a projection on a specific momentum will always yield the same correlation function

despite the energy-momentum relation, which would usually lead to a different mass.

The only possible solution which satisfies this property is to have an infinite heavy

particle. We interpret this result as a decoupling of the glueball from the theory.

Next we want to derive the same result for the lattice theory. For this we put two

non-intersecting plaquettes on the lattice at position x and 0. Following our result

from the appendix B, we find

⟨Up(x)Up(0)⟩ =

=

∞∑︁
n=1

{︂
(n+1)2

n
IV−2
n (β) I2n+1 (β) + n(n+2)

n+1
In (β) IV−2

n+1 (β) In+2 (β) + n2

n+1
I2n (β) IV−2

n+1 (β)
}︂

∞∑︁
n=1

IVn (β)
,

(4.55)

where In are the modified Bessel functions of the first kind and V is the lattice volume.

Next we to perform the infinite volume limit V → ∞

⟨Up(x)Up(0)⟩ →
(︃

2
I2 (β)

I1 (β)

)︃(︃
2
I2 (β)

I1 (β)

)︃
= ⟨Up(x)⟩ ⟨Up(0)⟩ , (4.56)

where we used our result for the Wilson loop (see appendix B)

⟨Up(x)⟩ →
(︃

2
I2 (β)

I1 (β)

)︃
. (4.57)

Since we have Up(x) → F01(x) in the continuum limit(V → ∞, β → ∞) we see that

we get the same result for the glueball correlator as in the continuum theory. For

intersecting or touching plaquettes this statement is not true anymore and we find

a non-zero result. The same analogous result can be found for any other possible

operators. As long as they do not touch or overlap, the result is always zero (for

details see appendix B).

Lastly we want to discuss the shape of the glueball correlation function on the

lattice. Here we focus on the projection onto zero momentum

C (t) =
∑︂
x,y

⟨Ogb(x, 0)Ogb(y, t)⟩ . (4.58)
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Figure 4.1: Correlation function (left) and effective mass (right) of the Glueball for the
two-dimensional Yang-Mills theory and different smearing levels S.

In the previous calculation we used the plaquette for the glueball interpolating operator

Ogb but other observables are possible. In case of a plaquette, we can define the support

of this operator. In time direction it has a diameter of one in lattice units. Hence two

plaquettes will not overlap or touch for t > 1. Taking into account the periodicity of

the lattice we must also take into account backwards correlation. If our lattice has size

LT in time direction, we expect also non-zero values for t > LT − 2. Therefore we get

the correlator

C (t) =

⎧⎪⎨⎪⎩
A for t = 0

B for t = 1, LT − 1

0 for 2 ≤ t ≤ LT − 2

, (4.59)

with two constants A and B, which we did not determined explicitly. Using an inter-

polating operator with a larger support in time direction will increase the number of

non-zero values. One way to construct these operators is through smearing. As ex-

plained in section 3.6, smearing reduces fluctuations by spreading the link variable on

the neighboring lattice patch. If we build our plaquette observable out of these smeared

links, the size of the support will increase. Hence the diameter in time direction will

also increase and we observe more correlation. Since this correlation is absent in the

continuum, it must be artificial.

Since an analytical calculation of these effects is tedious while a lattice calculation

is computationally cheap, we switch now to the latter to study the effects of smearing.

In the left panel of Figure 4.1 we show the correlation functions for different smearing

levels, introduced in section 3.6. We observe that the distance in time for which the

correlation is non-zero increases for higher smearing levels. Since a higher smearing

level corresponds to a higher diameter of the support of the interpolating operator,

this effect is as expected. From the correlation function we can extract the so called

60



4.4. Glueballs in two-dimensional pure Yang-Mills theory

effective mass meff

meff (t) = ln

(︃
C(t+ 1)

C(t)

)︃
. (4.60)

For t → ∞ this value will correspond to the ground state mass, forming a plateau.

If we find another plateau as a function of t, its value signals the mass of an excited

state. Therefore the effective mass can be used to extract the masses of states from a

correlation function. In our case we know that we should find no plateau as we have

no finite mass for this correlator. In the right panel of Figure 4.1 we plot the effective

mass of the glueball correlator for the two-dimensional pure Yang-Mills theory. While

we observe no plateau, we find a monotonic rising function before it drops to zero. The

zero values comes from statistical fluctuations. Since this is a lattice calculation, our

correlator will never reach zero. Instead in the region where it should be zero, it is

dominated by statistical fluctuations. Thus the value of the correlator is approximately

constant and we find an effective mass of value zero. Another property of the effective

mass of the glueball correlator is that it decreases with the smearing level for fixed

value of t.

With this we want to conclude this section about the pure Yang-Mills theory. Again

we want to emphasize that while this chapter seems to be out of place here, it will be

crucial later to understand our results of the glueball correlator in the N = (2, 2) SYM

theory.
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Chapter 5

Simulation Parameters

In this chapter we will discuss the five simulation parameters Nt, Ns, β,m
2
s and mf.

The first three form a set which is connected to the physical volume of our simulation.

Explicitly the product NtNs is the lattice volume while β is linked to the lattice spacing

a (see section 5.1). The size of the physical volume will determine the emergence of

finite volume lattice artifacts, as we know from simulations of QCD. Along with the

finite lattice spacing artifacts, they will spoil our results because they will be absent

in the continuum limit. This limit, also called target theory, will be the N = (2, 2)

SYM theory in two dimensions for our simulations. To ensure the correct convergence,

we have to be careful. First we must extrapolate to the infinite volume limit and

only afterwards extrapolate to zero lattice spacing. Further one has to ensure that

we always fine-tune the second set of parameters, namely the scalar mass m2
s and the

fermion mass mf. In section 4.1, we showed their emergence for our lattice setup. Here

we will discuss their influence on the lattice simulation further. Note that starting

in this chapter we will make use of the hopping parameter κ = 1/ (2mf + 4), which

is proportional to the interaction part of the Wilson Dirac operator. Thus it is the

commonly used parameter for lattice calculations. Yet several of our results can be

explained better using the fermion mass mf. Therefore we will use both of them in the

following chapters.

This chapter is organized as follows. We start with the discussion of the β depen-

dency of our lattice simulation, especially the relation between the lattice spacing a and

the inverse gauge coupling β. Afterwards we discuss the infinite volume limit of our

theory in case of the mesons and the Ward identities. The next section is a discussion

of the scalar mass. While we know the continuum result from section 4.2, we try to

derive this result within our lattice simulation. Then we shift our focus on the discus-

sion of the critical fermion mass. Since we find a spontaneous symmetry breaking in

four dimensions, we could observe a non-trivial behavior in the dimensionally reduced

theory. Finally we discuss our lattice setup, where we take into account our results to

motivate the used values of Nt, Ns, β,m
2
s and mf. We will show these in an overview.
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5.1. β dependency

5.1 β dependency

The inverse coupling constant β is the parameter which can determine the phase of

the lattice theory as well as the lattice spacing. We start with the influence on the

phase. For β → 0 we get g → ∞ in most lattice theories, therefore it is called

the strong coupling limit. This limit allows for an expansion, which is accordingly

called strong coupling expansion and is analogous to the high temperature expansion

in statistical mechanics [91]. Usually one avoids simulations in this phase of the lattice

theory, as generally the results can not be extrapolated to the targeted continuum

theory. In practice, this is done by choosing values of β which are larger than a theory

dependent value. Its size can be estimated by theoretical arguments or by explicit

lattice simulations. Unfortunately for our theory this value was not known, as the only

comparable simulation was done in the quenched approximation with reweighting [52].

Thus we assumed that it is of the same size as in the four-dimensional mother theory

and used β = 2.5, 3, 4. These values of the inverse gauge coupling are close to the ones

used in [34], when we take the different conventions into consideration.
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1.2
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(mc
s)

2

β

theoretical value

Figure 5.1: Critical scalar mass (mc
s)

2 derived from Ward identity W1 (5.5), by requiring
W1

(︁
m2

s = (mc
s)

2 ,mf

)︁
= 0.

Our simulation reveals, that our assumption is wrong and we have to go to even

higher values of the inverse gauge coupling β, to guarantee the continuum limit to

our target theory, N = (2, 2) SYM. For this result, we focus on the Ward identity

W1 (5.5). It allows to define the critical scalar mass (mc
s)

2 as W1

(︁
m2

s = (mc
s)

2 ,mf

)︁
= 0.

In section 5.3, we will show that the critical fermion mass is independent on m2
s and

therefore independent on (mc
s)

2, which allows for two separate fine-tunings of the mass

parameters. Further it allows us to discuss only the dependency of W1 on m2
s in the

sense that W1 (m2
s ) = W1 (m2

s ,mf = mc
f ). Simulating in the range β ∈ [2, 17] and the

fermion mass close to its critical value, we found a dependence of (mc
s)

2 on the inverse

gauge coupling β, which is depicted in Figure 5.1. We find that the critical scalar mass
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5. Simulation Parameters

is a monotonically increasing function, with the exception of β = 7. Interestingly,

the slope of this function seems to decrease for β ∈ [8, 10] while it increases for β >

10. Thus we find no converging behavior for this value towards the theoretical value

of (mc
s)

2 = 0.65948225. In fact our values become significantly larger for β > 10.

As we will show in the following paragraph, the inverse gauge coupling is inversely

proportional to the lattice spacing. Thus the observed zero crossing for W1 (m2
s ) in the

region m2
s ≤ 1 might be a hint, that we are in the wrong phase of the lattice theory.

Thous we discard the region β < 14 and use the values β = 14, 15.5, 17. We can also

draw a second conclusion, namely we can not use W1 to determine the critical scalar

mass. This statement also holds for all other Ward identities considered in this work,

even when we take into account their lattice corrections (in section 5.3 we will show this

explicitly). Hence we were forced to use a different approach. Instead of a fine-tuning

via a lattice observable, we set the scalar mass term to m2
s = 0.6594823.
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Figure 5.2: Left: Static quark potential and fit to (5.2) for β = 17.0 and κ = 0.26655.
Right: Lattice spacing a for β = 14.0, 15.5 and 17.0 as function of mf on a 64 × 32
lattice.

