Exercise 9: Perturbative RG and the renormalized potential

In this exercise we want to give a functional representation based on a renormalized potential to our lecture's results based on perturbation theory for small coupling.

Recall that during the lecture we promoted the standard ϕ^4 Lagrangian in d = 4 dimensions

$$\mathcal{L}_{4} = \frac{1}{2}\partial_{\mu}\phi\partial^{\mu}\phi + \frac{1}{2}g_{2}\phi^{2} + \frac{1}{4!}g_{4}\phi^{4}$$

to a d-dimensional action by introducing a scale μ as

$$\mathcal{L}_d = \frac{1}{2}\partial_\mu\phi\partial^\mu\phi + \frac{1}{2}g_2\phi^2 + \frac{1}{4!}\mu^{4-d}g_4\phi^4$$

The "promotion" was done in such a way that the field ϕ has always canonical dimension, but the couplings g_2 and g_4 have maintained the same dimension when $4 \to d$. The potential is for now restricted to be a polynomial of the fourth order.

Part 1:

Consider the generalization of \mathcal{L}_4 to a full functional potential

$$\mathcal{L}_4 = \frac{1}{2} \partial_\mu \phi \partial^\mu \phi + V(\phi)$$

The original Lagrangian can be recovered by expanding $V(\phi) = \frac{1}{2}g_2\phi^2 + \frac{1}{4!}g_4\phi^4$ and the couplings are the Taylor coefficients of this expansion. Find the generalization of the potential that is needed to promote the Lagrangian to \mathcal{L}_d and leaves the dimension of the couplings invariant.

Hint:

You may try the ansatz

$$\mathcal{L}_d = \frac{1}{2} \partial_\mu \phi \partial^\mu \phi + \mu^A V(\mu^B \phi)$$

and determine the unknown constants A and B by comparing with the coupling's Lagrangian.

After 1) dimensional regularization, 2) minimal subtraction of the $\frac{1}{\epsilon}$ poles and 3) an unimportant rescaling of factors of 4π , the beta function of the coupling g_4 at two loops in d = 4 is

$$\beta_{g_4} = 3g_4^2 - \frac{17}{3}g_4^3$$

and the anomalous dimension is

$$\eta = \frac{1}{6}g_4^2$$

Part 2:

Assume that in the functional representation the potential has beta function

$$\beta_V = C_1 \left(V''(\phi) \right)^2 + C_2 V''(\phi) \left(V'''(\phi) \right)^2 + \frac{1}{2} \eta \phi V'(\phi)$$

and the anomalous dimension η has the form

$$\eta = C_3 \left(V^{(4)}(0) \right)^2$$

Determine the constants C_1 , C_2 and C_3 .

Hint:

There is no need to compute them from diagrams if you substitute $V(\phi) = \frac{1}{4!}g_4\phi^4 + \ldots$ and interpret β_V as the generator of the beta functions $\beta_V = \frac{1}{4!}\beta_{g_4}\phi^4 + \ldots$. It is probably convenient to determine the constant C_3 of the anomalous dimension first.

Now we are interested in computing the critical exponents *below* four dimensions using the beta functions and the perturbative expansion of d = 4.

One trick to do this is to "trade" the expansion in g_4 for a $\varepsilon = 4 - d$ expansion. We use the fact that $V(\phi)$ and ϕ are canonically normalized in d dimensions and switch to a dimensionless potential $v(\varphi) = \mu^{-d}V(\mu^{d/2-1}\varphi)$. (Notice that the field ϕ is already renormalized and the contribution of η is already inside β_V above so there is no need to rescale by a further wavefunction.)

We are purposedly distinguishing between $d = 4 - \varepsilon$ (which parametrizes any dimension below the upper critical one for statistical field theory) and $d = 4 - \epsilon$ (which analytically continued the theory to make it finite). After the new additional rescaling all couplings are dimensionless and the beta function is

$$\beta_{v} = -dv(\varphi) + \frac{d-2}{2}\varphi v'(\varphi) + \beta_{V}|_{V \to v}$$

$$= -dv(\varphi) + \frac{d-2+\eta}{2}\varphi v'(\varphi) + \frac{1}{2}\left(v''(\varphi)\right)^{2} - \frac{1}{2}v''(\phi)\left(v'''(\phi)\right)^{2}$$

$$\eta = -\frac{1}{6}(v^{(4)}(0))^{2}$$

(This expression has a familiar scaling term that should remind you of another exercise. It should also suggest you the correct values of C_1 , C_2 and C_3 as a check of part 2!) The fixed point solutions of $\beta_v = 0$ are of the form $v^*(\varphi) = \frac{1}{4!}\lambda_4^*(\varepsilon)\varphi^4$.

(Optional) Part 3:

- Find all the fixed points $\lambda_4^*(\varepsilon)$ up to order ε^2 . How many are they and why?
- Which fixed point is the one that we need for the ε expansion and why?
- Find a simple way to determine the critical exponent η and ν to order ε^2 . (The results should be $\eta = \frac{\varepsilon^2}{54}$ and $\nu = \frac{1}{2} + \frac{\varepsilon}{12} + \frac{7\varepsilon^2}{162}$.)