
Exercise 6: Dimensionless variables and critical properties

Consider a scale k dependent potential Vk(φ) with renormalization group flow:

k∂kVk(φ) = kdF

(
V ′′(φ)

Zkk2

)
(1)

Assume that the function F is nowhere singular. The above notation means that the potential is
a function of φ that depends also on k: the derivative ∂k only acts on the explicit dependence of
Vk and not on the argument φ. In other words, the renormalization group flow of the potential
Vk(φ) is the logarithmic derivative with respect to k at fixed field φ.

The scale dependent constant Zk has renormalization group flow k∂kZk = −ηZk and it normal-
izes the kinetic term Zk

2 (∂φ)2. Define the dimensionless renormalized field

ϕ ≡ k−d/2+1Z
1/2
k φ (2)

and the dimensionless potential

vk(ϕ) ≡ k−dVk(φ) = k−dVk(k
d/2−1Z

−1/2
k ϕ) (3)

The dimensionless renormalized field has canonically normalized kinetic term in units of the
scale k.

Part 1:
Show that the renormalization group flow of the dimensionless potential (that is the logarithmic
scale derivative at fixed ϕ) is

k∂kvk(ϕ) = −dv(ϕ) +
1

2
(d− 2 + η)ϕv′k(ϕ) + F (v′′k(ϕ)) (4)

Some definitions: the first few terms of the scale derivative depend only on the rescaling

−dv(ϕ) +
1

2
(d− 2 + η)ϕv′k(ϕ)

and generally are referred to as scaling part to distinguish it from F (v′′k(ϕ)) which carries the
quantum or statistical effects.

Part 2:
Approximate the potential to two couplings vk(ϕ) = 1

2g2ϕ
2 + 1

4!g4ϕ
4 and project the flow as

k∂kvk(ϕ) =
1

2
βg2ϕ

2 +
1

4!
βg4ϕ

4 (5)

Give explicit expressions for the beta functions βg2 and βg4 and identitfy their scaling parts.



(Optional) Part 3:
Take η = Bg24 and F (x) = Ax2 for A and B two positive constants. Expand in d = 4 − ε and
find the fixed points of βg2 = 0 = βg4 and the eigenvalues of the stability matrix at the leading
order in ε.

Does the result depend on A and B? Why?

Some comments that will be discussed during the standard or the exercise class:

Assuming in general that η ∼ g24, it is possible to construct the leading orders in the ε expansion
of both fixed points and eigenvalues for a general function F , making the above result universal.

From βg4 = 0 you can find g4 = ε/(3F ′′(g2)), and substituting it in βg2 = 0 you find g2 =
εF ′(g2)/(6F

′′(g2)). Using the fact that both g4 and g2 are proportional to ε and the regularity
of F (x) in zero we get that to O(ε) the nontrivial fixed point is

g∗2 =
ε

6

F ′(0)

F ′′(0)
g∗4 =

ε

3F ′′(0)

The stability matrix at this fixed point becomes[
−2 + ε

3

(
1 + ε

6

)
F ′(0)

0 ε

]
and the eigenvalues can be found trivially because it is a triangular matrix. The negative of
these eigenvalues are (related to) the critical exponents.

Consider the eigenvector of the critical exponent θ = 2− ε
3 . In the above basis it is {1, 0} which

corresponds to the operator ϕ2. This means that close to the fixed point we can deform

v(ϕ) = v∗(ϕ) +

(
k

k0

)θ
ϕ2

with k0 an arbitrary reference mass scale.

Now identify v∗(ϕ) with the critical point of a system: the reduced temperature is thus T−Tc
Tc
∼

(k/k0)
θ. (We do not use the symbol t for the reduced temperature to not confuse it with the

logarithm of the scale.)

Finally perform a rescaling of the system. The momentum scale transforms as k → λ · k, which
implies that T−Tc

Tc
∼ λθ. Recalling that the exponent ν is related to the scaling of T−Tc

Tc
as

T−Tc
Tc
∼ λ1/ν under the hyperscaling hypothesis, we deduce that ν = 1/θ = 1/2 + ε/12.
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