Now we will discuss another property of the inverse gauge coupling, its relation

to the lattice spacing. This allows to set the physical lattice spacing of our lattice

theory, as for example discussed in QCD [90]. In two dimensions this relation becomes

more evident because the coupling constant is dimensionful. Thus we end up with the

relation

β =
1

a2g2
. (5.1)

While this equation seems to imply the inverse proportionality a (β) ∝ β− 1
2 , the

actual relation could be more involved. This depends on the functional dependency of

g(β). Hence we have to investigate this relation explicitly. We do this by using a well

defined but arbitrary method to measure the lattice spacing. We make use of the static

quark-antiquark potential in the fundamental representation of SU(2), introduced for
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example in [90]. We show an example on the left hand side of Figure 5.2. Further to

compare our results to the usual lattice QCD data, we employ the Sommer scale [144].

In Table 5.1, we give the results for the three different values of the inverse gauge

coupling, which we visualize on the right hand side of Figure 5.2. We find that the

lattice spacing is dependent on the fermion mass. Thus we use a linear extrapolation

to the chiral limit mf = mc
f . Using this result, we compared it with (5.1), which is

depicted in the last column of Table 5.1. Even without errors, we find an excellent

agreement between all values, showing that g (β) = const. for all β in consideration.

This leads to the conclusion, that we find the limit a→ 0 for β → ∞.

β = 14.0 β = 15.5

κ− κc a[fm] βa2[fm] κ− κc a[fm] βa2[fm]
−0.00440 0.07993(4) 0.08944(9) −0.00400 0.07646(4) 0.09062(9)
−0.00294 0.07989(4) 0.08935(9) −0.00256 0.07612(4) 0.08981(9)
−0.00257 0.07993(4) 0.08944(9) −0.00220 0.07613(4) 0.08983(9)
−0.00220 0.07959(5) 0.08838(11) −0.00183 0.07560(5) 0.08859(12)
−0.00183 0.07958(4) 0.08833(9) −0.00167 0.07563(4) 0.08866(9)
−0.00146 0.07938(5) 0.08822(11) −0.00110 0.07564(4) 0.08868(9)

0 0.07926(322) 0.08795(51) 0 0.07524(310) 0.08774(47)

β = 17.0

κ− κc a[fm] βa2[fm] κ− κc a[fm] βa2[fm]
−0.00354 0.07311(4) 0.09087(10) −0.00168 0.07263(4) 0.08968(10)
−0.00230 0.07281(4) 0.09012(10) −0.00138 0.07237(4) 0.08904(10)
−0.00200 0.07290(4) 0.09034(10) −0.00106 0.07243(4) 0.08918(10)

0 0.07212(266) 0.08842(38)

Table 5.1: Lattice spacing for different combinations of β and κ. In the last rows of
each β section we give the extrapolations to the chiral limit.

Lastly we have to draw attention to the static quark-antiquark potential

V (r) = A+ σr , (5.2)

in the fundamental representation of SU(2), shown on the left panel of Figure 5.2. In

two dimensions, the Lüscher term is absent, while the Coulomb term is a linear function.

Thus we are left with the string tension σ, while a 1/r term must be absent. Further

it was argued in [145] that the potential is absent in the first place for exactly massless

fermions. The reason is that a cloud of massless gluinos can screen both charges.

Introducing a small mass for the fermions, this effect will vanish and we observe a

confining behavior (linear rising potential). Thus it will be difficult to observe this

behavior. Nonetheless we tried to investigate this behaviour by simulating for different
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fermion masses mf ∈ [−0.1640, 0.0]. In all cases we found a linear rising potential, for

which the string tension reduces approximately 10% towards the chiral limit. Thus

we do not observe the screening behaviour, expected from the theoretical results. The

reason could be that we need either exactly massless fermions which is not possible on

the lattice or that we have a compact formulation of gauge theories. In the latter case,

certain states of the Hilbert space are absent, hence screening is not possible any more.

As our main goal of this section was to confirm that we reach the continuum limit for

β → ∞, we did not investigate the static quark-antiquark potential any further. Still

it is an interesting observation which warrants further analysis.

5.2 Volume dependency

In a lattice simulation, we can only simulate a finite volume. Thus, according to

the Fourier transformation, the lattice can only accommodate a minimal momentum

pmin ∼ 1
Lmax

, where Lmax is the longest extension in any of the spacetime directions.

Considering the energy-momentum relation, this is also the lowest energy, a state can

have on the lattice. We will call this threshold the lattice cut-off. Any state with a

lower energy will not be represented faithfully leading to large lattice artifacts. The

physical interpretation is that the de Broglie wavelength of the particle is too large to fit

on the lattice. In our case this cut-off is important because we expect a massless state.

This state was predicted by theoretical arguments [82, 83] and measured in numerical

calculations based on a discretized light cone quantization [84, 85]. Fortunately, as we

show later, the energy of this state is dependent on the fermion mass mf. Therefore by

choosing an appropriate fermion mass, we have only states whose energy is above the

lattice cut-off. This guarantees a result with smaller lattice artefacts, which we will

extrapolate to the continuum limit.

Not only do massless states pick up lattice artefacts in a finite volume but also

all other states. In general this will lead to a volume dependent mass. In [146, 147]

Lüscher and Münster calculated these artefacts for general theories. They found the

scaling

mL = m− c

L
exp

(︃
− L

L0

)︃
, (5.3)

where mL is the mass we measure for the finite volume and m is the mass in the

infinite volume limit. The longest extension of the lattice is L, which can be replaced

by either Lt or Ls if we fix the ratio of both. For us c represents a fit variable and L0 is

the lattice extension for which we expect suppressed finite volume lattice effects. We

can eliminate this parameter by relating it to the infinite volume mass of the lightest

particle with L0 = π/mη. Calculating the mass of our mesons for different lattice sizes,

we were able to use (5.3) as a fit function and determine the infinite volume mass. We
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ignored all lattice masses which were much smaller than the lattice cut-off for these

fits. In our case the extension in the time direction is the largest, therefore we end up

with the requirement mL ≳ π/Lt. In figure 5.3 we show the results for β = 14 and four

different fermion masses.
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Figure 5.3: Infinite volume extrapolation for the mass of the η-meson at β = 14 and
different values of the hopping parameter κ compared to the smallest lattice momentum
π/Lt. The horizontal lines indicate the infinite volume mass m.

Focusing first on the value κ = 0.27159, we find an infinite volume mass of

m = 0.0648(14). In accordance with our previous discussion, this mass is too light for

the smallest lattice with Lt = 16. This leads to an increased lattice mass which is

larger than the infinite volume limit. Closer to the lattice cut-off (LT ≥ 32) we see

a monotonically increasing lattice mass. The same behavior is seen for κ = 0.26940

and κ = 0.27086. For κ = 0.27233, the lattice mass is monotonically decreasing. In

this last case the infinite volume mass of 0.0365(14) is much smaller than the lattice

cut-off π/LT for all lattices. Still, the fit function (5.3) works well even in this case,

yielding a reliable result for the infinite volume mass. Furthermore we notice, that

the lattice masses for our largest lattice with Lt = 64 agree very well with the infinite

volume results. Therefore we conclude that finite volume effects can be neglected for

this meson for Lt ≳ 64. The same results holds true for all other mesons. Thus we will

restrict ourselves to a lattice size of 64 × 32 for the spectroscopy.

Having estimated the finite volume effects for the meson masses, we want to do

the same for the Ward identities. In Figure 5.4 we show the dependence of the Ward

identities on the fermion mass for different lattice volumes. While our results for W2

shows no dependence on the lattice volumes, we see some small deviations for W1.

We can ignore these as we are only interested in the value for the critical fermion

mass, where all three results agree. For the two other Ward identities we see the

same behavior. Thus we conclude, that finite volume effects are absent for our Ward

identities.
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5.3 Scalar Mass dependency
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mf for β = 14

In this section we will discuss the dependence of the lattice observables on the scalar

mass m2
s . Especially we will establish, that the simulation is seemingly independent on

m2
s for values close to the continuum result for the critical scalar mass. As mentioned

already in section 5.1, the critical fermion mass, determined by the peak of the chiral

susceptibility, is independent on the value of the scalar mass for m2
s ≤ 1. This is shown

in Figure 5.5, where we plot the chiral susceptibility as a function of mf and m2
s for

β = 14. We see that while the height of the peak depends on m2
s , the position of peak

does not for all m2
s ≤ 1. Thus the critical fermion is independent on the scalar mass

in our simulation. While we did not redo the whole parameter scan for larger β and

larger scalar masses, we simulated on several different lines through this parameter

space. All of those confirmed this property. This leads us to the conclusion that the

critical fermion mass is independent on m2
s in our simulation. Thus the fine-tuning of
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5.3. Scalar Mass dependency

both parameters can be done individually which reduces the computational cost of the

simulation tremendously.

Next we want to further investigate the failure to determine the critical scalar

mass in our lattice simulations. As derived in section 4.3, we have the lattice Ward

identities (4.43) where we ignored lattice contributions which vanish in the continuum

limit. Since we have seen, that even for small lattices the Ward identities do not suffer

from finite volume effects, the lattice artifacts must stem from the finite lattice spacing.

For large enough β, these should be suppressed sufficiently and we should be able to only

observe the relevant lattice corrections coming from the term Θ in (4.43). This would

allow us to define a critical scalar mass and a critical fermion mass. The latter would

be another possible option to determine a critical fermion mass, which is independent

on the chiral susceptibility. Unfortunately this method fails in our simulations because

either the irrelevant lattice artifacts are still sizeable or the statistical errors are too

high. We show this failure explicitly for the Ward identity W2.

Here we will focus ourselves on the determination of the critical scalar mass, since

we determined the critical fermion mass already. For this we split W2 of (4.43) into

the three parts

W b
2 = β

⟨︁1

4
trFµνF

µν + tr λ̄Υ
⟩︁
, Cs = ⟨tr λ̄ΓµνFµνχs⟩, Cf = β⟨tr λ̄ΓµνFµνχf⟩ ,

W2 = W b
2 +

(︁
m2

s − (mc
s)

2)︁ Cs + (mf −mc
f ) Cf .

(5.4)

Now we simulate our theory for a set of values m2
s near the one-loop value 0.65948225

and fixed fermion mass mf. For these simulations we measure W b
2 , Cs and Cf. Note

that the values (mc
s)

2 and mc
f are trial masses, which enter only after the simulation,

while m2
s and mf are the masses we use to generate the gauge configurations. Since the

lattice Ward identities should be satisfied for all m2
s and mf close to their critical value,

we should find values for (mc
s)

2 and mc
f , which satisfies W2 ≈ 3/2 for all aforementioned

simulations. Of course the result for (mc
s)

2 could deviate from the one-loop result due

to lattice artifacts. Still in the continuum limit, both values have to agree.

In Figure 5.6 we show the results for W b
2 and Cs for different scalar masses. Both

do not depend on this value, which is also true for Cf. These results make it impossible

to apply the method described above, because no values of (mc
s)

2 and mc
f will meet the

requirement of W2 ≈ 3/2 for all values of m2
s . We observed the same behavior for all

other Ward identities which we considered in this work.

Still we can use this result for some useful conclusions. First, the magnitude of the

corrections coming from the Θ term will be several magnitudes smaller than the value

of the Ward identity, close to the critical masses. Therefore we can neglect them in

our simulation if we extrapolate to the chiral limit. This leads to our final set of Ward
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Figure 5.6: Scalar mass dependency of the terms W b
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and close to the critical fermion mass.

identities

WB =βV −1⟨SB⟩ +m2
s⟨trϕ2⟩ → 9

2
, W3 =

β

2
⟨trDµϕ

aDµϕa⟩ +m2
s⟨trϕ2⟩ → 3 ,

W2 =
β

4
⟨trFµνF µν⟩ + β⟨tr λ̄Υ

⟩︁
→ 3

2
, W1 =

β

2
⟨tr [ϕ1, ϕ2]

2⟩ − β⟨tr λ̄Υ⟩ → 0 .

(5.5)

Second, the Ward identity is nearly independent of m2
s close to the critical scalar

mass. Therefore we use the one-loop result m2
s = 0.6594823 in our simulations, as this

guarantees the right continuum limit. This will reduce the computation cost as we

have one mass value less to fine-tune to a critical value. Then again, using the correct

critical scalar mass for the given lattice setup could reduce lattice artifacts, bringing

us closer to the continuum limit. Unfortunately we found no observable to determine

this critical scalar mass.

5.4 Fermion Mass dependency

As stated in section 4.1, the fermion mass is not a relevant operator. Therefore even

without fine-tuning the fermion mass mf, we will reach the correct target theory. Still,

in the four-dimensional mother theory, the chiral symmetry and the supersymmetry

are connected in such a way, that we can only restore both or none [23]. This lead us to

assume, that the fermion mass fine-tuning will improve our lattice results tremendously,

leading to results closer to the continuum limit. As shown in the previous section, the

critical fermion mass is independent on the scalar mass m2
s . Therefore we can ignore

the latter it in this section.

By changing the fermion mass term, we influence the chiral symmetry of the system.

This could lead to several different properties. We will focus on two of them. The first

is spontaneous symmetry breaking, which occurs in the four-dimensional N = 1 SYM

70



5.4. Fermion Mass dependency

theory but is forbidden in two dimensions [148–150]. Thus it serves as an additional

test for the lattice formulation. Second one could encounter a phase transition at the

critical fermion mass. In this case one has to determine which of these phases lead

to the correct continuum limit. Thus the chiral limit of the theory would become

non-trivial.
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Figure 5.7: Chiral Condensate histogram for four different fermion masses and β = 17

If chiral symmetry is spontaneously broken, there would be at least two physically

equivalent vacuum states, which are related via chiral transformations. They can be

discerned by a different value of the chiral condensate. For a finite volume, we can

have tunnel events, which lead from one vacuum to the other. Therefore our vacuum

state is only meta-stable. In the infinite volume limit, the probability for the tunnel

effects vanishes and we recover a stable vacuum state. On the lattice we can observe

this behavior only close to the critical fermion mass. The reason is, that if we break

chiral symmetry explicitly via the fermion mass, one vacuum is energetically preferred

over the other. Close to the critical fermion mass, this energetic difference between the

vacua is low increasing the probability of the tunnel effects. If this probability becomes

large enough, we can observe the tunnelling effects from one vacuum into the other.

Since we do not know their probability, the absence of them in a lattice simulation is

no final proof for the absence of spontaneous symmetry breaking. In our work, we try

to observe this behavior with the histogram of the chiral condensate. If the tunnelling

effect from one vacuum into the other would be observable, we should see a double

peak structure. Clearly in Figure 5.7 we do not observe a double peak structure. Even

for m = −0.147 which is very close to mc
f = −0.1488(4). Therefore we conclude that
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we do not observe any sign of spontaneous symmetry breaking in our simulation, as

expected.
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Figure 5.8: Left: χch for four different lattice sizes for β = 17. Right: χch for five
different β and lattice size 64 × 32.

A phase transition can not be observed in a finite volume because it does not allow

for nonanalyticities in the partition sum. Still we can do a scaling analysis. Using

general arguments we find for the chiral susceptibility χch ∝ V e, where e is a specific

exponent depending on the phase transition and V is the physical volume [151, 152].

To relate this equation to the lattice quantities, we use V = a2Ṽ and a2 ∝ β−1, where

we introduced the lattice volume Ṽ . Thus we find χch ∝ Ṽ
e

and χch ∝ β−e. To

determine e, we measure the chiral susceptibility for different values of the lattice size

and inverse gauge coupling β. In the left panel of Figure 5.8 we show the dependency

on the lattice size. We find that the peak of the chiral susceptibility is proportional to

Ṽ
1
2 , which is further emphasized in Table 5.2. In the right panel of Figure 5.8 we show

the dependency of the chiral susceptibility on the value of the inverse gauge coupling.

We see a decrease of the peak of the chiral susceptibility with increasing β for β ≤ 15.5.

Again the data presented in Table 5.2 agree with e = 1/2. Note that the errors in the

table should be underestimated. The reason is that our data show no clear peak around

the critical fermion mass. Instead we find a plateau within the statistical errors. Thus

we take the mean value of all possible peak values and give the standard deviation from

those. Still as we found agreement between the different lattice volumes and values of

the inverse gauge coupling β we think the determination e ≈ 1/2 should be reliable.

Thus our chiral susceptibility grows with the volume and we have a second order phase

transition. This is in agreement with the histogram of the chiral condensate, where we

see a typical behavior of the first derivative of the partition sum. Therefore in the limit

mf → mc
f , the correlation length of fluctuations will increase and long-range interaction

become dominant. Hence the actual microscopic interactions are unimportant as long

as we meet certain criteria, the most important are symmetries. This means that close
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to the critical point mc
f the error from the discretization of the continuum action will

be suppressed and we get closer to the continuum.

β χch χchβ
1
2 Ṽ χch χchṼ

− 1
2

14.0 60(1) 224(4) 16 × 8 15.2(2) 1.34(2)
15.5 63(2) 248(8) 32 × 16 32.3(1) 1.43(1)
17.0 58(1) 239(4) 48 × 24 45.7(7) 1.35(2)
18.5 59(1) 254(4) 64 × 32 57.5(8) 1.27(2)
20.0 55(1) 246(4)

Table 5.2: Measurement of chiral susceptibility for different inverse gauge couplings β
but fixed lattice volume Ṽ (left) and for fixed β and different lattice volumes (right).

5.5 Conclusion

In this chapter, we analyzed the five relevant simulation parameters Nt, Ns, β,m
2
s and

mf. The result is the final parameter sets, to generate our configuration. These will

be used to calculate our lattice results. The first case are the parameter scans we have

for example already shown in section 5.3. Since we use them to analyse the Ward

identities, the chiral condensate, the chiral susceptibility and the pion mass, only a

small amount of configurations was necessary, usually 200 to 1000. The lattice size was

64× 32 for all but the cases of β = 40, 60, 80, 100. Here we used smaller lattices of size

32× 16. The reason is, that we only calculated values which are not dependent on the

lattice size for those β values. Furthermore we have to calculate the other mesons, the

gluino-glue/scalarball states, the glueball, the scalarball and the glue-scalarball. All

of them seemingly suffer from a bad signal to noise ration. This is the result of large

fluctuations, induced by the scalar fields. Hence we need large statistic to resolve the

ground state of those states. In Table 5.3 we give the used configurations. They were

all simulated on a lattice size of 64 × 32. The mass mf was chosen such that mf > mc
f .

The reason is that we find no sign problem in this region, as we will show in section 6.2.
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β mf m2
s # C

14.0 -0.1440 0.6594823 10000
14.0 -0.1550 0.6594823 10000
14.0 -0.1565 0.6594823 10000
14.0 -0.1590 0.6594823 10000
14.0 -0.1615 0.6594823 10000
14.0 -0.1640 0.6594823 10000
15.5 -0.1320 0.6594823 10000
15.5 -0.1420 0.6594823 10000
15.5 -0.1445 0.6594823 10000

β mf m2
s # C

15.5 -0.1470 0.6594823 10000
15.5 -0.1495 0.6594823 10000
15.5 -0.1520 0.6594823 10000
17.0 -0.1242 0.6594823 10000
17.0 -0.1329 0.6594823 10000
17.0 -0.1350 0.6594823 10000
17.0 -0.1372 0.6594823 10000
17.0 -0.1393 0.6594823 10000
17.0 -0.1415 0.6594823 10000

Table 5.3: Number of Configurations (# C) for the given parameters β, mf and ms on
a 64 × 32 lattice.
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Chapter 6

Results

After having thoroughly analyzed our lattice setup, we proceed to present our main

results of this work. We start with two potential problems of the lattice theory, the so

called flat directions and the sign problem. As we will show, both are absent in our

lattice formulation. Next we look at the continuum limit of the critical fermion mass.

From theoretical argument, we know that it should vanish, hence it represents a further

check for our lattice formulation. Afterwards we extrapolate the Ward identities to the

continuum limit. They allow us to observe the restoration of supersymmetry. Finally

we analyze the mass spectrum of the theory.

6.1 Flat directions
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Figure 6.1: Spatial average of squared scalar field as function of Monte-Carlo time for
β = 14, κ = 0.27233, m2

s = 0.6594826 (left) and its expectation as function of m2
s

(right) on a 16 × 16 lattice.

The potential for the scalar fields

V [ϕ1, ϕ2] = [ϕ1, ϕ2]
2 (6.1)
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has so called flat directions. These flat directions are trajectories in field space which

do not change the value of V [ϕ1, ϕ2]. One example is the shift

ϕ1 → ϕ1 + αϕ2 ϕ2 → ϕ2 , (6.2)

where α is an arbitrary real parameter. Flat directions are a generic feature for SYM-

theories with extended supersymmetry. Since they allow scalar fields to grow expo-

nentially, they may destabilize Monte-Carlo simulations. One encounters two different

scenarios in lattice calculations. The first is, that quantum effects lift the flat directions

dynamically. In this case the problem is not present in the lattice calculation. The

second scenario is, that the flat directions are preserved in the lattice theory, which

usually spoils the simulation. To solve this problem one can add a mass to the scalar

field, lifting the flat directions explicitly. In our lattice formulation, we have to add

a scalar mass term anyway (even for a → 0), to reach the correct continuum limit.

Moreover we did not observe the flat directions for a vanishing scalar mass term and

small values of the inverse gauge coupling [65]. This is also visible on the right hand

side of Figure 6.1, where we observe a finite value of the expectation value of the spa-

tial average ϕ2 = 1/V
∑︁
ϕ2
x for all m2

s considered, including m2
s = 0. On the left hand

side of Figure 6.1 we show the same value as a function of the Monte-Carlo time for

β = 14, κ = 0.27233 on a 64 × 32 lattice. For all set of parameters considered in this

work, the value of ϕ2 never grew to very large values. Hence we conclude, that the

flat directions are lifted in our simulation, especially for the m2
s close to the continuum

value. Therefore the flat directions will not cause problems in our lattice simulations.

6.2 Sign problem

As outlined in section 3.4.2, the sign of the Pfaffian has to be real but could be negative,

giving us a possible sign problem in the theory. To measure this sign problem we use the

spectral flow method introduced in [28, 30]. The method is based on the idea, that the

Pfaffian Pf(CD(κ)) is a smooth function of the hopping parameter κ = 1/ (2mf + 4).

From the definition of the Pfaffian we have the equation

Pf(M)2 = det(M) (6.3)

where M is a general matrix. In our case M is the Matrix CD, which has double

degenerate real eigenvalues λi (see section 3.4.2)

det (CD) = det (D) =

Ω(D)
2∏︂
i

λ2i (6.4)
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where Ω is the amount of eigenvalues of D. Combining both we get

|Pf(CD)| =

Ω(D)
2∏︂
i

|λi| . (6.5)

Further we look at the actual computation of the Pfaffian. The result will be a poly-

nomial of κ, showing that the Pfaffian is a smooth function of κ. This is compat-

ible with (6.5) only if any sign change in any eigenvalue as a function of κ induces

a sign change in the Pfaffian. For κ = 0 we have det (CD) = det (C) = 1 and

Pf(CD) = Pf(C) = 1 showing that the Pfaffian in our theory must be the product

Pf(CD) =

Ω(D)
2∏︂
i

λi. (6.6)

This also allows us to determine the sign of the Pfaffian. First we introduce the new

quantity κspec which we use to define a new Pfaffian ˜︁Pfspec = ˜︁Pfspec (CD [U, ϕ, κspec]),

where U are the link variables and ϕ the scalar fields of the simulation. For a fixed

gauge configuration (fixed value of β and κ), characterized by fixed U and ϕ, we

can calculate the eigenvalues λi (κspec) of CD [U, ϕ, κspec] for different values of κspec.

From the previous discussion we know that ˜︁Pfspec(CD[κspec]) = 1 for κspec = 0 and˜︁Pfspec(CD[κspec]) = Pf (CD) for κspec = κ. Therefore by monitoring the flow of the

eigenvalues between these two values, we can determine the sign of the Pfaffian, used

in the simulation. The sign is only negative, if an odd number of eigenvalues λi (κspec)

change their sign during this flow.
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Figure 6.2: Left: Spectral flow of 8 eigenvalues with smallest absolute values for
β = 15.5, κ = 0.27020 on a 64 × 32 lattice. Right: Smallest eigenvalues for three
different values of the spectral flow parameter κspec: 0.25379 (blue triangles), 0.26174
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On the left hand side of Figure 6.2, we show the eight eigenvalues with the smallest

absolute value for β = 17 and κ = 0.27020 as a function of κspec. We see that the

positive eigenvalues decrease monotonously, while the negative eigenvalues increase

monotonously. Still neither of them crosses zero, thus the Pfaffian of this gauge config-

uration must be positive. On the right hand site of Figure 6.2, we show the eigenvalues

with the smallest absolute value for three different values of κspec = κ, 0.25379, 0.26174

for 1000 gauge configurations. We see that for κspec → κ the absolute value of the

eigenvalues decreases but they are still large enough to not cross the zero value for all

gauge configurations. We checked this by looking explicitly at the spectral flow for all

1000 gauge configurations. This leads to the conclusion, that the Pfaffian is always

positive for this parameter set. We repeated this analysis for different volumes, inverse

gauge couplings and hopping parameters. For κ < κc we always found a positive sign

of the Pfaffian, while for κ > κc we observed approximately one negative sign per thou-

sand configurations. Therefore we conclude, that our simulations do not suffer from a

sign problem. In the continuum limit this property should be conserved, because the

continuum theory has no inherent sign problem [48].

6.3 Continuum limit of the critical fermion mass

In section 4.1 we explained, that the fermion mass term is not a relevant parameter.

Consequently we can decide to not fine-tune the quantity and end up in the right

continuum value. This is possible, because all non relevant operators will vanish in the

continuum limit. Since we still do a fine-tuning of the fermion mass, we should observe

mc
f → 0 in the continuum limit. To verify this theoretical result, we introduce a second

possibility to determine the critical fermion mass. In section 5.4 we used the peak of

the chiral susceptibility to determine the critical fermion mass. While this is a reliable

method, it has some small flaws. First, a determination of the position of the peak

and its error is quite challenging, as explained in chapter 5.4. The second is, that the

peak is in the region of the fermion mass, where we expect massless mesons states in

the theory (see section 6.5.1). Still we can measure those mesons masses, which turn

out to be non-zero. Thus we have states in this region which can not be represented

faithfully in the lattice theory. Hence there must be lattice artifacts which lead to this

effect. While these artifacts could have no influence on the chiral susceptibility, we can

not exclude it. Therefore we are interested in another independent method.

Fortunately for the four-dimensional theory there is another method, which makes

use of the mass of the pion [31, 36, 153]. As in four dimensions, the pion is not a physical

particle because we have only one flavor. Still we can define its correlation function

in a partially quenched setup. Here we view our lattice theory as if a second fermion

flavor is quenched, which means its fermion determinant in the partition function is
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set to unity. In this case, the correlation function for the pion will be the connected

part of the correlation function of the η-meson

Cπ(x, y) =
⟨︁
− tr

(︁
D−1 (x, y) Γ5D

−1 (y, x) Γ5

)︁⟩︁
. (6.7)

The mass, which we can extract from this correlation function, is related to the renor-

malized gluino mass by

mq ∝ m2
π . (6.8)

While all arguments to derive this result were made in the four-dimensional N = 1 SYM

theory, we expect it will also hold in two dimensions. Thus we have a second method to

determine the critical fermion mass independent from the chiral susceptibility. Note,

that this method to derive the critical fermion mass has also flaws. For example it is not

clear, for which fermion masses the relation (6.8) holds. We explicitly see this problem

in our results, where we find that the pion mass is proportional to the renormalized

gluino mass. Thus the relation (6.8) holds only for values very close to the critical

fermion mass.

β 14.0 15.5 17.0 40

mc
f (χs) −0.1738(8) −0.1595(7) −0.1488(4) −0.0757(4)

mc
f (π) −0.1730(11) −0.1615(6) −0.1511(7) −0.0756(7)

β 60 80 100

mc
f (χs) −0.0553(3) −0.0448(3) −0.0380(5)

mc
f (π) −0.0542(4) −0.0433(26) −0.0365(6)

Table 6.1: Critical fermion mass mc
f for different β. To determine the mass we use the

chiral susceptibility and the mass of the pion ground state.

The results of both methods are given in Table 6.1. We find comparable values of the

critical fermion mass for all values of the inverse gauge coupling β. Since these results

do not dependent on the lattice size, the continuum limit of the critical fermion mass

is reached for β → ∞. This also allowed us to include results for β = 40, 60, 80, 100 on

smaller lattices. Further we find that the fermion mass approaches zero from below in

the continuum limit, as expected. In section 5.1 we have shown
√
β ∝ a−1. With this

relation in mind we try to find a continuum extrapolation with the ansatz

mc
f (β) = m∞ + c1β

−e1 + c2β
−e2 . (6.9)

The coefficients ci encode lattice artefacts and m∞ is the value of the critical fermion

mass in the continuum limit. As we did not know the correct dependence of mc
f (β) we

tried several integer and half-integer values for ei and one fit with a free exponent.
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6. Results

m∞ c1 c2 e1 e2 χ2
w χ2

0.0051(26) −0.285(32) −1.44(8) 1/2 1 1.33 6.33 × 10−7

−0.0126(8) −2.64(5) 5.48(69) 1 2 2.31 7.88 × 10−7

−0.0041(18) −1.48(6) 0 0.820(18) - 1.06 5.42 × 10−7

Table 6.2: Fit values for the fit function given in (6.9), for three different sets of
parameters. The mass m∞ represents the continuum value of the critical fermion mass
mc

f , which should be zero. The underlined parameters are prescribed in the 2-parameter
fits.

In Table 6.2 we give the results, which were able to best represent the data over the

whole β range. Furthermore we give two different values χ2
w and χ2 for the goodness of

the fit. While χ2
w takes into account the errors for mc

f , χ
2 does not. Since the values of

χ2 is well below one, we find that the fit functions describe the data very well. On the

other hand χ2
w is roughly one. The reason is most probably that we underestimated the

error for the critical mass, which we estimated from the fits alone. A better alternative

would be to include the statistical error. Unfortunately we would have to increase the

number of configurations by a factor of twenty to get reliable jackknife errors. In face of

these computing costs we refrained to calculate better errors for a value, which serves

mostly as a test of our lattice simulations. Nonetheless, the results for all values of m∞

are compatible with zero, when taking into account the uncertainties.

6.4 Ward Identities
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Figure 6.3: The Ward identity W2 in (5.5) is shown for β = 17 (left) and β = 40
(right).

In sections 2.6, 4.3 and 5.3 we have already discussed properties of the Ward iden-

tities. Here we want to report on the numerical results for our simulations, especially
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6.4. Ward Identities

the continuum limit. Since the Ward identities do not suffer from finite volume lattice

artefacts, we used additional lattices with parameters β = 40, 60, 80, 100, LT = 32 and

LS = 16. As explained in section 5.3, we must extrapolate the Ward identities to the

chiral limit. This is only possible if we have a guess for the functional dependence

of the Ward identities on the mass mf. As we have shown in section 5.4, the chiral

observables show no sign of a spontaneous symmetry breaking. Therefore, the Ward

identities should be smooth functions of mf. Looking at the actual lattice data we find

a smooth step function. Combining these result, we use the following ansatz close the

the critical fermion mass mc
f

W (mf) ∼ a arctan {ξ (mf −m∗)} + b (6.10)

with fit parameters a, b,m∗ and ξ. We can interpret the ξ as the lattice correlation

length. m∗ is a free value which should be equal to the critical fermion mass mc
f . We

found a deviation between both values, which is comparable to the difference between

the critical fermion mass determined with the peak of the critical susceptibility and

with the pion mass. On the left panel of Figure 6.3 we show the result for the Ward

identity W2. This Ward identity is dominated by the field strength tensor squared.

Still our ansatz proves to be a good approximation for the considered fermion masses.

On the right panel of Figure 6.3 we show the same Ward identity for β = 40. Here

we do not observe a step function anymore. Therefore we used a linear extrapolation

for β ≳ 40. This is in agreement with our previous ansatz, which becomes linear for

mf ≈ m∗.
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Figure 6.4: Ward identities (5.5) as functions of mf−mc
f for various values of β between

14 and 100. The colors represent different β: 14 •, 15.5 •, 17 •, 40 •, 60 •, 80 •
and 100 •. For W1 (left panel) we show the fits and standard deviations (confidence
band). For W2 (right panel) we show the two components β⟨tr λ̄Υ

⟩︁
(upper half) and

β
4
⟨trFµνF µν⟩ (lower half).
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6. Results

In Figure 6.4 we show the results for W1 and the two contributions to W2 in (5.5)

for all considered β . Looking at the value at the critical fermion mass, we see a

monotonic convergence to the theoretical value for all Ward identities. Using these

points we can perform the extrapolation to the continuum limit (β → ∞). Again we

lack the full understanding of the full quantum theory, therefore we do not know the

right extrapolation function. Hence we used fit functions of the form

W (β) = W∞ + bβ−c , (6.11)

where W∞ is the value of the Ward identity or its component in the continuum limit.

Here we employed the fits, with the prescribed value c = 1/2 for Fit 1, c = 1 for

Fit 2 and no prescribed parameter for Fit 3. We display the fits in Figure 6.5. In

contrast to the first two fits, Fit 3 has large error bands. This is due to the additional

fit parameter, allowing greater flexibility for the fit parameters. In Table 6.3 we give

W∞ for W1, the sum of the extrapolated components of W2 and W3 and the sum of

these values for WB. Since we used three different fit functions, we can estimate the

systematic error coming from the choice of a particular fit function. This allows us to

alleviate our bias in choosing the fit functions by calculating a weighted average, where

we took into account the goodness of the fits. Within the statistical errors, all Ward

identities clearly point to the restoration of supersymmetry in the continuum limit.

Thus we find no sign of spontaneous supersymmetry breaking. This is in accordance

with the Q-exact methods [56].

Ward identity W1 W2 W3 WB

β = 14.0 0.0323(8) 1.4678(79) 3.0222(5) 4.5241(126)
β = 15.5 0.0304(16) 1.4732(118) 3.0231(8) 4.5298(143)
β = 17.0 0.0288(10) 1.4688(38) 3.0185(9) 4.5197(128)
β = 40.0 0.0165(5) 1.4834(6) 3.0007(6) 4.4867(11)
β = 60.0 0.0123(1) 1.4918(6) 2.9968(8) 4.5053(6)
β = 80.0 0.0101(1) 1.4901(6) 2.9977(6) 4.4973(9)
β = 100.0 0.0085(1) 1.4920(5) 2.9972(6) 4.5004(8)

β → ∞ (Fit 1) −0.0053(3) 1.5105(71) 2.9773(66) 4.4825(140)
β → ∞ (Fit 2) 0.0046(1) 1.4981(46) 2.9909(27) 4.4936(74)
β → ∞ (Fit 3) −0.0021(14) 1.5507(872) 3.0006(125) 4.5492(1011)

β → ∞ (weighted average) −0.0024(13) 1.5267(424) 2.9885(70) 4.5128(507)

theor. value 0 3
2

3 9
2

Table 6.3: Values of Ward identities for different values of β on a 32 × 16 lattice. The
last five rows contain the continuum extrapolations with three different fit functions
and a weighted average as well as the theoretical value for unbroken supersymmetry.
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Figure 6.5: Ward identities for different values of β together with three different fits
used for the continuum extrapolation.

6.5 Mass spectrum

In order to determine physical results from the lattice, we have to perform the contin-

uum limit. Its first step is the infinite volume limit. We discussed this for the mesons

already in section 5.2. Next is the chiral limit. Since we need large statistics to ex-

tract the mass of the f -meson, we will calculate the masses for several different values

of κ and extrapolate the results to the critical value κc (β). In this limit the gluino

mass vanishes and in accordance with 6.8 the pion mass vanishes. Finally we have to

extrapolate to vanishing lattice spacing (β → ∞). We use three different values of

the inverse gauge coupling β for this purpose. We will split this section further into

three subsections, where we grouped the different particles as follows: we start with

the mesons, next are the gluino-glueballs and we conclude this subsection with the

glueballs, scalarballs and glue-scalarballs.
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6.5.1 Mesons

In the dimensional reduced VY-multiplet (see Table 2.2), we find the η− and f -meson.

Here we will also include the π-meson into our analysis because we know its continuum

value, which will give us a reference point for the masses. We start by depicting

the correlation functions for all three mesons for two different values of κ ≤ κc in

Figure 6.6. For the value κ = 0.26903, the mass of the ground state of all mesons is

slightly above the lattice cut-off. The first observation is, that for both κ the η− and

π-meson correlation functions are very similar for intermediate values of t. For even

larger t, the slope of the correlation function of the π-meson is steeper than the one

for the η-meson. Thus the ground state of the latter must be lighter. This observation

holds for all other κ used in this work. As the ground state mass of the pion vanishes

in the chiral limit, the same must be true for the η-meson.

Next we turn our attention to the difference between the η- and f -meson correlation

functions. While for κ = 0.26655 the correlation functions differ considerably, closer

to the chiral limit (κ = 0.26903), they become more similar. We observed this trend

for all three inverse gauge couplings and will also show it in terms of the masses of the

ground and excited states of these mesons. This result leads to the conclusion, that

both mesons will form a multiplet in the chiral limit. Thus also the ground state mass

of the f -meson must be massless.
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Figure 6.6: The η -,π - and f-meson correlation functions are shown for β = 17,
κ = 0.26655 (left) and κ = 0.26903 (right).

To further investigate this non-trivial formation of the multiplet, we scrutinize

the two different contributions to the correlation functions. Recalling, that the pion

correlation functions is just the connected part of the η-meson correlation function,

we have to focus only on the correlation functions of the η- and f -meson, depicted in

Figure 6.7. In case of the η-meson correlation function, we find that the connected part

is at least one order of magnitude larger than the disconnected part. This explains,

why the η- and π-meson correlation functions are similar for intermediate t. Towards

84



6.5. Mass spectrum

t = NT/2 the disconnected part becomes even smaller, yet we find two different masses

for the ground state of both mesons. In the case of the f -meson correlation function,

both contributions are roughly of equal size over the whole t range. As it will form a

multiplet with the η-meson, we find a non-trivial degeneracy between both correlation

functions. The determined masses of the ground state and excited state are depicted

in Table 6.4 as well as in Figure 6.8. We observe that the mass of the η-meson ground
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connected
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Figure 6.7: Connected and disconnected part of the η-meson (left) and f-meson (right)
correlation function for β = 17 and κ = 0.26903.

states depends linearly on the fermion mass mf. Using a linear fit to extrapolate to the

chiral limit, we find a zero crossing almost exactly at the value of the critical fermion

mass mc
f . Thus we conclude that mη ∝ mf − mc

f , as also seen from the fits in the

left panel of Figure 6.8. For the f -meson we see this proportionality only close to

the critical fermion mass, where the ground state mass of both mesons coincide. This

agreement improves for large values of β.
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Figure 6.8: Ground (left) and excited (right) state masses of the η- and f-meson as
function of the fermion mass for β = 14, 15.5 and 17. For the mass of the η-meson
ground state, we show linear fits.
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In case of the excited states, we find a more involved picture. The reason is that it

is more difficult to extract those values. For the η-meson, we use a fit with three masses

for the correlation function, which agrees rather well over the whole t-range. As the

largest of these three masses is well above one, it is afflicted with large lattice artifacts

and thus discarded. Hence we give only the values of the other two, which are the mass

of the ground state and the first excited state. For the f -meson this was impossible.

Here we used a different strategy. First we scrutinized the effective mass extracted from

the correlation function, where we found a plateau for large values of t, corresponding

to the mass of the ground state. Using this value as a fixed external input, we proceeded

to extract the mass of first excited state from correlation function using the region of

small t. Unfortunately this method leads to a large unknown systematic error. Again

we see that our results improve for increasing β, which allow to extract more values

and more importantly the mass of the first excited state decreases. Thus we could see

a convergence of the mass of both excited states in the continuum limit. Unfortunately

we can not pursue this idea, as our results do not even allow for an unambiguous

extrapolation to the chiral limit.

β = 14.0

κ 0.26940 0.27086 0.27122 0.27159 0.27196 0.27233

mη 0.135(4) 0.089(1) 0.076(1) 0.064(2) 0.053(1) 0.041(1)
mf 0.359(7) 0.247(4) 0.254(3) 0.074(2) 0.053(1) 0.046(2)
mη∗ 0.382(113) 0.347(30) 0.313(39) 0.287(31) 0.319(24) 0.318(29)
mf∗ - - - 0.509(7) 0.475(10) 0.471(9)

β = 15.5

κ 0.26767 0.26911 0.26947 0.26983 0.27020 0.27056

mη 0.130(2) 0.081(2) 0.074(1) 0.060(1) 0.047(1) 0.036(1)
mf 0.362(5) 0.275(4) 0.140(5) 0.059(1) 0.052(1) 0.037(1)
mη∗ 0.412(72) 0.281(33) 0.357(27) 0.318(22) 0.301(19) 0.302(26)
mf∗ - - 0.656(23) 0.442(3) 0.504(8) 0.459(4)

β = 17.0

κ 0.26655 0.26779 0.26810 0.26841 0.26872 0.26903

mη 0.116(1) 0.076(1) 0.062(2) 0.054(1) 0.043(1) 0.034(2)
mf 0.335(2) 0.094(2) 0.064(3) 0.052(4) 0.030(1) 0.034(1)
mη∗ 0.407(42) 0.353(24) 0.285(32) 0.305(24) 0.295(23) 0.278(25)
mf∗ - 0.473(4) 0.434(5) 0.437(4) 0.402(4) 0.433(4)

Table 6.4: Masses of the η- and f-meson ground and excited states.
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6.5.2 Gluino-glue/scalarball

In the dimensional reduced super-multiplet (see Table 2.2), we find the gluino-glue/scalarball

states. As already stated in section 2.5, we will look at first at the individual contri-

butions from the gluino-glueball and the gluino-scalarball. As interpolating fermionic

operator we used

OGG = ΓµνF
µνλ (6.12)

for the gluino-glueball and

OGS = Γ23 [ϕ1, ϕ2] (6.13)

for the gluino-scalarball. In our work, we focused on the gluino-glueball, because

the signal to noise ration for the gluino-scalarball made an extraction of the mass

impossible. The operator OGG transforms as a Majorana fermion. Thus we could use

the projectors P± = (1 ± Γ0) /2 to get a definite parity for these states. Instead we use

a numerical more convenient projection, leading to periodic (S) and antiperiodic (A)

correlation functions

CA(t) =
⟨︂
OGG(t)O†

GG(0)
⟩︂
, CS(t) =

⟨︂
OGG(t)Γ0O

†
GG(0)

⟩︂
. (6.14)

Any other contraction of the gluino-glueball over Γ-matrices can be written as a linear

combination of these two correlation functions [154]. This reflects the fact, that we have

only two independent physical states, differing by their parity. The determination of

this state for large lattice sizes is only possible with noise reduction techniques, namely

Jacobi and Stout smearing. Since the effectiveness of the later is tremendously higher,

we will focus on this smearing method. As explained in section 3.6, we will only talk

about the smearing level S. In the left panel of Figure 6.9 we show the correlation

function CS (t) for different smearing levels. Despite going to very high smearing levels

(up to 400), we see a constant improvement of the signal. Another test to check

the smearing process was the computation of the expectation value of average of the

plaquettes on the lattice, as in [132]. Here we find an ever increasing result, showing

no signs of break down due to the high levels of smearing. Therefore we think, that

these high levels of smearing will not invalidate our results.

In Table 6.5 we depict the masses of the gluino-glueball for different smearing levels

in the case of β = 17 and mf = −0.1415. We observe a nice convergence for both

masses. Looking at the right panel of Figure 6.9, we see a good agreement of both

masses, as expected in a parity symmetric theory. Further, this value depends only

very weakly on the inverse gauge coupling β and the bare fermion mass mf.

Comparing this result with the corresponding results for the mesons, we find that

the mass of the gluino-glueball is comparable to the masses of the excited mesons.

Therefore the ground states of the mesons and the ground state of the gluino-glueball

87



6. Results

S 0 6 12 18 24 30 36

mA 0.324(13) 0.531(29) 0.404(16) 0.358(13) 0.333(11) 0.315(10) 0.302(10)
mS 0.391(12) 0.633(14) 0.517(7) 0.469(5) 0.441(4) 0.421(4) 0.406(4)

S 48 80 240 400 1200 2400 3600

mA 0.282(9) 0.256(12) 0.234(5) 0.222(1) 0.165(2) 0.163(2) 0.168(2)
mS 0.384(3) 0.347(11) 0.270(3) 0.252(2) 0.224(5) 0.214(4) 0.214(5)

Table 6.5: Extracted masses for different smearing levels S for the symmetric and
antisymmetric gluino-glueball states for β = 17 and mf = −0.1415.
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Figure 6.9: Left: Gluino-glue correlation function C(t) as function of the temporal
extend t at β = 17 and mf = −0.1350 for different smearing levels S. Right: Gluino-
glue mass as a function of the squared pion mass.

does not seem to form a multiplet. We have two possible explanations for this behavior.

The first comes from the numerics. Looking at the correlation function for the gluino-

glueball, we see a rapid decrease. Hence our signal to noise ratio reduces quickly in

the euclidean time t. Since we expect to find the ground state for t → ∞, the signal

of the ground state will be suppressed and we are unable to measure it. On the other

hand, smearing should always enhance the signal of the ground state compared to the

excited states. Therefore we expect to see only the ground state for high smearing

levels. Unfortunately, we see no sign of an excitation with a mass comparable to the

mass of the ground states of the mesons in this case. Thus our smearing might not be

able to extract the ground state. The second explanation for this problem comes from

our statements in section 2.5. Here we saw that the gluino-glueball is not part of the

supermultiplet, but a mixture of the gluino-glueball and the gluino-scalarball. Hence

the gluino-glueball correlator must not accommodate all masses of this mixed state.

It could be that we find a lighter mass for the gluino-scalarball or the cross correlator

between the gluino-glueball and the gluino-scalarball. Unfortunately, this remains a

conjecture, since we were not able extract the mass of the gluino-scalarball, even for
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6.5. Mass spectrum

high levels of scalar field smearing.

6.5.3 Glueball, Scalarball and Glue-scalarball

In the reduced FGS-multiplet (see Table 2.2), we find a mixed state consisting of glue-

and scalarballs and a glue-scalar ball. For the mixed state we looked at the correlation

functions of glueballs and scalarballs. In the left panel of Figure 6.10 this is shown for

the glueball. The correlation function is zero for all distances t apart from t = 0, 1, 63

and 64. We can compare this result with the glueball correlator of pure Yang-Mills

theory on a two-dimensional lattice, derived in section 4.4. In this section, we found

that the correlation function of the glueball is only non-zero, when the support of

the interpolating operators for the glueballs intersect (both supports have at least one

common gauge link). In our work we use the clover plaquette as the interpolating

operator. Its support is a square with two link variables per edge. This would suggest

that we see also correlation for t = 2 and t = 62. Looking closer at the clover plaquette,

it is a sum of several plaquettes. For a time distant of two, the amount of intersecting

plaquettes is reduced, thus this correlation will be suppressed and more difficult to

observe in our simulation. Hence the most likely explanation is, that the glueballs only

interact via contact interaction.
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Figure 6.10: The glueball (left) and glue-scalarball(right) correlation function for
β = 17 and mf = −0.1350.

To further compare our result with the pure Yang-Mills case we introduce smearing

of the link variables via stout smearing. As argued in section 4.4 smearing increases

the support of the interpolating function, inducing more artificial correlation for the

glueball correlation function. In Figure 6.11 we compare the results for pure Yang-

Mills theory to N = (2, 2) SYM theory. For both correlation functions we see the same

qualitative behavior. With increased smearing levels, we observe more non-zero values

of the correlation function, as expected. The smearing effect should also be visible
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in the effects mass. Again we see the same qualitative behavior for both theories:

the effective mass is an ever increasing function of the distance t, which decreases

with higher smearing levels. We conclude, that the glueballs of the two-dimensional

N = (2, 2) SYM behave as the glueballs of the pure two-dimensional Yang-Mills theory.

Therefore the glueball correlator will decouple from the theory. The same observation

was made for the scalarball and the glue-scalarball. The correlation function of the

latter is shown in the right panel of Figure 6.10. It is important for the conclusion about

the dimensionally reduced FGS-multiplet. For this multiplet, the only pure state is the

glue-scalarball. Since it shows no correlation, we expect from supersymmetry, that the

cross correlation function of glue- and scalarball will also show no correlation. Hence

the whole multiplet decouples from the theory. In addition to the glue-, scalar- and

glue-scalarball, this multiplet contains also an excitation of the gluino-glue/scalarball.

Using our previous analysis, this excitation has to decouple from the lattice theory,

hence it should show no correlation. Thus it will not be possible to observe it in our

gluino-glueball correlation function and was not seen in our simulation.
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Figure 6.11: Comparison between the Glueball correlation function for the two-
dimensional Yang-Mills theory (left) and the two-dimensional Super Yang-Mills theory
(right) for different smearing levels S. In the bottom row we plot the effective mass.
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Chapter 7

Conclusion

Supersymmetric gauge theories posses interesting non-perturbative features like con-

finement and chiral symmetry breaking. Thus we need appropriate methods to in-

vestigate these models. In this thesis we have chosen numerical lattice calculations,

which are used successfully to calculate non-perturbative features of QCD. The inves-

tigated model is the two-dimensional N = (2, 2) SYM theory, which is derived by a

dimensional reduction of the four-dimensional N = 1 SYM theory. Therefore we used

several results of this mother theory as an inspiration for our simulation.

In the first part of the thesis, we presented our lattice setup and analyzed it the-

oretically. The first interesting and important point is the choice of the Wilson mass

term. As we have seen that we can define two different chiral symmetries, one for the

Majorana fermions of the reducible form of the action and one for the Dirac fermions of

the irreducible form of the action, we can also introduce two different kinds of Wilson

fermions. To keep our simulation close to the four-dimensional mother theory, we have

chosen the former. This leads to an asymmetry between the momenta of the fermions

and the scalars, introducing a scalar mass term in the effective action of the lattice

theory [64]. Thus we need to fine-tune the scalar mass term, which is the only relevant

operator for our formulation. Yet we perform an in principle unnecessary additional

fine-tuning of the fermion mass term, because this operator is deeply connected to the

supersymmetry breaking of the four-dimensional mother theory [23]. In the case of our

two-dimensional theory, we saw a considerable improvement of our lattice results.

In the second part of the thesis, we presented results of the numerical simulation

of our theory. First we investigated the parameter space, especially the inverse gauge

coupling β, the lattice volume and the two mass terms m2
s and mf. We found that for

small values of β we seem to be in the wrong lattice phase, which does not allow for

an extrapolation to the continuum limit. Thus large values are necessary, which also

seem to improve our results of the mass spectrum. Additionally we have shown that

β ∝ a−2. Thus we find the continuum limit for β → ∞ as expected in a two-dimensional

theory. Another interesting observation is the absence of screening for static charges in
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7. Conclusion

the fundamental representation. Instead we observe a confining behavior, even in the

chiral limit. This is in contrast to theoretical predictions [145] for massless fermions.

Simulating for several different lattice sizes revealed, that the Ward identities close

to the critical fermion mass do not depend on the lattice volume. For the mesons, we

found an explicit dependence on the lattice volume for all values of the fermion mass.

Still, the finite volume effects were sufficiently suppressed on the largest lattices. Thus

we could ignore this error source for our results. Next we tried to fine-tune the scalar

mass of our theory, using the lattice Ward identities. Unfortunately this approach

failed and we used the continuum result m2
s = 0.65948255(8) instead. Of course this

value will differ from the real critical value for a non-vanishing lattice spacing. On

the other hand, all our results do not depend on the scalar mass close to its critical

value. Thus even if we were able to determine the optimal critical value for the scalar

mass, we would still get the same results. Of course this statement must not be true

for observables we did not simulate. Lastly we investigated the dependence on the

critical fermion mass. For its critical value mc
f , we find a second order phase transition,

which improves our lattice results in the chiral limit, as observed for the meson masses.

Further the value of the critical fermion mass vanishes in the continuum limit, as

expected for an irrelevant operator.

Apart from the determination of the optimal simulation parameters, our lattice

simulation suffers from two severe problems, the flat directions of the classical scalar

potential and the sign problem. The former is a generic feature of theories with ex-

tended supersymmetry. As they get lifted dynamically even for m2
s = 0, they pose no

problem for our simulation. The same is true for the sign problem for all considered

simulation parameters. As the continuum theory has no sign problem [48], it can only

appear due to lattice artifacts. Thus in the continuum limit, it should not emerge.

Performing the chiral and the continuum limit, the Ward identities show the restora-

tion of supersymmetry. Thus we observe no spontaneous supersymmetry breaking,

which is possible because we have massless states in the theory. The same results was

found for the Q-exact methods [56]. Further we see that the chiral limit is important

to retrieve the right continuum limit. This is in contrast to our expectations, as the

fermion mass is an irrelevant operator. On the other hand, the chiral and the super-

symmetric limit are the same in the four-dimensional mother theory [23]. Thus the

breaking of chiral symmetry creates non-negligible lattice artifacts in our lattice theory.

Of course, in two dimensions we reach the chiral limit automatically in the continuum

limit. Thus these artifacts will vanish in the continuum limit.

The mass spectrum of the theory shows three different sets of particles whose masses

are degenerate. The first is formed by the ground states of the η- and f-meson. They

are part of the dimensionally reduced Veneziano-Yankielowicz super-multiplet and be-

come massless in the continuum limit. The second set consists of the excited states of
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the η- and f-meson and the the gluino-glueball. Thus both mesons behave according

to our theoretical predictions in contrast to the gluino-glueball, whose ground state

mass should be massless also. There are at least two explanations for this unexpected

behavior. The first is that we actually see an excited state of the gluino-glueball. The

reason is that we could not resolve the corresponding correlation function for large

t-values, where the ground state dominates. Instead we determined the mass for inter-

mediate t-values, for which the correlation function is dominated by the first excited

state. On the other hand, our results converged for ever higher smearing levels. As

smearing improves the signal of the ground state over the signal of the excited state,

our determined mass should belong to the ground state. The second explanation is that

we actually need the correlation function of the gluino-glue/scalarball. Thus we might

find the massless ground state, if we analyze the gluino-scalarball correlation function

or the cross correlation function of the gluino-glueball and the gluino-scalarball. Un-

fortunately we were not able to get a reasonable signal for these correlation functions,

even with smearing. Thus we can not check this hypothesis. The last set of states

with degenerate mass is formed by the glueball, the scalarball and the glue-scalarball.

All of these particles are part of the dimensionally reduced Farrar-Gabadadze-Schwetz

super-multiplet and decouple from the theory. Comparing with our predictions, we

miss a gluino–glue/scalarball state. As this state must also decouple, its contribu-

tion to the gluino-glueball correlation function will be zero. Thus this state is most

likely unobservable on the lattice. Finally we can compare the mass spectrum of the

two-dimensional N = (2, 2) SYM theory to the mass spectrum of the mother theory,

the four-dimensional N = 1 SYM theory. In both theories we find super-multiplets

formed by the same states. Yet their masses differ drastically. While we find massive

super-multiplets in four dimensions, in two dimensions the super-multiplets are either

massless or decouple completely from the theory.
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Appendix A

Conventions

In this thesis we will work with several different indices for the gauge fields, scalar

fields and gamma matrices. To distinguish the different cases we use different indices.

For the four-dimensional spacetime indices we use capital letters running from zero to

three. In case of the two-dimensional spacetime indices we use Greek indices running

from zero to one and for the flavor indices we use lower case letters running from one

to two. Summarized we have

M,N = 0, 1, 2, 3

µ, ν = 0, 1

m,n = 1, 2.

(A.1)

Further our fields posses color and spin degrees of freedoms, expressed by yet a new

set of indices. For the former we use again lower case letters, while we use Greek letters

for the latter. As we usually contract them using the Einstein summation convention,

we will suppress them in most of the thesis. For example we write ϕnϕn instead of∑︁
n,a

ϕnaϕ
a
n, where a is the color index of the scalar field. In cases where we have an open

index or it is important for the calculation, we will write these indices explicitly.
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Appendix B

Pure gauge theory on the lattice

In this section, we will review the relevant analytical results for the two-dimensional

Yang-Mills theory on the lattice, used in section 4.4. Our calculations are based on the

work of Migdal [143]. In the first part of this section we will follow [91], which features

a recent introduction into this calculation.

Since pure Yang-Mills theory describes gauge fields only, we have the lattice parti-

tion function

Z =

∫︂ ∏︂
dUe−Sg . (B.1)

Here we have chosen the Wilson gauge action

Sg = −β
∑︂
x

tr (1 −ℜUp(x)) (B.2)

where Up(x) is the positive oriented plaquette at the position x. Since we can perform

the continuum limit analytically, the Wilson gauge action is sufficient to retrieve the

continuum theory. As the action is just a sum over the lattice points x, we can rewrite

the integrand as a product

e−Sg =
∏︂
x

e−βtr(1−ℜUp(x)) . (B.3)

Further we use results of the group theory to expand the exponential functions in the

characters of the gauge group

e−βtr(1−ℜUp(x)) =
∑︂
R

cR(β)χR(Up(x)) (B.4)

where R labels the representation of the gauge group, cR(β) are the expansion coef-

ficients and χR(Up) the character of Up, which is a group element. Having replaced

the exponential function with characters of the plaquettes, we can make use of group
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B. Pure gauge theory on the lattice

U1

U3

U2 U5

U6

U4

Up1 Up2V

L1

L3

L2 L4

Figure B.1: On the Left: The gluing of two plaquettes. On the right: Resulting loop
for the partition sum

theory, to solve the integrals. For this solution we introduce the gluing rule∫︂
dΩχR

(︁
UΩ−1

)︁
χR′ (ΩV ) =

δRR′

dR
χR (UV ) (B.5)

and the splitting rule ∫︂
dΩχR

(︁
ΩUΩ−1V

)︁
=

1

dR
χR (U)χR (V ) (B.6)

where Ω, U and V are elements of the gauge group and dR is the dimension of the

representation R, dR = χR (1). Both rules can be derived with group theory. We

proceed to use these mathematical tools to calculate the partition sum. Let us start

with a integration over a single link V on the lattice. We show the corresponding sketch

in the left panel of figure B.1. As we see, this link is adjacent to two plaquettes Up1

and Up2:

Up1 = tr (V U1U2U3)) , Up2 = tr
(︁
V −1U4U5U6)

)︁
. (B.7)

Since there are no other plaquettes which contain this link variable, we must solve the

integral ∫︂
dV χR (V U1U2U3)χR′

(︁
V −1U4U5U6

)︁
. (B.8)

After applying a cyclic permutation, we recover the gluing rule (B.5). Therefore we

find the result
δRR′

dR
χR (U1U2U3U4U5U6) . (B.9)

A nice graphical interpretation of this result is, that we glued the plaquettes Up1 and

Up2 together along the link V . Since we did not make use of the position of this link,
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B.1. Holes

we can apply this procedure for every link within the lattice and end up with a loop

around the border of our lattice, depicted in the right panel of figure B.1. In this case

the partition function reads

Z =
∑︂
R

dR

(︃
cR
dR

)︃V ∫︂
dL1dL2dL3dL4χR (L1L2L3L4) . (B.10)

where V is the number of lattice points of the lattice. Here we will focus on lattices with

periodic boundary conditions in time and space direction. Hence we have L3 = L−1
1 ,

L4 = L−1
2 and we lose the integration over L3 and L4. Applying these simplifications

we calculate the partition function

Z =
∑︂
R

dR

(︃
cR
dR

)︃V ∫︂
dL1dL2χR

(︁
L1L2L

−1
1 L−1

2

)︁
(B.11)

=
∑︂
R

(︃
cR
dR

)︃V ∫︂
dL2χR (L2)χR

(︁
L−1
2

)︁
=
∑︂
R

(︃
cR
dR

)︃V
(B.12)

where we used the splitting rule (B.6) from line one to line two and the gluing rule

(B.5) together with dR = χR (1) in the second line. The last step is to calculate the

expansion coefficients cR. This calculation was done for example in [91]. The result

reads

cR =
2

β
e−βdRIn (β) (B.13)

where n = 2j+1 with j the spin associated with every irreducible representation. In (β)

are the modified Bessel functions of the first kind. The final result for the partition

function is

Z = e−βV
(︃

2

β

)︃V ∞∑︂
n=1

IVn (β) . (B.14)

B.1 Holes

Before we can discuss the Wilson Loop, we want to discuss holes of the two-dimensional

space. Here we want to discuss a spacetime without holes. Yet they will appear

indirectly, if we want to calculate observables. Since we only look at gauge invariant

observables, they must be linear combinations of Wilson loops. Here we want to discuss

the most easiest case, a single Wilson loop, charaterized by the closed planar path γ.

Later we will generalize this result to arbitrary holes on the lattice.

If we consider a Wilson loop, we have to calculate

⟨W [γ]⟩ =
1

NZ

∫︂ ∏︂
U∈Λ

dUW [γ]e−Sg [U ] =
1

NZ

∫︂ ∏︂
U∈ΛL

dUW [γ]e−Sg [U ]

∫︂ ∏︂
V ∈Λ∗

dV e−Sg [V ] ,

(B.15)
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B. Pure gauge theory on the lattice

T S

U1

U2

U3

U4

Up1 Up2 Up3

Up4 Up5 Up6

Up7 Up8 Up9

L

ΛL

Figure B.2: On the left: Lattice which has a hole at the position of plaquette Up5. On
the right: Wilson Loop on the lattice, which is formed by L.

where ΛL is the set of plaquettes enclosed by γ and Λ∗ is the set of all other plauqettes.

We will focus on the last integral. This integral is just the partition sum of a two-

dimensional space with a hole, whose border is given by γ. Hence we get the analogy

to holes in topology. To calculate this integral, we use the sketch on the left hand

side of Figure B.2. This is the most easiest of these cases. The set ΛL is just Up5,

while Λ∗ = {Up1, Up2, Up3, Up4, Up6, Up7, Up8, Up9}. Now we start to glue the plaquettes

Up1, Up2, Up3, Up6, Up9, Up8 and Up7 together. This leads to the result

∑︂
R,R′

dRc
′
R

(︃
cR
dR

)︃7 ∫︂
dSdU1dU2dU3χR

(︁
SU−1

1 TU−1
3

)︁
χR′ (U1U2U3U4) . (B.16)

Using the integration over U1 to apply the gluing rule (B.5) we get

∑︂
R

dR

(︃
cR
dR

)︃8 ∫︂
dSdU2dU3χR

(︁
SU2U3U4TU

−1
3

)︁
. (B.17)

Applying the splitting rule (B.6) for the integration over U3, we find the final result

∑︂
R

(︃
cR
dR

)︃8 ∫︂
dSdU2dU3χR (SU2)χR (U4T ) . (B.18)

We end up with two paths, one counter-clockwise around the 3×3 lattice and one going

clockwise around the hole, formed by plaquette Up5. Since we did not make use of the

periodicity of the lattice, this result will also hold for any 3×3 patch in a larger lattice.

Further, this calculation can be generalized to larger lattice patches and an arbitrary

form of the hole. Since we used a local calculation only, we can even generalize this

result to a setup with more than one hole. If we call Nh the numbers of holes, Hn

the counter-clockwise path around the nth hole, |h| the total area covered by holes, A
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B.2. Wilson Loop

the counter-clockwise path around the lattice patch we look at and VA the amount of

plaquettes encircled by A, we find

∑︂
R

d1−Nh
R

(︃
cR
dR

)︃VA−|h| ∫︂ ∏︂
U∈A

dUχR (A)

Nh∏︂
n

χR
(︁
H−1
n

)︁
. (B.19)

Another interesting aspect of this result comes from (B.15). Our results allows us to

integrate out all plaquettes which are not enclosed by gauge invariant Wilson loops.

This is especially true for several non-intersecting Wilson loops (here we regard two

Wilson loops to intersect even when they just touch each other). Thus the resulting

integral will factorize in the different integrals over the areas enclosed by the Wilson

loops. Therefore interaction of two Wilson loops does not depend on the distance

between them. The same result was found in [142] for the continuum.

B.2 Wilson Loop

Having solved the second integral in (B.15) we want to focus on the first integral. To

not confuse our case with the analysis for holes, we use the sketch in the right panel

of figure B.2. We introduce AL as the number of plaquettes in the set ΛL. Using the

result of the last section and applying it to (B.15) we find

⟨W ⟩ =
1

NZ

∑︂
R

1

dR

(︃
cR
dR

)︃V−AL
∫︂ ∏︂

U∈ΛL

dUχR
(︁
L−1

)︁
e−Sg [U ]χR(j=1/2) (L) , (B.20)

where we integrated out the link variable lying on the border on the lattice, analogous

to the partition function1. Using the gluing rule (B.5) and the expansion of the expo-

nential function (B.13), we can integrate over all remaining links, which are not part

of the Wilson loop, arriving at

⟨W ⟩ =
1

NZ

∑︂
R,R′

1

dR

(︃
cR
dR

)︃V−AL

dR′

(︃
c′R
d′R

)︃AL
∫︂ ∏︂

U∈L

dUχR
(︁
L−1

)︁
χR(j=1/2) (L)χR′ (L)

(B.21)

1If a Wilson loop intersects with a border, we will simply shift the lattice. Since the action is
invariant under these shifts, the result will not change but the Wilson loop will no longer intersect
with the border.
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B. Pure gauge theory on the lattice

Now we use the Clebsch-Gordon decomposition χjχj′ = χj+j′ + ...+χ|j−j′| to proceed

⟨W ⟩ =
1

NZ

∑︂
R,R′

1

dR

(︃
cR
dR

)︃V−AL

dR′

(︃
c′R
d′R

)︃AL

×

×
∫︂ ∏︂

U∈L

dUχR
(︁
L−1

)︁ [︁
χR′(j′+1/2) (L) + χR′(j′−1/2) (L)

]︁ (B.22)

Next we use the gluing rule (B.5) to get χR (1) = dR and use the identity (B.13) to get

⟨W ⟩ =

∞∑︁
n=1

(︁
n+1
n
IV−AL
n (β) IAL

n+1 (β) + n
n+1

IAL
n (β) IV−AL

n+1 (β)
)︁

N
∞∑︁
n=1

(IVn ) (β)
(B.23)

Since I1 (β) > I2 (β) > ..., we can perform the limit V → ∞ trivially. Combining this

with N = 2, we find the infinite volume limit

< W >→
(︃
I2 (β)

I1 (β)

)︃AL

. (B.24)

To reach the continuum limit, we have to perform the limit β → ∞ next. For this

calculation we look at the asymptotic behaviour of the modified Bessel functions

In (z) ≈ ez

(2πz)
1
2

(︃
1 − 4n2 − 1

8z
+O

(︃
1

z2

)︃)︃
. (B.25)

In this limit, the lattice spacing shrinks to zero. Hence the physical area of the Wilson

loop will shrink to zero too. Therefore we have to increase the lattice area of the

Wilson loop in this limit, to keep the physical area of the Wilson loop constant. For

a two-dimensional theory, the coupling constant is dimensionful. This allows to relate

the inverse gauge coupling β to the lattice spacing

β =
Nc

a2g2
. (B.26)

With this we can give the physical area Ap in terms of β

Ap = Aa2 =
A

βg2
. (B.27)

Since we do not know g we demand simply AL

β
= const, where we assume that g is

independent on β. In section 5.1 we show this for the two-dimensional N = (2, 2) SYM

100



B.3. Glueballs

theory. This allows us to calculate the Wilson loop in the continuum limit

⟨W ⟩ = lim
β→∞

(︄
1 − 15

8β

1 − 3
8β

)︄βAp

= lim
β→∞

(︃
1 − 1.5

β − 0.375

)︃βAp

= e−1.5Ap . (B.28)

This is the same results as the continuum result given in (4.46) for g = 1. This results

shows us that the formulation of Migdal [143] leads to the correct continuum results,

as expected. Second we have shown all relevant analytical tools, which we will use to

calculate more complicated objects like glueballs.

B.3 Glueballs

The last step is to calculate the glueball correlation function

⟨︁
F 2
01(x)F 2

01(0)
⟩︁

=
C

Z

∫︂ ∏︂
x′

dF01(x
′)F 2

01(x)F 2
01(0)e−

1
4
F 2
01 . (B.29)

For the lattice equivalent, we put two non-intersecting plaquettes on the lattice at

position x and 0. Following our result from before, we find

⟨Up(x)Up(0)⟩ =
1

Z

∑︂
R,R′,R′′

1

dR

(︃
cR
dR

)︃V−2

cR′cR′′×

×
∫︂

dUp(x)χR
(︁
U−1
p (x)

)︁
χ′
R (Up(x))χj=1/2 (Up(x))×

×
∫︂

dUp(0)χR
(︁
U−1
p (0)

)︁
χ′
R (Up(0))χj=1/2 (Up(0))

=

∞∑︁
n=1

{︂
(n+1)2

n
IV−2
n (β) I2n+1 (β) + n(n+2)

n+1
In (β) IV−2

n+1 (β) In+2 (β) + n2

n+1
I2n (β) IV−2

n+1 (β)
}︂

∞∑︁
n=1

IVn (β)

(B.30)

Again we perform the infinite volume limit V → ∞

⟨Up(x)Up(0)⟩ →
(︃

2
I2 (β)

I1 (β)

)︃(︃
2
I2 (β)

I1 (β)

)︃
= ⟨Up(x)⟩ ⟨Up(0)⟩ (B.31)

where we used our previous result for the Wilson loop. Since we have Up(x) → F01 in

the continuum limit(V → ∞, β → ∞) we see that the glueball correlator vanishes.
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